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MAVM-UNet: multiscale
aggregated vision MambaU-Net
for field rice pest detection
Congqi Zhang1*, Ting Zhang2 and Guanyu Shang3

1School of Software Engineering, Chengdu University of Technology, Chengdu, China, 2School of
Computer Science, Xijing University, Xian, China, 3Henan Agricultural Information Data Intelligent
Engineering Research Center, Sias University, Zhengzhou, China
Pests in rice fields not only affect the yield and quality of rice but also cause

serious ecological and environmental problems due to the heavy reliance on

pesticides. Since various pests have irregular and changeable shapes, small sizes,

and complex backgrounds, field rice pest detection is an essential prerequisite

and challenge for the precise control of pests in the field. Amultiscale aggregated

vision MambaU-Net (MAVM-UNet) model for rice pest detection is constructed.

The model consists of four main modules, Visual State Space (VSS), multiscale

VSS (MSVSS), Channel-Aware VSS (CAVSS), and multiscale attention aggregation

(MSAA), where VSS is used as the basic module for capturing context information,

MSVSS is used to capture and aggregate fine-grained multiscale feature of field

rice pest images, CAVSS is added into Skip connection to select the critical

channel representations of the encoder and decoder, and MSAA is added in the

bottleneck layer to integrate the pest features of different layers of the encoder.

Combining MSAA and CAVSS can capture the low-level details and high-level

semantics and dynamically adjust the contributions of features at different scales;

for example, the slender legs and antennae of pests rely on fine-grained features,

while the large body of pests relies on coarse-grained features. A large number of

experimental results on the rice pest image subset of the IP102 dataset show that

MAVM-UNet is superior to the state-of-the-art models, with PA and MIoU of

82.07% and 81.48%, respectively. The proposed model provides important

guidance for the monitoring and control of pests in rice fields. The codes are

available at https://github.com/ZengsihaoNB666/mavmunet.git.
KEYWORDS

field rice pest detection, Visual State Space (VSS), Channel-Aware VSS (CAVSS), vision
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1 Introduction

Field crop disease and pest detection (FCDPD) is essential for ensuring the yield and

quality of crops. The traditional FCDPD method based on agricultural experts is inefficient

and has limited accuracy in large-scale real-time FCDPD (He et al., 2023; Zhang et al.,

2023). With the development of Android mobile, Internet of Things (IoT), and unmanned
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aerial vehicle (UAV) technologies in smart agriculture, many

methods for detecting crop diseases and pests have been proposed

by easily collecting images of field crops through IoT and UAVs

(Saleem et al., 2024; Zhang et al., 2024). In recent years, deep

learning models, such as U-Net and its variants, have been widely

applied in FCDPD, particularly field crop pest detection (FCPD)

(Guo et al., 2024; Saleem et al., 2025). However, due to limited

receptive fields, they are unable to extract the long-range

dependencies that are crucial for understanding the global context

of the field pest image structures (Naeem et al., 2025). Transformer

and Vision Transformer (ViT) models have emerged as a promising

alternative (Xu et al., 2022; Bai et al., 2023). They are good at

capturing long-range dependencies, but not at extracting local

features, and their quadratic computational complexity limits

their application, especially for high-resolution images of field

pests collected by Android mobile, Internet of Things, and

unmanned aerial vehicles (Gole et al., 2024; Bedi et al., 2025).

To address the above challenges, Mamba and its improved

models have been presented and achieved remarkable development

with a linear complexity of O(n), including Vision Mamba

(VMamba), Mamba-UNet, and MSVM-UNet (Chen et al., 2024;

Wang et al., 2024). They excel in capturing long-range

dependencies and spatial local features and are particularly

suitable for complex FCPD tasks. Aiming at the problems existing

in FCPD, such as irregular and variable shapes, blurred pest

boundaries, low contrast between pests and the background, and

large imaging noise, a multiscale aggregated vision Mamba-UNet

(MAMVM-UNet) model for FCPD is constructed. The main

contributions of this paper are described as follows:
Fron
1. A multiscale Visual State Space (MSVSS) module is

proposed to capture and aggregate the multiscale fine-

grained features of field crop pest images.

2. A Channel-Aware VSS (CAVSS) Block is added into the

Skip connection to incorporate channel-spatial attention

features into VSS to select the critical representations of the

encoder and decoder.

3. A multiscale attention aggregation (MSAA) module is

added to the bottleneck layer to integrate the features of

different layers of the encoder.
The rest of this paper is arranged hierarchically, as follows.

Section 2 overviews the related work. MAVM-UNet and its

components are introduced in detail in Section 3. Section 4

presents the experiments, results, and analyses. The paper is

summarized along with prospects for the next work in Section 5.
2 Related work

With the advancement of computer vision, IoT, and UAV

technologies, many FCPD methods have been continuously

presented, which are roughly divided into convolutional neural

networks (CNNs), Transformers, Mamba, and their improved

models.
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2.1 CNN-based methods

By stacking deep convolutional layers, CNN can automatically

extract useful advanced features from pest images, achieving high

performance of FCDPD (Bedi and Gole, 2021a; Bedi and Gole,

2021b). (Wei et al., 2022). proposed a multiscale feature fusion

(MFFNet) model for FCPD and integrated multiscale feature

extraction and mapping modules to achieve end-to-end precise

classification of crop insects. (Zhang et al., 2024). combined the

advantages of the attention mechanism and multiscale feature

fusion to improve the accuracy of FCPD. They introduced the

relationship-aware Global attention module to adaptively adjust the

feature weights at each position, pay more attention to the areas

related to pests, and reduce background interference. (Wang et al.,

2024). constructed a dilated multiscale attention U-Net model for

FCPD. In the model, the dilated Inception module replaces the

convolution operation in U-Net to extract the multiscale features of

pest images, and the attention module focuses on the edges of

pest images.

The above models with limited convolutional receptive fields

rely on a large dataset for training the model, but it is ineffective for

few-shot FCPD and cannot extract the long-range dependencies

that are crucial for multiscale FCPD.
2.2 Transformer-based methods

In the field of FCPD, Transformer and ViT can analyze the pest

behavior changes, providing strong support for the early

monitoring (Xie et al., 2024). (Zhang et al., 2023). proposed a

multimodal Transformer model for FCPD and obtained more

competitive results compared to other excellent models. (Zeng

et al., 2024). proposed a lightweight hybrid FCPD network

HCFormer, which integrates both the local and global features of

the input images, resulting in a more accurate feature

representation of crop pests. (Fu et al., 2024). introduced an

improved ViT for FCPD. The results indicate that the self-

attention mechanism of ViT can optimize the performance of

FCPD. (Liu et al., 2025). proposed a Transformer-based end-to-

end FCPD method, which can compensate for the feature

information loss caused by the downsampling process and

achieve remarkable results.

The above analysis demonstrates the powerful performance of

Transformers and ViTs in various computer vision tasks, but their

quadratic complexity limits their application in high-resolution and

real-time FCPD tasks.
2.3 Mamba-based method

Mamba and its variants combine state space model (SSM) and

Visual State Space (VSS) blocks with advanced deep learning to

learn local–global features and remote dependencies, thereby

enhancing the performance of image detection and segmentation

(Chen et al., 2024; Jiang et al., 2024; Liao et al., 2024; Wang et al.,
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2024). VSS is regarded as visual SSM. VSS compensates for the

inherent deficiencies of SSM in two-dimensional data by

introducing spatial serialization strategies, locality modules, and

multiscale designs. The essential difference between SSM and VSS

lies in the trade-off between universality and domain adaptability.

As a visual mamba, VMamba inherits the advantages of CNN and

ViTs, improves computational efficiency, and achieves linear

complexity without sacrificing the global acceptance field.

Mamba-UNet is a hybrid deep learning model that combines U-

Net and Mamba. It can effectively capture the global context,

significantly improve the accuracy of image detection and

segmentation, and maintain relatively low computational

overhead. Visual Mamba UNet (VM-UNet) is a hybrid deep

learning model that combines U-Net and Mamba to capture

global–local features for effective image detection and

segmentation. To overcome the limitations of CNN and ViTs

(Ruan et al., 2024, Wang et al., 2024). introduced the insect

classification model InsectMamba. It integrates SSM, CNN, multi-

head self-attention mechanism, and multi-layer perceptron in the

hybrid SSM block, achieving an accurate classification of pests.

From the above analysis, it is known that CNNs and ViTs have

been widely applied in FCPD. However, CNN is not good at

capturing remote dependencies, while the computational

complexity of ViT is quadratic. Based on VM-UNet and MSVM-

UNet, a multiscale aggregated VM-UNet (MAMVM-UNet) is

constructed. The multiscale global context features are captured

using VMamba, U-Net, and VM-UNet, and the fine-grained FCPD

is achieved by multiscale attention mechanisms.
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3 The proposed model

The proposed model MAVM-UNet for FCPD is an improved

VM-UNet. Its architecture is shown in Figure 1, consisting of an

encoder and a decoder, including three main modules: MSVSS,

CAVSS, and MSAA. Their structures are illustrated in Figures 2A–

C, respectively.
3.1 Overall architecture of MAVM-UNet

MAVM-UNet is an improved VM-UNet. Similar to ViT and

Mamba-UNet, the input Img ∈ RW�H�3 is first split into 16 non-

overlapping small patches of 4 × 4 in size in the linear embedding

layer and transformed them into a 1D sequence with dimensions of

W=4�H=4� 16. Each patch is treated as a token and input into

the encoder to learn deep feature representations. In the encoder,

after MSVSS, the features are merged by the Patch Merging layer,

which is regarded as max-pooling used for downsampling the

feature maps. The output resolutions of each layer of the encoder

areW=4� H=4� C,W=8�H=8� 2C,W=16� H=16� 4C, and

W=32�H=32� 8C, where C is the mapping channel dimension

default set to 96. Like the encoder, the decoder adopts two

consecutive VSS blocks for feature reconstruction, and the Patch

Expanding module is used for feature upsampling. It can enhance

depth features and improve resolution (by doubling the scale), while

halving the feature size, doubling the feature size in the initial layer,

and reorganizing and reducing them to enhance resolution.
FIGURE 1

The architecture of MAVM-UNet.
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The output resolutions of each layer of the encoder are W=32�
H=32� 8C, W=16� H=16� 4C, W=8� H=8� 2C, and W=4�
H=4� C. The linear embedding layer adjusts the feature dimension

to the size of C. The last 1 × 1 convolution is used as a fully

connected layer, and Softmax as a classifier is adopted for FCPD.
3.2 MSVSS

As shown in Figure 2A, MSVSS consists of VSS (Figure 2A left)

and multiscale dilated convolution (MSDC) (Figure 2A right). In

VSS, the Selective Scan 2D module (SS2D) is an extension of

Mamba (State Space Model) on 2D visual data. It replaces

traditional convolution or self-attention through a content-aware

sequence scanning mechanism to achieve efficient long-range

dependency modeling. It consists of three key components—scan

expanding, S6, and scan merging—where scan expanding

decomposes the input image into 16 independent sequences along

four directions of up, down, left, and right, which can ensure the

spatial coverage of information and capture the multi-direction

feature; S6 utilizes a selective mechanism to accurately identify and

extract useful information while filtering out the irrelevant parts.
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DWConv is a depthwise-separable convolution module, consisting

of Depthwise Convolution and Pointwise Convolution operations.

It is often used to reduce the number of weight parameters and

computational load by separating the convolution and point-by-

point convolution. After VSS, Linear projecting, and Layer norm

operations, the output is input into MSDC to perform multiscale

dilated convolution with three kernels of sizes 1 × 1, 3 × 3, and 5 × 5.

The process of MSVSS is formalized in Equation 1:

FMSVSS
i+1 = MSDC(LP(FVSS

i )) + LP(FVSS
i )

FVSS
i = VSS(LN(Fd

i )) + Fd
i

(1)

where Fd
i and F

MSVSS
i+1 are the input feature maps and output feature

maps of the ith layer of encoder, respectively; FVSS
i is the output of the

VSS module; LP(·) is Linear projecting; LN(·) is Layer normalization;

and MSDC(·) and VSS(·) are MSDC and VSS operations, respectively.

In VSS, Squeeze and Excitation (SE) is a lightweight attention

module, which can significantly improve model performance with

low computational cost by enhancing useful features through

adaptive channel weighting and suppressing redundant features.

Three Linear layers are used to realize feature compression,

dynamic parameterization, and modal transformation in VSS, which

is the key to balancing computational efficiency and modeling ability.
FIGURE 2

The main components of MAVM-UNet. (A) MSVSS. (B) MSAA. (C) CAVSS. MAVM-UNet, multiscale aggregated vision MambaU-Net; MSVSS, multiscale
Visual State Space; MSAA, multiscale attention aggregation; CAVSS, Channel-Aware Visual State Space.
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3.3 MSAA

MSAA is added to the bottleneck layer of the model, as shown

in Figure 2B, consisting of a set of dilated convolutions, parallel

max-pooling and Avg-pooling, residual connection, and 7 × 7

convolution, followed by Sigmoid activation and 1 × 1

convolution. The dilated convolutions with dilated rates of 1, 3,

and 5 are used to capture multiscale features. The process of MSAA

is formalized in Equation 2:

FMSAA = Conv1�1(Sigmoid(Conv7�7(Avg(F
Dil
4 ),Max(FDil

4 ))⊗ FDil
4 )

FDil = Convdilated(Conv1�1(F
d
4 ))

(2)

where Fd
4 and FMSAA are the input feature maps and output

feature maps of MSAA, respectively; FDil is the output of the Layer

norm dilated convolution with dilated rates of 1, 3, and 5; ⊗ is the

Hadamard product; and Avg(·) andMax(·) are parallel max-pooling

and Avg-pooling operations, respectively.
3.4 CAVSS

CAVSS, as the attentional Skip connection of Mamba-UNet, is

used to fuse the multiscale features and upsampled features of the

encoder and the decoder together, reducing the loss of spatial

information. Its structure is shown in Figure 2C, consisting of a

VSS block, a Layer norm, a Conv., and two parallel pooling and two

residual connections. Its process is formalized in Equation 3:

FCAVSS = Sigmoid(Avg(FVSS
LN ),Max(FVSS

LN ))⊗ FVSS
LN + FVSS

FVSS
LN = Conv(LN(FVSS))

FVSS = VSS(Fc
i )

(3)

where Fc
i and FCAVSS are the input–output feature maps of

CAVSS and VSS(·) is the VSS operation.
3.5 Patch merging and expanding

Patch Merging in the encoder is regarded as downsampling, and

the feature resolution is downsampled by 2×. It retains the global

context through Mamba blocks to avoid the information loss of

max-pooling in U-Net. Since the concatenating operation results in

the feature dimension increasing by 4×, a Linear layer is used to

reduce the feature dimension to 2× the original dimension.

Symmetrical to the Patch Merging of the encoder, Patch

Expanding in the decoder is used to gradually reconstruct the

details of the image and gradually restore the spatial details to

achieve precise segmentation. It uses a linear layer on the input

features to increase the feature dimension to twice the original

dimension, uses a rearrangement operation to expand the

resolution of the input features to twice the input resolution, and

reduces the feature dimension to 1/4 of the input dimension.
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3.6 Loss function

The pest image pixels are divided into pest (marked as 1) and

background (marked as 0). To address the class imbalance and

small pest detection issues, the hybrid loss functions combining

Cross-entropy (Ce) LCe and Dice Loss LDice is adopted to train

MAVM-UNet, calculated as follows:

Loss = lLCe + (1 − l)LDice

LDice = 1 − 2o
C

c=1
by cyi=(o

C

c=1
by c +o

C

c=1
yi + e)

LCe = −o
C

c=1
yc log (by c)

(4)

where yc and ŷ c are ground truth and predicted probabilities for

class c, respectively; l is an adjustment parameter; and e is a very

small non-zero number, indicating that proof LDice is meaningful.
4 Experiments and analysis

MAVM-UNet is verified on the rice pest image subset of the

public IP102 dataset and is compared with six state-of-the-art

models, i.e., combining fuzzy C-Means and gray-level co-

occurrence matrix (FCMGLCM) (Chodey and Shariff, 2023), U-

Net, DIA-UNet (Zhang et al., 2025), TSRST (Bai et al., 2023),

HCFormer (Zeng et al., 2024), Mamba-UNet (Wang et al., 2024),

VM-UNet (Ruan et al., 2024), and MSVM-UNet (Chen et al., 2024),

where FCMGLCM is a traditional machine learning model, U-Net

is the backbone model, DIA-UNet is a multiscale attention U-Net,

TSRST and HCFormer are Transformer-based hybrid models, and

VM-UNet and MSVM-UNet are two recent improved Mamba-

UNet models. They are simply introduced as follows.
➢ FCMGLCM is a hybrid machine learning model that

extracts nine statistical texture features for FCPD.

FCMGLCM adopts SVM to detect pest pixels without

long-term training.

➢ U-Net is the backbone model.

➢ DIA-UNet is a dilated Inception attention U-Net.

➢ TSRST is a hybrid lightweight model combining

Transformer and Super-Resolution Sampling Techniques.

➢ HCFormer is a lightweight FCPD model combining CNN

and ViT.

➢Mamba-UNet is the backbone model of VM-UNet, MSVM-

UNet, and the proposed model.

➢ VM-UNet is a vision Mamba-UNet using VSS to capture

contextual information with low calculation cost.

➢ MSVM-UNet is a multiscale VM-UNet by multiscale VSS

blocks to effectively capture and aggregate the multiscale

feature representations from the hierarchical features of the

VMamba encoder and better handle 2D visual data.
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4.1 Dataset

IP102 is a large public image dataset (https://github.com/

xpwu95/IP102) (Wu et al., 2019). It has 75,222 images distributed

across various crops and environments, covering 102 common pests

of eight crops, including rice, alfalfa, wheat, corn, grapes, sugar

beets, citrus, and mangoes. Their indices and names can be obtained

from https://github.com/xpwu95/IP102/blob/master/classes.txt.

IP102 has 8,417 images of 14 types of rice pests. The number of

pest images and some examples are shown in Figure 3. Figure 3A

illustrates the names of rice pests with the image counts of each

category, and Figure 3B shows 14 images, one image per category.

Figures 3C–E show various pest images with different shapes,

colors, and backgrounds in the field. Figure 3F shows some

images of a pest at its different growth stages. Figures 3B–F

exhibit distinct appearance characteristics at different growth

stages, while different species of insects share similar characteristics.

Figure 3A shows that the subsets of images of rice pests are

highly unbalanced. For example, there are 1,115 images of rice leaf

rollers and 173 images of rice-rice thrips. Imbalance may lead to

bias and overfitting in FCPD. To solve this problem of insufficient

training samples, some image augmentation algorithms are adopted

to generate more images, such as randomly cropping, left and right

flipping, up and down flipping, enhancing, random rotating, and

random shifting. Figure 3G shows seven augmented images of an

original image. Mixup and CutMix are two data augmentation

techniques, and their main difference lies in the way they are mixed.

MixUp is for smoothing decision boundaries (e.g., classification),

and CutMix is for localization tasks (e.g., object detection). Nine

augmented images are shown in Figure 3H. In the following

experiments, we only randomly select some augmented images so

that there are at least 500 images for each category of the 14 types of

rice pests. Then, an augmented dataset containing 9,314 images of

rice pests is constructed, including 8,515 original and 799

augmented images.
4.2 Experimental set

All models except GLCM are performed on Intel Core i9-

10900K CPU, CUDA 11.8, and Nvidia GeForce RTX 3090 GPU

using Python 3.8.8 and PyTorch 1.10 framework. The

hyperparameters of each model are initialized by random

variables of a normal distribution and are optimized by Stochastic

Gradient Descent (SGD). In Equation 4, l is set as 0.4, and e is set as
0.001. The model training parameters are set as shown in Table 1.

The model performance is evaluated on the validation dataset

every 200 iterations, and the model weights are saved only upon

achieving a new best performance on the validation subset. Pixel

accuracy (PA) and Mean IoU (MIoU) are commonly adopted to

evaluate the performance of the image object detection and

semantic segmentation models by the similarity between the

predicted result and the ground truth, calculated in Equation 5:
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PA =o
n

i=1
Nii=(o

n

i=1
o
n

j=1
Nij)

MIoU = 1
no

n

i=1
Nii=(o

n

j=1
Nij +o

n

j=1
Nji − Nii)

(5)

where n is the number of categories, Nii is the pixel number of

true positives, Nij is the total pixel number of the ith true category

predicted as the jth category, and Nij and Nji are the pixel number of

false positives and false negatives, respectively.

All 9,314 images of rice pests in the augmented dataset are

divided into three subsets in a ratio of 6:2:2, of which approximately

60% is used for training, 20% for verification, and the remaining

20% for testing to obtain the detection result. After repeating this

6:2:2 experiment 50 times, the average results of PA and MIoU are

calculated as the FCPD results.

To be fair in the experiments, all models except FCMGLCM are

performed using the above dataset and data preprocessing

algorithms under the same optimizer and the same loss function.

FCMGLCM is conducted by feature extraction and SVM. MAVM-

UNet and the baseline models are trained under consistent settings,

with hyperparameters tuned via an evaluation metric standardized

across all comparisons. Pretrained weights are used where

applicable (e.g., for backbone architectures like U-Net and

VMamba) as noted in Res (Bai et al., 2023; Chen et al., 2024).
4.3 Visualization

To verify the model performance of MAVM-UNet, Figure 4

illustrates the hot maps, compared with U-Net. Figure 4 shows that

MAVM-UNet can capture the salient features of the pest, and it can

detect the pests with complete shapes and edges at the 1,000th

iteration, while the detected pests are complete by U-Net at the

2,000th iteration. The detected results indicate that MAVM-UNet is

more stable and faster to converge than U-Net.

To visually compare the pests detected by the proposed model

MAVM-UNet and the seven comparison models, Figure 5 illustrates

six randomly selected original images (three simple images, each with

only one pest, and three complex images, each with several multi-

shape pests), the corresponding labeled images, and the pest images

detected by the seven comparison models and MAMM-UNet.

Figure 5 clearly shows that FCMGLCM cannot effectively detect

field pests because it is difficult to extract the optimal classification

features from the images of rice pests in the field, resulting in poor

detection performance of field pests. It is also found that MAVM-

UNet is superior to the other seven models, and DIA-UNet is

slightly superior to U-Net because the max-pooling of U-Net may

lead to detailed information loss.

Figure 4A shows that, except for FCMGLCM and U-Net, all

models can satisfactorily obtain the complete contour of each pest

from the simple images, and MSVM-UNet and MSVM-UNet can

obtain complete and thin legs of the pest. Figure 4B shows that

U-Net and DIA-UNet are more likely to over-detect pests (in the
frontiersin.org
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fourth and fifth columns), TSRST and HCFormer under-detect the

pests (in the sixth and seventh columns), MAVM-UNet, VM-UNet,

andMSVM-UNet can detect fine-sized pests in a dense distribution.

The results indicate that the models based on VMamba architecture

have a stronger ability to encode the global context and distinguish
Frontiers in Plant Science 07
semantics. Figure 4B also shows in the third column that the dense

fine pests cannot be detected by FCMGLCM. The reason is that

FCMGLCM cannot correctly extract the features from the various

poses and shapes of the dense fine pests, resulting in poor

detection performance.
FIGURE 3

The image number, rice pest image, and augmented image examples. (A) The number of pest images. (B) Fourteen pest images, one image per
category. (C) Various rice pests with different shapes and sizes. (D) Many fine rice pests. (E) Not obvious rice pests. (F) Ten images of an asiatic rice
borer with different shapes and sizes. (G) Seven augmented images of one on the far left. (H) Nine augmented images by Mixup and CutMix. MAVM-
UNet, multiscale aggregated vision MambaU-Net.
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4.4 Quantitative results

The proposed model is further verified through a series of 6:2:2

experiments and is quantitatively compared with the seven
Frontiers in Plant Science 08
comparison models. Table 2 presents the pixel accuracy (PA),

MIoU, model training time, and GFLOPs (Giga Floating-point

Operations Per Second) of eight models.

Table 2 shows that the PA and MIoU of MAVM-UNet are the

highest at 82.07% and 81.48%, respectively, but MAVM-UNet’s

training time and GFLOPs are slightly longer than those of VM-

UNet due to the relatively time-consuming nature of MSAA and

CAVSS modules. MSVM-Mamba is better than VM-UNet because

it is a multiscale VM-UNet and is effective for multiscale pest

detection. The result of FCMGLCM is the lowest, but its training

time is the least because it relies on the handcrafted features and

only needs to train the SVM classifier. The result of U-Net is the

second lowest due to its max-pooling, leading to the inaccurate

detection and location of pests by this model. TSRST and

HCFormer are better than DIA-UNet, but their training time is
FIGURE 4

The hot maps and detected pests versus the number of iterations. (A) Original and labeled image. (B) The hot maps and corresponding detected
pests by U-Net. (C) The hot maps and corresponding detected pests by MAVM-UNet. MAVM-UNet, multiscale aggregated vision MambaU-Net.
TABLE 1 The experimental set of the model.

Name Set

The number of training Iterations 3,000

Batch size 24

Initialized learning rate 0.001

momentum 0.9

Weight decay 0.0001
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the longest. The reason is that they can obtain the global

contextual features from the complex field pest images, while the

computational complexity of their backbone network Transformer

is quadratic.
4.5 Ablation experiments

MAVM-UNet is an improved model of VM-UNet. The main

improvements are three modules: MSVSS, MSAA, and CAVSS.
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To verify the robustness of MAVM-UNet, a series of 6:2:2

experiments are conducted to investigate the impact of MSAA

and CAVSS on the performance of FCPD under the same

experimental conditions mentioned above. The detected pest

images are shown in Figure 6. Table 3 presents the quantitative

detection results of these experiments.

Figure 6 and Table 3 show that MSVSS, MSAA, and CAVSS are

three very important modules that can improve the detection

performance of the model. The reason is that MSVSS and MSAA

can obtain multiscale features, which are superior to the direct
FIGURE 5

The detected pests from three simple images and three complex images. (A) One pest in an image. (B) Various multiscale pests in an image.
TABLE 2 The detection results of eight models.

Results
Models

PA (%) MIoU (%) Training time (h) GFLOPs

FCMGLCM 58.80 56.28 0.50 8

U-Net 69.22 68.29 6.39 75

DIA-UNet 72.20 71.07 6.88 98

TSRST 74.08 73.14 8.48 90

HCFormer 75.28 75.12 8.42 95

VM-UNet 75.85 75.70 3.27 55

MSVM-Mamba 80.24 77.32 3.36 70

MAVM-UNet 82.07 81.48 3.30 58
GFLOPs, Giga Floating-point Operations Per Second; FCMGLCM, fuzzy C-Means and gray-level co-occurrence matrix; MAVM-UNet, multiscale aggregated vision MambaU-Net.
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image division in VM-UNet. Compared with VSS in VM-UNet,

MSVSS enhances the performance of extracting deep semantic

features of the images of the original SSM blocks. Adding MASS

to the bottleneck layer can improve the detection results, but the

training time is slightly longer. The lightweight Transformer block

can enhance global feature extraction while increasing large

computational cost. Figure 6 and Table 3 indicate that MAVM-

UNet can achieve remarkable results for small-sized and densely

distributed pests in rice fields.

To check the effect of data augmentation on pest detection

performance, some experiments are implemented on the original
Frontiers in Plant Science 10
dataset and the augmented dataset. The results are given in Table 4.

Table 4 shows that the PA and training time are improved on the

augmented dataset. The main reason is that the IP102 dataset is

class-imbalanced, and data augmentation can avoid overfitting and

vanishing gradients. The training time on the original dataset is

longer than that on the augmented dataset because the original

dataset is insufficient to simulate the characteristics of pests.
4.6 Analysis

The field pest images are complex with small-sized and various-

shaped pests, and many models find it difficult to capture the

features of dense fine pests. VM-UNet is an effective backbone

network for various segmentation and detection tasks in computer

vision and can solve the problem of long-range dependency

modeling caused by the inherent locality of U-Net and the

computational complexity of Transformer. MAVM-UNet is an

improved model of VM-UNet. Figures 4-6 and Tables 2-4 show

that when the pests are very small with various shape details and

there is low contrast between the pests and the background,

MAVM-UNet, VM-UNet, and MSVM-UNet can detect field

pests and are generally superior to other models. For smaller
FIGURE 6

The hot maps and detected pests by the variants of MAVM-UNet, where (a) without MSAA, MSVSS, and CAVSS;, (b) without MSAA and CAVSS;, (c)
without MSAA and MSVSS;, (e) CAVSS is replaced by channel-spatialChannel-Spatial attention;, (f) MASS is replaced by VSS;, (g) MASS is replaced by
CBAM (Convolutional Block Attention Module (CBAM);, and (h) MSVSS in encoder and VSS in decoder are replaced by lightweight Transformer. (A)
Original and labeled image. (B) The hot maps and corresponding detected pests. MAVM-UNet, multiscale aggregated vision MambaU-Net; MSVSS,
multiscale Visual State Space; MSAA, multiscale attention aggregation; CAVSS, Channel-Aware Visual State Space.
TABLE 3 The experiment results by variants of MAVM-UNet.

Results
Variants

PA
(%)

MIoU
(%)

Training
time (h)

(a) Without MSAA, MSVSS, and CAVSS 68.52 67.38 3.64

(b) Without MSAA and CAVSS 73.68 71.32 3.51

(c) Without MSAA and MSVSS 76.43 74.46 3.29

(d) MSVSS in encoder is replaced by VSS 79.19 78.27 3.17

(e) CAVSS is replaced by channel-
spatial attention

81.15 80.66 3.25

(f) Dilated conv. module in MSDC of
MSVSS is replaced by DWConv

81.36 80.60 3.22

(g) MASS is replaced by CBAM 81.10 80.18 3.27

(h) MSVSS in encoder and VSS in decoder
are replaced by lightweight Transformer

81.72 81.26 7.11
MSAA, multiscale attention aggregation; MSVSS, multiscale Visual State Space; CAVSS,
Channel-Aware Visual State Space; MAVM-UNet, multiscale aggregated vision MambaU-
Net; CBAM, Convolutional Block Attention Module.
TABLE 4 The effect of data augmentation on pest
detection performance.

Results
Dataset

PA (%) MIoU (%) Training time (h)

Original dataset 81.61 80.27 4.28

Augmented dataset 82.07 81.48 3.30
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pests with thinner antennae and legs, MAVM-UNet can also locate

pests and obtain pest details more accurately and precisely, while

other models have phenomena such as missed detections and

incompleteness to different degrees. The above results verify that

the constructed MAVM-UNet outperforms the state-of-the-art

models. The training time and GFLOPs of the proposed model

are slightly longer than those of VM-UNet because the proposed

model is more complex than VM-UNet.
5 Conclusions

The detection of pests in rice fields is important for the timely

prevention and control of pests in rice. However, since the collected

images of field pests are often complex and irregular with a massive

background, pest detection is still a challenging task. Mamba-UNet

can overcome the limitations by effectively capturing long-range

dependencies with linear computational complexity through the

utilization of the selective structure state space model. Inspired by

VM-UNet and MSVM-UNet, a multiscale aggregated vision

MambaU-Net (MAVM-UNet) is constructed. The model consists

of three main modules: MSVSS, MSAA, and CAVSS. By integrating

MSVSS, MSAA, and CAVSS, MAVM-UNet can effectively capture

the multiscale contextual global–local features and long-range

dependencies of various pests in rice fields. Experimental results

on the rice pest image subset of the IP102 dataset indicate that the

proposed MAVM-UNet is effective for field rice pest detection, with

PA and MIoU of 82.04% and 81.37%, respectively. This model

provides technical support for a pest and disease detection system

by unmanned aerial vehicle equipment and an IoT platform. Future

work should include trimming the model. Removing redundant

neurons or layers can reduce the model size while maintaining

performance. Designing a downsized version of VMM-UNET (for

example, with fewer channels or a shallower architecture) can make

it suitable for edge devices.
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