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Introduction: Cyclocarya paliurus, a native hardwood species with multi-

functional value, has been prioritized in China’s National Reserve Forest

Program. However, uncertainties related to its habitat stability and timber

productivity under climate change pose challenges to effective conservation

and afforestation planning aligned with national carbon neutrality goals.

Methods: In this study, we constructed species distribution models using

Random Forest (RF) and Maximum Entropy (MaxEnt), based on verified field

occurrence records and climatic data. Habitat suitability was projected under

current and future climate scenarios (SSP2-4.5 and SSP5-8.5). We further

analyzed the relationships between climate suitability and growth traits across

27 natural populations.

Results: Both models demonstrated high predictive performance (RF AUC =

0.970, MaxEnt AUC = 0.942), identifying temperature variability and water

availability as key limiting factors. Climate suitability was significantly correlated

with 20-year diameter growth (R² = 0.625) and wood basic density (R² = 0.463). A

stronger correlation was observed between annual growth and climate suitability

of the preceding year (R² = 0.695), suggesting a lag effect.

Discussion: By integrating trait–climate relationships, we projected spatial shifts

in fast-growing, high-quality timber zones. Future projections suggest a 49.2–

60.0% decline in highly suitable habitats and timber forests by the 2050s, with

marginal zones shifting northward and toward higher latitudes. This trait-

integrated modeling framework offers a scientific basis for climate-resilient

conservation and afforestation planning.
KEYWORDS

wheel wingnut, climate change, Trait-based model, radial growth, wood density,
climate-lagged response
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1 Introduction

Considering the profound impact of global economic expansion

in exacerbating climate change, the international community has

increasingly acknowledged forest conservation and carbon

sequestration as pivotal strategies for climate change mitigation

(Zhang et al., 2024a; Anselmetto et al., 2025). In response, China, as

a major global emitter, has reiterated its dedication to advancing an

environmentally sustainable economic transition, with one key

initiative being the continuous emphasis on the National Reserve

Forest Project (NRFP), aimed at addressing the national timber

supply-demand gap through timber forest cultivation and related

measures (Song et al., 2025). Wheel wingnut (Cyclocarya paliurus)

is an ancient and versatile tree species of the Juglandaceae family,

serving as a valuable resource for timber, traditional medicine, and

ornamental horticulture in China (Fang et al., 2006). The wood of

this species is noted for its high strength, ease of cutting, and

smooth surface, with hardness levels surpassing those of most

species in the same family (Deng et al., 2014). Due to these

exceptional qualities, it has long been a favored material for

furniture making, leading to its inclusion in the National Reserve

Forest (NRF) (Fang, 2022). So far, the majority of researches on C.

paliurus has primarily focused on the medicinal properties of its

leaves, with little attention given to the cultivation of timber forests.

Driven by practical applications, timber forest cultivation

prioritizes growth rate and wood quality, with radial growth and

wood density commonly used as key evaluation indicators (Doan

et al., 2023; Takahashi et al., 2025). Beyond their silvicultural

significance, these traits are also widely employed in climate

studies to reconstruct historical climate trends and assess species’

responses to environmental change (Wang et al., 2022, 2025).

Accordingly, both genetic background and environmental factors

jointly influence these traits, reflecting genotype-environment

interactions (Guzmán-Marıń et al., 2024; Zheng et al., 2024). To

date, several studies have explored the genetic basis of variation in

these indicators in C. paliurus. For instance, Deng et al. (2014)

assessed inter-provenance differences through a field trial and

identified superior genetic sources for timber plantation

development. Moreover, Fang et al. (2020) reported clear

geographic variations in radial growth and wood density,

exhibiting distinct latitudinal and longitudinal trends. However,

despite these advances in genetic evaluation, the potential impacts

of climate change on growth and wood quality in C. paliurus remain

largely unexplored.

Though now restricted to China, C. paliurus once thrived across

North America and Europe, as evidenced by fossils dating back

approximately 65 million years. The dramatic contraction of its

range is largely attributed to global climate shifts over geological

time (Burge and Manchester, 2008). Today, with the intensification

of climate change, the distribution patterns of more than 17,000 tree

species are undergoing notable shifts (Boonman et al., 2024). To

cope with these changes, plants primarily rely on migration and

adaptation mechanisms (Gray and Brady, 2016; Guo et al., 2019a).

However, the dioecious reproductive nature and the fixed
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reproductive cycle of C. paliurus hinder its ability to migrate in

the short term (Zhang et al., 2023b). Furthermore, the species

demonstrates a high sensitivity to the abiotic stresses caused by

climate change, such as drought (Li et al., 2023), soil salinization

(Zhang et al., 2024b), and temperature variations (Zhang et al.,

2025). Consequently, the species is clearly unable to easily adapt to

shifts in its ecological niche. Therefore, after the selection of its

superior genotypes, identifying its suitable distribution regions and

timber production areas under climate change is of paramount

importance for the advancement of C. paliurus plantations and

serves as a viable solution to achieve the strategic goals of the NRFP.

Species distribution models (SDMs) have become indispensable

in biodiversity conservation and ecological research, offering

insights into species-environment interactions (Wang et al., 2016;

Chen et al., 2024). By integrating species occurrence data with

environmental variables, SDMs can predict potential habitat

distributions (Zhao et al., 2023; Yang et al., 2024). Among the

most prevalent SDM approaches, Random Forest (RF) and

Maximum Entropy (MaxEnt) stand out for their robustness and

predictive accuracy (Ganglo, 2023; Hu et al., 2025). MaxEnt, relying

on the maximum entropy principle, and RF, an ensemble decision

tree method, both excel in species distribution prediction with

minimal data and assumptions, effectively modeling complex

relationships while offering high accuracy and interpretability

(Guo et al., 2019b; Feng et al., 2022). Although the predictive

results of these two models often differ, most studies tend to use

only one of them, and comparative research between the two

approaches is less available. In our research, we used these two

models to assess their comparative strengths in predicting suitable

climatic zones for C. paliurus. Their distinct methodological

foundations, presence-absence versus presence-only, ensemble-

based versus probabilistic-based, enabled us to test the

consistency of ecological predictions under different statistical

assumptions and to evaluate their ability to reflect spatial

variation in growth and wood density. Notably, to the best of our

knowledge, no prior study has attempted to model future habitat

suitability and timber production zones for C. paliurus based on

trait-climate relationships. This knowledge gap underscored the

need for reliable and high-performing algorithms capable of

supporting a trait-integrated modeling framework.

The influence of climate on plant growth often exhibits a lagged

effect (Tang et al., 2021; Aguirre-Gutiérrez et al., 2025). Therefore,

understanding whether C. paliurus shows such delayed responses is

critical for optimizing its timber plantation development. In this

context, the objectives of this study are to: (1) evaluate the predictive

performance of RF and MaxEnt models based on natural

distribution records and scale-free climate data; (2) explore the

associations between modeled climatic suitability and key growth-

related traits across 27 natural populations and determine whether

these traits respond to climate with a temporal lag; and (3) integrate

the more reliable model with trait-climate relationships to spatially

identify and prioritize regions that are most suitable for establishing

fast-growing, high-quality timber forests under projected climate

change scenarios.
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2 Materials and methods

2.1 Occurrence data

For model building, a total of 213 naturally occurring C.

paliurus presence points were compiled from two sources: 150

points were obtained from published literature and three online

databases (see Table 1), while the remaining 63 points were

collected through a field resource survey conducted by our team

(Figure 1). A spatial thinning process was conducted using a 5-km

filtering threshold implemented through the “spThin” package in R

(Aiello-Lammens et al., 2015), aiming to control spatial redundancy

and sampling bias. The resulting dataset was further validated by

manually adjusting coordinates with Google Earth (Hu et al., 2025).

These points cover the natural distribution range of C. paliurus,

which extends from 23°30′ to 33°30′N latitude and 103°30′ to 122°

00′E longitude (Figure 1). Moreover, the inclusion of pseudo-

absence points is crucial for model construction (Wang et al.,

2012). To this end, we randomly generated 587 absence points

within the species’ distribution range using the “randompoints”

function from the “dismo” package in R (Hijmans et al., 2024).

Thus, a total of 800 presence and absence points were utilized to

develop the SDM.
2.2 Climate variables

We used the ClimateAP software to obtain 17 annual climatic

variables for 800 locations of the reference period 1961-1990

(Table 2). ClimateAP utilizes a dynamic local downscaling

approach, allowing for the generation of scale-free climate data
Frontiers in Plant Science 03
(Wang et al., 2017). To assess multicollinearity among these

variables, we conducted an iterative VIF-based screening using

data from 213 occurrence points. This analysis was carried out

with the “regclass” package in R, where we repeatedly refitted linear

models and removed the variable with the highest variance inflation

factor (VIF) until all remaining variables had VIF values below 10

(Feng et al., 2021). The final set of 17 climatic variables included in

our model represents the outcome of this filtering process, ensuring

minimal multicollinearity while maintaining ecological relevance.

For prediction, the spatial resolution of 800m×800m was used for

the normal period of 1961-1990, 2011-2040 (representing the

2020s), and 2041-2070 (the 2050s). Future climate projections

were obtained following the method described by Xu et al. (2024)

and were based on two greenhouse gas emission scenarios: SSP2-4.5

and SSP5-8.5.
2.3 Habitat model development

MaxEnt and RF models were applied to analyze species

suitability and environmental drivers. Modeling was conducted in
TABLE 1 Data sources for species occurrence records used in this study.

Full Name Abbreviation Website

National Specimen
Information Infrastructure

NSII
http://
www.nsii.org.cn/

Chinese Virtual Herbarium CHV
http://
www.cvh.org.cn/

Global Biodiversity
Information Facility

GBIF
http://
www.gbif.org
FIGURE 1

Geographical distribution of Cyclocarya paliurus occurrence records. Points with different colors and shapes represent data obtained from
different sources.
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R Studio 4.1.3 using species occurrence data and 17 climate

variables (Table 2). The RF model utilized the “randomForest”

package (Liaw and Wiener, 2002), while MaxEnt was implemented

via “dismo” package (Hijmans et al., 2024). To improve model

reliability, highly correlated variables were excluded following Feng

et al. (2021). In RF modeling, predictive accuracy was optimized by

setting the number of decision trees to 500. A 75/25 split was used

for training and validating the RF model, whereas MaxEnt

performance was assessed using its internally embedded 10-fold

cross-validation framework (Zhang et al., 2023a). To assess model

performance, AUC and omission rate were used for MaxEnt, and

TSS and AUC for Random Forest. Classification thresholds were

followed Feng et al. (2021). We retained MaxEnt’s default settings,

including a regularization multiplier of 1.0 and standard feature

classes. Although parameter tuning using tools such as ENMeval

can further optimize performance, we prioritized consistency and

transparency across modeling frameworks. More refined tuning will

be considered in future work.
2.4 Correlation of climate suitability with
radial growth and wood density

In 2014, dominant and healthy individuals were cored from 27

C. paliurus sites across its natural range (Fang et al., 2020). These

sites were selected from the 63 presence points identified during our

field survey, with sampling focused on mixed-species stands

containing at least 150 trees ha-1. At each site, approximately 15%
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of the C. paliurus trees were sampled, resulting in a total of 215

individuals. The recent 20-year DBH (diameter at breast height)

growth, annual DBH growth, and wood basic density were

determined using the increment borer method, following the

procedures described in our previous study (Fang et al., 2020).

For each of the 27 geographic populations, the outermost ring near

the bark was regarded as the first year, while the cumulative BDH

increment over 20 years and the DBH for each year were recorded

as the 20-year DBH growth and annual DBH growth, respectively.

Similarly, the average wood basic density corresponding to the

recent 20-year growth rings was calculated based on the ring

segments. Subsequently, regression analysis was performed to

assess the relationships between 20-year DBH growth, wood basic

density, and the habitat suitability predictions under the current

period. To test the lagged effect, we further analyzed the

relationships between previous habitat and annual DBH growth

from 1994 to 2014. All the above one-way ANOVA and regression

analyses were conducted using SPSS Statistics 29 software.
2.5 Planting area prediction for fast-
growing and high-quality timber
production

We analyzed the relationship of optimal model-predicted habitat

suitability to annual DBH growth and average wood basic density for

the 27 population sites, with annual DBH growth and wood basic

density as dependent variables and habitat suitability as the

independent variable, respectively. Following the method described

by Feng et al. (2023), the relationship was assessed by fitting models

and selecting the optimal model using the trendline package in R.

After identifying the best equation, we overlaid suitable habitat maps

with spatial predictions of habitat, annual DBH growth, and the wood

basic density to estimate potential C. paliurus timber production

under current and future climates. For visualization and

interpretation purposes, habitat suitability scores predicted by the

model were grouped into four categories - high (0.6-1.0), medium

(0.4-0.6), low (0.2-0.4), and unsuitable (0.0-0.2) - based on commonly

adopted thresholds in species distribution modeling (Hu et al., 2025).

This stratification was applied exclusively for habitat assessment and

did not imply timber suitability. To delineate areas with potential for

timber production, we adopted biologically informed criteria derived

from field investigations across 27 natural populations. Zones were

designated as timber-suitable if they met two empirical thresholds: an

annual DBH growth rate exceeding 0.6 cm and a mean wood basic

density above 0.5 g cm-3. These dual criteria jointly account for both

growth performance and wood quality, ensuring that identified

regions align with practical forestry standards.

3 Results

3.1 Model performance evaluation

Both the RF and MaxEnt models demonstrated strong

predictive capabilities in modeling species distribution. The RF
TABLE 2 List of climate variables.

Abbreviation Variables Description

MAT Mean Annual Temperature

MWMT Mean Warmest Month Temperature

MCMT Mean Coldest Month Temperature

TD Temperature Difference between MWMT and MCMT

MAP Mean Annual Precipitation

AHM Annual Heat: Moisture index (MAT+10)/(MAP/1000)

DD<0 Degree-days below 0°C, Chilling Degree-days

DD>5 Degree-days above 5°C, Growing Degree-days

DD<18 Degree-days below 18°C

DD>18 Degree-days above 18°C

NFFD The number of Frost-free Days

PAS
Precipitation as Snow (mm) between August in previous
Year and July in Current Year

EMT Extreme Minimum Temperature over 30 years

EXT Extreme Maximum Temperature over 30 years

Eref Hargreaves Reference Evaporation

CMD Hargreaves Climatic Moisture Deficit

RH Relative Humidity
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model achieved a predictive accuracy of 89.97%, with an out-of-bag

(OOB) error rate of 10.03% and an AUC of 0.970. Variable

importance analysis revealed three primary climatic drivers: TD,

MAP, and CMD, with Mean Decrease Accuracy values of 26.33,

24.25, and 22.72, respectively.

The MaxEnt model exhibited excellent discriminatory ability

with an AUC value of 0.942 for the training data. The model’s

predictive power was primarily driven by four variables: DD<0

contributing 54.3%, CMD at 18.6%, MAP at 11.8%, and TD at 4.9%.

These four variables collectively explained 89.6% of the model’s

predictive capacity.

Notably, both modeling approaches identified similar key

climatic predictors (CMD, MAP, and TD), although their relative

importance differed between models. This consistency across

different modeling frameworks strengthens confidence in the

identified environmental drivers of species distribution. The high

performance of metrics for both models (RF accuracy: 89.97%,

MaxEnt AUC: 0.942) suggest reliable predictive capabilities for

species distribution mapping.
3.2 Current habitat distribution of C.
paliurus

Both Random Forest (RF) and MaxEnt models were employed

to predict the current habitat distribution of C. paliurus across
Frontiers in Plant Science 05
China, revealing similar spatial patterns with some variations in

area estimates. The RF model projected varying degrees of habitat

suitability across China (Figure 2a), with highly suitable regions of

740,995 km2 (accounting for 7.72% of the total area), moderately

suitable regions of 371,154 km2, poorly suitable regions of 479,408

km2, and unsuitable regions of 8,008,441 km2. The highly suitable

habitats were predominantly concentrated in provinces

characterized by abundant precipitation and humid climates,

including eastern provinces Zhejiang, Fujian, and Anhui, central

provinces Hunan, Jiangxi, Hubei, and southwestern provinces

Guizhou, Guangxi (Figure 2a). These regions were primarily

distributed along the southern and southeastern coastal areas of

China. Moderately and poorly suitable areas typically formed buffer

zones around the highly suitable regions (Figure 2a).

However, the MaxEnt model showed different areal proportions

(Figure 2b), which predicted the highly suitable regions, moderately

suitable regions, poorly suitable regions and unsuitable regions

accounted for 3.90% (374,284 km2), 5.02% (482,006 km2), 7.44%

(714,361 km2), and 83.64% (8,029,347 km2), respectively. In

general, the RF model predicted a larger total suitable area,

exceeding the MaxEnt projection by 20,900 km2. The most

notable difference was in a highly suitable area, where the areas

predicted by RF (741,100 km2) were nearly double of the MaxEnt

prediction (374,400 km2). Despite these differences, both models

consistently identified the humid southeastern regions as optimal

for C. paliurus distribution (Figure 2).
FIGURE 2

Distributions of the current suitable habitats of C paliurus forests in China predicted by (a) Random Forest model and (b) MaxEnt model. Blue dots
indicate the distribution of natural forests.
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3.3 Geographical variations in growth and
wood density

Analysis of 27 geographical populations of C. paliurus over a

20-year period revealed significant variations (p < 0.05) in both 20-

year DBH growth and wood basic density (Figure 3). The study

demonstrated substantial inter-population differences in growth

rates, with two populations showing notably superior

performance: Wencheng (WC), Zhejiang province and Wufeng

(WF), Hubei province (Figure 3a). Wood basic density also varied

significantly among populations, with the highest values recorded in

Anji (AJ), Zhejiang province, and Shucheng (AHSC), Anhui

province (Figure 3b).

These findings suggest that geographical variation plays a

crucial role in determining growth performance and wood

properties of C. paliurus. However, the observed variations in

both growth and wood density also indicate the potential for

selective breeding programs to optimize these traits for different

end-use applications, which is particularly valuable for future

plantation establishment and breeding strategies of C. paliurus.
3.4 Effects of climate suitability on tree
growth and wood density

Regression analyses were conducted to assess the relationships

of climate suitability to tree growth and wood density in 27 C.

paliurus populations. Significant positive correlations were found

between climate suitability and 20-year DBH growth under both

models, with RF showing a stronger association (R2 = 0.625,

Figures 4a, c). Similarly, wood density was positively associated
Frontiers in Plant Science 06
with climate suitability, and the RF model again demonstrated

higher explanatory power than MaxEnt (Figures 4b, d).

Further analysis revealed a superior correlation between annual

DBH growth and the previous-year climate suitability to the current-

year suitability, in both RF (R2 = 0.695 in Figure 4e vs. R2 = 0.480 in

Figure 4f) and MaxEnt (R2 = 0.509 in Figure 4g vs. R2 = 0.314 in

Figure 4h) models. This finding indicates a lagged climatic effect on

radial growth. Overall, RF demonstrated superior alignment with

field-investigated traits, particularly in modeling diameter growth and

wood density. As a result, RF was selected for following scenario

projections and spatial prioritization of optimal timber

production zones.
3.5 Spatial prediction in suitable habitats
and timber production under climate
change

The RF models predicted a significant decrease in the area of

highly suitable habitats for C. paliurus under future climate

scenarios (Figure 5). Under the SSP2-4.5 and SSP5-8.5 scenarios,

the area of highly suitable habitat by the 2020s was projected to

decrease by 31.12% and 32.52% respectively, compared to current

conditions (740,994 km2) (Figures 5a, b). This decline was expected

continue, with further reductions of 49.24% and 60.03% projected

by the 2050s (Figures 5c, d). Conversely, the areas of low and

moderate habitat suitability were projected to increase in both the

2020s and 2040s, with a more substantial expansion observed in the

low suitability category (Figure 5). Under the two scenarios, low

suitability habitat was expected to expand by 45.78% and 51.18% in

the 2020s (Figures 5a, b), respectively, and further increase by
FIGURE 3

Comparison of (a) 20-year diameter growth at breast height DBH growth and (b) average wood basic density among the 27 geographical
populations of C paliurus. Geographical population codes represent sampling locations. Lowercase letters indicate significant differences (p < 0.05)
among the geographical populations as determined by Duncan’s multiple range test.
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FIGURE 5

Predicted suitable habitats of C paliurus forests based on the SSP2-4.5 and SSP5-8.5 scenarios for two future periods: (a) 2020s under SSP2-4.5,
(b) 2020s under SSP5-8.5, (c) 2050s under SSP2-4.5, (d) 2050s under SSP5-8.5.
FIGURE 4

Regression analysis between suitability predicted by two climate models and three tree traits: Current suitability predicted by RF model with (a) 20-year
DBH growth (b) and wood basic density, current suitability predicted by MaxEnt model with (c) 20-year DBH growth and (d) wood basic density, annual
DBH growth with (e) annual RF-predicted suitability in the previous year and (f) the current year, annual DBH growth with (g) annual MaxEnt-predicted
suitability in the previous year and (h) the current year.
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78.13% and 86.48% in the 2050s (Figures 5c, d), when compared to

current conditions (698,882 km2). The area of unsuitable habitat is

projected to slightly decrease (1.41% - 3.41%) under all future

climate scenarios (Figure 5).

Based on the above correlations (Figure 4), we predicted the

variations in growth parameter (DBH) and wood quality indicator

(wood density) for two future scenarios (Figures 6, 7). Potential

growth regions were identified based on the linear relationship

between annual climatic suitability and annual DBH growth

(Figure 4e), whereas the areas that are conducive to producing

the high wood quality timber were estimated using the linear

correlation between climatic suitability during the reference

period (1961-1990) and the wood basic density averaged over a

20-year period (Figure 4b). Areas suitable for forest growth (DBH >

0.6) represented a subset of the species’ overall habitat range,

indicating that optimal growth conditions are more restrictive

than basic survival requirements (Figure 6). Furthermore, area

capable of supporting wood quality production (wood density >

0.5) were more limited, suggesting that premium wood

characteristics require specific environmental conditions (Figure 7).

Despite these spatial variations in suitable habitats (Figure 5),

potential growth regions (Figure 6), and high-quality regions

(Figure 7), the distribution of suitable province remained

relatively consistent across all these categories. Climate change

projections under both SSP2-4.5 and SSP5-8.5 scenarios indicated

a progressive reduction in areas suitable for both growth and high-

quality timber regions (Figures 6, 7). This trend suggests that

climate change may not only affect the species’ distribution but
Frontiers in Plant Science 08
also impact its commercial timber production potential,

highlighting the need for adaptive management strategies in

forestry planning.

Based on these projections, we delineated the optimal (top 10%)

and sub-optimal (top 20%) regions for cultivating fast-growing and

high-quality timber forests (Figure 8). Under both SSP2-4.5 and

SSP5-8.5 scenarios, the optimal timber production areas in the

2020s are primarily concentrated in southern Zhejiang, northern

Fujian, western Hubei, and the border areas of Hunan, Guangxi,

Guangdong, and Jiangxi (Figure 8). However, by the 2050s, these

areas undergo marked spatial shifts. While parts of western Hubei

remain suitable, the optimal zones in Zhejiang and Fujian show

significant contraction (Figure 8). Notably, new optimal timber

production areas emerge in the western part of Guizhou, the

northern section of Chongqing, and the central and northern

regions of Sichuan (Figure 8), likely due to their relatively stable

temperature regimes and adequate moisture availability under

future climates. Prioritizing emerging regions for afforestation

could help maintain timber yield and quality in a changing climate.
4 Discussion

4.1 Trait-integrated modelling for timber
suitability prediction

That machine learning-based SDMs offer tangible advantages

over regression-based approaches has been increasingly recognized
frontiersin.org
FIGURE 6

Predicted potential growth region of C paliurus based on the SSP2-4.5 and SSP5-8.5 scenarios for two future periods: (a) 2020s under SSP2-4.5,
(b) 2020s under SSP5-8.5, (c) 2050s under SSP2-4.5, (d) 2050s under SSP5-8.5.
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FIGURE 7

Predicted potential region of C paliurus with a high-quality timber based on the SSP2-4.5 and SSP5-8.5 scenarios for two future periods: (a) 2020s
under SSP2-4.5, (b) 2020s under SSP5-8.5, (c) 2050s under SSP2-4.5, (d) 2050s under SSP5-8.5.
FIGURE 8

Spatial prediction of optimal C paliurus regions for fast-growing and high-quality timber production based on the SSP2-4.5 and SSP5-8.5 scenarios
for two future periods: (a) 2020s under SSP2-4.5, (b) 2020s under SSP5-8.5, (c) 2050s under SSP2-4.5, (d) 2050s under SSP5-8.5.
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in ecological modeling, as their capacity to capture complex

patterns within occurrence data allows for more precise

predictions of potential species distributions (Yu et al., 2020;

Bhuyan et al., 2025). The present study demonstrated two widely

regarded high-performance algorithms (RF and MaxEnt) show a

strong predictive power. However, RF outperformed MaxEnt, as

reflected by its higher R2 values and stronger correlations with field-

observed traits, including DBH growth and wood density. A similar

conclusion was also drawn by Zhang et al. (2023b), where RF

outperformed MaxEnt in predicting the habitat suitability of

Populus euphratica, whereas Guo et al. (2018) reported a superior

performance of MaxEnt for the same species. This divergence may

be partly attributed to differences in sample size, as RF tends to

exhibit superior performance with larger datasets (Brown et al.,

2023) as used in this study. Meanwhile, RF generally delivers

reliable results with its default settings, while MaxEnt often

requires time-consuming parameter tuning to achieve optimal

accuracy (Zhao et al., 2022). Additionally, the accuracy of the

model is significantly enhanced by the high-quality occurrence

data, most of which were derived from extensive field surveys, as

well as by the inclusion of both presence and absence points, which

are equally important for model development (Pearson et al., 2006;

Yee and Dirnböck, 2009; Zhang et al., 2023a).

Furthermore, RF better captured the delayed response of radial

growth to prior-year climatic conditions, reflecting its capacity to

incorporate more complex ecological dynamics (Malla et al., 2023).

The enhanced trait-climate congruence observed in RF may stem

from its ability to accommodate interactions, nonlinear thresholds,

and both presence and absence information (Zhao et al., 2022). In

contrast, MaxEnt, despite being widely adopted for presence-only

modeling, was comparatively less aligned with variation in growth

and structural properties-likely due to its reliance on regularization

parameters and simpler response functions (Lissovsky and Dudov,

2021; Chen et al., 2025). Beyond trait relevance, RF also exhibited

greater operational efficiency and reduced sensitivity to model

tuning. Its built-in variable importance metrics and ensemble

learning structure made it more robust in cross-validation

scenarios (O’Connell et al., 2025). These advantages collectively

justify our decision to adopt RF for downstream habitat projections

and timber suitability zoning. Our approach demonstrates how

model selection can be grounded in both statistical and biological

realism. Comparative model assessment is often overlooked in

ecological forecasting studies. By applying and benchmarking

both RF and MaxEnt, our study contributes to a more

transparent and replicable workflow for integrating distribution

modeling with quantitative trait analysis.

Although both models demonstrated strong predictive

capabilities, some limitations remain. One key issue is that both

models rely solely on climatic variables, while other important

factors such as soil conditions, topography, and human disturbance

were not included, which may compromise the ecological accuracy

of the predictions (Engelhardt et al., 2020). Another concern is the

use of pseudo-absence points in RF, which, if randomly assigned

without ecological filtering, might introduce bias (Zhao et al., 2023).

To enhance model robustness and ecological validity, future efforts
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should consider incorporating a broader range of abiotic and biotic

variables, as well as exploring hybrid or ensemble modeling

strategies that combine the strengths of different algorithms.

Functional traits reflect how plants cope with environmental

variability, and influence both individual performance and broader

patterns of species distribution (Zhou et al., 2014; Dıáz et al., 2016).

However, conventional SDMs, which are typically grounded in

correlations between species occurrence and environmental

variables, often overlook these trait-based adaptations (Wang

et al., 2016; Zhao et al., 2023). The exclusion of traits such as

plant height, wood density or leaf morphology can weaken the

connection between modeled habitat suitability and actual

ecological performance (Feng et al., 2023; Hu et al., 2025).

Although the importance of incorporating functional traits into

SDMs is increasingly recognized, some practical limitations still

exist. For tree species in particular, available trait datasets remain

scarce (Fadrique et al., 2018). The long life cycles and wide

geographic ranges of trees make it challenging and costly to

obtain observational trait data that span sufficient spatial and

temporal scales. As a result, the majority of existing SDMs still

rely solely on occurrence data and environmental predictors, with

limited integration of trait-based information.

To overcome this limitation, we carried out field surveys across

27 natural populations of C. paliurus, covering a wide range of

environmental conditions. From these sites, we gathered multi-year

data on growth-related traits, such as DBH growth and wood

density, which were used to assess the reliability of our SDM.

Based on this trait dataset, we designed a two-step modeling

strategy aimed at identifying areas suitable for timber production.

Firstly, we applied a RF model to generate habitat suitability

(Figure 5); secondly, these estimates were statistically linked to

the observed growth traits data of C. paliurus through regression

analysis (Figure 4). This stepwise method connects climate-based

suitability with actual growth performance, enables independent

validation and optimization, offers an alternative to costly

provenance trials, and increases the reliability of predictions,

making it especially valuable for identifying optimal timber

production zones for C. paliurus plantations.
4.2 Key climatic factors affecting C.
paliurus growth

Both RF and MaxEnt models independently ranked TD, MAP

and CMD as primary climate variables in the study, suggesting a

consistent climatic signal: temperature variability and moisture

availability are fundamental in shaping the distribution of C.

paliurus. This finding aligns with the ecological behavior of the

species as a mesophytic tree native to humid subtropical regions,

where warm temperatures and abundant rainfall support its growth

(Deng et al., 2015; Yang et al., 2023). TD reflects its sensitivity to

thermal fluctuations, especially low winter temperatures can disrupt

physiological process, in consistent with the observation that cold

conditions significantly suppress C. paliurus growth (Zhang et al.,

2025). MAP represents the primary water input essential for
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sustaining transpiration and nutrient transport during the growing

season, whereas CMD, as an indicator of drought stress, further

constrains plant growth. C. paliurus exhibits moderate drought

tolerance, however elevated CMD can reduce gas exchange and

limit its growth, particularly in marginal habitats (Li et al., 2023).

Similar findings have also been reported for other tree species. For

instance, Guo et al. (2019b) and Barrio-Anta et al. (2020)

respectively modeled the suitable habitat distribution of ginkgo

and maritime pine, and reported that both temperature dynamics

and water availability are pivotal in regulating their growth

and distribution.

Temperature and water availability are key drivers of trait

variation in tree species (Rostamikia et al., 2024; Bernal-Escobar

et al., 2025; Xue et al., 2025). For instance, a recent study has shown

that fluctuations in temperature and water deficit can lead to

notable shifts in tropical forest functional traits (Aguirre-

Gutiérrez et al., 2025). In our study, both wood density and radial

growth of C. paliurus exhibited strong linear correlations with

climatic suitability, echoing findings from Homeier et al. (2021),

where wood and leaf traits were closely linked to MAT. Thus, TD,

MAP, and CMD may not only shape species distribution but also

likely to influence future patterns of timber production and wood

quality in C. paliurus plantations.

A particularly intriguing outcome of this study is the observed a

lagged response of C. paliurus growth to climatic conditions - an

aspect that is often underrepresented in SDMs (Zhang et al., 2018).

Specifically, we found that the climatic suitability of the preceding

year served as a stronger predictor of annual DBH growth than that

of the current year. Such a lag effect can be attributed to the carry-

over effects of resource availability and physiological processes from

the preceding growing season, influencing subsequent year’s growth

performance (Babst et al., 2019). For instance, Galiano et al. (2011)

reported that carbon reserves accumulated under favorable

conditions in one year may sustain growth in the next, even if

present-year conditions are less favorable.
4.3 Strategic planning for future C. paliurus
timber production zones

Similar to other tree species such as Pinus koraiensis and

Quercus acutissima (Chen et al., 2024; Guo et al., 2024), SDMs

under the SSP5-8.5 scenario predict a marked northward shift in

both the suitable distribution range and timber production zones of

C. paliurus. In particular, future climatic conditions are expected to

reduce habitat suitability in southern and southeastern coastal

regions, where prolonged heat stress, increased water deficits

caused by excessive transpiration, more frequent drought events,

and intensified salinity stress may collectively exceed the species’

ecological tolerance thresholds (Sadok et al., 2021; Chen

et al., 2025).
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To adapt to these changes, a combination of strategic and

operational interventions should be considered. At the regional

scale, afforestation strategies need to be spatially reoriented, with

greater emphasis placed on the anticipated expansion zones (Hubei,

Guizhou, Chongqing, Sichuan) in China. At the same time,

safeguarding genetic diversity is essential—not only through in

situ conservation, but also via the systematic collection of

germplasm from existing populations to facilitate long-term

breeding programs (Salgotra and Chauhan, 2023). Developing

genotypes with an enhanced tolerance to drought stress would be

key to maintaining productivity under future climate extremes

(Brodribb et al., 2020). Third, fostering structurally and

functionally diverse forest systems (such as mixed-species

plantations), which can provide greater ecological buffering

capacity, and improve forest resilience in the face of increasing

climatic volatility (Liu et al., 2018). On-the-ground implementation

also requires flexible and climate-responsive management. In stable

core regions, techniques like selective thinning and microclimate

regulation—e.g., preserving understory cover or improving soil

moisture retention—can help sustain growth under warming

conditions (Kaarakka et al., 2021). In ecotonal or declining zones,

adaptive silvicultural practices such as dynamic rotation ages or

assisted migration of resilient genotypes may mitigate productivity

losses (Gustafson et al., 2020). Additionally, the integration of

remote sensing tools with real-time environmental monitoring

can support responsive decision-making and enable early-warning

systems for risk management (Xi et al., 2024). Together, these

multi-scale strategies can improve the adaptive capacity of C.

paliurus plantations in the face of ongoing climate change.
5 Conclusion

In light of escalating climate challenges and national reforestation

strategies, this study systematically investigates the spatial and

temporal patterns of habitat suitability, wood production potential,

and climatic sensitivity of C. paliurus by RF and MaxEnt modeling

approaches. Both two approaches showed a high predictive

performance, while the RF modeling approach outperform the

MaxEnt in predicting current habitat suitability. Climatic suitability

showed strong correlations with tree growth traits, with lagged

climate effects indicating stronger growth responses to preceding

year conditions. Under future climate scenarios, a significant

contraction in highly suitable areas is projected for C. paliurus,

especially under high-emission pathways. Strategic zoning further

identifies emerging regions (particularly in western and northern

provinces in China) as its potential areas for fast-growing and high-

quality timber production. Overall, our findings highlight the value of

integrating climate modeling with trait-based analysis to guide

climate-resilient forestry planning, and would offer a theoretical

reference for national reserve forest planning of other tree species

in China.
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Lara, A. (2024). Growth decline and wood anatomical traits in Nothofagus dombeyi
populations along a latitudinal gradient in the Andes, Chile. Trees 38, 1443–1457.
doi: 10.1007/s00468-024-02564-z

Hijmans, R. J., Phillips, S., Leathwick, J., and Elith, J. (2024). dismo: species
distribution modeling. Available online at: https://github.com/rspatial/dismo
(Accessed February 10, 2025).

Homeier, J., Seeler, T., Pierick, K., and Leuschner, C. (2021). Leaf trait variation in
species-rich tropical Andean forests. Sci. Rep. 11, 9993. doi: 10.1038/s41598-021-89190-8

Hu, X. Y., Yang, S. H., Li, Z. M., and Wang, Y. Z. (2025). Predicting the suitable
habitat distribution of Polygonatum kingianum under current and future climate
scenarios in southwestern Yunnan, China. Flora 323, 152677. doi: 10.1016/
j.flora.2025.152677

Kaarakka, L., Cornett, M., Domke, G., Ontl, T., and Dee, L. E. (2021). Improved
forest management as a natural climate solution: A review. Ecol. Solut. Evid. 2, e12090.
doi: 10.1002/2688-8319.12090

Li, C. H., Wan, Y. F., Shang, X. L., and Fang, S. Z. (2023). Integration of
transcriptomic and metabolomic analysis unveils the response mechanism of sugar
metabolism in Cyclocarya paliurus seedlings subjected to PEG-induced drought stress.
Plant Physiol. Biochem. 201, 107856. doi: 10.1016/j.plaphy

Liaw, A., and Wiener, M. (2002). Classification and regression by randomForest. R
News 2, 18–22. Available online at: https://cran.r-project.org/doc/Rnews/ (Accessed
February 10, 2025).

Lissovsky, A. A., and Dudov, S. V. (2021). Species-distribution modeling: Advantages
and limitations of its application. 2. MaxEnt. Biol. Bull. Rev. 11, 265–275. doi: 10.1134/
S2079086421030087

Liu, C. L., Kuchma, O., and Krutovsky, K. V. (2018). Mixed-species versus
monocultures in plantation forestry: Development, benefits, ecosystem services and
Frontiers in Plant Science 13
perspectives for the future. Glob. Ecol. Conserv. 15, e00419. doi: 10.1016/
j.gecco.2018.e00419

Malla, R., Neupane, P. R., and Köhl, M. (2023). Assessment of above ground biomass
and soil organic carbon in the forests of Nepal under climate change scenario. Front.
Plant Sci. 6. doi: 10.3389/ffgc.2023.1209232

O’Connell, N. S., Jaeger, B. C., Bullock, G. S., and Speiser, J. L. (2025). A comparison
of random forest variable selection methods for regression modeling of continuous
outcomes. Brief. Bioinform. 26, bbaf096. doi: 10.1093/bib/bbaf096
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