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Sorghum yield prediction using
UAV multispectral imaging and
stacking ensemble learning in
arid regions
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Juanjuan Mu1, Shujie Jia1, Yuqiao Yan1 and Wuping Zhang1*

1College of Software, Shanxi Agricultural University, Jinzhong, China, 2College of Agricultural
Engineering, Shanxi Agricultural University, Jinzhong, China
Introduction: Frequent droughts and climate fluctuations pose significant

challenges to stabilizing and increasing the yields of drought-tolerant crops like

sorghum. Accurate, detailed, and spatially explicit yield predictions are essential for

precision irrigation, variable fertilization, and food security assessment.

Methods: This study was conducted in the Lifang dryland experimental area in

Jinzhong, Shanxi Province, using a sorghum planting experiment. Multispectral

imagery and meteorological data were collected simultaneously using a DJI

Mavic 3M UAV during key growth stages (seedling emergence, jointing,

flowering, and maturity). A “spectral-meteorological-spatial” three-dimensional

prediction framework was developed using eight machine learning algorithms.

SHAP values and Part ia l Dependency Plots were used to assess

variable importance.

Results: Ensemble learning algorithms performed best, with the Gradient

Boosting model achieving an R2 of 0.9491 and Random Forest reaching

0.9070. SHAP analysis revealed that DVI and NDGI were the most important

predictors. The jointing stage contributed most to prediction accuracy (R2 =

0.9454), followed by maturity (R² = 0.9215) and flowering (R2 = 0.9075). Yield

spatial distribution ranged from 4,291 to 4,965 kg haR-1, with a global Moran’s I

index of 0.5552 indicating moderate positive spatial autocorrelation.

Discussion: Integrating UAV multispectral data with machine learning methods

enables efficient sorghum yield prediction, with the jointing stage identified as

the optimal monitoring period. This study provides crucial technical support for

precision planting and efficient sorghum management in arid regions.
KEYWORDS

sorghum yield, UAV multispectral imaging, machine learning, vegetation indices,
spatial autocorrelation
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1 Introduction

Accurate crop yield prediction is fundamental to global food

security, particularly in arid and semi-arid regions where climate

variability and water scarcity pose significant challenges to

agricultural sustainability (Hussain et al., 2019). As climate change

intensifies and water resources become increasingly scarce, the risks

and uncertainties faced by agricultural production in arid regions have

significantly increased. Sorghum (Sorghum bicolor), as a drought-

tolerant C4 crop with high water-use efficiency, represents a critical

food security solution for these vulnerable regions (Comlekcioglu and

Simsek, 2011; Liu et al., 2020). However, traditional yield estimation

methods, predominantly relying on manual field surveys and empirical

models, are costly, inefficient, and inadequate for capturing the

fine-scale spatial variability necessary for precision agriculture

applications (O’Kelly and Sivakumar, 2014). This limitation is

particularly acute in arid regions where yield variability is influenced

by complex interactions between water stress, soil heterogeneity, and

microclimatic variations, making accurate yield prediction essential for

optimizing resource allocation and ensuring agricultural sustainability.

Unmanned Aeria l Vehic le (UAV) technology has

revolutionized precision agriculture by providing high-resolution,

timely, and cost-effective crop monitoring capabilities (Feng et al.,

2021; Zhu et al., 2021). Compared to traditional satellite remote

sensing, UAVs offer superior spatial resolution and temporal

flexibility, enabling detection of fine-scale crop variations that are

crucial for precision management decisions. Recent studies have

demonstrated the effectiveness of UAVmultispectral data in various

crop yield prediction applications. Cheng et al. (Cheng et al., 2022)

focused specifically on soil moisture estimation under high canopy

coverage using UAV multimodal data and machine learning,

addressing one of the key challenges in arid region applications

where soil-plant-atmosphere interactions are complex. The

integration of machine learning algorithms with remote sensing

data has emerged as a powerful approach for crop yield prediction,

offering advantages in handling high-dimensional, multicollinear

data typical of agricultural applications (Chen et al., 2020; Qu

et al., 2024).

Machine learning’s strength in agricultural applications lies in

its ability to capture non-linear relationships between predictor

variables and yield outcomes. Studies have shown that machine

learning models built on UAV multispectral data have achieved

promising results in crop yield estimation, providing strong

decision support for agricultural management (Wigmore et al.,

2019; Li et al., 2024). Machine learning’s advantage in remote

sensing data processing lies in its ability to adapt to high-

dimensional and multicollinear data (Allen et al., 1998). Van

Klompenburg et al.’s (Van Klompenburg et al., 2020) systematic

review highlighted that ensemble learning algorithms (e.g., Random

Forest, Gradient Boosted Tree) perform well in crop yield

prediction, demonstrating strong generalization and stability.

However, the performance of different algorithms is influenced by

factors such as crop type, feature selection, and data quality,

requiring customized optimization for specific applications (Ke

et al., 2015).
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The application of Explainable Artificial Intelligence (XAI) in

precision agriculture has gained significant attention as researchers

and practitioners seek to understand the decision-making processes of

complex machine learning models. In recent years, explanatory

machine learning methods, such as SHAP (Shapley Additive

Explanations) and Permutation Importance, have emerged to

quantify variable importance and their marginal response

mechanisms in the mode. PDP (Partial Dependence Plot) and ICE

(Individual Conditional Expectation) curves offer visualization support

for revealing complex feature interactions, aiding in refining agronomic

management thresholds and strategies (Naga et al., 2024). XAI-driven

crop recommender systems for precision agriculture represent a

significant advancement in making AI models interpretable for

agricultural decision-making, providing not only recommendations

but also explanations of the reasoning behind their suggestions.

From the perspective of remote sensing features, the vegetation

index, a key variable in spectral remote sensing, reflects the

physiological and ecological characteristics of crop canopy

structure, leaf area index, and photosynthetic efficiency (Ge et al.,

2021). Its response sensitivity varies across different crops and

fertility stages, making it a crucial input for yield prediction

models (Zhu et al., 2020; Cheng et al., 2022). However, the

correlation between vegetation indices and yield is influenced by

factors such as environmental conditions, growth stage, and

background noise. In arid regions, changes in soil albedo and

water stress often reduce prediction accuracy (Dass and

Bhattacharyya, 2017; Rajanna et al., 2022; Jia et al., 2024). In

addition, crop fertility is a key period influencing yield formation,

and the contribution of remote sensing features to yield varies

significantly across fertility stages. Studies have shown that

multispectral features during the pulling and tasseling stages of

maize are highly correlated with final yield (Acharya et al., 2019;

Maimaitijiang et al., 2020). The use of multi-temporal remote

sensing data provides a more comprehensive description of the

crop growth process, improving prediction accuracy (Zhou et al.,

2017). However, systematic studies on the relationship between

remote sensing characteristics and yield at different fertility stages of

sorghum are limited, particularly under arid conditions where the

formation mechanism is more complex.

Spatial statistical methods, such as Moran’s I and Fast Fourier

Transform (FFT), have been widely used to reveal spatial

autocorrelation features and the periodic structure of crop yield

(Reynolds, 1970; Zhang et al., 2023). These methods can identify

high-yielding and low-yielding regions and provide a scientific basis

for spatially differentiated agronomic measures, such as variable

fertilization and precision irrigation (Eltarabily et al., 2024).

However, most current studies focus on static descriptions of yield

spatial patterns and lack deep integration of spatial statistical methods

with yield prediction models, especially for dry crops like sorghum,

where integrated applications need further development.

Despite significant advances in remote sensing and machine

learning technologies, several critical technical gaps persist in crop

yield prediction, particularly for drought-tolerant crops like

sorghum in arid environments. Current UAV-based yield

prediction approaches typically rely on single-time point data or
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simple temporal averaging, failing to systematically quantify the

differential contribution of spectral features across critical growth

stages. While studies have demonstrated the value of multi-

temporal data for crop monitoring, the optimal timing for yield

prediction and the relative importance of different phenological

stages remain poorly understood, particularly for sorghum under

water-limited conditions. Furthermore, existing approaches

predominantly focus on either spectral data or meteorological

data in isolation, with limited systematic integration of UAV

multispectral imagery with concurrent meteorological

observations. This fragmented approach fails to capture the

synergistic effects of spectral-meteorological interactions that are

crucial for accurate yield prediction in variable environments.

Additionally, while machine learning models have achieved

promising accuracy in point-based yield prediction, there is

insufficient integration of spatial autocorrelation and pattern

analysis into the prediction framework. Current approaches treat

spatial units as independent observations, ignoring the inherent

spatial dependence that could enhance both prediction accuracy

and spatial interpolation capabilities. Many existing studies employ

“black-box” machine learning approaches without systematic

analysis of feature importance and model interpretability,

hampering the identification of optimal spectral indices and the

understanding of biophysical mechanisms underlying yield

formation. Most UAV-based yield prediction studies have been

conducted in temperate or irrigated conditions, with limited

validation under the challenging conditions of arid dryland

agriculture where spectral signatures may be confounded by soil

background effects and water stress.

Research specifically focused on sorghum yield prediction using

remote sensing and machine learning approaches is relatively

limited compared to major crops like corn, wheat, and rice. The

drought tolerance and unique physiological characteristics of

sorghum present both opportunities and challenges for remote

sensing applications. Studies in arid and semi-arid regions have

shown that sorghum exhibits distinct spectral characteristics during

water stress conditions, requiring specialized approaches for

accurate yield prediction. The C4 photosynthetic pathway of

sorghum results in different spectral responses compared to C3

crops, necessitating the development of sorghum-specific

vegetation indices and prediction models. However, to date, no

study has combined multi-stage UAV-based vegetation indices with

daily meteorological variables for sorghum yield prediction under

the semi-arid conditions of the Loess Plateau.

To address these identified technical gaps, this study develops a

comprehensive “spectral-meteorological-spatial” three-dimensional

framework for sorghum yield prediction in arid conditions. Our

research makes specific contributions to advance the field of

precision agriculture in drought-prone regions through systematic

quantification of growth stage-specific contributions to yield

prediction, identifying optimal monitoring windows for efficient

resource allocation. The study presents novel integration of high-

resolution UAV multispectral data with concurrent meteorological

observations using ensemble machine learning algorithms,

specifically optimized for arid conditions and validated across
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multiple algorithms. We develop a prediction model that

incorporates spatial autocorrelation analysis using Moran’s I and

frequency domain characterization through FFT to enhance both

point prediction accuracy and spatial pattern mapping capabilities.

The research implements comprehensive application of SHAP

(Shapley Additive Explanations) and Partial Dependence Plot

(PDP) analysis to quantify feature importance and reveal

biophysical mechanisms underlying spectral-yield relationships in

drought-stressed environments.

The practical contributions include provision of actionable

insights for variable-rate management strategies in arid sorghum

production systems, including optimal timing for remote sensing

data collection. The study enables identification of critical growth

stages for monitoring, allowing reduction of data collection costs

while maintaining high prediction accuracy. Additionally, we

generate high-resolut ion yie ld predict ion maps with

comprehensive spatial pattern analysis to support site-specific

management decisions and precision irrigation planning.

This research addresses the critical need for accurate, spatially-

explicit yield prediction in arid agricultural systems, where

traditional monitoring approaches are inadequate for supporting

precision agriculture initiatives. The study was conducted at the

Lifang dryland experimental area in Jinzhong, Shanxi Province,

representing typical loess plateau arid agricultural conditions. The

developed framework has broader implications extending beyond

the immediate study context, including improved capacity for yield

forecasting in climate-vulnerable regions, supporting early warning

systems and market stability planning. The research enhances

understanding of crop responses to environmental variability in

drought-prone areas, informing adaptation planning under

changing climate conditions. It provides a scalable decision

support framework for variable-rate management practices,

including precision irrigation and targeted fertilization in water-

limited environments. The methodology is applicable to other

drought-tolerant crops such as millet, pearl millet, and cowpea,

and to arid regions globally, supporting sustainable intensification

in marginal agricultural lands.

This study utilized the Li Fang Dry Farming Experimental Base

in Yuci District, Jinzhong City, Shanxi Province, as the study area.

Based on UAV remote sensing data, ground sample survey data,

and daily meteorological data of sorghum from May to September

2024, a framework for sorghum yield prediction integrating spectral

characteristics, meteorological factors, and spatial features was

proposed. The research objectives are as follows:
1. Develop a sorghum yield prediction model integrating

UAV multispectral data and meteorological data, using

multiple machine learning algorithms for comparative

analysis to identify the optimal modeling method.

2. Identify key spectral and meteorological variables affecting

sorghum yield using explanatory modeling tools such as

SHAP values and PDP, and analyze their marginal

contributions to the model output.

3. Systematically evaluate the role of remote sensing features

at key fertility stages, such as seedling emergence,
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nodulation, flowering, and maturity, in yield prediction,

and determine the optimal timing for efficient monitoring.

4. Based on the prediction results of the optimal model, the

spatial distribution of yield was mapped, and spatial

clustering and cyclic changes were analyzed using the

Moran index and FFT methods to explore the

formation mechanism.
This study will provide theoretical support and technical

pathways for precision planting, variable management, and

intelligent agriculture of sorghum in arid regions. It will also offer

a scalable system for multi-source data fusion and spatial modeling

methods in crop yield prediction research.
2 Materials and methods

2.1 Overview of the study area

This study was conducted at the organic dry farming

experimental site in Lifang, Yuci District, Jinzhong City, Shanxi

Province (N37°51′, E112°45′) (Figures 1). The region is situated in

the central part of the Loess Plateau, characterized by a typical

temperate continental monsoon climate, significant topographic

relief, and an elevation range of 767 to 1777 m. Meteorological data

over several years show that the regional average annual

temperature is approximately 9.8 °C, with a frost-free period of

120 to 220 days. The annual precipitation is around 450 mm, mostly

concentrated from June to September. The average annual sunshine

hours range from 2000 to 3000, and the annual precipitation is

roughly 1.5 times greater than the average annual sunshine hours.

The annual precipitation is approximately 450 mm, mostly

concentrated from June to September. The average annual

sunshine is between 2000 and 3000 hours, and annual

evaporation ranges from 1500 to 2300 mm, indicating a

characteristic drought-prone climate. The soil in the study area is

a mixture of loess and loamy loam, with favorable physical and

chemical properties in the tillage layer (0–30 cm). It has an organic

matter content of 17.6 g·kg-1, a total nitrogen content of 0.98 g·kg-1,

and a field water holding capacity of 21% (volumetric water

content), providing good water retention and fertilizer supply. In

May 2024, the sorghum variety “Jinnuo 11” was sown in the study

area using mechanized sowing. Plant spacing was set at 15 cm, and

row spacing at 45 cm. Basal fertilizer was applied in a single

application with N-P2O5-K2O = 12-10–8 kg·ha-1 to meet the

nutrient requirements for the early stages of sorghum growth.
2.2 Data sample collection

This study aims to investigate the effects of different fertility

stages on yield prediction accuracy during sorghum growth and to

develop a sorghum yield estimation model based on multi-source

data fusion. The study focuses on analyzing the roles and differences

of spectral indices, vegetation indices, and meteorological factors
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obtained through remote sensing in yield prediction at each key

fertility stage. The experiment used a combination of UAV

multispectral remote sensing and ground sampling to obtain crop

growth information, along with synchronized daily meteorological

data collection to comprehensively assess the correlation and

modeling capabilities between multi-source variables and final

yield. The overall technical approach of the study is shown

in Figure 2.
2.3 Data acquisition and preprocessing

2.3.1 Multispectral data acquisition and
processing

During the 2024 sorghum fertility period (May to September),

the study employed a DJI Mavic 3M UAV to systematically collect

multispectral data across four key phenological stages: seedling

emergence, nodulation, flowering, and maturity. The flight

altitude was set to 65 meters, and clear weather conditions

(10:00-12:00) were selected for execution, with heading and

sidetracking overlap rates of 70% and 80%, respectively, to ensure

precise geographic alignment. The UAV’s four-channel spectral

imaging system captures data in the red (650 ± 16 nm), green (560 ±

16 nm), red-edge (730 ± 16 nm), and near-infrared (860 ± 26 nm)

bands. Data are spliced and orthorectified using DJI Terra software,

with radiometric correction based on the standard 0.5×1 m gray

plate. Spectral reflectance data for each band were then extracted

using ArcMap to create a database for calculating the

vegetation index.

2.3.2 Measurement of sorghum yield data
The field yield measurement for the study was conducted on

September 25, 2024, to obtain accurate sorghum yield data. Eighteen

representative plot samples, each with an area of 1 square meter, were

selected in the experimental area. The harvested sorghum was air-

dried to a stable moisture content, weighed to calculate the yield per

unit area, and the resulting yield data were used as target variables for

regression modeling and accuracy evaluation with remote sensing

and meteorological features.

2.3.3 Meteorological data collection
Daily meteorological data for the area during the sorghum

growth period were collected from a small weather station within

the experimental station, including parameters such as temperature,

humidity, precipitation, and wind speed. The raw data were cleaned

and formatted to ensure consistency and reliability. The accuracy of

the acquired data was verified by comparing it with data from other

meteorological observatories and confirming it with the local

meteorological department.
2.4 Calculation of the vegetation index

Vegetation indices can indirectly reflect key physiological

processes, such as crop photosynthetic efficiency, nitrogen
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accumulation, and biomass formation, by quantifying canopy

spectral characteristics. These parameters exhibit significant

synergistic effects with yield components. Considering the varying

sensitivity of vegetation indices to specific agronomic traits, this

study utilized the UAV’s multispectral sensor channel to establish

16 key vegetation indices (NDVI, RDVI, NLI, GNDVI, RVI, SAVI,

NDGI, DVI, OSAVI, GI, MSR, GRVI, CLgreen, WDRVI, TVI,

NDWI) (Ke et al., 2015; Naga et al., 2024; Mitra et al., 2025), to

identify the optimal yield monitoring metrics, as detailed in Table 1.
2.5 Model construction and evaluation

This study systematically constructed eight machine learning

regression models for sorghum yield prediction, including lasso

regression, ridge regression, elastic net, random forest, multilayer

perceptron, support vector regression, gradient boosting tree, and

linear model. The dataset was divided into training and test sets

with an 8:2 ratio, and hyperparameter optimization was achieved

through 5-fold cross-validation and grid search (Table 2). Four

spectral bands and 16 yield-related vegetation indices, combined

with meteorological data, were selected as input parameters to

model and analyze sorghum yield. The model performance

evaluation metrics included the coefficient of determination (R2)
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(Equation 1), root-mean-square error (RMSE) (Equation 2), and

mean absolute error (MAE) (Equation 3), providing a

comprehensive measure of prediction accuracy and stability.

R2 = on
i=1(xi − �x)(yi − �y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

on
i=1(Yi − �Y)2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(Xi − �X)2
q (1)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(yi − ŷ i)

2

s
(2)

MAE =
1
no

n

i=1
j yi − ŷ i j (3)
2.6 Analysis of variable importance

To analyze the explanatory power and influence of different input

variables in the model, we introduced the SHAP (Shapley Additive

Explanations) method to interpret the model output. Key variables

were identified by calculating the average marginal contribution of

each feature in the prediction process. Additionally, the PDP (Partial

Dependence Plot) method was used to plot the partial dependence
FIGURE 1

Location of the study area. The maps show the study site at Yuci Organic Drought Test Base located in Yuci District, Shanxi Province, China, with
progressive zoom from provincial level (top left) to district level (bottom left) to field level (right). The red box in the satellite image highlights the
sorghum experimental plots within the organic dryland farming test base, representing typical Loess Plateau arid agricultural conditions suitable for
drought-tolerant crop research.
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curves of variables on yield, revealing the trend of the one-factor

response of variable changes to model predictions.
2.7 Implementation platform and the
dataset details

All modeling and analysis were implemented in Python 3.9

using the scikit-learn (v1.2.2), SHAP (v0.41.0), and matplotlib

(v3.6.3) libraries. Data preprocessing and geospatial processing

were conducted using ArcMap 10.8 and GDAL tools. The deep

learning component (MLP) was implemented using TensorFlow

(v2.11). All computations were performed on a workstation

equipped with an NVIDIA RTX 4080 GPU running Windows 11

64-bit.
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3 Results and analysis

3.1 Validation and evaluation of models

To comprehensively assess the performance of the models in

sorghum yield prediction, the test set results were analyzed using

three statistical indices: coefficient of determination (R²), root mean

square error (RMSE), and mean absolute error(MAE).

Among all eight models, Gradient Boosting performed the best,

with an R² of 0.9491, RMSE of 6.2028, and MAE of 3.9460,

indicating the strongest fitting ability and prediction accuracy.

Random Forest was the next best, with an R² of 0.9070 (Table 3).

Linear models (e.g., Linear Regression, Lasso, Ridge, ElasticNet)

demonstrated weaker overall performance, with an R² below 0.80

and larger errors. The prediction results of MLPRegressor and SVR
FIGURE 2

Technology roadmap. The framework consists of three main components: data acquisition and preprocessing (remote sensing data from drones and
meteorological data collection), model construction and evaluation (multispectral data fusion with meteorological data, growth stage validation, and
optimal period identification using SHAP and PDP analysis), and spatial variability analysis (spatial distribution characterization, autocorrelation
analysis, and frequency characteristics). This integrated approach enables comprehensive sorghum yield prediction and spatial pattern analysis for
precision agriculture applications.
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fluctuate more, with lower accuracy than the ensemble method, and

some sample points show noticeable deviations (Figure 3). Based on

the comprehensive evaluation of R², RMSE, and MAE, the fitting

performance was prioritized. The top three models with the best

fitting performance were selected to construct a stacked model,

which was identified as the optimal solution for sorghum yield

prediction (Figure 4).

To further assess the model’s ability to predict sorghum yield at

different fertility stages, the yield prediction results were validated in

stages based on seedling emergence, nodulation, flowering, and

maturity periods. A comparison of the validation results for

sorghum across the four stages of seedling emergence, nodulation,

flowering, and maturity revealed significant differences in the

contribution of features extracted from each stage to yield

prediction. Among these, the features at the jointing stage showed

the strongest predictive ability, with generally high model accuracy

and a significantly better R² value (R² = 0.9454, Table 4) than the

other stages. This indicates that remote sensing and environmental
Frontiers in Plant Science 07
information during this period most effectively reflected the final

yield differences; The maturity stage performed next best, also

showing a stronger predictive effect; The predictive ability at the

seedling emergence and maturity stages was relatively weak, likely

due to the plants not being fully developed or stabilized at these

stages, which meant that yield differences were not yet fully

apparent (Figures 5).

The models were comprehensively evaluated using R², RMSE,

and MAE across different growth stages of sorghum, and the

jointing stage was identified as the optimal period for sorghum

yield prediction.
3.2 Analysis of the importance of
characterization variables

To explain the model prediction mechanism and identify key

features, this study performed a SHAP (Shapley Additive

Explanations) value analysis on the stacked model. The SHAP
TABLE 1 Calculation formulae for major vegetation indices.

Vegetation Indices Formula

Normalized Difference
Vegetation Index(NDVI)

NDVI = (NIR − RED)=(NIR + RED)

Renormalized Difference
Vegetation Index(RDVI)

RDVI = (NIR − RED=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NIR=(RED + 1)

p
)

Normalized Lenticel Index
(NLI)

NLI = (NIR2 − RED)=(NIR2 +  GREEN)

Green Normalized
Difference Vegetation

Index(GNDVI)
GNDVI = (NIR − GREEN)=(NIR + GREEN)

Ratio Vegetation Index
(RVI)

RVI = NIR=RED

Soil Adjusted Vegetation
Index(SAVI)

SAVI = 1:5(NIR − RED)=(NIR + RED + 0:5)

Normalized Difference
Greenness Index(NDGI)

NDGI = (GREEN − RED)=(GREEN + RED)

Difference Vegetation
Index(DVI)

DVI = NIR − Red

Optimized Soil Adjusted
Vegetation Index(OSAVI)

OSAVI = 1:16(NIR − RED=(NIR + RED + 0:16))

Greenness Index(GI) GI = GREEN=RED

Modified Simple Ratio
(MSR)

MSR = (NIR=RED − 1)=((NIR=RED + 1))� 0:5

Green Red Vegetation
Index(GRVI)

GRVI = (GREEN − Red)=(GREEN + Red)

Chlorophyll green Index
(CLgreen)

CLgreen = (NIR=GREEN) − 1

Weighted Difference
Vegetation Index(WDRVI)

WDRVI = (0:2NIR − RED)=(0:2R + RED)

Transformed Vegetation
Index(TVI)

TVI = 0:5½120(NIR − GREEN) − 200(R − GREEN)�

Normalized Difference
Water Index(NDWI)

NDWI = (GREEN −NIR)=(GREEN + NIR)
TABLE 2 Parameter settings for different models.

Model Parameter Settings

RandomForest
n_estimators = 100max_depth = 10max_features =
‘sqrt’min_samples_split = 2min_samples_leaf = 1

LinearRegression Default parameters

MLPRegressor
hidden_layer_sizes=(64, 32)

max_iter=1000
random_state=42

Ridge
alpha=1.0

max_iter=5000

GradientBoosting
n_estimators = 200max_depth = 5learning_rate =

0.1subsample = 0.8min_samples_split = 2

ElasticNet
alpha=0.01
L1_ratio=0.5
max_iter=5000

Lasso
alpha=0.01

max_iter=5000

SVR
kernel = ‘rbf’C = 1.0gamma = ‘scale’epsilon =

0.1degree = 3
TABLE 3 Comparison of modeling performance across different models.

Model R² MAE RMSE

RandomForest 0.9070 4.4887 8.3860

MLPRegressor 0.5353 11.0836 18.7527

SVR 0.6028 6.9781 17.3378

ElasticNet 0.4738 11.4950 19.9542

Ridge 0.4761 11.4723 19.9104

Lasso 0.4860 11.3613 19.7222

LinearRegression 0.4926 11.2150 19.5946

GradientBoosting 0.9491 3.9460 6.2028
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analysis quantitatively assesses the relative importance of each

feature and determines how each feature influences model

predictions by calculating its contribution magnitude.

Figure 6 shows that DVI and NDGI are the most influential

features in the prediction model, followed by TVI, SAVI, and GRVI,

indicating that vegetation indices play a central role in sorghum

yield prediction. These spectral indices effectively captured key

physiological characteristics of the crop, such as photosynthetic

activity, canopy structure, and biomass, which are directly related to

yield. The relationship between eigenvalues and SHAP values

revealed important patterns. For DVI, higher index values (red

dots) were associated with positive SHAP values, indicating that

higher DVI values predicted increased yields. In contrast, NDGI

exhibited a bi-directional effect, where both very high and very low

values potentially led to increased yield predictions. The influence

pattern of TVI indicated that moderate values contributed most to

yield predictions, while very high values had a weaker effect,

reflecting a nonlinear relationship that demonstrates the index’s

sensitivity at specific growth stages.

Among the spectral bands, Green, RedEdge, and NIR exhibited

significant effects. The red edge band (RedEdge) demonstrated a

pronounced nonlinear effect, where high values (red dots)

correlated with positive SHAP values, indicating a strong link

between red edge reflectance, chlorophyll content, and crop

health. Notably, most traits exhibited a wide range of both

positive and negative effects on SHAP values, suggesting that the

influence of traits on yield is shaped by interactions between their

own values and other traits, reflecting the complexity of sorghum

yield formation.

Figure 7 illustrates the distribution of SHAP values for the six

key features in sorghum yield prediction. DVI primarily exhibits a

positive contribution in the high-value region (>0.6), while NDGI
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significantly enhances its positive impact at values greater than 0.1.

TVI displays the most distinct positive correlation trend, with its

contribution to yield prediction progressively increasing as

values rise, especially in the range above 20. SAVI primarily

exhibits positive SHAP values in the high-value region (>0.4).

GRVI and NDGI display similar but more symmetrical patterns of

influence. In contrast, the Green band shows a more complex

distribution pattern.

Figure 8 illustrates the distribution of SHAP values for seven

meteorological features in sorghum yield prediction. Average air

temperature 2m primarily exhibits positive contributions, with

higher temperature values (red points) concentrated in the positive

SHAP region, indicating that warmer average temperatures enhance

yield prediction. Maximum temperature 2m and Minimum

temperature 2m display similar positive correlation patterns, where

higher temperature values consistently contribute positively to yield

prediction, with SHAP values ranging from -0.5 to +1.0. Hours of

sunshine shows a relatively symmetrical but predominantly positive

influence pattern, with peak sunshine hours (high values)

contributing more positively to yield prediction. Wind speed 2m

demonstrates a more concentrated distribution around zero SHAP

values, suggesting a relatively neutral impact on yield prediction

regardless of wind speed levels. In contrast, Relative humidity

displays a distinct negative correlation pattern, where higher

humidity values (red points) are predominantly associated with

negative SHAP values, indicating that excessive humidity reduces

predicted yield. Similarly, Precipitation exhibits an inverse

relationship, with higher precipitation values (red points) showing

negative contributions to yield prediction, while lower precipitation

levels (blue points) contribute positively. Among all meteorological

features, the temperature-related variables (average, maximum, and

minimum temperatures) show the strongest and most consistent
FIGURE 3

Performance comparison of eight machine learning models for sorghum yield prediction. Each subplot shows measured vs. predicted yield values.
The red diagonal line represents perfect prediction. Ensemble methods clearly outperform linear models.
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positive impacts, while humidity and precipitation demonstrate clear

negative relationships with sorghum yield prediction, reflecting the

crop’s preference for warm, dry conditions during critical

growth periods.
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3.3 Partial dependence analysis

Partial Dependency Plot (PDP) analysis is a method used to

visualize the impact of individual features on the predictive output

of a model. It reveals the marginal relationship between the target

variable and the predicted outcome while holding other variables

constant. A Partial Dependency Plot (PDP) analysis of the six

spectral variables (Green, RedEdge, Red, NLI, NIR, and DVI),

which have a significant impact on sorghum yield prediction,

reveals (Figures 9) that the influence of these variables on

predicted yields varies significantly across their value ranges, and

the overall response trend is nonlinear. Among these variables, the

Green and Red bands exhibited a positive effect on yield prediction

in the low-value range, which then stabilized. In contrast, NIR and
FIGURE 4

Stacking ensemble model architecture for sorghum yield prediction using multi-source remote sensing data. The four-layer framework integrates
spectral and meteorological features through three base learners (Gradient Boosting, Random Forest, SVR) and a linear regression meta-learner. The
ensemble approach combines predictions from top-performing models to achieve enhanced yield prediction accuracy (4,291-4,965 kg ha-1) with
expected R² > 0.95.
TABLE 4 Evaluation of model performance across different growth
stages.

Model R² MAE RMSE

Seedling Stage 0.1371 1.6995 1.1525

Flowering Stage 0.9075 7.1105 4.6732

Jointing Stage 0.9454 8.3224 5.7824

Maturity Stage 0.9215 3.7604 2.6009
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RedEdge were more sensitive to yield enhancement in the middle

and high-value ranges, reflecting the stage-specific response of

crops to the reflectance of these spectral bands.
3.4 Characterization of spatial variability
distribution in sorghum yield

3.4.1 Characterization of spatial distribution of
sorghum yield

Using the optimal yield prediction model established in the

previous phase, we mapped the spatial distribution of sorghum yield

across the study area. Sorghum yield in the study area exhibited clear

spatial heterogeneity with a distinct and regular distribution pattern.

Yield values ranged from 630 to 730 pounds per acre, with high-yield

areas (green, 700–730 pounds per acre) and medium-yield areas

(yellow, 670–690 pounds per acre) forming a north-south oriented

pattern of alternating strips (Figure 10A). Yield gradient analysis

(Figure 10B) further confirmed this striped structure, with regions of

higher gradient values (red strips) aligning with the boundaries of yield

variability, highlighting the characteristic east-west variability in yield.
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3.4.2 Spatial autocorrelation characteristics of
sorghum yield

Moran ’s I (Moran ’s Index) is a widely used spatial

autocorrelation statistic that measures the degree of similarity

among spatial data. It helps determine whether geospatially

similar observations are spatially clustered, randomly distributed,

or dispersed. The spatial autocorrelation analysis revealed

significant spatial dependence of sorghum yield in the study area

(Figure 11). The global Moran’s I index of 0.5552 indicated

moderate positive spatial autocorrelation in yield distribution,

meaning that regions with similar yield levels tended to cluster

spatially. The spatial distribution map of the local Moran’s I index

revealed that the study area was predominantly light blue,

displaying a clear striped distribution pattern. This pattern was

consistent with the original yield distribution characteristics, further

confirming the spatial structure of yield distribution.

The Moran scatter plot further confirmed the spatial clustering

characteristics of yield, with most scatter points concentrated in the

first quadrant (high-high aggregation) and the third quadrant (low-

low aggregation). This distribution indicates that areas surrounding

high-yield regions tend to be high-yield areas, while areas around
FIGURE 5

Validation of model predictions for different sorghum growth stages. The red dashed line represents perfect prediction (1:1 relationship), while the
green line shows the actual model fit. Jointing stage demonstrates the highest predictive accuracy, followed by maturity and flowering stages, while
seedling stage shows poor prediction capability.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1636015
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Deng et al. 10.3389/fpls.2025.1636015
low-yield regions tend to be low-yield areas. The higher density of

scatter points along the red trend line further validated the

significant positive correlation between yield values and their

spatial lag values.

3.4.3 Spatial frequency characteristics of
sorghum yield

Spatial frequency analysis using Fast Fourier Transform (FFT)

(Figures 12) revealed the periodic structural characteristics of

sorghum yield data. The presence of horizontal bright bands in the

central region of the spectrogram indicates regular periodic variations

in the vertical direction of the study area. This frequency feature

aligns with the previously observed striped pattern of yield

distribution, further confirming the direction-dependent nature of

yield distribution from a frequency domain perspective. The

relatively concentrated distribution of frequency intensities suggests

a more regular spatial periodicity of yield. This pattern may reflect the

systematic effects of field management activities, such as agricultural

practices aligned along specific directions, including mechanical

operations, irrigation layout, or planting methods.
4 Discussion

This study achieved a series of significant findings in sorghum

yield prediction by integrating UAV multispectral technology with

meteorological data. Integrated learning models, such as Gradient
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Boosting and Random Forest, demonstrated the highest

performance in sorghum yield prediction, achieving R² values of

0.93 and 0.91, respectively, significantly outperforming traditional

linear models. These findings align with the results of studies by

Zhou et al. (Zhou et al., 2025) and Kumar et al. (Kumar et al., 2023),

which similarly reported superior performance of image-based deep

learning models and Random Forest in crop yield prediction. These

studies found that image-based deep learning models and Random

Forest algorithms significantly outperformed feature-based

machine learning models in predicting crop yields, effectively

capturing the complex nonlinear relationship between crop

growth and yield. Feature importance analysis highlighted the

central role of DVI and NDGI in yield prediction, followed by

TVI, SAVI, and GRVI, indicating that vegetation indices are highly

valuable for sorghum yield prediction. Tanabe et al. (Tanabe et al.,

2023) applied convolutional neural networks and UAV

multispectral imagery for yield prediction of winter wheat, and

similarly found that specific vegetation indices were significantly

correlated with yield. Van Klompenburg et al. (Van Klompenburg

et al., 2020), through a systematic literature review, highlighted that

spectral vegetation indices play a key role in crop yield prediction,

effectively reflecting crop health and biomass accumulation.

Compared to traditional ground sampling methods, UAV

multispectral technology offers high-resolution, non-invasive crop

growth monitoring, significantly reducing monitoring costs and

improving efficiency, providing essential technical support for the

development of precision agriculture.

Recent comparative studies have demonstrated the broad

effectiveness of machine learning approaches across diverse

agricultural applications, validating our methodological approach.

Guo et al. (Guo et al., 2023)found that ensemble methods,

particularly Random Forest and Gradient Boosting, consistently

outperform individual algorithms for maize yield prediction using

UAV hyperspectral images, directly supporting our Gradient

Boosting results (R² = 0.9491). Similarly, Guo et al. (Guo et al.,

2022; Guo et al., 2024) established the importance of multi-spectral

vegetation indices for crop physiological parameter estimation and

yield prediction in maize, paralleling our identification of DVI and

NDGI as key predictors, while Guo et al. (Guo et al., 2021)

demonstrated that integrating phenological and climatic data

significantly improves rice yield prediction accuracy, consistent

with our systematic growth stage analysis revealing jointing (R² =

0.9454) and flowering (R² = 0.9075) as optimal monitoring periods.

However, our study extends these findings to drought-tolerant

sorghum under arid conditions with the novel integration of

spatial autocorrelation analysis (Moran’s I = 0.5552), addressing

the specific challenges of water-limited agriculture where traditional

approaches may be insufficient.

Analysis of the predictive ability at different growth stages

showed that features at the nodulation and flowering stages

contributed the most to yield prediction, with R² values of 0.9454

and 0.9075, respectively. In contrast, the emergence stage exhibited

relatively weak predictive ability (R² = 0.1371). This finding is of

practical significance, indicating that the emergence stage is a

critical phase of sorghum growth during which the plant rapidly
FIGURE 6

Summary of feature importance based on SHAP values. Features are
ranked by mean absolute SHAP value (horizontal axis). DVI and
NDGI are the most important predictors, followed by TVI, SAVI, and
GRVI. Violin plots show SHAP value distributions, with red dots
representing high feature values and blue dots representing low
values. Vegetation indices dominate the prediction model compared
to individual spectral bands.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1636015
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Deng et al. 10.3389/fpls.2025.1636015
FIGURE 7

SHAP value plot analyzing the effects of six key features on sorghum yield. Each subplot displays the distribution of SHAP values for different features:
DVI, NDGI, TVI, SAVI, GRVI, and Green band. The x-axis represents feature values, y-axis shows SHAP values (impact on model output), and colors
indicate feature value magnitude (blue = low values, red = high values). DVI shows the strongest positive impact at high values (>0.6), while TVI
demonstrates a clear positive correlation trend with increasing feature values, and NDGI exhibits significant positive effects when values exceed 0.1.
FIGURE 8

SHAP value plot analyzing the effects of meteorological features on sorghum yield. The plot displays the distribution of SHAP values for seven key
meteorological factors: Average air temperature 2m, Precipitation, Maximum temperature 2m, Relative humidity, Wind speed 2m, Hours of sunshine,
and Minimum temperature 2m. The x-axis represents SHAP values (impact on model output), y-axis shows different meteorological features, and
colors indicate feature value magnitude (blue = low values, red = high values).
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FIGURE 9

Partial dependency plot analysis of the effects of six key features on sorghum yield. Each subplot shows how individual features influence predicted
yield while holding other variables constant: Green and Red bands exhibit positive effects in low-value ranges then stabilize, RedEdge and NIR
demonstrate enhanced sensitivity in mid-to-high value ranges, while NLI and DVI display complex nonlinear relationships. The blue curves represent
the partial dependence relationship, with red tick marks below indicating data distribution density. These plots reveal the optimal feature value
ranges for yield enhancement and provide insights for precision agriculture management decisions.
FIGURE 10

Spatial distribution of yield variability in sorghum. (A) Yield distribution map showing distinct north-south oriented striped patterns with high-yield
areas (green) and low-yield areas (red-orange) forming regular alternating zones. (B) Yield gradient map highlighting regions of rapid yield change
(red areas) between different yield zones. The consistent striped pattern suggests systematic field management effects suitable for zone-specific
precision agriculture strategies.
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develops its basic architecture. The growth status in this period

directly influences yield formation in later stages. This is consistent

with the findings of Samera et al. (Shammi et al., 2024) and

Camenzind et al. (Camenzind and Yu, 2024), who reported that

multispectral data during critical growth stages showed a stronger

correlation with final yield. Li et al. (Li et al., 2019) systematically
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compared the yield predictive ability of maize across all growth

stages and similarly confirmed that canopy characteristics during

the mid-growth stage were most indicative of final yield formation.

Camenzind et al. (Camenzind and Yu, 2024) also emphasized that

the mid-growth stage of a crop can reflect environmental and

management impacts from earlier stages and predict the potential

for yield formation in later stages, making it the optimal time

window for yield prediction. This finding is crucial for optimizing

monitoring timing and enhancing prediction efficiency, allowing

limited monitoring resources to be concentrated on key growth

stages, such as nodulation and flowering, thereby obtaining the

most valuable data for prediction.

Spatial autocorrelation and frequency analyses revealed the

spatial distribution characteristics of sorghum yield within the

study area. The Moran’s I index (I = 0.5552) indicated moderate

positive spatial autocorrelation in yield distribution, forming a clear

striped pattern. This analytical method effectively identifies high-

yield and low-yield areas in the field, providing a scientific basis for

precision management (Reynolds, 1970). The spatial distribution of

the local Moran’s I index further confirmed the spatial structural

characteristics of yield distribution, primarily manifesting in high-

high and low-low aggregation patterns. Fast Fourier Transform

(FFT) spectral analysis revealed regular periodic variations in the

vertical direction of the study area. This method effectively identifies

the main frequency patterns of spatial distribution by converting

spatial-domain data into frequency-domain data. Maestrini and

Basso (2018) emphasized that long-term analysis of spatial and

temporal patterns of crop yields can reveal the characteristics of

yield variability, identify stable high-yield and low-yield areas, and

highlight regions with significant interannual fluctuations. They

found that historical yield maps were the best predictors of spatial

variability for stable spatial patterns over time, while intra-seasonal

remotely sensed imagery was most effective for predicting spatial
FIGURE 11

Spatial autocorrelation analysis of sorghum yield. (A) Local Moran’s I spatial distribution map showing positive spatial clustering (light blue areas)
confirming the striped yield pattern observed in previous maps. (B) Moran scatter plot demonstrating positive spatial autocorrelation, with most data
points clustering in the first and third quadrants, indicating that high-yield areas neighbor other high-yield areas and low-yield areas cluster together.
FIGURE 12

Spatial frequency analysis map. The frequency spectrum reveals the
periodic characteristics of yield spatial patterns, with the color scale
representing frequency magnitude intensities. The analysis confirms
the regular spatial periodicity observed in yield distribution maps,
providing frequency domain evidence for the systematic striped
patterns identified in the field layout.
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patterns in areas strongly influenced by weather with significant

interannual fluctuations. These findings are highly consistent with

our results, confirming the significant value of spatial

autocorrelation analysis and frequency analysis in understanding

the spatial variability of farmland yield.

Despite the promising results of this study, several limitations

remain. First, this study relies on data from a single growing season

without cross-annual validation, which may not fully capture the

impact of climate fluctuations on the prediction model. Second, the

current model primarily relies on spectral information and

meteorological data, without fully accounting for soil characteristics,

management practices, and other influencing factors. Third, the study

area is relatively limited, and the generalization ability of the models

requires further validation. Li et al. (Li et al., 2025) highlighted that

applying yield prediction models across different climatic regions

presents significant challenges, emphasizing the need for developing

transfer learning methods with greater generalization capability. Lobell

et al. (Lobell, 2013) emphasized the significant potential of satellite data

for crop yield gap analysis, while noting thatmany potential application

areas remain unexplored.

In addition, this study relies on data from a single growing

season (2024) and a single experimental site, which may limit the

model’s generalization across years and regions. To address this

limitation, future work will involve multi-year validations and

cross-regional testing in diverse agro-ecological zones. These

efforts aim to enhance the robustness, transferability, and

practical applicability of the proposed framework in broader

agricultural scenarios.

Future research should prioritize the application of multi-

source data fusion, deep learning, and transfer learning methods.

Mariano et al. (Mariano and Mónica, 2021) proposed a data-

intensive spatial interpolation algorithm based on Random

Forests (QRFI), which can be effectively applied to spatial

interpolation of large-scale yield data and the assessment of

prediction uncertainty. Camps-Valls et al. (Camps-Valls et al.,

2021) demonstrated that combining vegetation indices from

different growth stages can enhance absolute yield prediction.

However, a single-index model outperformed in spatial pattern

prediction. Future studies should consider integrating multi-source

data, including thermal infrared, radar, and other remote sensing

data, as well as ground sensor network data, to establish a more

comprehensive monitoring system. Incorporating deep learning

and computer vision technologies to enhance feature extraction

capabilities and improve prediction accuracy; Conducting multi-

year and multi-regional validation studies to strengthen the model’s

robustness and applicability; Integrating the yield prediction model

with a decision support system to establish a closed-loop framework

from monitoring to management, providing an end-to-end solution

for precision agriculture. Furthermore, with the continuous

improvement of satellite remote sensing resolution and increased

observation frequency, the integration of UAV and satellite remote

sensing data can be further explored. This approach enables large-

scale, high-frequency, and cost-effective crop growth monitoring

and yield prediction, providing a scientific basis for regional

agricultural management and ensuring food security.
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5 Conclusion

Accurate sorghum yield prediction is critically important for

ensuring food security in arid and semi-arid regions, where climate

change and water scarcity pose increasing challenges to agricultural

sustainability. Traditional yield estimation methods are inadequate

for the precision agriculture requirements of drought-tolerant

crops, necessitating the development of advanced remote sensing

and machine learning approaches.

This study predicted and forecasted sorghum yield using UAV

multispectral data combined with fused meteorological data,

leading to the following main conclusions:
1. We successfully developed a UAV multispectral-based yield

prediction system that achieved exceptional accuracy (R² =

0.9491 for Gradient Boosting), demonstrating the superiority

of ensemble learning methods over traditional linear

approaches for complex agricultural data.

2. Our systematic analysis identified critical vegetation indices

(DVI, NDGI, TVI) as key predictors, providing actionable

insights for variable-rate management and precision

irrigation strategies.

3. The identification of jointing and flowering stages as

optimal monitoring periods offers practical guidance for

reducing data collection costs while maintaining high

prediction accuracy, enabling more efficient resource

allocation in precision agriculture.

4. The spatial autocorrelation analysis (Moran’s I = 0.5552)

revealed systematic yield patterns that inform site-specific

management decisions and precision agricultural practices.
These findings have significant practical implications for

sustainable agriculture in water-limited environments. The

developed framework enables farmers and agricultural managers

to optimize irrigation timing, implement variable-rate fertilization,

and make informed management decisions that enhance both

productivity and resource use efficiency.
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