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Plant environments are considered reservoirs for Salmonella enterica. While

exploring Salmonella’s adaptation mechanisms to plant environments,

metabolic regulation has frequently gained attention. However, these findings

have never been summarized or discussed. This review focuses therefore, on the

metabolic adaptations employed by S. enterica to adapt to plant environments,

including nutrient availability, acquisition, and its pathway regulation. Plant

environments provide diverse carbon sources (e.g. sugars, organic acids,

glycerol, and fatty acids) and amino acids, while S. enterica dynamically

reprograms its metabolism to prioritize glucose via glycolysis, activate

gluconeogenesis under sugar limitation, and utilize alternative carbon sources

including glycerol or fatty acids. Amino acid biosynthesis, notably cysteine, also

seemed critical in S. enterica adaptation to plant environments. These adaptive

mechanisms highlight how S. enterica balances biosynthesis and catabolism of

diverse nutrients in plant environments, offering insights into its metabolic

plasticity as an adaptive strategy in agricultural ecosystems.
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1 Introduction

Salmonella enterica is a bacterium adapted to animals, causing systemic or local

infection in potential animal hosts (EFSA, 2025). Multiple bacterial factors contribute to

infection, including Type III Secretion Systems (T3SSs) and effectors encoded by multiple

Salmonella Pathogenicity Islands (SPIs) (Jennings et al., 2017; Lou et al., 2019). In addition

to animal hosts, agricultural environments such as soil and plants can serve as potential

reservoirs for S. enterica (Schierstaedt et al., 2019), increasing the risk of human infection.

However, current knowledge of S. enterica adaptation mechanism to agricultural

environments remains fragmented.

Microorganisms associated with plants may employ a metabolic adaptation strategy to

hosts (Sit et al., 2015; Prusky and Wilson, 2018; Zhang et al., 2018), since appropriate

metabolism determines their ability to persist and their potential proliferation. Generally,
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nutrient suitable for bacteria are widely distributed in plant tissues

(e.g. xylem, phloem, and mesophyll or parenchyma cells) and

ecological niches associated with plants (e.g. rhizosphere and

phyllosphere) (Fatima and Senthil-Kumar, 2015). For example,

Pseudomonas fluorescens colonization decreased the abundance of

sugars in bean leaves, while the population of P. fluorescens grew

(Mercier and Lindow, 2000), indicating that leaf-sourced sugars

were consumed. The composition and population size of the

associated microbiome can be altered when the nutrients supply

changes (Mercier and Lindow, 2000), demonstrating the

importance of available nutrients for microbiome.

S. enterica may exhibit diverse living statuses in plant-related

environments, such as population increase, stability, or decline.

Thus, descriptions including adaptation (Ferelli et al., 2020; Han

et al., 2020), fitness (Zaragoza et al., 2012; Dixon et al., 2022),

survival (Van der Linden et al., 2013; Xylia et al., 2022), persistence

(Oblessuc and Melotto, 2020; Jacob et al., 2021), growth (Nugent

et al., 2015; Potnis et al., 2015), colonization (Visconti et al., 2022;

Dixon et al., 2024), and others have been used in previous reports.

Instead of distinguishing between these varied terms, this review

employs “adaptation” as an overarching concept to represent all such

descriptions, focusing on bacterial population’s outcome in plant

environments. Metabolic adaptation is observed in S. enterica for the

extracellular enteric lumens (Harvey et al., 2011; Spiga et al., 2017;

Herrero-Fresno and Olsen, 2018; Taylor and Winter, 2020) and

Salmonella-containing vacuole (SCV) in cells (Dandekar et al., 2012,

2014; Taylor and Winter, 2020). Interestingly, approximately 40 -

50% of the regulated genes were overlapping in S. enterica infecting

mice and colonizing tomato fruits, of which most were metabolism-

related (de Moraes et al., 2017), showing that S. enterica may use

metabolic adaptation strategy in plants, as well. This hypothesis was

supported by several other reports. Using proteome, Kwan et al.

(2015) found that more than half of the proteins extracted from

S. enterica serovar Typhimurium (S. Typhimurium) 14028s

inoculated to alfalfa sprouts seedlings were metabolism-related. On

lettuce, Salmonella’s variable adaptation to root exudates of various

cultivars (Klerks et al., 2007) and to leaves at different ages (Brandl

and Amundson, 2008) was attributable in part to the content and

abundance of available compounds. Similarly, the differential

adaptation of S. enterica in apoplast of lettuce leaves was partially

due to their variable nutrient utilization abilities in apoplast (Jacob

et al., 2024). The improved colonization of S. Typhimurium SL1344

on lettuce and cilantro leaves was due to the active metabolism of

carbohydrates and amino acids, the abundance of which increased

with Dickeya dadantii co-infection (Goudeau et al., 2013). Jacob

et al. (2021) reported that bacterial metabolic changes within the

initial hours of S. enterica interaction with lettuce leaves were crucial

for their adaptation. Using S. Typhimurium 14028s Transposon-

Sequencing (Tn-Seq) library, we generated similar findings: genes

encoding proteins in multiple metabolic pathways were necessary for

Salmonella’s growth in tomato/lettuce leaf-mimicking media (Han

et al., 2024). All these reports indicate a metabolic adaptation

strategy employed by S. enterica in plant environments.

Interestingly, there exist similarities and differences in the

reprogrammed metabolic network between S. enterica adapting to
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plants or animals (de Moraes et al., 2017; Kwan et al., 2018). For

instance, the catabolism of carbon sources, as well as the biosynthesis

of amino acids and nucleotides, plays crucial roles in S. enterica

adapting to both plants and animals (de Moraes et al., 2017; Kwan

et al., 2018; Jacob et al., 2021). However, S. enterica employed

different metabolic networks for serine while adapting to plants or

animals (Kwan et al., 2018). Summarizing the reports focusing on

the metabolic pathways used by S. enterica during adaptation to

plant environments, sugars, organic acids, amino acids, and fatty

acids metabolism, along with energy consumption and production,

seemed to play crucial roles (Brankatschk et al., 2014; Kwan et al.,

2015; de Moraes et al., 2017; Kwan et al., 2018; He et al., 2021; Jacob

et al., 2021). This review will focus on the nutrients and the

corresponding bacterial primary metabolism, which may aid in the

understanding of the metabolic adaptation strategy used by

S. enterica, and may contribute to the establishment of precise

preventative strategies.
2 Nutrients available in plant-related
environments

2.1 Sugars, organic acids, and amino acids
are available in plant-related environments

Sugars, organic acids, and amino acids are major compounds

available in agricultural environments, thus potentially accessible to

bacteria present in those environments. Multiple sugars were

detected in plant seeds, seedlings, root exudates, and leaf tissues

(Lugtenberg et al., 1999; Kamilova et al., 2006; Neumann et al.,

2014; Han and Micallef, 2016; Kwan et al., 2018; Jacob and Melotto,

2025). Those sugars included glucose, fructose, mannose, galactose,

maltose, trehalose, ribose, sucrose, xylose, and others. Glucose and

fructose were detected as the carbon sources with two highest

abundances, especially in leaf tissues (Han et al., 2023a) and fruits

(He et al., 2021). In matured lettuce leaves, 2.5 and 3.4 mg/g of

glucose and fructose were detected, respectively (Shanmugavelan

et al., 2013). In tomato fruits, glucose and fructose took up between

1.25 - 1.54% and 1.37 - 1.87% of carbohydrates, respectively (He

et al., 2021). In addition to sugars, organic acids such as succinate,

fumarate, and malate, which are the intermediates of the

tricarboxylic acid (TCA) cycle, are detected in plants and may

serve as carbon sources for bacteria (Han and Micallef, 2016; Kwan

et al., 2018; Lovelace et al., 2022; Han et al., 2023a; Jacob and

Melotto, 2025). As reported by Kwan et al., (2018), utilization of

organic acids from germinating alfalfa seedling exudates by

S. enterica, was directly measured by liquid chromatography-mass

spectrometry (LC-MS). Moreover, S. enterica growth was associated

with the abundance of organic acids in tomato plants exudates (Han

and Micallef, 2016). Another report demonstrated that malate was

the second most abundant metabolite in Nicotiana benthamiana

leaves, and that the differential utilization by various S. enterica

strains correlated with their different growth in N. benthamiana

leaves (Lovelace et al., 2022). Interestingly, glycerol was detected as

the major carbon source in diluvial sand soil, more abundant than
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sugars and amino acids (Carvalhais et al., 2010; Neumann et al.,

2014; Prax et al., 2021; Han et al., 2023a), and may serve as a carbon

source for bacteria (Figure 1). Glycerol was also detected in lettuce

exudates (Neumann et al., 2014) and immature alfalfa seedlings

(Kwan et al., 2018). In lettuce and maize root exudates (Neumann

et al., 2014), as well as plant leaves, such as lettuce (Jacob and

Melotto, 2025) and tomato (Han and Micallef, 2016), amino acids

were detected as well. Those included alanine, aspartate, glutamate,

glutamine, glycine, leucine, proline, isoleucine, serine, and

threonine. In addition to the primary metabolites listed above,

secondary metabolites, such as and phenolics, were detectable in

tomato plants and fruits (Han and Micallef, 2016), as well lettuce

leaves (Jacob andMelotto, 2025). These compoundsmay also serve as

nutrients for bacteria. However, this manuscript focuses principally

on primary metabolites from plant-related environments and the

metabolic pathways utilized by S. enterica.
2.2 Factors influencing plant nutrient
availability

Diversity and quantity of the available compounds vary

depending on plant species, organs, developmental stages (Han

and Micallef, 2016; Jacob and Melotto, 2025), and culturing
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substrates (especially impacting root exudates) (Neumann et al.,

2014). Citrate, for example, was detected in tomato-leaf mimicking

medium (Han et al., 2023a) and tomato root exudates (Kamilova

et al., 2006), however, not in lettuce leaf-mimicking medium (Han

et al., 2023a) nor in lettuce root exudates (Neumann et al., 2014).

Tryptophan is abundant in radish and sweet pepper seedling

exudates, rather than in tomato or cucumber seedling exudates

(Kamilova et al., 2006). Many amino acids are scarce in alfalfa root

exudates (Kwan et al., 2015), but abundant in lettuce or maize root

exudates (Carvalhais et al., 2010; Neumann et al., 2014). Organic

acids were differentially accumulated in lettuce leaves of diverse

cultivars after being inoculated with S. enterica (Jacob and Melotto,

2025). Those facts suggest that the types of nutrients available for

bacteria depend on are plant organ and species. In addition, plant

developmental stage is also an important factor. In three weeks-old

tomato seedlings, amino acids and organic acids comprised the

majority of the metabolites (Han and Micallef, 2016), potentially

contributing to microbiome recruitment and the establishment of

stable rhizosphere or phyllosphere habitats (Qu et al., 2020). As

tomato plants reached the flowering stage (six weeks-old), sugars

and sugar alcohol progressively increased in proportion and became

the major components (Han and Micallef, 2016), reflecting the

enhanced photosynthesis abilities of plants. This shift was observed

also during tomato fruit’s maturation process (Carrari et al., 2006).
FIGURE 1

Nutrients that may be present in plant-related environments and used by Salmonella enterica. Plant-related environments may provide various
nutrients for Salmonella enterica, including sugars, amino acids, organic acids, fatty acids, glycerol, and others. The varieties and abundance depend
on plant species, plant growing stages, organs of plants, and other factors. Image 1 takes tomato plant as an example: structural formulas stand for
glycerol as major nutrient in soil and root exudates, as well as glucose and fructose as major nutrient in leaves. S. enterica adapts to environments
according to nutrient availability. Arrows represent metabolic pathways. Green: glycolysis; light green: pentose phosphate pathway; pink: Enter-
Doudoroff pathway; red: pyruvate oxidation; purple: the tricarboxylic acid (TCA) cycle; light blue: the glyoxylate shunt. Arrows with solid and dot
lines represent one step and omitted steps of reactions, respectively. Icons and legends in the dash box explain the symbols in the figure. G6p,
glucose-6-phosphate; gap, glyceraldehyde-3-phosphate; pep, phosphoenolpyruvate; pyr, pyruvate; e4p, erythrose 4-phosphate r5p, ribose 5-
phosphate; ser, serine; cys, cysteine; ac-CoA, acetyl-coenzyme A; cit, citrate; icit, isocitrate; akg, a-ketoglutarate; suc-CoA, succinyl-coenzyme A;
suc, succinate; fum, fumarate; mal, malate; oaa, oxaloacetate; glyox, glyoxylate. Created with BioRender.com.
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Another important factor in tomato phytochemical composition is

the organ. Exudates from tomato fruit, shoots, and roots can

differentially support the growth of S. enterica (Han and Micallef,

2016). All the above-mentioned reports demonstrate that plant

physiological factors impact the nutrients available to bacteria.
3 S. enterica nutrient acquisition
routes

In mammalian systems, nutrients in extracellular and

intracellular environments are directly accessible for S. enterica.

In agricultural environments, exudates from roots or seedlings are

secreted into surrounding environments, and may be also acquired

by S. enterica (Brankatschk et al., 2014; Kwan et al., 2015; Han and

Micallef, 2016; Kwan et al., 2018). Moreover, S. enterica can

internalize into plants via root or stomatal cavities of leaves

(Jechalke et al., 2019; Zarkani et al., 2019; Chahar et al., 2021),

enabling a localization within the apoplast. Leaf apoplastic fluids are

abundant in sugars and organic acids (Lopez-Bucio et al., 2000;

Fatima and Senthil-Kumar, 2015), providing a rich nutrient’s pool

for Salmonella. Furthermore, plant infection by phytopathogenic

bacteria, such as Xanthomonas spp. (Potnis et al., 2015; Cowles

et al., 2022; Dixon et al., 2024) or Pseudomonas syringae pv. tomato

DC3000 (Meng et al., 2013), may increase nutrient leakage from

plant cells, potentially providing further nutrients for S. enterica. In

addition, recent study reported that S. enterica BcsZ enzyme is

responsible for its carboxymethylcellulase activity while interacting

with parsley leaves (Fratty et al., 2022). This finding pointed to

another potential route for S. enterica’s nutrient acquisition in

plants. Notably, reports using plant tissue lysates to mimic plant-

derived nutrients may overlook particular acquisition routes.
4 S. enterica metabolic adaptation to
plants

Carbon and nitrogen availability may affect physiological status,

growth, population size, and virulence of microorganisms (Mercier

and Lindow, 2000; Brandl and Amundson, 2008; He et al., 2021). For

example, adding sugars to the medium, where lettuce was cultured,

reduced S. Typhimurium internalization into plants, probably

because the chemotaxis directed by sugars from lettuce was

misguided (Kroupitski et al., 2009). On one hand, carbon metabolic

reprogramming in S. enterica is critical for plant adaptation.

Proteomic analyses of S. Typhimurium inoculated to alfalfa

seedling exudates revealed differential expression of sugar

metabolism including glycolysis, gluconeogenesis, pentose

phosphate pathway (PPP), and TCA cycle proteins (Kwan et al.,

2015), a finding mirrored in S. Typhimurium Tn-Seq library

adaptation studies using tomato/lettuce leaf-mimicking media (Han

et al., 2024). On the other hand, plant’s carbon metabolic pathways

are also altered during the interaction with S. enterica. Metabolism of

glucose, fructose, sucrose, and other carbon sources was modified in

lettuce leaves infiltrated with S. enterica (Jacob and Melotto, 2025).
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KEGG pathways related to carbon source metabolism were

upregulated in S. enterica inoculated to cantaloupe and fresh

tomato fruits cuts (He et al., 2021), as well as S. enterica inoculated

into Arabidopsis leaf apoplast (Jacob et al., 2021). In contrast,

infiltration of S. enterica into lettuce leaves induced the regulation

of pathways related to multiple amino acid metabolism (Jacob et al.,

2021). Similar findings on the crucial role of amino acids were also

obtained in S. enterica adaptation to cantaloupe and fresh tomato

fruits cuts (He et al., 2021), as well as tomato/lettuce leaf-mimicking

media (Han et al., 2024). These reports suggest that carbon and

nitrogen metabolic pathways serve as critical determinants in

S. enterica adaptation to plant environments.
4.1 Carbon metabolism

4.1.1 S. enterica’s preference for available carbon
sources

Sugars are the most common carbon sources in plant-related

environments. S. enterica’s proliferation in tomato plant and fruit

exudates was positively correlated to sugar concentration (Han and

Micallef, 2016). Tomato cultivars with higher levels of glucose and

fructose could better support S. Typhimurium LT2 persistence

(Han and Micallef, 2016). Although agricultural environments

may include a wide range of sugars, not all sugars are utilized

equally. For example, sucrose is commonly found in plants (Fatima

and Senthil-Kumar, 2015), but only less than 10% of Salmonella

strains can utilize it (Jahreis et al., 2002; Dixon et al., 2024). Instead,

glucose is preferred sugar by S. enterica. Extracellular glucose can be

imported into Salmonella cells via several ways, including the

phosphotransferase system (PTS), transferring phosphate from

phosphoenolpyruvate (PEP) to substrates. PTS consists of

common PtsI (enzyme I) and HPr (ptsH), as well as diverse

enzyme II dependent on substrates: glucose-PtsG/Crr, fructose-

FruA, mannose-ManXYZ, etc. (Deutscher et al., 2006) (Figure 1).

Genes ptsI and ptsH seemed essential for S. Typhimurium 14028s

cultured in tomato fruit and leaf-mimicking media, as indicated by

transcriptome (Zarkani et al., 2019; He et al., 2021) and Tn-Seq

results (Han et al., 2024). In addition, ptsG and crr encoding glucose

transporters, rather than genes encoding fructose or mannose

enzyme II, were upregulated in S. Typhimurium 14028s grown in

tomato leaf-mimicking medium (Zarkani et al., 2019), indicating

that glucose, rather than fructose or mannose, was predominantly

imported through the PTS. However, fructose or mannose might

take precedence over other carbon sources since they can be

incorporated into glycolysis.

When glucose is available, the import and utilization of other

carbon sources, such as C4-dicarboxylates, may be suppressed, a

phenomenon known as carbon catabolite repression (CCR)

(Ullmann, 1996). Consistently, the expression S. Typhimurium

14028s genes encoding importers of succinate, fumarate, and malate

(dctA and dcuB) (Soares-Silva et al., 2020) did not change significantly

in tomato or lettuce leaf-mimicking media (Jechalke et al., 2019;

Zarkani et al., 2019), where glucose was of high abundance (Han

et al., 2023a). However, the growth of S. enterica was not impaired
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when genes encoding PTS glucose enzyme II were mutated by

transposons (Han et al., 2024), demonstrating that alternative carbon

sources could be used when glucose was inaccessible. Nevertheless, this

consumption strategy may not be always very rigid. Instead of single

carbon sources, S. enterica used sucrose and maltose as major carbon

sources while adapting to cantaloupe fruit cuts (He et al., 2021). The

use of multiple carbon sources occurs also in S. enterica infecting

macrophages. In this case, both favorable glucose and unfavorable

mannitol were used (Steeb et al., 2013). Therefore, the utilization of

carbon sources by S. enterica should be evaluated based on the specific

environmental context.
4.1.2 Central carbon metabolism used by
S. enterica
4.1.2.1 Glycolysis and bypasses

Glycolysis is the primary glucose catabolism pathway. It is

required in S. enterica’s adaptation to human and murine cells

(Eriksson et al., 2003; Hautefort et al., 2008; Bowden et al., 2009;

Gotz et al., 2010; Bowden et al., 2014; Garcia-Gutierrez et al., 2016),

as wells as to plants (Zhang et al., 2014; Kwan et al., 2015; de Moraes

et al., 2017, 2018; Jechalke et al., 2019; Zarkani et al., 2019; He et al.,

2021; Jacob et al., 2021; Han et al., 2024). Many of the glycolysis

intermediates, such as glucose-6-phosphate, 3-phosphoglycerate, 2-

phosphoglycerate, or phosphoenolpyruvate were not detected in

tomato/lettuce leaf-mimicking media, but were detectable in

S. Typhimurium 14028s cultured in these media, indicating the

glycolysis activity in Salmonella (Han et al., 2023a). Expression of

S. enterica’s enzymes related to glycolysis was regulated when

S. enterica was cultured in alfalfa seedling exudates (Kwan et al.,

2015), within Arabidopsis and lettuce leaves (Zhang et al., 2014;

Jacob et al., 2021), as well as in tomato and cantaloupe fruits (He

et al., 2021). Moreover, several reports using Salmonella Tn-Seq

library indicated that transposon insertion into glycolysis genes

impaired S. enterica persistence or growth in plant-related

environments, such as tomato fruit tissues (de Moraes et al.,

2017, 2018) and tomato/lettuce leaf-mimicking media (Han et al.,

2024). These results demonstrated the significance of unhindered

glycolysis for carbon acquisition in S. enterica’s adaptation to plants.

On the other hand, this deficiency in adaptation could be due to the

absence of energy sources, as indicated by the function of Pgk and

PykF, both involved in generation of ATP in glycolysis that acts as

substrate-level phosphorylation, an important supplementary

pathway for ATP generation in bacteria.

In addition, bypass via glucose-6-phophate to pentose phosphate

pathway (PPP) and Enter-Doudoroff pathway (KDPGP) was

observed in S. enterica adaptation to both mammalian cells

(Lundberg et al., 1999; Eriksson et al., 2003; Hautefort et al., 2008;

Gotz et al., 2010; Diacovich et al., 2017) and plant hosts (Zhang et al.,

2014; Jechalke et al., 2019; Zarkani et al., 2019; Jacob et al., 2021; Han

et al., 2023a). Non-detection of the enzymes catalyzing fructose-1,6-

diphosphate to glycerate-1,3-phosphate in S. enterica internalizing

into lettuce leaves might suggest the possibility of such bypasses

(Zhang et al., 2014). Similarly, glucose-6-phosphate, rather than

fructose-6-phosphate, was detected in S. Typhimurium 14028s cells
Frontiers in Plant Science 05
grown in tomato/lettuce leaf-mimicking media (Han et al., 2023a).

This bypass hypothesis was also supported by the regulation of gene

expression and mutants’ adaptation. Transcriptomic analyses showed

that several genes in PPP were differentially expressed in S. enterica

infiltrated into Arabidopsis and lettuce leaves (Jacob et al., 2021).

Similar results in PPP and KDPGP were also obtained in

S. Typhimurium 14028s cultured in tomato/lettuce leaf-mimicking

media compared to those cultured in minimal medium (Jechalke

et al., 2019; Zarkani et al., 2019). Additionally, Tn-Seq analysis

identified these genes essential for the growth of S. Typhimurium

14028s in leaf-mimicking media (Han et al., 2024). The occurrence of

such bypass might also: i) degrade plethoric glucose-6-phosphate

produced from excess glucose in leaf media, since accumulation of

such phosphorylated intermediates could be toxic (Boulanger et al.,

2021, 2022), and ii) form ribose 5 phosphate (r5p) and erythrose 4-

phosphate (e4p) in the PPP (Figure 1). R5p can be converted to

phosphoribosyl pyrophosphate (PRPP), an intermediary in purine

and pyrimidine nucleotides biosynthesis that is essential for

S. enterica adaptation to Arabidopsis and lettuce leaves (Jacob

et al., 2021; Han et al., 2023b). Concurrently, e4p acts as the

precursor of aromatic amino acids, including tryptophan, whose

biosynthesis was shown vital for Salmonella adaptation to tomato

and cantaloupe fruits (He et al., 2021). Collectively, these bypasses

may assist S. enterica in adaptation to plant-related environments.

4.1.2.2 Pyruvate oxidation

The end product of glycolysis and KDPGP is pyruvate. Pyruvate

is generally converted by pyruvate dehydrogenase complex to

acetyl-CoA, which serves as a bridge between glycolysis, fatty acid

metabolism and the TCA cycle (Figure 1). In animals, Salmonella

mutant in one of the pyruvate dehydrogenase complex encoding

gene aceE was found less invasive to epithelial cells (Pang et al.,

2011) and impaired in survival in chicken macrophages (Chang

et al., 2008). Similarly, pyruvate oxidation to acetyl-CoA is required

for S. enterica adaptation to tomato both leaf-mimicking medium

and leaves (Han et al., 2023a). After infiltration, the mutant in the

operon’s first gene, aceE, showed reduced persistence in tomato

leaves, and the deficiency could be overcome by introduction of

aceEF into the mutant (Han et al., 2023a). In addition, genes related

to pyruvate metabolism pathway were enriched among genes

expressed in S. enterica infiltrated to Arabidopsis leaves (Jacob

et al., 2021). In S. enterica inoculated to tomato and cantaloupe

fruits, several genes in the pyruvate metabolism pathway were

upregulated, though the specific upregulated genes exhibited

plant-dependent variation (He et al., 2021). Moreover, the aceE

mutant had significantly reduced carbon metabolism intermediates

if compared to the wild type grown in tomato-leaf mimicking

medium (Han et al., 2023a), indicating that pyruvate oxidation

played an important role in the regulation.

4.1.2.3 The TCA cycle and shunts

One of the exits for the acetyl-CoA produced by pyruvate

oxidation is the TCA cycle (Figure 1). A complete oxidative TCA

cycle was required for Salmonella virulence to mice, as mutants in
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the TCA enzymes presented attenuated or loss of virulence to mice

when the host survival was evaluated (Tchawa Yimga et al., 2006).

However, conclusions on S. enterica’s adaptation to plants were

occasionally contradictive. Expression of sucCD encoding

succinate-CoA ligase and sdhCDAB encoding succinate

dehydrogenase was upregulated when S. enterica serovar

Weltevreden (S. Weltevreden) was inoculated to alfalfa sprouts

(Brankatschk et al., 2014). Jacob et al. (2021) also reported

differential expression of TCA cycle genes in S. enterica

adaptation to Arabidopsis and lettuce leaf apoplast. Especially,

KEGG pathway analysis revealed enrichment of the TCA cycle of

S. enterica in Arabidopsis leaves, highlighting its critical role (Jacob

et al., 2021). However, no differentially expressed enzymes of the

TCA cycle were observed in S. enterica internalizing into lettuce

(Zhang et al., 2014) or during adaptation to cantaloupe fruit fresh

cuts (He et al., 2021). It was postulated by de Moraes et al. (2017)

that the acetyl-CoA produced by pyruvate oxidation in

S. Typhimurium 14028s colonizing tomato fruits was used for

acetate production in the fermentation pathway rather than the

TCA cycle, because mutants in phosphate acetyltransferase (pta)

and acetate kinase (ackA) presented significantly reduced

adaptation. In addition to the split flow of acetate, isocitrate

produced in initial TCA cycle may lead towards the glyoxylate

shunt (Figure 1). The glyoxylate shunt is typically used when sugars

are insufficiently available and in order to synthesize sugars from 2C

compounds such as acetate, or fatty acid degradation products.

Gene upregulation of the glyoxylate shunt was observed in

S. Typhimurium 14028s grown in soil suspension (Schierstaedt

et al., 2020) and plant root exudates (Jechalke et al., 2019; Zarkani

et al., 2019), where sugars are scarcely detected (Han et al., 2023a).

4.1.2.4 Gluconeogenesis

Reverse to the glycolysis, gluconeogenesis is a pathway that uses

energy to synthesize glucose from diverse substrates, such as

pyruvate, citrate, malate, succinate, acetate, oleate, lactate, glycerol,

glycogenic amino acids, and others. Several enzymes may contribute

to both glycolysis and gluconeogenesis, including phosphoglucose

isomerase, fructose-1,6-bisphosphate aldolase, glyceraldehyde 3-

phosphate dehydrogenase, phosphoglycerate kinase, 2,3-

bisphosphoglycerate-(in)dependent phosphoglycerate mutase, and

enolase. Phosphoenolpyruvate (PEP) synthase (encoded by pps)

and fructose-1,6-diphosphatase (encoded by fbp and glpX) are

enzymes contributing to the irreversible steps in gluconeogenesis in

S. enterica. The activity of gluconeogenesis enzymes is dependent on

the availability of sugars, especially glucose, because its presence

inhibits the activity of those enzymes (Chin et al., 1989). For example,

gluconeogenesis enzyme proteins were identified in S. Typhimurium

14028s inoculated to alfalfa seeds (Kwan et al., 2015), where fatty

acids were abundant (Hamilton and Vanderstoep, 1979). In

S. Typhimurium 14028s inoculated to bulk soil, where sugars were

not as abundant as in plant leaves (Han et al., 2023a), pps was

upregulated (Schierstaedt et al., 2020). However, in tomato leaf-

mimicking medium with abundant glucose (Han et al., 2023a), these

genes were not required for S. enterica, as evidenced by the

comparable growth between mutants and the wild-type strain (Han
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dynamically regulate gluconeogenic enzymes’ expression in

response to carbon source availability in plant-related environments.

4.1.3 Metabolism of other carbon sources by
S. enterica
4.1.3.1 Glycerol metabolism

S. enterica can use glycerol as a carbon source in addition to

sugars and organic acids. Glycerol was detected as the major carbon

source in soil (Neumann et al., 2014; Prax et al., 2021; Han et al.,

2023a). Meanwhile, the KEGG pathway of glycerol metabolism was

consistently enriched in lettuce leaves inoculated with Salmonella,

irrespective of lettuce cultivars and post-inoculation time points,

highlighting glycerol as a metabolite potentially mediating the

bacterial-plant interaction (Jacob and Melotto, 2025). From the

Salmonella side, the downstream product of glycerol metabolism,

dihydroxyacetone, was abundant in correspondingly cultured

S. Typhimurium 14028s cells but not in soil (Han et al., 2023a),

indicating the consumption of glycerol. Moreover, the proliferation

of S. Typhimurium LT2 has been linked to the abundance of

glycerol in tomato exudates: the cultivars with richer glycerol

supply, could support Salmonella’s proliferation better (Han and

Micallef, 2016). S. Weltevreden adaption to alfalfa sprouts was aided

by genes that contribute to the formation of glycerol-3-phospate,

which could be produced in situ from glycerol catabolism

(Brankatschk et al., 2014). Furthermore, S. Typhimurium SL1344

mutants deficient in glycerol uptake and catabolism, had a reduced

ability to colonize alfalfa seedlings (Kwan et al., 2018), indicating

that both transport and metabolism of glycerol may be important in

S. enterica when glycerol in agricultural environments acts as the

major carbon source.

4.1.3.2 Fatty acid metabolism

Fatty acids are another potential carbon sources for S. enterica.

Both biosynthesis and catabolism of fatty acids were required for

S. enterica when it was intraperitoneally injected to mice and

sampled from their spleens (Santiviago et al., 2009). However,

when S. enterica was inoculated via the peroral route, fatty acids

catabolism was not required (Tchawa Yimga et al., 2006), probably

due to the restricted amount of fatty acids in the digestive tract,

where diverse and abundant lipases exist. Catabolism of fatty acids

is required for S. enterica adapting to plant-related environments

when sugars are insufficient and fatty acids are available. Typical

examples include immature tomato fruits (Noel et al., 2010; de

Moraes et al., 2017) and exudates from germinating alfalfa seedling

(older than one day) (Brankatschk et al., 2014; Kwan et al., 2018).

On the other hand, lettuce leaves inoculated with S. enterica

presented enriched fatty acid biosynthesis and degradation

pathways (Jacob and Melotto, 2025). In addition to replenishing

the flux of the hub compound acetyl-CoA, another driving force of

fatty acid catabolism could be the degradation of medium- and

long-chain fatty acids, such as palmitic acid, margaric acid, stearic

acid, and oleic acid, because they can inhibit the growth of

S. enterica (Han and Micallef, 2016). A supporting fact is that

tomato fruits from cultivars with more abundant fatty acids were
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less conductive to support S. enterica’s growth (Han and

Micallef, 2016).

However, in plant environments where fatty acids are scarce,

fatty acid catabolism is not as important as biosynthesis (Kwan

et al., 2015; de Moraes et al., 2017, 2018; Kwan et al., 2018). Shotgun

proteomics detected no fatty acid catabolism proteins in

S. Typhimurium 14028s inoculated to exudates of newly

germinated alfalfa sprout (one day-old) (Kwan et al., 2015).

Instead, acetyl-CoA carboxylase (encoded by accADBC),

functioning in the initial step of fatty acid biosynthesis from

acetyl-CoA, was identified (Kwan et al., 2015). S. enterica mutant

deficient in another biosynthesis gene, 3-oxoacyl-ACP reductase

(fabG) displayed impaired colonization of elder alfalfa seedlings

where fatty acids were available (Kwan et al., 2018), indicating that

the production of fatty acids may matter in S. enterica even when

these compounds are available in environments.
4.2 Amino acids metabolism

4.2.1 Various amino acids are required by
S. enterica, depending on the environment

As previously stated, amino acids can be detected in different

plant-related environments. The gene cluster engaged in amino acid

metabolism in S. Weltevreden inoculated to alfalfa sprouts, was

among regulated genes (Brankatschk et al., 2014), indicating that

amino acid metabolism is important for S. enterica grown in plant-

related environments. S. enterica inoculated to sprouts seedlings

consistently regulated expression of methionine metabolism genes

24, 48, and 96 hours post inoculation, indicating a potential role of

methionine in S. enterica adaptive strategies (Zheng et al., 2021). In

addition, S. enterica used histidine, glutamate, and glutamine in

hydroponic alfalfa seedlings (Brankatschk et al., 2014; Kwan et al.,

2015). In this case, biosynthesis, however, appeared to play a more

important function than catabolism, since more biosynthesis-

related enzymes were detected (Kwan et al., 2015). In addition,

amino acid biosynthesis was essential for colonization of tomato,

lettuce, sprouts, and broccoli (Kwan et al., 2015; de Moraes et al.,

2017, 2018; Kwan et al., 2018). This is most probably owing to a

scarcity of amino acids in plant-related environments. Compared to

other free available nutrients, amino acids were a minor component

in tomato leaves, root exudates, and fruits (Han and Micallef, 2016;

Trovato et al., 2021). The concentration of all amino acids except for

threonine in alfalfa seedlings is less than 70 mM (Kwan et al., 2018),

tens of times lower than in mice spleens (Xiao et al., 2016; Kwan

et al., 2018). Additionally, S. enterica consumption of amino acid

during the initial days of interaction may accelerate their limitation.

For instance, metabolomic analysis of lettuce leaves one day after

S. enterica inoculation, showed a significant decrease in nine amino

acids, including valine, leucine, and proline, potentially indicating

their utilization by S. enterica (Jacob andMelotto, 2025). As a result,

de novo biosynthesis may be required. Biosynthesis of amino acids

was observed in S. Typhimurium 14028s when the abundance of

certain amino acids, such as glycine, proline, and tryptophan, was

insufficient to meet the requirement (Kwan et al., 2015). A similar
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phenomenon was observed in S. Typhimurium 14028s adapting to

tomato/lettuce leaf-mimicking media. Gene Ontology terms

analysis revealed that GO terms related to biosynthesis of leucine,

lysine, proline, threonine, and cysteine were enriched (Han et al.,

2024). However, when S. enterica encounters diverse environments,

its amino acid metabolism may be changed accordingly. Unlike in

alfalfa seedlings, biosynthesis of glutamate and glutamine were

required for S. enterica colonizing tomato fruit via wounds (de

Moraes et al., 2017, 2018), as well as for S. Typhimurium in low

temperature-stored intact lettuce leaves (Kroupitski et al., 2013).

For S. Typhimurium LT2 inoculated on tomato shoot and root

surface, genes related to biosynthesis of tryptophan were

upregulated (Han et al., 2020).

Although amino acid biosynthesis is universally reported, the

fact that some amino acids can be transformed from/to other

compounds complicates the link between amino acids present in

environments and the corresponding bacterial adaptation. For

example, the amount of glycine originating from alfalfa seedlings

is far less than the S. Typhimurium 14028s requirement for its

catabolism. Nonetheless, in the competitive index assay, growth of

the mutant deficient in glycine de novo biosynthesis was only

marginally lower than the growth of the wild type, suggesting a

conversion of serine or threonine into glycine (Kwan et al., 2015).

4.2.2 Cysteine biosynthesis is required for
S. enterica adaptation to multiple environments

Among amino acids required for S. enterica’s adaptation to

plant environments, cysteine seems to play an extraordinarily

important role. Cysteine biosynthesis via sulfate assimilation

serves as an important route to covert sulfur from inorganic to

organic sulfur compound (Kredich and Stewart, 2008), indicating

its dual significance in nitrogen and sulfur sources utilization. In

addition, cysteine acts as the primary source of other organic

molecules, such as glutathione, methionine, and coenzyme A

(Kredich and Stewart, 2008). Cysteine residues can serve as

indispensable components in the Fe-S clusters in bacterial

response to environmental stresses (Wang et al., 2010). This

functional importance of cysteine in S. enterica was frequently

reported across diverse S. enterica-plant interactions. In

S. Weltevreden inoculated to alfalfa sprouts, more than half of the

amino acid biosynthesis regulated genes were related to cysteine

acquisition and biosynthesis (Brankatschk et al., 2014).

S. Weltevreden inoculated to lettuce and corn salad leaves

exhibited a similar result (Brankatschk et al., 2014), as did

S. Typhimurium 14028s inoculated to immature and mature

tomato fruits (Noel et al., 2010). Jacob et al. (2021, 2025) reported

bidirectional enrichment among regulated genes related to the

cysteine metabolism pathway in S. enterica adaptation to lettuce

leaves, demonstrating its important role as a key metabolic hub in

Salmonella-plant interactions. S. Typhimurium 14028s grown in

tomato/lettuce leaf-mimicking media also required cysteine

biosynthesis (Han et al., 2024). Furthermore, cysteine biosynthesis

was involved in the response of S. enterica to abiotic stressors

(Wang et al., 2010). Asides from S. enterica, cysteine biosynthesis

was necessary in other enteric and phytopathogenic bacteria
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adaptation to plants, such as Escherichia coli on lettuce leaf surface

(Fink et al., 2012) and in leaf lysates (Kyle et al., 2010), as well as

Pseudomonas syringae on bean leaves (Marco et al., 2005).

Cysteine can be synthesized in two pathways. One is the serine

conversion, and related genes such as serine acetyltransferase (cysE)

and cysteine synthase A (cysK) were required for S. Typhimurium

14028s proliferation in tomato/lettuce leaf-mimicking media (Han

et al., 2024). Similarly, when inoculated to alfalfa seedlings, the cysE

mutant of S. Typhimurium SL1344 displayed decreased

competitiveness compared to the wild type, this could be partially

complemented by adding additional cysteine (Kwan et al., 2018).

Another pathway is the assimilation of sulfate as mentioned above,

which could be acquired from extracellular space and presented a

crucial role in S. Typhimurium 14028s growth in tomato/lettuce

leaf-mimicking media (Han et al., 2024). Similar finding was

observed in S. Weltevreden inoculated to alfalfa sprouts

(Brankatschk et al., 2014). Furthermore, S. enterica survival in egg

white (Liu et al., 2021) and chlorine-based oxidative stress (Wang

et al., 2010) was also related to sulfate assimilation. All those reports

indicate that cysteine biosynthesis plays a crucial role in S. enterica’s

adaptation to different environments, including plants (Figure 1).
5 Conclusions and critical issues

This review summarizes the current understanding of S. enterica’s

metabolic adaptation to plant environments, highlighting its

remarkable flexibility in utilization and biosynthesis of diverse

metabolites as well as in the reprogramming of metabolic networks.

Agricultural ecosystems, including plants, are able to provide multiple

nutrients for S. enterica, including sugars, organic acids, glycerol, amino

acids, fatty acids, and others. Both diversity and abundance of those

compounds, which fluctuate depending on plant species, organs,

developmental stages, and other physiological status, affect

S. enterica’s adaptation. Notably, in particular studies, exudates are

manually collected, or plant lysates are used mimicking the nutrients

availability, and this may mask the metabolites that S. enterica

encounters in native niches. Consequently, findings on S. enterica

metabolic adaptation should be indeed treated with caution. Current

evidence, even though, primarily derived from transcriptomic,

proteomic, metabolomic, and Tn-Seq analyses, has outlined key

metabolic pathways. It is however, important to note that many

omic-derived findings lack the validation via other methods. In

addition, further bidirectional studies on both, metabolome of

S. enterica and plant environments should provide insights into

S. enterica metabolic adaptation to plant environments.
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