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The fall armyworm (Spodoptera frugiperda) poses a significant threat to global
maize production owing to its rapid life cycle, extensive host range, and strong
dispersal capabilities. We developed a forecasting system for fall armyworm
outbreaks over one week using weekly pheromone trap counts (2019-2023)
from the Maize Research Centre in Rajendranagar (Hyderabad), combined with
weather data such as air temperature, relative humidity, and rainfall. Three
modelling approaches, INGARCHX, SVRX and ANNX, were evaluated based on
performance metrics: Integer Valued GARCH with Exogenous Variables
(INGARCHX), Support Vector Regression with climate inputs (SVRX), and
Artificial Neural Network with climate inputs (ANNX). During the training phase,
the ANNX model delivered the best performance, recording a mean square error
of 0.42 and a root mean square error of 0.65. These results outperformed the
SVRX model, which produced a mean square error of 7.29 and a root mean
square error of 2.70, and also exceeded the INGARCHX model, showing a mean
square error of 2.91 and a root mean square error of 1.70. During testing, the
ANNX model consistently outperformed the alternatives, yielding a mean
squared error of 25.13 and a root mean squared error of 5.01. SVRX recorded
scores of 34.07 and 5.84, while INGARCHX showed 48.90 and 6.99, respectively.

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fpls.2025.1636412/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1636412/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1636412/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1636412/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1636412/full
https://orcid.org/0000-0002-7623-8264
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2025.1636412&domain=pdf&date_stamp=2025-10-30
mailto:vani.ento@pjtau.edu.in
mailto:vani.ento@gmail.com
https://doi.org/10.3389/fpls.2025.1636412
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2025.1636412
https://www.frontiersin.org/journals/plant-science

Kalisetti et al.

10.3389/fpls.2025.1636412

Diebold—Mariano tests verified that ANNX's edge over SVRX and INGARCHX is
statistically significant at the 5%. By integrating climate variables, this neural
network is a dependable early-warning system that predicts fall armyworm
population surges with roughly 80% accuracy, one week ahead. This timely
and geographically targeted forecasting allows for precise pest-control actions,
minimizing maize yield losses and advancing sustainable agricultural strategies.

KEYWORDS

fall armyworm, pheromone trap catches, climatological parameters, INGARCHX,

ANNX, SVRX

Introduction

The fall armyworm (Spodoptera frugiperda J.E. Smith;
Lepidoptera: Noctuidae) now ranks among the most damaging
invasive pests worldwide, posing a serious threat to food security on
a global scale. Notably, it has damaging effects on cereal crops like
maize. Native to the Americas, FAW was first detected in India in
2018 and has since rapidly spread, infesting nearly 90% of maize-
growing areas (Suby et al., 2020). Its high mobility, ability to fly up
to 500 km with wind currents, and a wide range of over 350 plant
species make it a serious pest (Montezano et al., 2018; CABI, 2020).
FAW has been reported in more than 100 countries (Prasanna et al.,
2018; Baloch et al., 2020), highlighting its potential to invade.

In India, FAW is seen as a high-priority pest. Although many
integrated pest management (IPM) strategies have been created,
chemical control is still the primary method used (Kalisetti et al.,
2024). Climate change makes pest management harder by changing
the interactions between pests, hosts, and the environment.
Temperature, rainfall, and CO, levels affect FAW’s reproduction,
development, and movement (Prakash et al., 2014; Boggs, 2016).
For instance, a 1.5 °C increase in temperature could lead to a 45-
58% rise in the number of days over 35 °C. This may enlarge FAW’s
habitat and increase generational turnover (IPCC, 2023; Ramirez-
Cabral et al., 2020).

Given these challenges, it is important to understand how weather
factors affect FAW population changes. This understanding is key for
timely pest monitoring, predicting outbreaks, and taking preventive
actions. Pheromone traps are commonly used to monitor FAW
populations. They provide valuable information about seasonal
activity and where FAW is found (Rajashekhar et al, 2024).
However, while extensive modelling studies exist for FAW in Africa
and the Americas, research tailored to Indian agroclimatic conditions
remains scarce.

Forecasting pest populations has traditionally relied on
statistical models such as multiple regression and ARIMA.
Although useful, these models are limited when applied to non-
Gaussian, count-based pest data, even with transformations for
normality. Though Phenology and degree-day models are widely
used and effective in pest modelling (including for fall armyworm),
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they also have notable limitations. While phenology and degree-day
models help predict pest development, they have limitations. For
example, they depend on temperature as the only factor driving
development and may overlook important ecological elements like
rainfall, changes in host plants, or pest movement. Additionally,
linear DD models might oversimplify the complex biological
responses to temperature extremes. These limitations can impact
prediction accuracy in the fall armyworm, a highly migratory and
polyphagous species.

Count time series models, such as INGARCH, designed for
discrete, autocorrelated data, offer a more suitable alternative but
remain underutilised in pest forecasting (O’Hara and Kotze, 2010;
St-Pierre et al., 2018). Meanwhile, machine learning (ML) methods
—particularly Support Vector Regression (SVR) and Artificial
Neural Networks (ANN)—have shown strong predictive power in
agriculture due to their ability to capture non-linear relationships
without assuming data normality. These techniques have been used
for crop yield forecasting (Amaratunga et al., 2020; Rathod et al,,
2018), rice pest prediction (Ma et al.,, 2019), and sugarcane borer
disease modelling (Huang et al., 2018). However, their application
to FAW population forecasting remains limited, especially in an
Indian context.

Count-based time series models and ML techniques have also
been applied in diverse domains, including stock markets (Fokianos
et al., 2009), manufacturing claims (Weify, 2009), disease
surveillance (Zhu and Wang, 2010; Tanawi et al, 2021), and
network traffic analysis (Kim, 2020). In agriculture, Kim et al.
(2014) and Alam et al. (2018) point out the possibilities of
combining machine learning with time series data. However,
there is no comparative evaluation of these methods for pest
forecasting in India. Given the growing threat of FAW due to
changing climate conditions and the limitations of current
forecasting methods, there is a clear need for strong, location-
specific models that combine climate data with improved
forecasting techniques.

This study aims to fill this gap by:

a. Examining seasonal trends in FAW populations using
pheromone trap data.
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. Identifying key meteorological variables that influence
FAW dynamics in maize-growing regions.
. Developing predictive models using both:
i.  Count time series frameworks (e.g, INGARCH), and

ii. Machine learning techniques (e.g., SVR and ANN),

iii. To capture the non-linear and discrete nature of

FAW count data.

. Comparing model performance to determine the most
accurate and reliable approach for FAW forecasting.

. Supporting early warning systems for FAW through
integrated, data-driven forecasting tools that inform IPM
strategies and reduce yield loss.

Materials and methods
Study site and experimental design

A fixed-plot field experiment (8000m?) took place over five years. It
spanned ten consecutive cropping seasons: Kharif 2019, Rabi 2019-20,
Kharif 2020, Rabi 2020-21, Kharif 2021, Rabi 2021-22, Kharif 2022,
Rabi 2022-23, Kharif 2023, and Rabi 2023-24. The study was conducted

10.3389/fpls.2025.1636412

at the Maize Research Centre, Rajendranagar, Hyderabad, Telangana,
India (17.33°N, 78.40°E) (Figure 1) in the Southern Agro-Climatic Zone
of Telangana. The region experiences a semi-arid tropical climate with
an average annual temperature of ~22°C. The soil is sandy loam, and
irrigation is available. Each season, two bulk plots of 4000 m? each were
sown with maize hybrid DHM 117 using a spacing of 60 cm x 20 cm.
Standard agronomic practices were followed uniformly, excluding pest
control measures to ensure natural FAW incidence.

Data collection

FAW monitoring: Funnel traps with slow-release NBAIR
pheromone lures were installed to monitor adult Spodoptera
frugiperda (FAW). Trap installation began 7 days after crop
germination (V2 stage) and continued until crop maturity. Lure
replacement occurred every 4 weeks. Daily trap counts were
recorded and later aggregated to weekly averages per trap. One
trap was installed per 1000 m? plot, with a total of 8 traps covering
two plots (8000 m?). Captured specimens were taken to the
laboratory for manual counting and identification (Figure 2).

Weather data: Meteorological parameters included maximum
temperature (MaxT), minimum temperature (MinT), morning

Maize Research Farm of PJTAU, Rangareddy District,Telanagana, India

o

Rangareddy District in Telangana State

Maize Research Farm of PJTAU
at Rajendranagar Mandal of
Rangareddy District

Google Earth Map of
Maize Research Farm of PJTAU

Year of Study: 2019 to 2024; Lat and Long:17.33""N;78.40"E  Variety: DHM-117; Spacing: 60 x 20 cnn,

FIGURE 1
Location of the fall armyworm modelling study.
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FIGURE 2

(a) Adult Fall armyworm, Spodoptera frugiperda. (b) Adult trap catches (c) Pheromone traps in the field. (d) Damage symptoms of FAW, (e) Field view

of the Experimental trial.

10.3389/fpls.2025.1636412

relative humidity (RHM), evening relative humidity (RHE), and
rainfall (RF). Weekly averages of these parameters were aligned
with Standard Meteorological Weeks (SMW). Data were sourced
from an automatic weather station at the Agro Climate Research
Centre, Rajendranagar, Hyderabad.

Statistical analysis: Descriptive statistics including mean,
standard error (SE), coefficient of variation (CV), skewness,
kurtosis maximum and minimum were used to summarise FAW
counts and meteorological data. Time series plots were created to
visualise temporal trends. Pearson’s correlation was employed
to assess relationships between FAW counts and weather
variables. Stepwise multiple regression was used to identify key
meteorological predictors of FAW populations, based on the model:
Y=XpB+e, e~N(0,62)Y = X\beta + e, \quad e \sim N(0, \sigma/2),
where Y represents the dependent variable (weekly FAW counts), X
is the matrix of meteorological predictors, B\beta is the vector of
regression coefficients, and e is the error term. Analyses were
conducted using R software (R Core Team, 2018) for time series
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models and machine learning and SAS software version 9.3 (SAS,
2011) for correlation and regression analyses.

Predictive modelling approaches

INGARCHX model (count time series)

The Integer-Valued Generalised Autoregressive Conditional
Heteroscedastic (INGARCH) model is designed for count time
series data. It models FAW trap counts using historical values and
meteorological covariates. Poisson and Negative Binomial
distributions were tested to handle over-dispersion (Kedem and
Fokianos, 2002; Heinen, 2003; Ferland et al., 2006; Zhu, 2012). The
INGARCHX model extends the traditional INGARCH by including
exogenous variables (e.g., MaxT, MinT, RF, RHM, RHE).

Consider the “count time series denoted as (Yt: t € N) and the
time-varying r-dimensional covariate vector as (Xt: t € N), where
Xt = (Xt,1,..., Xt,r)". E defines the conditional mean (Yt/Ft-1) = Yt,
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with Ft symbolizing the historical data. The generalised form of the
model (Equation 1) is articulated as follows:

gh) =By + Ei:]akg (Yt—ik) + Eﬁzlﬁlg(x‘t—jl) + nT (1)

Case 1: Imagine a situation where both g and g are identity
functions, meaning g(x) = x and g(x) = x. Under these conditions,
Yt adheres to a (Poisson) INGARCH (p, q) model (Equation 2) with
p greater than one and” q greater than zero if the following hold
true: (a) Yt, when “conditioned on Yt-1, Yt-2, and so on, follows a
Poisson distribution. (b) The conditional mean At =E[Yt | Yt-1, Yt-
2,...] meets the criteria:

A=PBo+ Ef:la)’tfi + 2}1:1[31‘)”?*]' )

with 8, > 0and al,...,ap,...,ﬂl,...,ﬁq >0

This leads to an INGARCH order p and q model called the
INGARCH (p, q)” model, assuming that Yt | Yt-1 has a Poisson
distribution. The INAGARCH (p) model is (Equation 3) employed
when q equals 0 (Fokianos et al., 2009). These models are
sometimes referred to as “ACP (Autoregressive Conditional
Poisson)” models.

Case 2: The conditional variance might exceed the mean At in
the negative binomial distribution; this is known as over-dispersion
and is determined by the over-dispersion parameter @ (Christou
and Fokianos, 2014). Yt | Ft-1 is assumed to follow NegBinom (At,
©), a Negative Binomial distribution. As @ tends toward infinity,
the Poisson distribution is a limiting case of the negative binomial
distribution under this premise.

YY1, Yigs.o| “Bin(n,B+ oY) (3)

Further insights into estimating INGARCH models through
conditional” likelihood estimation, with an emphasis on asymptotic
properties, are available in Heinen (2003) and Fokianos (2011).
Assuming that future values are impacted by the target variable’s
past values and the prior values of exogenous variables, the
traditional INGARCH model forecasts future values exclusively
based on the target variable’s historical values. By incorporating
additional exogenous factors into the prediction model, the
INGARCHX model extends this further (Liboschik et al., 2020).

Support Vector Regression

Support Vector Regression (SVR) maps input data into a high-
dimensional feature space using kernel functions, most commonly
the Radial Basis Function (RBF). Its objective is to minimise a
regularised risk function, striking a balance between model
complexity and prediction error. The performance of SVR largely
depends on key hyperparameters, particularly C, which controls the
regularisation strength, and vy, which defines the kernel bandwidth.

SVR models incorporated meteorological variables as
exogenous predictors of FAW counts. In order to create the
“regression or time series model, SVR maps the original input
space into a high-dimensional feature space (Vapnik, 1995). A
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dataset is represented as Z = {xi yi}"i=1, where xi € R" represent the
input vector, yi represents the scalar output, and N represents the
dataset size. The general equation for SVR (Equation 4) can be
expressed as follows:

flx)=w'o(x)+b (4)

In this context, W signifies the weight vector, b is the bias term,
and the superscript T denotes the transpose. Coefficients W and b
are derived from the data by minimising the subsequent regularised
risk function (Equation 5):

R(0) = 3 1w I | 3 Le(31f () ©

This regularised risk function helps avoid underfitting and
overfitting the model by concurrently minimising the
regularisation term and the empirical error. The first term in
Equation 5, l||w2, is known as the “regularisation term.” It
quantifies how flat the function is. The function is advised to be
as “flat as possible by minimising 1 || w I%. The second term, lﬁ
N
2L E (yif(xi))
=1 is called the ‘empirical error,’ that is estimated by
employing Vapnik’s e-insensitive loss function (Equation 6), as
follows:

pf (xi) =€l |yi—f(xi)| 2 &
Lg(}’bf(x,-)) :f(x):{|y'f( ) 8| ‘y f( )| &

0 lyi—f(x)] < &

Y; represents the actual value, and f (x;) is the estimated value.
The “RBF (Radial Basis Function)” is the most frequently employed
kernel function (Equation 7), expressed as follows:

k(x, %) = exp{-yllx-x ||2} (7)

The architecture of the SVR is shown in Figure 3.

Artificial Neural Network

Artificial Neural Network with Exogenous Inputs (ANNX) is a
multi-layer feedforward ANN architecture that was implemented
with past pest counts and meteorological variables as the input
layer, an optimised number of neurons in the hidden layer, and
predicted FAW counts in the output layer. The ANN model
captures complex non-linear relationships through iterative
weight updates during training. Over recent decades, ANNs have
become one of the most widely employed machine learning
methods. In time series modelling, they are often referred to as
autoregressive neural networks because they rely on time-lagged
inputs. A neural network that natively models the temporal
function can quantitatively represent the time series method for
an ANN. The following is the expression for a multi-layer
feedforward autoregressive neural network’s final output (Yt)
(Equation 8).

Yi= oo+ X L0g (B + ZLiBiYep) + & (8)
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Input

a Kernels
N bias b b Input layer Hidden layer Output layer
K(xx,) \ '
- S8 AN
. . 'H\/\’>
no . K(x, x,) \
FIGURE 3

SVR (a) and ANN (b) model architectures.

Here, ¢; (Gj=0,1,2,,q) and [3,-]- (i=0,1,2,...,p,j=0,1,2,...,q)
represent the model parameters, also known as the synopsis
weights. The activation function is denoted by g, the number of
input nodes by p, and the number of hidden nodes by q. An ANN’s
training phase aims to reduce the error function between the
predicted and actual values. An autoregressive ANN’s error
function (Equation 9) is specified as follows:

1
E= NZZI(Q)Z

- %Zﬁl { X,— (wo + (Eglw]g (woj + Zlew,th,,-))> }Z 9)
Where “N is the total number of error terms. The parameters of the
neural network w; are adjusted by a change in as, Aw; as Aw;; =
-n aaTi’ where 7 is the learning rate (Rathod and Mishra, 2018 and
Zhang, 2003). The ANNX model will be formed by modelling the pest
count using an exogenous variable, similar to the INGARCHX and
SVRX models. The” ANN architecture is shown graphically in Figure 3.
For evaluating model performance, “MSE (Mean Square Error)”
and “RMSE (Root Mean Square Error)” were used as comparison
criteria. The MSE (Equation 10) is calculated as the average of the
sum of squared error values and is expressed as:
MSE = SH0i-5:)? (10)
N

In regression analysis, RMSE (Equation 11) is also referred to as

the standard error of the estimate and is defined as follows:

2

S i-Ys)

N

RMSE = (11)
Here, Y; represents the actual value, y; signifies the predicted
value, and N denotes the number of observations
Diebold and Mariano invented the “Diebold-Mariano (DM)”
test in 1995. It compares the residuals of models to see whether
variations in predictive accuracy are statistically significant. Let d;
stand for the absolute difference between the residuals of the two

competing models, r; and r,.
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d; =|ry| - |2, and the auto covariance function yk (Equation 12)
is defined as:

1., - -
%c = ;Eizlﬁl (dl - d) (difk - d) (12)
The DM test statistic (Equation 13) is formulated as:
DM = d (13)

(% +230 %] /n

Where, h = n'”? + 1. For hypothesis testing, the null hypothesis
(Hy) and the alternative hypothesis (H;) are defined as follows: H, =
E(d) = 0, indicating that the forecast accuracy is similar for both
models, and H; # E(d) # 0, suggesting that the forecast accuracy
differs between the two models.

This study integrates climatological data with advanced statistical
and machine learning models to forecast FAW populations in maize
ecosystems of southern India. Three modelling approaches,
INGARCHX, SVRX, and ANNX, are compared using standardised
evaluation metrics. This supports the development of an early warning
system for sustainable pest management.

Results

Figure 4 shows time series plots of weekly counts, by Standard
Meteorological Week (SMW), of fall armyworm pheromone trap
catches at the study site from 2019 to 2024. The graph reveals a
higher incidence of fall armyworm (FAW) during the 52"¢ SMW,
with notable peaks around the 39" and 52" SMWs.

Figures 5A-F display annual time series plots of FAW catches,
illustrating year-to-year variation in population dynamics at the
study site. FAW incidence exhibited distinct seasonal peaks: peaks
occurred during the 4™ SMW in 2019, during the 51° SMWs; in
2020, during the 33" and 51*' SMWs; in 2021, during the 32" and
50™ SMWs; in 2022, during the 51° SMW; and in 2023, during the
39™ SMW. The 1 SMW had the largest FAW infestation in 2024.
High incidence levels continued into June.
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Maize FAW Population at Maize Research Center Rajendranagar

20-

Number of FAW
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Weekly Observations from 2019 - 2024

FIGURE 4
Fall armyworm populations of time series from 2019-2024.

Descriptive statistics of FAW and weather
variables

Table 1 displays summary statistics for the dependent variable,
the FAW population, and the exogenous climatic conditions. The
FAW population shows high variability, ranging from 0 to 27
individuals per trap, and a strong positive skewness (2.339),
indicating that while most trap catches were low, there were
occasional large infestations. Rainfall showed the highest variability,
with a coefficient of variation of 190.29%. It had extreme values and a
strong positive skew of 2.658. This suggests it can significantly trigger
pest incidence. Morning relative humidity was fairly consistent but
negatively skewed at -1.191. This indicates that high humidity levels
were common during this time. Temperature variables were
moderately stable. The maximum temperature showed a slight
positive skew of 0.673, while the minimum temperature had a
slight negative skew of -0.496. Overall, the weather parameters
displayed various patterns and levels of variability. They likely have
a significant impact on FAW population dynamics.

Frontiers in Plant Science

Correlation analysis between FAW and
meteorological variables

The Pearson correlation coefficients between the study’s climate
factors and FAW populations are in Table 2. The fall armyworm
(FAW) population had significant negative correlations with both
maximum temperature (r = -0.440) and minimum temperature (r =
-0.453). Higher temperatures are likely linked to lower trap catches
because extreme temperatures may reduce pest activity or survival.
Morning relative humidity (RHM) showed a weak but significant
positive correlation with FAW (r = 0.158). This suggests that higher
morning humidity slightly supports pest presence. In contrast, evening
relative humidity (RHE) showed a weak negative correlation (r =
-0.139), indicating a minimal inverse relationship. Rainfall also
negatively correlated with FAW (r = -0.164), implying that increased
rainfall may limit adult moth activity or cause larval mortality within
the maize whorls, resulting in decreased trap captures.

Overall, the correlation results indicate that FAW activity is
adversely affected by higher temperatures and rainfall, while
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FIGURE 5

(A-F) Year-wise fall armyworm populations from 2019-2024.

morning humidity has a slight favourable effect. The meteorological
variables are also interrelated, especially regarding temperature and
moisture, which likely contribute to the complexity of FAW
population dynamics.

Stepwise regression analysis of FAW trap
catches and climatic variables

The climatological parameters affecting the growth of FAW
populations were identified using a stepwise regression analysis.
The findings are summarised in Table 3. The stepwise regression
model found that maximum temperature (MaxT), rainfall (RF), and
evening relative humidity (RHE) significantly predict fall
armyworm (FAW) pheromone trap collections. The model’s
intercept was 24.99 (SE = 2.07), which estimates the FAW
population when all predictor variables are zero. Maximum
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temperature significantly negatively impacted FAW trap catches,
with a coefficient of -0.577 (SE = 0.054), an F-value of 52.83, and a
p-value of 0.00002. This factor accounted for 28.1% (R* = 0.281) of
the variation. Rainfall also had a negative influence, with a
coefficient of -0.015 (SE = 0.006), an F-value of 41.12, and a p-
value of 0.0021, contributing to a cumulative R? of 0.314. Evening
relative humidity (RHE) was the last variable included. It had a
coefficient of -0.061 (SE = 0.016), an F-value of 32.58, and a p-value
0f 0.0007. This raised the model’s explanatory power to a total R* of
0.327. These results indicate that unfavourable weather conditions,
particularly higher temperatures, rainfall, and evening humidity,
negatively influence FAW trap catches, collectively explaining
32.7% of the variation observed.

The regression results reveal that all three climatological
variables—maximum temperature, rainfall, and evening relative
humidity—significantly negatively affect FAW trap catches. The
model explains approximately one-third (32.7%) of the variability
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TABLE 1 Summary statistics of fall armyworm pheromone-trapped individual collections at Maize Research Centre, Hyderabad.

Statistics FAW population Max T (°C) Min T (°C) RHM (%) RHE (%) Rainfall (mm)
Mean 2.939 32.184 19.335 86.251 52360 19.683
SE. 0221 0225 0245 0.483 0.984 2267
Skewness 2339 0673 -0.496 -1.191 0.186 2658
Kurtosis 8.880 -0.549 0278 1.973 -0.733 7334
Minimum 0.000 24.710 5.500 51.570 17.430 0.000
Maximum 27.000 42.000 27.570 98.860 92.570 202.000
CV (%) 124.008 11.528 20.896 9.260 31.053 190.293

in the FAW population, highlighting how bad weather conditions,
like higher temperatures, rainfall, and humidity, affect FAW
activity’s decline and the effectiveness of the traps.

INGARCHX model assessment for fall
armyworm populations

The INGARCHX (Integer-valued Generalised Autoregressive
Conditional Heteroscedasticity with Exogenous variables) model
was applied to assess the relationship between fall armyworm
(FAW) trap counts and various weather parameters, as shown in
Table 4. The intercept estimate was tiny (2.03 x 107°) with a
significant standard error (1.63792), and it was not statistically
significant (Z = 0.0012, p = 0.9990), indicating that the intercept had
minimal influence on the model. The autoregressive parameter 3,
however, was highly significant (estimate = 0.76248, SE = 0.0988,
Z =7.7178, p = 0.0001), suggesting that current FAW populations
were strongly dependent on their previous values, highlighting the
importance of temporal autocorrelation in FAW population
dynamics. In contrast, all meteorological variables—including
maximum temperature, minimum temperature, morning and
evening relative humidity, and rainfall—had negligible coefficient
estimates and were statistically non-significant (p-values ranging
from 0.7180 to 1.0000), indicating that within the INGARCHX
framework these factors did not contribute significantly to
explaining variation in FAW counts once temporal effects were
accounted for. The model also revealed an overdispersion
parameter of 6.50, suggesting considerable variability beyond

TABLE 2 Coefficients of the Pearson correlation between
meteorological variables and fall armyworm pheromone trap collections.

FAW MaxT MinT RHM RHE

MaxT -.440**

Min T - 453 419%*

RHM .158** -.650%% -.058

RHE -139% -.388%% 437+ .645%*

Rainfall -.164%% -272% 2744 3674 615%*

* indicates significant at 5% and ** indicates significant at 1%.
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what would be expected in a standard Poisson distribution,
thereby supporting an INGARCH-type model. The Box-Pierce
test indicated strong autocorrelation in the original FAW time
series (A* = 202.3, p < 0.0001). At the same time, the residuals from
the fitted model showed no significant autocorrelation (A* =4.0607,
p = 0.04389), confirming that the INGARCHX model effectively
captured the underlying time-dependent structure in the data.

The INGARCHX model revealed that their previous counts
(autoregression) strongly influence FAW population levels. At the
same time, weather variables did not show a significant direct
impact in this time-series model. The model effectively accounted
for autocorrelation and overdispersion, making it suitable for
capturing the temporal dynamics of FAW populations.

Comparison of SVRX and ANNX models for
FAW population prediction

SVRX model

The parameters given in Table 5 were used to create a “non-
linear SVR model with exogenous variables for the fall armyworm
population count time series. The SVRX model, which uses Support
Vector Regression, employed a Radial Basis Function (RBF) as its
kernel function with gamma = 0.2, a cost parameter of 1, and
epsilon = 0.1, allowing for some tolerance in prediction error. The
model utilised 186 support vectors and produced a cross-validation
error of 0.213, indicating good generalisation performance. The
Box-Pierce test for residuals in the SVRX model showed a A* value
of 134.03 with p < 0.001, suggesting significant autocorrelation
remained in the residuals and that the model may not have fully
captured the time-dependent structure of the data.

ANNX model

The parameters of the ANNX model are shown in Table 5.
Unlike SVRX, the ANNX model was created as a Feed Forward
Neural Network using the NNAR (7,4) structure. This structure
includes seven input lags, one hidden layer, and four hidden nodes.
The model had five external variables and a total of 57 parameters.
The activation function between the input and hidden layers was
sigmoidal, while the output layer used an identity function. The
Box-Pierce test for the ANNX model produced a A* value of 2.8024
with a p-value of 0.09412. This result shows that the residuals were
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TABLE 3 Stepwise Regression study of fall armyworm pheromone trap collections and climatological variables.

Centre Variable Estimate SE. F-value Pr>F R2 Model R?
Intercept 24.99 2.07 25.96 0.01 -
Maize Research Centre MaxT -0.577 0.054 52.83 0.00002 0.281 0.327
Hyderabad RF -0.015 0.006 41.12 0.0021 0.314
RHE -0.061 0.016 32,58 0.0007 0.327

not significantly autocorrelated and that the model effectively
captured the temporal structure in the data.

Both models were designed to consider outside factors when
predicting FAW populations. The ANNX model showed better
performance in managing time series dependencies, as indicated by
its absence of significant residual autocorrelation. The SVRX model
was effective in reducing prediction error but exhibited residual
autocorrelation. This suggests that it was not as effective in
modelling the time patterns of FAW dynamics. The ANNX
model’s flexible structure and capacity to capture non-linear
relationships make it a stronger choice for forecasting
FAW populations.

Model performance comparison on
training and testing sets

The performance of three models, INGARCHX, ANNX, and
SVRX, in predicting the occurrence of FAW is compared in Table 6.
In the training dataset, the Artificial Neural Network with
Exogenous variables (ANNX) performed best. It achieved the
lowest Mean Squared Error (MSE = 0.42) and Root Mean
Squared Error (RMSE = 0.65). This shows its high accuracy and
good fit to the observed values. The INGARCHX model showed
moderate performance, with an MSE of 2.91 and an RMSE of 1.70.
In contrast, the Support Vector Regression with Exogenous
variables (SVRX) had the highest training errors, with an MSE of

7.29 and an RMSE of 2.70. This indicates it was the least accurate
during the training phase.

In the testing dataset, which checks how well the models
generalize, the ANNX model again outperformed the others. It
recorded the lowest MSE at 25.13 and an RMSE of 5.01. The SVRX
model followed with an MSE of 34.07 and RMSE of 5.84, while the
INGARCHX model showed the poorest performance on unseen
data, with a significantly higher MSE of 48.90 and RMSE of 6.99.

The ANNX model was the strongest and most precise for
predicting FAW populations across training and testing datasets.
Its lower error values show that it learned patterns better and
generalised to new data more effectively than SVRX and
INGARCHX. While INGARCHX effectively captured time-based
relationships in earlier analysis, its predictive accuracy was
relatively low, particularly during testing. These results highlight
how well neural networks can model complex, non-linear biological
systems like FAW population dynamics.

Discussion

The comparison of various models for predicting fall armyworm
populations at the Maize Research Centre, Rajendranagar, Hyderabad,
is detailed in Table 6, with a focus on MSE and RMSE for both training
and testing datasets. The low R” value of the stepwise regression model
in this study indicates a poor fit, which is probably caused by the
dependent variable’s high heterogeneity and nonlinearity. However,

TABLE 4 Assessment of INGARCHX model parameters for fall armyworm populations.

Parameters Estimate Z Value Box-pierce non-correlation test
Original Residuals
Intercept 2.03 x 107 1.63792 0.0012 0.9990 A =2023 A = 4.0607,
p-value< 0.0001 p-value= 0.04389
beta_1 7.6248 x 107 9.8795 x 10 7.7178 0.0001184
MaxT 42093 x 10°° 3.1768 x 107 0.0000 1.0000
MinT 2.0947 x 1073 2.7598 x 107 0.0000 1.0000
RHM 2.5534 x 10 2.4463 x 107 0.0104 0.9917
RHE 42676 x 107 1.1818 x 102 0.3611 0.7180
Rainfall 2.9874 x 10°° 7.7692 x107 0.0038 0.9969
Over 6.50
dispersion
Parameter
SE, standard error; p, probability; A, chi-square test statistic.
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TABLE 5 Details of the ANNX and SVRX models’ parameters for fall armyworm populations. .

Kernel function Input lag
No. of Support Vectors 186 Dependent/output variable 1
Cost 1 Hidden layer 1
Gamma 0.2 Hidden nodes 4
Epsilon 0.1 Exogenous variables 5
Cross-validation error 0.213 Model NNAR(7,4)
Box-Pierce non-correlation test for residuals A% = 134.03 Total number of parameters 57
p-value< 0.001
Network type Feed Forward
Activation function I: H Sigmoidal
Activation function H::O Identity
Box-Pierce non-correlation test for residuals 2 =2.8024
p-value= 0.09412

I:H, Input to Hidden layer; H O, Hidden to Output layer.

similar studies reported by Rathod et al. (2022) found a link between
temperature, rainfall, and relative humidity and the growth of gall
midge in rice over multiple generations.

The ANNX model fared better than the SVRX and INGARCHX
models among the models tested in terms of RMSE and MSE for
both the testing and training datasets (Figure 6). Furthermore, the
SVRX model performed exceptionally well on the testing datasets.
Still, the INGARCHX model outperformed it on the training
datasets. The performance rankings of the models for training
and testing datasets are ANNX, INGARCHX, and SVRX. These
results match findings from related studies, like Rathod et al. (2022),
where the ANN model performed better than traditional ARIMA
and SVR models in predicting rice gall midge populations.

Each user-defined setting combination of SVR model
hyperparameters was ten-fold cross-validated. Table 5 displays
the cross-validation error with the lowest value for each
combination. Hyperparameter optimisation involved testing
different combinations to identify the optimal parameters, striving
to minimize training error while maintaining an acceptable error
margin (epsilon). For the Artificial Neural Network model, the
‘Levenberg-Marquardt backpropagation algorithm’ was employed
in a feedforward network, with multiple assessment rounds. We
trained the network 25 times with a maximum of 1,000 iterations at
a 0.03 learning rate and 0.01 momentum. Various hidden node

designs and input lag values were investigated to reduce training
mistakes, and model parameters were selected.

The ANNX model’s prediction of the fall armyworm population
was more precise than those of the INGARCHX and SVRX models
(Figure 7). The differences between the models’ anticipated values are
highlighted using metrics such as MSE and RMSE. The DM test
statistic assessed significant statistical differences across the models. The
findings supported the higher performance of the ANNX model by
showing notable differences between the INGARCHX (M1) and SVRX
(M2) models and the ANNX (M3) model (Table 7).

While the Artificial Neural Network model employs a Sigmoid-
based activation function for mapping inputs to the hidden layer,
“the RBF kernel function in SVR approaches a Gaussian
distribution as the gamma value increases. This character may
help to explain why the INGARCH model has trouble finding
patterns in count time series data, which frequently come from non-
Gaussian distributions. In assessing and forecasting rice gall midge
population trends, ANN fared better than INGARCH and SVR,
according to similar findings published by (Weif3, 2009). Because
the ANNX model’s residuals were random and uncorrelated rather
than non-random and correlated like those of” the SVRX and
INGARCHX models, diagnostic evaluations further prove the
ANNX model’s higher accuracy. The significant inter-model
discrepancies are briefly outlined in Table 7.

TABLE 6 Model comparison criteria for fall armyworm populations in training and testing datasets.

Location

Maize Research Centre, Rajendranagar
Hyderabad

Criteria INGARCHX SVRX ANNX
Training Set MSE 291 7.29 0.42

RMSE 1.70 2.70 0.65
Testing Set MSE 48.90 34.07 25.13

RMSE 6.99 5.84 5.01

MSE, Mean Square Error; RMSE, Root Mean Square Error.

Frontiers in Plant Science

11 frontiersin.org


https://doi.org/10.3389/fpls.2025.1636412
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Kalisetti et al.

10.3389/fpls.2025.1636412

Training set

Error metrics
sy

INGARCHX

m MSE

2
1 .
. ma B

ANNX
B RMSE

Testing Set

60

50

40

30

20

Error metrics

INGARCHX

ANNX

= MSE mRMSE

FIGURE 6

Comparison of performance of each model based on error metrics, MSE and RMSE of both testing and training sets.

Machine learning algorithms generally demonstrate stronger
predictive performance, as supported by comparable studies:
(Piekutowska et al,, 2021) in early potato yield prediction (Liu et al.,
2021, in projecting rice blast occurrences, and Haider et al, 2019 in
forecasting wheat production in Pakistan. The ANNX model has
demonstrated more precise predictions for fall armyworm outbreaks
in field-level applications. This model provides farmers with important
insights into how climate changes affect pest risk levels by using
important weather variables, such as rainfall, minimum temperature,
and relative humidity. Specifically trained on data from the Maize
Research Centre in Rajendranagar, Hyderabad, the model is optimised
for local predictions, which improves its usefulness for site-specific
pest management.

The Artificial Neural Network with Exogenous variables
(ANNX) model performed better than INGARCHX and SVRX.
This is due to its flexibility in modelling non-linear relationships
and its ability to capture complex patterns, like seasonality and

Frontiers in Plant Science

time-related dependencies. Unlike traditional statistical models,
neural networks are driven by data and do not depend on strict
distribution assumptions. This allows them to respond more
effectively to biological phenomena’ unpredictable and changing
behaviour, such as fall armyworm (FAW) infestations. The NNAR
(7,4) structure enabled the model to integrate lagged inputs and
exogenous weather variables, capturing delayed responses and
cumulative environmental effects that influence FAW populations.

ANN models, particularly those that use Levenberg-Marquardt
backpropagation, are effective for learning non-linear mappings
through repeated optimisation. A sigmoid activation function in the
hidden layers allowed the ANNX model to manage non-Gaussian,
skewed count data. This feature is typical of pest trap series (Weif3,
2009; Liboschik et al., 2020). Additionally, the random and
uncorrelated residuals from the ANNX model show better model
specification and less autocorrelation. This confirms its statistical
validity, as shown in Figure 7.

12 frontiersin.org


https://doi.org/10.3389/fpls.2025.1636412
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Kalisetti et al.

10.3389/fpls.2025.1636412

Actual v/s Forecasted plot FAW

20-
<
<
|11

10-

0 -

01/3-2020 01/6-2022
Date

FIGURE 7
Actual vs. predicted plots of fall armyworm population.

Models

— Actual

— ANNX

— INGARCHX
— SVMX

01/1-2024

TABLE 7 Assessing model accuracy with the Diebold—Mariano Test: insights from Maize Research Centre, Hyderabad.

Data type M1, M2 M1, M3 M2, M3
Training 3.1758 -2.5802 -2.2625
(0.0017) (0.0105) (0.0323)
Maize Research Centre, Rajendranagar, Hyderabad
Testing -2.1229 -6.087 3.6281
(0.0348) (<0.0001) (0.0012)

MI: INGARCHX, M2: SVRX, M3: ANNX.

The INGARCHX model, although suitable for count data and
designed to handle overdispersion and autocorrelation, is
constrained by its underlying Poisson or negative binomial
assumptions, which may not hold for highly variable biological
data like FAW counts. Moreover, its linear formulation limits its
ability to detect complex non-linear interactions between weather
variables and pest emergence. This limitation was evident in the
model’s higher error values on the testing dataset, indicating weaker
generalisation capability.

The SVRX model can model nonlinearity using kernel functions,
but it is sensitive to parameter selection, such as cost, gamma, and
epsilon. It may also struggle with high-dimensional or time-related
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data if not tuned well. The leftover autocorrelation in the SVRX model
indicates it did not capture the temporal patterns, particularly when
the data is irregular and noisy (Liu et al., 2021; Haider et al., 2019).

The ANNX model helps farmers reduce fall armyworm
problems by using preventive strategies. This includes changing
irrigation schedules, timing insecticide applications well, and
choosing maize varieties that resist pests. These methods reduce
the number and severity of fall armyworm attacks. Agricultural
consultancy services simplify the model’s detailed forecasts into
clear recommendations for farmers. These services offer regular
updates based on model predictions, giving farmers timely advice
on when to apply preventive measures for the best results.
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These findings highlight the importance of machine learning
techniques, especially ANN models with outside inputs, for
predicting pests in complex agroecological systems. Adding
climate-sensitive models like ANNX into decision support tools
can significantly improve pest management strategies. This helps
farmers take preventive and timely action against pest outbreaks in
changing climate conditions.

Conclusions

This study used count time series data and machine learning
techniques to develop prediction models for fall armyworm
occurrences that include climate-related variables. The results
show that the data’s diverse and non-linear structure makes both
the INGARCHX and SVRX models unsuitable for predicting fall
armyworm time series. In contrast, the results demonstrate that the
ANNX model is a reliable and effective method for simulating and
predicting the occurrence of fall armyworms in time series data.
Additionally, the research suggests that using machine learning
approaches, like ANN with extra variables, improves the accuracy
of count-based time series predictions. The Diebold-Mariano test
statistics further confirm the ANNX model’s better performance
than the INGARCHX and SVRX models.
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