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The fall armyworm (Spodoptera frugiperda) poses a significant threat to global

maize production owing to its rapid life cycle, extensive host range, and strong

dispersal capabilities. We developed a forecasting system for fall armyworm

outbreaks over one week using weekly pheromone trap counts (2019–2023)

from the Maize Research Centre in Rajendranagar (Hyderabad), combined with

weather data such as air temperature, relative humidity, and rainfall. Three

modelling approaches, INGARCHX, SVRX and ANNX, were evaluated based on

performance metrics: Integer Valued GARCH with Exogenous Variables

(INGARCHX), Support Vector Regression with climate inputs (SVRX), and

Artificial Neural Network with climate inputs (ANNX). During the training phase,

the ANNX model delivered the best performance, recording a mean square error

of 0.42 and a root mean square error of 0.65. These results outperformed the

SVRX model, which produced a mean square error of 7.29 and a root mean

square error of 2.70, and also exceeded the INGARCHX model, showing a mean

square error of 2.91 and a root mean square error of 1.70. During testing, the

ANNX model consistently outperformed the alternatives, yielding a mean

squared error of 25.13 and a root mean squared error of 5.01. SVRX recorded

scores of 34.07 and 5.84, while INGARCHX showed 48.90 and 6.99, respectively.
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Diebold–Mariano tests verified that ANNX’s edge over SVRX and INGARCHX is

statistically significant at the 5%. By integrating climate variables, this neural

network is a dependable early-warning system that predicts fall armyworm

population surges with roughly 80% accuracy, one week ahead. This timely

and geographically targeted forecasting allows for precise pest-control actions,

minimizing maize yield losses and advancing sustainable agricultural strategies.
KEYWORDS

fall armyworm, pheromone trap catches, climatological parameters, INGARCHX,
ANNX, SVRX
Introduction

The fall armyworm (Spodoptera frugiperda J.E. Smith;

Lepidoptera: Noctuidae) now ranks among the most damaging

invasive pests worldwide, posing a serious threat to food security on

a global scale. Notably, it has damaging effects on cereal crops like

maize. Native to the Americas, FAW was first detected in India in

2018 and has since rapidly spread, infesting nearly 90% of maize-

growing areas (Suby et al., 2020). Its high mobility, ability to fly up

to 500 km with wind currents, and a wide range of over 350 plant

species make it a serious pest (Montezano et al., 2018; CABI, 2020).

FAW has been reported in more than 100 countries (Prasanna et al.,

2018; Baloch et al., 2020), highlighting its potential to invade.

In India, FAW is seen as a high-priority pest. Although many

integrated pest management (IPM) strategies have been created,

chemical control is still the primary method used (Kalisetti et al.,

2024). Climate change makes pest management harder by changing

the interactions between pests, hosts, and the environment.

Temperature, rainfall, and CO2 levels affect FAW’s reproduction,

development, and movement (Prakash et al., 2014; Boggs, 2016).

For instance, a 1.5 °C increase in temperature could lead to a 45-

58% rise in the number of days over 35 °C. This may enlarge FAW’s

habitat and increase generational turnover (IPCC, 2023; Ramıŕez-

Cabral et al., 2020).

Given these challenges, it is important to understand how weather

factors affect FAW population changes. This understanding is key for

timely pest monitoring, predicting outbreaks, and taking preventive

actions. Pheromone traps are commonly used to monitor FAW

populations. They provide valuable information about seasonal

activity and where FAW is found (Rajashekhar et al., 2024).

However, while extensive modelling studies exist for FAW in Africa

and the Americas, research tailored to Indian agroclimatic conditions

remains scarce.

Forecasting pest populations has traditionally relied on

statistical models such as multiple regression and ARIMA.

Although useful, these models are limited when applied to non-

Gaussian, count-based pest data, even with transformations for

normality. Though Phenology and degree-day models are widely

used and effective in pest modelling (including for fall armyworm),
02
they also have notable limitations. While phenology and degree-day

models help predict pest development, they have limitations. For

example, they depend on temperature as the only factor driving

development and may overlook important ecological elements like

rainfall, changes in host plants, or pest movement. Additionally,

linear DD models might oversimplify the complex biological

responses to temperature extremes. These limitations can impact

prediction accuracy in the fall armyworm, a highly migratory and

polyphagous species.

Count time series models, such as INGARCH, designed for

discrete, autocorrelated data, offer a more suitable alternative but

remain underutilised in pest forecasting (O’Hara and Kotze, 2010;

St-Pierre et al., 2018). Meanwhile, machine learning (ML) methods

—particularly Support Vector Regression (SVR) and Artificial

Neural Networks (ANN)—have shown strong predictive power in

agriculture due to their ability to capture non-linear relationships

without assuming data normality. These techniques have been used

for crop yield forecasting (Amaratunga et al., 2020; Rathod et al.,

2018), rice pest prediction (Ma et al., 2019), and sugarcane borer

disease modelling (Huang et al., 2018). However, their application

to FAW population forecasting remains limited, especially in an

Indian context.

Count-based time series models and ML techniques have also

been applied in diverse domains, including stock markets (Fokianos

et al., 2009), manufacturing claims (Weiß, 2009), disease

surveillance (Zhu and Wang, 2010; Tanawi et al., 2021), and

network traffic analysis (Kim, 2020). In agriculture, Kim et al.

(2014) and Alam et al. (2018) point out the possibilities of

combining machine learning with time series data. However,

there is no comparative evaluation of these methods for pest

forecasting in India. Given the growing threat of FAW due to

changing climate conditions and the limitations of current

forecasting methods, there is a clear need for strong, location-

specific models that combine climate data with improved

forecasting techniques.

This study aims to fill this gap by:
a. Examining seasonal trends in FAW populations using

pheromone trap data.
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b. Identifying key meteorological variables that influence

FAW dynamics in maize-growing regions.

c. Developing predictive models using both:
tiers in
i. Count time series frameworks (e.g., INGARCH), and

ii. Machine learning techniques (e.g., SVR and ANN),

iii. To capture the non-linear and discrete nature of

FAW count data.
d. Comparing model performance to determine the most

accurate and reliable approach for FAW forecasting.

e. Supporting early warning systems for FAW through

integrated, data-driven forecasting tools that inform IPM

strategies and reduce yield loss.
Materials and methods

Study site and experimental design

A fixed-plot field experiment (8000m²) took place over five years. It

spanned ten consecutive cropping seasons: Kharif 2019, Rabi 2019-20,

Kharif 2020, Rabi 2020-21, Kharif 2021, Rabi 2021-22, Kharif 2022,

Rabi 2022-23, Kharif 2023, and Rabi 2023-24. The study was conducted
Plant Science 03
at the Maize Research Centre, Rajendranagar, Hyderabad, Telangana,

India (17.33°N, 78.40°E) (Figure 1) in the Southern Agro-Climatic Zone

of Telangana. The region experiences a semi-arid tropical climate with

an average annual temperature of ~22°C. The soil is sandy loam, and

irrigation is available. Each season, two bulk plots of 4000 m² each were

sown with maize hybrid DHM 117 using a spacing of 60 cm × 20 cm.

Standard agronomic practices were followed uniformly, excluding pest

control measures to ensure natural FAW incidence.
Data collection

FAW monitoring: Funnel traps with slow-release NBAIR

pheromone lures were installed to monitor adult Spodoptera

frugiperda (FAW). Trap installation began 7 days after crop

germination (V2 stage) and continued until crop maturity. Lure

replacement occurred every 4 weeks. Daily trap counts were

recorded and later aggregated to weekly averages per trap. One

trap was installed per 1000 m² plot, with a total of 8 traps covering

two plots (8000 m²). Captured specimens were taken to the

laboratory for manual counting and identification (Figure 2).

Weather data: Meteorological parameters included maximum

temperature (MaxT), minimum temperature (MinT), morning
FIGURE 1

Location of the fall armyworm modelling study.
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relative humidity (RHM), evening relative humidity (RHE), and

rainfall (RF). Weekly averages of these parameters were aligned

with Standard Meteorological Weeks (SMW). Data were sourced

from an automatic weather station at the Agro Climate Research

Centre, Rajendranagar, Hyderabad.

Statistical analysis: Descriptive statistics including mean,

standard error (SE), coefficient of variation (CV), skewness,

kurtosis maximum and minimum were used to summarise FAW

counts and meteorological data. Time series plots were created to

visualise temporal trends. Pearson’s correlation was employed

to assess relationships between FAW counts and weather

variables. Stepwise multiple regression was used to identify key

meteorological predictors of FAW populations, based on the model:

Y=Xb+e, e∼N(0,s2)Y = X\beta + e, \quad e \sim N(0, \sigma^2),

where Y represents the dependent variable (weekly FAW counts), X

is the matrix of meteorological predictors, b\beta is the vector of

regression coefficients, and e is the error term. Analyses were

conducted using R software (R Core Team, 2018) for time series
Frontiers in Plant Science 04
models and machine learning and SAS software version 9.3 (SAS,

2011) for correlation and regression analyses.
Predictive modelling approaches

INGARCHX model (count time series)
The Integer-Valued Generalised Autoregressive Conditional

Heteroscedastic (INGARCH) model is designed for count time

series data. It models FAW trap counts using historical values and

meteorological covariates. Poisson and Negative Binomial

distributions were tested to handle over-dispersion (Kedem and

Fokianos, 2002; Heinen, 2003; Ferland et al., 2006; Zhu, 2012). The

INGARCHXmodel extends the traditional INGARCH by including

exogenous variables (e.g., MaxT, MinT, RF, RHM, RHE).

Consider the “count time series denoted as (Yt: t ∈ N) and the

time-varying r-dimensional covariate vector as (Xt: t ∈ N), where

Xt = (Xt,1,…, Xt,r)T. E defines the conditional mean (Yt/Ft-1) = Yt,
FIGURE 2

(a) Adult Fall armyworm, Spodoptera frugiperda. (b) Adult trap catches (c) Pheromone traps in the field. (d) Damage symptoms of FAW, (e) Field view
of the Experimental trial.
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with Ft symbolizing the historical data. The generalised form of the

model (Equation 1) is articulated as follows:

g ltð Þ = b0 +op
k=1ak~g  Yt−ik

� �
+oq

l=1b1g lt−j1
� �

+ hT (1)

Case 1: Imagine a situation where both g and ğ are identity

functions, meaning g(x) = x and ğ(x) = x. Under these conditions,

Yt adheres to a (Poisson) INGARCH (p, q) model (Equation 2) with

p greater than one and” q greater than zero if the following hold

true: (a) Yt, when “conditioned on Yt-1, Yt-2, and so on, follows a

Poisson distribution. (b) The conditional mean lt =E[Yt | Yt-1, Yt-
2,…] meets the criteria:

lt = b0 +op
i=1ayt−i +oq

j=1bjlt−j

 with b0   > 0 and a1,…,ap,…, b1,…, bq ≥ 0

(2)

This leads to an INGARCH order p and q model called the

INGARCH (p, q)” model, assuming that Yt | Yt-1 has a Poisson

distribution. The INAGARCH (p) model is (Equation 3) employed

when q equals 0 (Fokianos et al., 2009). These models are

sometimes referred to as “ACP (Autoregressive Conditional

Poisson)” models.

Case 2: The conditional variance might exceed the mean lt in
the negative binomial distribution; this is known as over-dispersion

and is determined by the over-dispersion parameter Ø (Christou

and Fokianos, 2014). Yt | Ft-1 is assumed to follow NegBinom (lt,
Ø), a Negative Binomial distribution. As Ø tends toward infinity,

the Poisson distribution is a limiting case of the negative binomial

distribution under this premise.

Yt Yt−1,  Yt−2,…,j je Bin n, b + a Yt−1=n

� �
(3)

Further insights into estimating INGARCH models through

conditional” likelihood estimation, with an emphasis on asymptotic

properties, are available in Heinen (2003) and Fokianos (2011).

Assuming that future values are impacted by the target variable’s

past values and the prior values of exogenous variables, the

traditional INGARCH model forecasts future values exclusively

based on the target variable’s historical values. By incorporating

additional exogenous factors into the prediction model, the

INGARCHX model extends this further (Liboschik et al., 2020).
Support Vector Regression

Support Vector Regression (SVR) maps input data into a high-

dimensional feature space using kernel functions, most commonly

the Radial Basis Function (RBF). Its objective is to minimise a

regularised risk function, striking a balance between model

complexity and prediction error. The performance of SVR largely

depends on key hyperparameters, particularly C, which controls the

regularisation strength, and g, which defines the kernel bandwidth.

SVR models incorporated meteorological variables as

exogenous predictors of FAW counts. In order to create the

“regression or time series model, SVR maps the original input

space into a high-dimensional feature space (Vapnik, 1995). A
Frontiers in Plant Science 05
dataset is represented as Z = {xi yi}Ni=1, where xi e Rn represent the

input vector, yi represents the scalar output, and N represents the

dataset size. The general equation for SVR (Equation 4) can be

expressed as follows:

f xð Þ = wTf xð Þ + b (4)

In this context, W signifies the weight vector, b is the bias term,

and the superscript T denotes the transpose. Coefficients W and b

are derived from the data by minimising the subsequent regularised

risk function (Equation 5):

R qð Þ = 1
2
∥w ∥2 +c

1
N
SN
i=1Le yi, f xið Þð Þ

� �
(5)

This regularised risk function helps avoid underfitting and

overfitting the model by concurrently minimising the

regularisation term and the empirical error. The first term in

Equation 5, 1
2 ∥w

2, is known as the “regularisation term.” It

quantifies how flat the function is. The function is advised to be

as “flat as possible by minimising 1
2 ∥w ∥2. The second term, 1 1

N  

o
N

i=1
L ∈ yi, f xið Þð Þ
is called the ‘empirical error,’ that is estimated by
employing Vapnik’s e-insensitive loss function (Equation 6), as

follows:

Le yi, f xið Þð Þ = f xð Þ =
yi, f xið Þ − ej j; yi − f xið Þj j ≥ e,

0 yi − f xið Þj j < e,

(
(6)

Yi represents the actual value, and f (xi) is the estimated value.

The “RBF (Radial Basis Function)” is the most frequently employed

kernel function (Equation 7), expressed as follows:

k xi, xj
� �

=   exp −g ∥ x − xi ∥
2� �

(7)

The architecture of the SVR is shown in Figure 3.
Artificial Neural Network

Artificial Neural Network with Exogenous Inputs (ANNX) is a

multi-layer feedforward ANN architecture that was implemented

with past pest counts and meteorological variables as the input

layer, an optimised number of neurons in the hidden layer, and

predicted FAW counts in the output layer. The ANN model

captures complex non-linear relationships through iterative

weight updates during training. Over recent decades, ANNs have

become one of the most widely employed machine learning

methods. In time series modelling, they are often referred to as

autoregressive neural networks because they rely on time-lagged

inputs. A neural network that natively models the temporal

function can quantitatively represent the time series method for

an ANN. The following is the expression for a multi-layer

feedforward autoregressive neural network’s final output (Yt)

(Equation 8).

Yt = a0 +oq
j=1ajg b0j +op

i=1bijYt−p

� �
  + et (8)
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Here, aj (j = 0, 1, 2,., q) and bij   (i = 0, 1, 2,…, p, j = 0, 1, 2,…, q)

represent the model parameters, also known as the synopsis

weights. The activation function is denoted by g, the number of

input nodes by p, and the number of hidden nodes by q. An ANN’s

training phase aims to reduce the error function between the

predicted and actual values. An autoregressive ANN’s error

function (Equation 9) is specified as follows:

E =
1
N
SN
t=1 etð Þ2

=
1
N
SN
t=1 Xt− w0 + oQ

J=1wJg woj + Sp
i=1wijXt−i

� 	� 	� 	n o2
(9)

Where “N is the total number of error terms. The parameters of the

neural network wij are adjusted by a change in as, Dwij as Dwij =

−n ∂E
∂wij

, where n is the learning rate (Rathod and Mishra, 2018 and

Zhang, 2003). The ANNX model will be formed by modelling the pest

count using an exogenous variable, similar to the INGARCHX and

SVRXmodels. The”ANN architecture is shown graphically in Figure 3.

For evaluating model performance, “MSE (Mean Square Error)”

and “RMSE (Root Mean Square Error)” were used as comparison

criteria. The MSE (Equation 10) is calculated as the average of the

sum of squared error values and is expressed as:

MSE = o
N
i=1 yi − ŷ ið Þ2

N
(10)

In regression analysis, RMSE (Equation 11) is also referred to as

the standard error of the estimate and is defined as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

i=1 yi − Ŷ i

� �
N

s 2

(11)

Here, Yi represents the actual value, ŷ i   signifies the predicted

value, and N denotes the number of observations

Diebold and Mariano invented the “Diebold–Mariano (DM)”

test in 1995. It compares the residuals of models to see whether

variations in predictive accuracy are statistically significant. Let di
stand for the absolute difference between the residuals of the two

competing models, r1 and r2.
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di = |r1| - |r2|, and the auto covariance function gk (Equation 12)

is defined as:

gk =
1
no

n
i=k+1 d1 − �d

� �
di−k − �d
� �

(12)

The DM test statistic (Equation 13) is formulated as:

DM =
�dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g0 + 2oh−1
k=1gk

� �
=n

q (13)

Where, h = n1/3 + 1. For hypothesis testing, the null hypothesis

(H0) and the alternative hypothesis (H1) are defined as follows: H0 =

E(d) = 0, indicating that the forecast accuracy is similar for both

models, and H1 ≠ E(d) ≠ 0, suggesting that the forecast accuracy

differs between the two models.

This study integrates climatological data with advanced statistical

and machine learning models to forecast FAW populations in maize

ecosystems of southern India. Three modelling approaches,

INGARCHX, SVRX, and ANNX, are compared using standardised

evaluation metrics. This supports the development of an early warning

system for sustainable pest management.
Results

Figure 4 shows time series plots of weekly counts, by Standard

Meteorological Week (SMW), of fall armyworm pheromone trap

catches at the study site from 2019 to 2024. The graph reveals a

higher incidence of fall armyworm (FAW) during the 52nd SMW,

with notable peaks around the 39th and 52nd SMWs.

Figures 5A-F display annual time series plots of FAW catches,

illustrating year-to-year variation in population dynamics at the

study site. FAW incidence exhibited distinct seasonal peaks: peaks

occurred during the 4th SMW in 2019, during the 51st SMWs; in

2020, during the 33rd and 51st SMWs; in 2021, during the 32nd and

50th SMWs; in 2022, during the 51st SMW; and in 2023, during the

39th SMW. The 1st SMW had the largest FAW infestation in 2024.

High incidence levels continued into June.
FIGURE 3

SVR (a) and ANN (b) model architectures.
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Descriptive statistics of FAW and weather
variables

Table 1 displays summary statistics for the dependent variable,

the FAW population, and the exogenous climatic conditions. The

FAW population shows high variability, ranging from 0 to 27

individuals per trap, and a strong positive skewness (2.339),

indicating that while most trap catches were low, there were

occasional large infestations. Rainfall showed the highest variability,

with a coefficient of variation of 190.29%. It had extreme values and a

strong positive skew of 2.658. This suggests it can significantly trigger

pest incidence. Morning relative humidity was fairly consistent but

negatively skewed at -1.191. This indicates that high humidity levels

were common during this time. Temperature variables were

moderately stable. The maximum temperature showed a slight

positive skew of 0.673, while the minimum temperature had a

slight negative skew of -0.496. Overall, the weather parameters

displayed various patterns and levels of variability. They likely have

a significant impact on FAW population dynamics.
Frontiers in Plant Science 07
Correlation analysis between FAW and
meteorological variables

The Pearson correlation coefficients between the study’s climate

factors and FAW populations are in Table 2. The fall armyworm

(FAW) population had significant negative correlations with both

maximum temperature (r = -0.440) and minimum temperature (r =

-0.453). Higher temperatures are likely linked to lower trap catches

because extreme temperatures may reduce pest activity or survival.

Morning relative humidity (RHM) showed a weak but significant

positive correlation with FAW (r = 0.158). This suggests that higher

morning humidity slightly supports pest presence. In contrast, evening

relative humidity (RHE) showed a weak negative correlation (r =

-0.139), indicating a minimal inverse relationship. Rainfall also

negatively correlated with FAW (r = -0.164), implying that increased

rainfall may limit adult moth activity or cause larval mortality within

the maize whorls, resulting in decreased trap captures.

Overall, the correlation results indicate that FAW activity is

adversely affected by higher temperatures and rainfall, while
FIGURE 4

Fall armyworm populations of time series from 2019–2024.
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morning humidity has a slight favourable effect. The meteorological

variables are also interrelated, especially regarding temperature and

moisture, which likely contribute to the complexity of FAW

population dynamics.
Stepwise regression analysis of FAW trap
catches and climatic variables

The climatological parameters affecting the growth of FAW

populations were identified using a stepwise regression analysis.

The findings are summarised in Table 3. The stepwise regression

model found that maximum temperature (MaxT), rainfall (RF), and

evening relative humidity (RHE) significantly predict fall

armyworm (FAW) pheromone trap collections. The model’s

intercept was 24.99 (SE = 2.07), which estimates the FAW

population when all predictor variables are zero. Maximum
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temperature significantly negatively impacted FAW trap catches,

with a coefficient of -0.577 (SE = 0.054), an F-value of 52.83, and a

p-value of 0.00002. This factor accounted for 28.1% (R² = 0.281) of

the variation. Rainfall also had a negative influence, with a

coefficient of -0.015 (SE = 0.006), an F-value of 41.12, and a p-

value of 0.0021, contributing to a cumulative R² of 0.314. Evening

relative humidity (RHE) was the last variable included. It had a

coefficient of -0.061 (SE = 0.016), an F-value of 32.58, and a p-value

of 0.0007. This raised the model’s explanatory power to a total R² of

0.327. These results indicate that unfavourable weather conditions,

particularly higher temperatures, rainfall, and evening humidity,

negatively influence FAW trap catches, collectively explaining

32.7% of the variation observed.

The regression results reveal that all three climatological

variables—maximum temperature, rainfall, and evening relative

humidity—significantly negatively affect FAW trap catches. The

model explains approximately one-third (32.7%) of the variability
FIGURE 5

(A-F) Year-wise fall armyworm populations from 2019–2024.
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in the FAW population, highlighting how bad weather conditions,

like higher temperatures, rainfall, and humidity, affect FAW

activity’s decline and the effectiveness of the traps.
INGARCHX model assessment for fall
armyworm populations

The INGARCHX (Integer-valued Generalised Autoregressive

Conditional Heteroscedasticity with Exogenous variables) model

was applied to assess the relationship between fall armyworm

(FAW) trap counts and various weather parameters, as shown in

Table 4. The intercept estimate was tiny (2.03 × 10−³) with a

significant standard error (1.63792), and it was not statistically

significant (Z = 0.0012, p = 0.9990), indicating that the intercept had

minimal influence on the model. The autoregressive parameter b1,
however, was highly significant (estimate = 0.76248, SE = 0.0988,

Z = 7.7178, p = 0.0001), suggesting that current FAW populations

were strongly dependent on their previous values, highlighting the

importance of temporal autocorrelation in FAW population

dynamics. In contrast, all meteorological variables—including

maximum temperature, minimum temperature, morning and

evening relative humidity, and rainfall—had negligible coefficient

estimates and were statistically non-significant (p-values ranging

from 0.7180 to 1.0000), indicating that within the INGARCHX

framework these factors did not contribute significantly to

explaining variation in FAW counts once temporal effects were

accounted for. The model also revealed an overdispersion

parameter of 6.50, suggesting considerable variability beyond
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what would be expected in a standard Poisson distribution,

thereby supporting an INGARCH-type model. The Box-Pierce

test indicated strong autocorrelation in the original FAW time

series (l² = 202.3, p < 0.0001). At the same time, the residuals from

the fitted model showed no significant autocorrelation (l² = 4.0607,

p = 0.04389), confirming that the INGARCHX model effectively

captured the underlying time-dependent structure in the data.

The INGARCHX model revealed that their previous counts

(autoregression) strongly influence FAW population levels. At the

same time, weather variables did not show a significant direct

impact in this time-series model. The model effectively accounted

for autocorrelation and overdispersion, making it suitable for

capturing the temporal dynamics of FAW populations.
Comparison of SVRX and ANNX models for
FAW population prediction

SVRX model
The parameters given in Table 5 were used to create a “non-

linear SVR model with exogenous variables for the fall armyworm

population count time series. The SVRX model, which uses Support

Vector Regression, employed a Radial Basis Function (RBF) as its

kernel function with gamma = 0.2, a cost parameter of 1, and

epsilon = 0.1, allowing for some tolerance in prediction error. The

model utilised 186 support vectors and produced a cross-validation

error of 0.213, indicating good generalisation performance. The

Box-Pierce test for residuals in the SVRX model showed a l² value
of 134.03 with p < 0.001, suggesting significant autocorrelation

remained in the residuals and that the model may not have fully

captured the time-dependent structure of the data.

ANNX model
The parameters of the ANNX model are shown in Table 5.

Unlike SVRX, the ANNX model was created as a Feed Forward

Neural Network using the NNAR (7,4) structure. This structure

includes seven input lags, one hidden layer, and four hidden nodes.

The model had five external variables and a total of 57 parameters.

The activation function between the input and hidden layers was

sigmoidal, while the output layer used an identity function. The

Box-Pierce test for the ANNX model produced a l² value of 2.8024
with a p-value of 0.09412. This result shows that the residuals were
TABLE 1 Summary statistics of fall armyworm pheromone-trapped individual collections at Maize Research Centre, Hyderabad.

Statistics FAW population Max T (°C) Min T (°C) RHM (%) RHE (%) Rainfall (mm)

Mean 2.939 32.184 19.335 86.251 52.360 19.683

SE. 0.221 0.225 0.245 0.483 0.984 2.267

Skewness 2.339 0.673 -0.496 -1.191 0.186 2.658

Kurtosis 8.880 -0.549 -0.278 1.973 -0.733 7.334

Minimum 0.000 24.710 5.500 51.570 17.430 0.000

Maximum 27.000 42.000 27.570 98.860 92.570 202.000

CV (%) 124.008 11.528 20.896 9.260 31.053 190.293
TABLE 2 Coefficients of the Pearson correlation between
meteorological variables and fall armyworm pheromone trap collections.

FAW MaxT MinT RHM RHE

MaxT -.440**

Min T -.453** .419**

RHM .158** -.650** -.058

RHE -.139* -.388** .437** .645**

Rainfall -.164** -.272** .274** .367** .615**
* indicates significant at 5% and ** indicates significant at 1%.
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not significantly autocorrelated and that the model effectively

captured the temporal structure in the data.

Both models were designed to consider outside factors when

predicting FAW populations. The ANNX model showed better

performance in managing time series dependencies, as indicated by

its absence of significant residual autocorrelation. The SVRX model

was effective in reducing prediction error but exhibited residual

autocorrelation. This suggests that it was not as effective in

modelling the time patterns of FAW dynamics. The ANNX

model’s flexible structure and capacity to capture non-linear

relationships make it a stronger choice for forecasting

FAW populations.
Model performance comparison on
training and testing sets

The performance of three models, INGARCHX, ANNX, and

SVRX, in predicting the occurrence of FAW is compared in Table 6.

In the training dataset, the Artificial Neural Network with

Exogenous variables (ANNX) performed best. It achieved the

lowest Mean Squared Error (MSE = 0.42) and Root Mean

Squared Error (RMSE = 0.65). This shows its high accuracy and

good fit to the observed values. The INGARCHX model showed

moderate performance, with an MSE of 2.91 and an RMSE of 1.70.

In contrast, the Support Vector Regression with Exogenous

variables (SVRX) had the highest training errors, with an MSE of
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7.29 and an RMSE of 2.70. This indicates it was the least accurate

during the training phase.

In the testing dataset, which checks how well the models

generalize, the ANNX model again outperformed the others. It

recorded the lowest MSE at 25.13 and an RMSE of 5.01. The SVRX

model followed with an MSE of 34.07 and RMSE of 5.84, while the

INGARCHX model showed the poorest performance on unseen

data, with a significantly higher MSE of 48.90 and RMSE of 6.99.

The ANNX model was the strongest and most precise for

predicting FAW populations across training and testing datasets.

Its lower error values show that it learned patterns better and

generalised to new data more effectively than SVRX and

INGARCHX. While INGARCHX effectively captured time-based

relationships in earlier analysis, its predictive accuracy was

relatively low, particularly during testing. These results highlight

how well neural networks can model complex, non-linear biological

systems like FAW population dynamics.
Discussion

The comparison of various models for predicting fall armyworm

populations at the Maize Research Centre, Rajendranagar, Hyderabad,

is detailed in Table 6, with a focus onMSE and RMSE for both training

and testing datasets. The low R2 value of the stepwise regression model

in this study indicates a poor fit, which is probably caused by the

dependent variable’s high heterogeneity and nonlinearity. However,
TABLE 3 Stepwise Regression study of fall armyworm pheromone trap collections and climatological variables.

Centre Variable Estimate SE. F-value Pr>F R2 Model R2

Maize Research Centre
Hyderabad

Intercept 24.99 2.07 25.96 0.01 – -

MaxT -0.577 0.054 52.83 0.00002 0.281 0.327

RF -0.015 0.006 41.12 0.0021 0.314 -

RHE -0.061 0.016 32.58 0.0007 0.327 -
TABLE 4 Assessment of INGARCHX model parameters for fall armyworm populations.

Parameters Estimate SE. Z Value p Box-pierce non-correlation test

Original Residuals

Intercept 2.03 x 10-3 1.63792 0.0012 0.9990 l2 = 202.3
p-value≤ 0.0001

l2 = 4.0607,
p-value= 0.04389

beta_1 7.6248 x 10-1 9.8795 x 10-2 7.7178 0.0001184

MaxT 4.2093 x 10-8 3.1768 x 10-2 0.0000 1.0000

MinT 2.0947 x 10-13 2.7598 x 10-2 0.0000 1.0000

RHM 2.5534 x 10-5 2.4463 x 10-3 0.0104 0.9917

RHE 4.2676 x 10-3 1.1818 x 10-2 0.3611 0.7180

Rainfall 2.9874 x 10-5 7.7692 x10-3 0.0038 0.9969

Over
dispersion
Parameter

6.50
SE, standard error; p, probability; l2, chi-square test statistic.
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similar studies reported by Rathod et al. (2022) found a link between

temperature, rainfall, and relative humidity and the growth of gall

midge in rice over multiple generations.

The ANNXmodel fared better than the SVRX and INGARCHX

models among the models tested in terms of RMSE and MSE for

both the testing and training datasets (Figure 6). Furthermore, the

SVRX model performed exceptionally well on the testing datasets.

Still, the INGARCHX model outperformed it on the training

datasets. The performance rankings of the models for training

and testing datasets are ANNX, INGARCHX, and SVRX. These

results match findings from related studies, like Rathod et al. (2022),

where the ANN model performed better than traditional ARIMA

and SVR models in predicting rice gall midge populations.

Each user-defined setting combination of SVR model

hyperparameters was ten-fold cross-validated. Table 5 displays

the cross-validation error with the lowest value for each

combination. Hyperparameter optimisation involved testing

different combinations to identify the optimal parameters, striving

to minimize training error while maintaining an acceptable error

margin (epsilon). For the Artificial Neural Network model, the

‘Levenberg-Marquardt backpropagation algorithm’ was employed

in a feedforward network, with multiple assessment rounds. We

trained the network 25 times with a maximum of 1,000 iterations at

a 0.03 learning rate and 0.01 momentum. Various hidden node
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designs and input lag values were investigated to reduce training

mistakes, and model parameters were selected.

The ANNX model’s prediction of the fall armyworm population

was more precise than those of the INGARCHX and SVRX models

(Figure 7). The differences between the models’ anticipated values are

highlighted using metrics such as MSE and RMSE. The DM test

statistic assessed significant statistical differences across themodels. The

findings supported the higher performance of the ANNX model by

showing notable differences between the INGARCHX (M1) and SVRX

(M2) models and the ANNX (M3) model (Table 7).

While the Artificial Neural Network model employs a Sigmoid-

based activation function for mapping inputs to the hidden layer,

“the RBF kernel function in SVR approaches a Gaussian

distribution as the gamma value increases. This character may

help to explain why the INGARCH model has trouble finding

patterns in count time series data, which frequently come from non-

Gaussian distributions. In assessing and forecasting rice gall midge

population trends, ANN fared better than INGARCH and SVR,

according to similar findings published by (Weiß, 2009). Because

the ANNX model’s residuals were random and uncorrelated rather

than non-random and correlated like those of” the SVRX and

INGARCHX models, diagnostic evaluations further prove the

ANNX model’s higher accuracy. The significant inter-model

discrepancies are briefly outlined in Table 7.
TABLE 5 Details of the ANNX and SVRX models’ parameters for fall armyworm populations. .

SVRX ANNX

Kernel function RBF Input lag 7

No. of Support Vectors 186 Dependent/output variable 1

Cost 1 Hidden layer 1

Gamma 0.2 Hidden nodes 4

Epsilon 0.1 Exogenous variables 5

Cross-validation error 0.213 Model NNAR(7,4)

Box-Pierce non-correlation test for residuals l2 = 134.03
p-value≤ 0.001

Total number of parameters 57

Network type Feed Forward

Activation function I: H Sigmoidal

Activation function H::O Identity

Box-Pierce non-correlation test for residuals l2 = 2.8024
p-value= 0.09412
I:H, Input to Hidden layer; H O, Hidden to Output layer.
TABLE 6 Model comparison criteria for fall armyworm populations in training and testing datasets.

Location Criteria INGARCHX SVRX ANNX

Maize Research Centre, Rajendranagar
Hyderabad

Training Set MSE 2.91 7.29 0.42

RMSE 1.70 2.70 0.65

Testing Set MSE 48.90 34.07 25.13

RMSE 6.99 5.84 5.01
MSE, Mean Square Error; RMSE, Root Mean Square Error.
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Machine learning algorithms generally demonstrate stronger

predictive performance, as supported by comparable studies:

(Piekutowska et al., 2021) in early potato yield prediction (Liu et al.,

2021, in projecting rice blast occurrences, and Haider et al., 2019 in

forecasting wheat production in Pakistan. The ANNX model has

demonstrated more precise predictions for fall armyworm outbreaks

in field-level applications. This model provides farmers with important

insights into how climate changes affect pest risk levels by using

important weather variables, such as rainfall, minimum temperature,

and relative humidity. Specifically trained on data from the Maize

Research Centre in Rajendranagar, Hyderabad, the model is optimised

for local predictions, which improves its usefulness for site-specific

pest management.

The Artificial Neural Network with Exogenous variables

(ANNX) model performed better than INGARCHX and SVRX.

This is due to its flexibility in modelling non-linear relationships

and its ability to capture complex patterns, like seasonality and
Frontiers in Plant Science 12
time-related dependencies. Unlike traditional statistical models,

neural networks are driven by data and do not depend on strict

distribution assumptions. This allows them to respond more

effectively to biological phenomena’ unpredictable and changing

behaviour, such as fall armyworm (FAW) infestations. The NNAR

(7,4) structure enabled the model to integrate lagged inputs and

exogenous weather variables, capturing delayed responses and

cumulative environmental effects that influence FAW populations.

ANN models, particularly those that use Levenberg-Marquardt

backpropagation, are effective for learning non-linear mappings

through repeated optimisation. A sigmoid activation function in the

hidden layers allowed the ANNX model to manage non-Gaussian,

skewed count data. This feature is typical of pest trap series (Weiß,

2009; Liboschik et al., 2020). Additionally, the random and

uncorrelated residuals from the ANNX model show better model

specification and less autocorrelation. This confirms its statistical

validity, as shown in Figure 7.
FIGURE 6

Comparison of performance of each model based on error metrics, MSE and RMSE of both testing and training sets.
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The INGARCHX model, although suitable for count data and

designed to handle overdispersion and autocorrelation, is

constrained by its underlying Poisson or negative binomial

assumptions, which may not hold for highly variable biological

data like FAW counts. Moreover, its linear formulation limits its

ability to detect complex non-linear interactions between weather

variables and pest emergence. This limitation was evident in the

model’s higher error values on the testing dataset, indicating weaker

generalisation capability.

The SVRX model can model nonlinearity using kernel functions,

but it is sensitive to parameter selection, such as cost, gamma, and

epsilon. It may also struggle with high-dimensional or time-related
Frontiers in Plant Science 13
data if not tuned well. The leftover autocorrelation in the SVRXmodel

indicates it did not capture the temporal patterns, particularly when

the data is irregular and noisy (Liu et al., 2021; Haider et al., 2019).

The ANNX model helps farmers reduce fall armyworm

problems by using preventive strategies. This includes changing

irrigation schedules, timing insecticide applications well, and

choosing maize varieties that resist pests. These methods reduce

the number and severity of fall armyworm attacks. Agricultural

consultancy services simplify the model’s detailed forecasts into

clear recommendations for farmers. These services offer regular

updates based on model predictions, giving farmers timely advice

on when to apply preventive measures for the best results.
FIGURE 7

Actual vs. predicted plots of fall armyworm population.
TABLE 7 Assessing model accuracy with the Diebold–Mariano Test: insights from Maize Research Centre, Hyderabad.

Data type M1, M2 M1, M3 M2, M3

Maize Research Centre, Rajendranagar, Hyderabad

Training
3.1758
(0.0017)

-2.5802
(0.0105)

-2.2625
(0.0323)

Testing
-2.1229
(0.0348)

-6.087
(<0.0001)

3.6281
(0.0012)
M1: INGARCHX, M2: SVRX, M3: ANNX.
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These findings highlight the importance of machine learning

techniques, especially ANN models with outside inputs, for

predicting pests in complex agroecological systems. Adding

climate-sensitive models like ANNX into decision support tools

can significantly improve pest management strategies. This helps

farmers take preventive and timely action against pest outbreaks in

changing climate conditions.
Conclusions

This study used count time series data and machine learning

techniques to develop prediction models for fall armyworm

occurrences that include climate-related variables. The results

show that the data’s diverse and non-linear structure makes both

the INGARCHX and SVRX models unsuitable for predicting fall

armyworm time series. In contrast, the results demonstrate that the

ANNX model is a reliable and effective method for simulating and

predicting the occurrence of fall armyworms in time series data.

Additionally, the research suggests that using machine learning

approaches, like ANN with extra variables, improves the accuracy

of count-based time series predictions. The Diebold-Mariano test

statistics further confirm the ANNX model’s better performance

than the INGARCHX and SVRX models.
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