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Agriculture is extremely vulnerable to climate change and crop production is

severely hampered by climate extremes. Not only does it cost growers over US

$170Bln in lost production, but it also has major implications for global food

security. In this study, we argue that, under current climate scenarios, agriculture

in the 21st century will become saline, severely limiting (or even making

impossible) the use of traditional cereal crops for human caloric intake. As

regaining the lost abiotic stress tolerance can only be achieved using modern

gene editing technologies and given uncertainties on when and to what extent

the public will embrace such new technologies, de novo domestication of

already tolerant wild species or semi-domesticated “orphan” species is

arguably the most efficient way to proceed. One of them is quinoa

(Chenopodium quinoa), which is the focus of this review. Accordingly, we

comprehensively evaluated the nutritional qualities of quinoa and discussed

the benefits of using quinoa as a viable alternative to traditional cereals from

both agronomical and nutritional points of view. We also highlight the existing

gaps in the knowledge and the next steps required to ensure public acceptance

of quinoa in a daily diet, alongside (or instead of) traditional cereals such as wheat

or rice.
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1 Cereal grain production under
future climate scenarios

Agriculture is highly vulnerable to climate change, and crop

production is severely hampered by climate extremes such as heat,

drought, waterlogging, and salinity (Suzuki et al., 2014; Zandalinas

and Mittler, 2022). Regardless of the nature of current global

warming (e.g., anthropogenic vs. natural), the implications for the

profitability and sustainability of agricultural production systems

are substantial (Palmgren and Shabala, 2024) and already come at a

massive cost. It was estimated that the overall loss in crop

production from climate-driven abiotic stresses exceeds US$ 170

Bln p.a. and represents a major threat to global food security

(Razzaq et al., 2021). Abiotic stress tolerance was present in wild

relatives of modern crops but was lost (or very significantly

weakened) during domestication (Doebley et al., 2006; Palmgren

et al., 2015; Menguer et al., 2017; Yolcu et al., 2020; Rawat et al.,

2022). In addition, both the intensity and frequency of extreme

weather events will increase (Ebi et al., 2021; Barriopedro et al.,

2023; González-Trujillo et al., 2023; Chen et al., 2024). Combined

with the current trends in population growth and the extent of

urbanization (at the expense of agricultural land), this poses a

significant threat to global food security in the next decade(s).

The major primary climate-driven constraints on crop

production are global warming and the associated increase in the

severity and frequency of drought events. Currently, 40% of the

entire land area of our planet is classified as drylands (Earth.org,

2024) and is increasing at an alarming rate (Vicente-Serrano et al.,

2024). It is expected that by the end of this century, over 50% of the

agricultural land will become arid or semi-arid and could be made

produced only by irrigation. Right now, 70% of all cultivated land in

Pakistan (the 5th most populous country in the world) and 42% of

land in India (the world’s most populous country) are on irrigation

(Liu et al., 2020a), and this proportion is only going to increase.

Putting it in plain language: in a decade, most of the world’s

agriculture will become irrigated.

The increasing reliance on irrigation comes with the caveat of

soil salinization. Good-quality irrigation water is a scarce resource.

As a result, a significant amount of salt (between 3 and 6 tons; Liu

et al., 2020a) is added to each hectare of irrigated land every year. At

the same time, all major staple crops that provide a bulk of calories

for humans (such as wheat, rice, maize, and soybeans) are highly

salt-sensitive (see below). Being selected for reduced Na+

accumulation in the shoot, elite cultivars of these species exclude

95 to 97% of salt from uptake (Munns, 2002) causing a massive

salinity build-up in the rhizosphere (see Liu et al., 2020a for

modelling) and further exacerbating salinity issues. Therefore,

mankind can rely on traditional cereals to meet their dietary

needs under future climate scenarios.

To answer this question, we conducted a meta-analysis of the

literature summarizing effects of salinity on production of wheat

and rice, two major cereal crops collectively provide ~ 40% of total

calorie intake by humans. In both species, the grain yield showed a

progressive dose-dependent decline with increasing salinity
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(Figure 1). Rice is extremely sensitive to salinity, with no grain

yield produced at salinity levels exceeding 10 dS/m (an equivalent of

100 mM NaCl, or approximately 20% of seawater salt

concentration; Figure 1B). Wheat is doing slightly better

(Figure 1A); however, a 50% decline in grain yield is observed at

salinities of around 9 dS/m, a level of salt found in irrigation water

in most populous countries (e.g. China, India, USA, Mexico,

Pakistan) affected by salinity (Liu et al., 2020a). Extrapolating the

current trends in electrical conductivity of saline water (Liu et al.,

2020a), one can predict that by 2050, the average salinity level in the

soil will be within the 12–13 dS/m range (blue dotted line in

Figure 1 panels). These salinity levels will be not only

incompatible with rice production, but also reduce wheat

production by ~ 70% (Figure 1A). Thus, based on the weighted

average contribution, the mankind will be short of ~39% calories

produced by these two cereal crops.
2 What are alternatives?

Broadly, three possible options are available. One is the

extensification of agriculture; that is, using more land for

agricultural purposes. This option is not viable because most of the

arable hands have already been used. The second option is to regain

abiotic stress (and, specifically, salinity) tolerance lost during

domestication (Rawat et al., 2022; Palmgren and Shabala, 2024).

Termed as “rewilding” (Palmgren et al., 2015), this concept implies

identification of genes important for survival in challenging

environments (that were lost during the domestication process) in

wild relatives and reintroduced into modern crops (Palmgren et al.,

2015). This option is technically viable but will require broad public

acceptance of products created using gene editing technologies, as well

as legislative hurdles. Worldwide, consumers have limited

understanding, misconceptions, and unfamiliarity with plant gene

technologies in agriculture (Wunderlich and Gatto, 2015; Woźniak-

Gientka et al., 2022) and the extent to which the general public will

embrace such new technologies. In this context, de novo domestication

of already-tolerant wild species or semi-domesticated “orphan” species

is arguably the most efficient way to proceed. One of them is quinoa

(Chenopodium quinoa), which is the focus of this review.
3 Quinoa as a viable alternative to
traditional cereals

Quinoa has been used as a staple food owing to its high

nutritional qualities by ancient Andean societies for thousands of

years but is still classified as a “semi-domesticated” (Lopes-Marques

et al., 2020; Venlet et al., 2021). It is native to Chile, Bolivia, and the

Peru mountains and is designated as a “Golden Grain” (Angeli

et al., 2020; Yadav et al., 2023). The native geographical region of

quinoa extends from south-central Chile to Southern Columbia,

along with subtropical Bolivia and north-western Argentina (Costa

Tártara et al., 2012). Peru is the main producer of quinoa, followed
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by Ecuador and Bolivia (Alandia et al., 2020), while France, the

USA, and Canada are the leading importers of quinoa. Currently,

quinoa is cultivated over 188,000 ha, producing ~175,000 tons per

annum (FAOSTAT, 2022; Pathan et al., 2023). In 2020, the global

quinoa market was valued at approximately 72 billion USD, and

this market is predicted to exceed 149 billion USD by 2026

(Shahbandeh, 2021). Owing to rising demand and its potential to

enhance global food security, quinoa farming has recently expanded

outside its native Andean region. Quinoa has exceptional

nutritional (low glycaemic index; gluten-free; possesses all

necessary carbohydrates, lipids, amino acids, vitamins, minerals,

protein, and dietary fibres) and has been named by WHO as the

“most nutritionally balanced crop on planet” (Angeli et al., 2020).

As a result, quinoa cultivation has shifted from just six 50 years ago

to over 120 countries now (Alandia et al., 2020). However, global

quinoa production represents only a small fraction of the global

cereal market (e.g., 175,000 metric tons for quinoa vs. 789,000,000

metric tons for wheat in 2022; statista.com).

Most importantly, quinoa is superbly adapted to hostile

environmental conditions, including soil salinity, drought, and low

fertile soils (Ain et al., 2023) and thus possesses great potential for

growth in arid and semi-arid regions of Asia and Africa (Jacobsen et al.,

2003). Given the reduced ability of some important cereal crops,
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including wheat and barley, to survive in arid areas (Houshmand et

al., 2005; Aly et al., 2016), quinoa is being grown as a drought- and salt-

tolerant alternative in Saudi Arabia, Europe, Morocco, Egypt, and the

United States of Emirates (Taaime et al., 2023). Being classified as a

halophyte, quinoa in fact benefit from the presence of significant

amounts of salt in the rhizosphere, showing the highest yield at

salinities of 8 to 10 dS/m (Shabala, 2013; Figure 1C). Moreover,

quinoa yield remains relatively stable across a broad range of salinities

(up to 20 dS/m; Figure 1B), with some varieties being able to produce

significant quantities of grain, even at seawater salt concentrations

(Adolf et al., 2013). When benchmarked under future climate

scenarios, quinoa yield in 2050 will exceed that of wheat by nearly 3-

fold (Figure 1D) when grown under irrigated conditions. Under non-

irrigated conditions, quinoa already outperforms traditional cereals such

as wheat in many parts of the world. For example, the 5-year average

wheat yield in Australia in 2019–2024 was 2.4 t/ha, (https://

ipad.fas.usda.gov/countrysummary/Default.aspx?id=AS&crop=Wheat),

with a lowest value of 1.5 t/ha in the driest 2019/2020. The quinoa

yield was comparable to or even higher than these values

(Figure 1C). For example, some quinoa lines achieved the seed

yield of 3-3.1 t/ha under rainfed conditions in Western Australia

(Dhammu et al., 2019); this is much more than average wheat yield

of 1.7 t/ha for the state (Anderson et al., 2016).
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FIGURE 1

Effect of soil salinity on grain yield in wheat (A), rice (B) and quinoa (C) species. Data is collated based on 11 papers describing performance of 38
genotypes for wheat; 9 papers/31 genotypes for rice; and 12 papers/35 genotypes for quinoa. Each symbol represents a specific genotype. In
(A) circles represent bread wheat (Triticum aestivum) while triangles define durum (Triticum turgidum ssp. durum) wheat genotypes. The slopes of
the red dotted lines illustrate differences in sensitivity of species to increasing soil salinity. Shaded boxes represent the current range of salinities
experience by crops in major grain producing countries experiencing salinity issues (China, India, USA, Mexico, Pakistan, Australia). The bold vertical
dotted line shows a predicted values of soil salinity in 2050 derived from trends in changes in EC values in irrigation water (based on Liu et al.,
2020a). (D) - grain yield of three species grown at salinities predicted for 2050.
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4 Biological and genetic features of
quinoa

Quinoa is primarily an autogamous (self-pollinated) plant with

variable rates of natural hybridization (10–17%), which depends on

the correlation between flowering and the availability of pollen

vectors (Spehar and Santos, 2005; Murphy et al., 2018). It is

gynomonoecious (i.e., flowers and female parts are present on the

same individual) and possesses numerous small flowers of usually

three fundamental types, typically 3–4 mm in size: achlamydeous

females, hermaphrodites, and chlamydeous females. These flowers

form a panicle-type inflorescence that ranges in length from 15 cm

to 70 cm. The structure is highly branched with a central axis that

gives rise to secondary and tertiary branches. Manual emasculation

for the hybridization of quinoa is difficult because of the presence of

small flowers (Zurita-Silva et al., 2014). Certain cultivars exhibit

partial or complete male sterility in their flowers, which has been a

valuable tool in crop breeding and hybrid development (Bhargava

et al., 2006; Gomez-Pando et al., 2019).

Cytological studies have indicated that quinoa is an

allotetraploid species with a chromosome number of 2n = 4x =

36 and a basic chromosome count of x = 9. Quinoa species

primarily exhibit diploid and tetrasomic chromosomal

segregation (El-Harty et al., 2021). The occurrence of both

disomic and tetrasomic segregations at a particular locus is

uncommon but can be attributed to the mutual exchange of

fragments between homologous chromosomes. Based on

morphology, quinoa has been categorized as Chenopodium,

subsection C. berlandieri, North American diploid C. watsonii A.

Nels, C. neomexicanum Standl., South American tetraploid weed C.

hircinum, and Andean wild diploid C. philippianum (Jellen et al.,

2010; Bhargava and Ohri, 2016). The origin of quinoa can be traced

to the diploid ancestors C. carnasolum and C. pallidicaule, and the

tetraploid species C. quinoa var. melanospermum and C. hircinum

(Mujica and Jacobsen, 2006). The organization and genomic

distribution of the 45S nucleolus organizer region (NOR) and 5S

ribosomal RNA (rRNA) genes in quinoa have been studied using

molecular cytogenetic analysis, which supports this theory. The

close relationship between the tetraploid C. berlandieri and C.

quinoa has been confirmed by DNA sequence analysis of NOR

intergenic spacers (IGS). Similarly, two distinct non-transcribed

spacer (NTS) sequence classes were identified by the

characterization of a 5S rDNA spacer region, suggesting that they

most likely descended from the two subgenomes of the

allopolyploid C. quinoa (Kolano et al., 2008).
5 Nutritional composition

5.1 Proteins and amino acids

Quinoa is enriched with proteins and contains 7-15% higher

amounts of essential amino acids and proteins as compared to the

major cereals for agriculture and world food such as rice, wheat, and
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corn (Pathan and Siddiqui, 2022); its protein content is also 14 to

19% higher compared with those species (Bazile, 2023). Moreover,

quinoa grains contain albumins and globulins as storage proteins,

comprising 44–77% of the total protein content, whereas

prolamines make up only 0.5–0.7%, which is significantly lower

than in other cereals (Kierulf et al., 2020). The remaining proteins

include 1.7% prolamins and 23.16% glutelin, essential for

germination (Tavano et al., 2022). Even in small quantities,

prolamins are significant for sulphur-rich amino acids. 11S

globulin and 2S albumin genes are responsible for the synthesis of

these storage proteins (Dakhili et al., 2019). The seeds also contain

essential high-quality amino acids, such as lysine, histidine, and

methionine, compared to other cereal grains (Bhargava et al., 2009).

Based on recommendations for adults, quinoa provides an adequate

quantity of essential and non-essential amino acids, such as lysine,

tyrosine, cysteine, valine, phenylalanine, and tryptophan. Moreover,

sulphur-containing amino acids, such as methionine and cysteine,

are particularly present in high amounts at levels comparable to

those of soybean and barley, and the histidine protein content of

quinoa is higher than that of wheat, soy, and barley proteins

(Dakhili et al., 2019). Importantly, while stress conditions such as

salinity reduce protein content in wheat and barley by 17% and

21%, respectively, quinoa grains increase protein content by 12%

under salinity stress (Aloisi et al., 2016).

Most cereals, including wheat and rice, have a higher gluten

content. Gluten intolerance is a serious health issue for many people

(Sabença et al., 2021), and high gluten content in food can cause

serious health issues for people with non-celiac gluten sensitivity

and celiac disease, leading to symptoms such as gastrointestinal

distress, skin itchiness, and severe allergic reactions. Quinoa is

gluten-free (Satheesh and Fanta, 2018; Villacrés et al., 2022) and

ideally suited as a substitute for wheat for protein consumption.

Proteins are very complex in structure, and protein digestibility

depends on several factors, including the amino acid profile, protein

folding, pH, temperature, and ionic strength. One of the problems

associated with human-related protein indigestibility is related to

structural peculiarities (Becker and Yu, 2013). However, the protein

in quinoa grains is highly digestible, with a 91.6% higher absorbance

and digestibility (Ruales et al., 2002), which is greater than those

other cereals such as corn (36%), rice (56%), and wheat (49%) (Li

et al., 2021). In recent years, there has been growing attention in the

pharmaceutical industry to the use of quinoa as a source of bioactive

peptides (Hernández-Ledesma, 2019). The presence of lunasin, a

peptide known for its cancer-preventive properties, in quinoa

makes it an attractive plant with pharmaceutical significance

(Guo et al., 2023). Furthermore, quinoa contains bioactive

compounds that effectively neutralize the strong oxygen radical

2,2′-azino-bis (3-ethyl-benzthiazoline-6-sulfonic acid) and cations

(ABTS+) to minimize oxidative damage at the cellular level (Hao

et al., 2020). Certain inhibitory effects by quinoa derived bioactive

molecules are reported on the production of inflammatory markers

like tumour necrosis factor, interleukin-6 (IL-6), and nitric oxide

production in lipopolysaccharide (LPS)-stimulated RAW264.7

macrophages (Hao et al., 2020). The RGQVIYVL peptide inhibits

the activity of angiotensin-I-converting enzyme and effectively
frontiersin.org
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regulates blood pressure. Similarly, other peptides, QFLLAGR and

ASPKPSSA, in quinoa also showed iron chelating and free radical

scavenging activities, further supporting cardiovascular health.
5.2 Carbohydrates

Carbohydrates form the major portion of seed dry weight

matter (67-74%) and comprise starch (55-65%), soluble fibres

(1.3-6.1%), and dietary fibres (1.1-16.3%) (Filho et al., 2017; Shah

and Khan, 2022). Quinoa contains ~3% sugar (mostly D-ribose and

D-galactose) as well as minor quantities of fructose and glucose

(Mohamed Ahmed et al., 2021). Amylose and amylopectin are

primarily responsible for starch synthesis. In quinoa, amylose,

which constitutes approximately 11-12% of the starch, is

synthesized primarily by Granule-Bound Starch Synthase I

(GBSSI), encoded by the GBSSI gene. Amylopectin makes up

most of the starch produced through the action of several

enzymes, including Starch Branching Enzymes (e.g., SBEI and

SBEII), starch synthase (e.g., SSII, SSIII), and starch branching

enzymes (e.g., ISA1, ISA2). These enzymes are encoded by their

respective genes and collectively contribute to the unique starch

properties of quinoa (Srichuwong et al., 2005; Wang et al., 2023).

According to Tukomane and Varavinit (2008), quinoa contains

77.5% amylopectin starch content with an average of 317 branching

and polymerization degrees of 6700 glucose units per fraction,

which is comparable to certain rice cultivars. Compared with

starches from other grains, quinoa amylopectin contains a

significant number of short chains, ranging from 8 to 12 units,

and a smaller number of longer chains, ranging from 13 to 20 units

(Satheesh and Fanta, 2018). The presence of both short and long

chains in quinoa amylopectin affects its functional properties

including digestibility and texture. Amylopectin, with a significant

number of short chains, improves the digestibility of starch, which

might affect blood sugar levels more quickly, whereas starch with

longer chains has low digestibility and glycaemic index (Srichuwong

et al., 2017). Moreover, the unique composition of quinoa starch,

with shorter and longer amylopectin chains, influences its

gelatinization activity. The standard gelatinization temperature for

starch usually ranges from 60°C to 75°C (Ai and Jane, 2017). The

gelatinization temperature influences the cooking methods, texture,

and nutritional properties of grains in various food and industrial

applications. The gelatinization temperature range of quinoa starch

was observed between 62.6°C and 67°C (Li and Zhu, 2017), which is

lower than the gelatinization temperature of rice starch 78°C

(Waters et al., 2006).
5.3 Fatty acids

The human body requires essential fatty acids from the diet

because they are unable to synthesize all the fatty acids. In this

context, quinoa is considered to have high quality and quantity of

lipid content in its seed oil. Lipid bodies are storage components

found in embryo and endosperm cells (Varma and Jain, 2021). The
Frontiers in Plant Science 05
oil content of quinoa varies from 1.8%-9.5% which contains

important fatty acids such as oleic acids, alpha-linolenic acid, and

linolenic acid, as well as high antioxidant levels a- and g-tocopherol
(Satheesh and Fanta, 2018). Four isomers of tocopherols with

different antioxidant properties are present. The oil obtained from

quinoa seeds contained a slightly higher concentration of g-
tocopherol than corn germ oil, which contained 251 ppm of a-
tocopherol and 558 ppm of g-tocopherol. Thus, quinoa has a long
life because of the antioxidant properties of g-tocopherol and its

high oil content (Maldonado-Alvarado et al., 2023). Moreover,

quinoa contains lecithin (1.8%), unsaponifiable matter (5.2%),

and sterols (1.5%) and has a refractive index of 1.4637 at 25°C, an

iodine value (Wijs) of 129, an acid number of 0.5 (Filho et al., 2017).

Furthermore, quinoa oil contains 85% unsaturated fatty acids and

15% saturated fatty acids (Ryan et al., 2007; Satheesh and Fanta,

2018). The stearoyl-ACP desaturase (SAD) gene regulates the

overall unsaturated-to-saturated fatty acid ratio in quinoa by

converting saturated stearic acid to unsaturated oleic acid (Tupec

et al., 2022). Overall, the high proportion of unsaturated fats,

particularly polyunsaturated fats, makes quinoa oil a better choice

for supporting both health benefits and stability. Triglycerides 85-

95% are the most abundant and essential fatty acids in quinoa oil;

the rest are made of phospholipids (1-3%), sterols (1-2%),

tocopherols (0.5-1%), and free fatty acids (0.1-0.5%) (Pellegrini

et al., 2018).
5.4 Minerals and vitamins

Quinoa grains contain more Mg, Fe, Ca, Zn, K, Fe, and copper

(Cu) than typical cereals, making them a rich source of minerals. K,

Ca, Mg, and phosphorus (P) are required in a balanced human diet

at levels of 454, 87.4, 190, and 956 mg/100 g, respectively (Brevik

et al., 2020). In quinoa, the Ca: P and Ca: Mg ratios are 1:6 and 1:3,

respectively, which are greater than the ideal ratios (Tan, 2020).

Quinoa has approximately twice the K content relative to wheat,

whereas it is four and eight times higher than that of corn and rice,

respectively. Similarly, Fe performs various important functions,

such as transporting oxygen in red blood cells, and remains the

most important micronutrient in the human body; hence, quinoa

has three times more Fe content than wheat and five times the

content of rice (Vega-Gálvez et al., 2010). Zinc is important for

health and participates in various chemical reactions as a cofactor in

the body. The Zn content of quinoa is twice and four times higher

than that of maize and wheat, respectively, whereas rice lacks this

mineral (Filho et al., 2017). Only the Mn concentration was higher

in wheat than in quinoa, with rice containing half and only a fifth in

maize. Manganese is important for the growth, development, and

metabolism of the body (Xiao et al., 2020; Ijaz et al., 2021).

However, mineral concentrations appear to change significantly

owing to different soil conditions, fertilization treatments, and

climate (Gojon et al., 2023).

Furthermore, quinoa is rich in vitamin B6 (0.20 mg/g), vitamin

C (1.4 mg/g), folic acid (78.1 mg/g), and pantothenic acid (0.61 g/

mg). Quinoa contains vitamin E, vitamins B1 and B2, and a-
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carotene, which are not present in pseudo-cereal crops. In addition,

other vitamins, such as niacin, g, b-carotene, tocotrienols, and
tocopherols, are also found in quinoa seeds. Compared with other

pseudo-cereals, quinoa has a high concentration of total folate,

riboflavin, vitamin B6, and niacin (Navruz-Varli and Sanlier, 2016;

Shah and Khan, 2022). Owing to its rich nutritional profile,

integrating quinoa into regular diets can significantly enhance

nutrient intake and promote overall health.
6 Phytochemicals in quinoa

6.1 Betalains

Betalain, a water-soluble phytochemical present in quinoa, acts

as a natural antioxidant and contributes to cancer (Samtiya et al.,

2021). The quinoa vegetative portion and seeds are colored yellow,

black, and red owing to betalain. Red-orange and violet-red

betaxanthins that synthesize betalain pigments consist of

nitrogen-aromatic indole compounds derived from tyrosine

(Hussain et al., 2021). Quinoa varieties with purple or red seed

colour typically contain 0.15 and 6.10 mg/100 g betalain (sum of

both betacyanins and betaxanthins), which includes both

betaxanthins and betacyanins. However, yellow seeds have little to

no betalain content. The lack of these pigments results in lighter

seed colour (Escribano et al., 2017). The variation in betalain

content among quinoa varieties is likely due to genetic

differences. Quinoa seeds contain the highest concentrations of

isobetanin and betanin, both of which have similar health-

promoting properties, such as antibacterial, anti-inflammatory,

and antioxidant activities. However, betalain showed greater

antioxidant activity than polyphenols. Betalain is the main

component of functional foods because of its antibacterial,

anticancer, and antilipidemic properties (Calva-Estrada et al.,

2022). Recent studies have explored microencapsulation to

stabilize betalain and related substances (Aguilar-Tuesta et al.,

2018). High betacyanin and low saponin microencapsulation

levels exhibit numerous health-promoting attributes, including

food colour. The European Union and the United States Food

and Drug Administration (US FDA) approved betalain as a natural

food color with E-number (E-162) for its utilization in soups,

sauces, dairy products, and medicines (Naseer et al., 2019;

Hussain et al., 2021). The combination of betalain and saponin is

beneficial for both food and pharmaceutical applications

(Esatbeyoglu et al., 2015).
6.2 Phytoecdysteroids

Phytoecdysteroids are secondary metabol i tes that

protect plants from insect pests, whereas nematodes are

cyclopentanoperhydrophenanthrene-ringed polyhydroxylated

chemicals. Its structural makeup varies significantly depending on

the number of carbon atoms present in the structure. They are

classified as C27- and C28-phytoecdysteroids and are mainly
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located in the main region of the grain as polar/non-polar and

free-conjugated compounds (Dinan et al., 2021). Quinoa is the

only pseudo-cereal with a considerable concentration of

phytoecdysteroids, ranging from 138 mg/g to 570 mg/g (Hussain

et al., 2021). The quinoa plant contains approximately 36 different

types of phytoecdysteroids, with the highest concentration found in

C27 phytoecdysteroids, which offers numerous health benefits (Graf

et al., 2016). For instance, phytoecdysteroids exhibit antioxidant

potential because of their free radical scavenging activity and metal

ion chelating ability, making them useful for preventing skin aging

(Lin et al., 2019; Sidorova et al., 2022). Unlike synthetic anabolic

steroids, which can cause significant health risks, phytoecdysteroids

provide a non-toxic alternative for athletes and bodybuilders that

naturally enhances protein synthesis and supports muscle growth

(Báthori et al., 2008). These bioactive substances also play a

significant role in promoting the growth of skeletal muscles,

which is crucial for enhancing physical performance (Báthori

et al., 2008). Similarly, numerous in vivo studies have

demonstrated the effectiveness of quinoa phytoecdysteroids in

combating obesity. A previous study revealed that incorporating

quinoa extract into a high-fat diet helps in obesity management

(Cao et al., 2020). Dietary administration of quinoa resulted in

decreased fat mass, mainly through increased faecal defecation of

lipids and carbohydrate oxidation. Furthermore, quinoa

phytoecdysteroids may help prevent diabetes by reducing

oxidative degradation and improving blood glucose transport in

the blood (Zang et al., 2024).
6.3 Phenolic compounds

Natural organic molecules, also known as phenols, consist of

aromatic rings linked to one or more hydroxyl groups. They can be

divided into two subgroups, simple and complex phenols, depending

on the presence of benzene rings (Abbas et al., 2017). The cell walls of

quinoa leaves contain phenolic acids in both the free and chemically

bound forms (Hernández-Ledesma, 2019). Numerous types of

phenolic acids, including hydroxybenzoic acid and hydroxycinnamic

acid, are found in quinoa seeds and leaves, and have significant health-

promoting properties, such as anticarcinogenic, antioxidative,

antihypertensive, and antidiabetic properties. Most polyphenols in

quinoa are flavanol-type flavonoids, primarily quercetin, kaempferol,

and their derivatives (Balakrishnan and Schneider, 2020). Rutin,

morin, neohesperidin, vitexin, and other flavonoids have been

linked with quinoa (Paśko et al., 2008). Numerous studies have

shown that the total phenolic content of quinoa increases

considerably after germination. Germination activates enzymes in

quinoa seeds that break down stored compounds, resulting in the

release and synthesis of phenolic compounds (Darwish et al., 2021; Liu

et al., 2020b; Bhinder et al., 2021). The total phenolic content of quinoa

is affected by color, genotype, and growing conditions (Han et al.,

2019). Flavanol glycosides (Gómez-Caravaca et al., 2011). Quinoa

contains 12 distinct types of flavanol glycosides, mainly derivatives of

kaempferol and quercetin, with an average individual concentration of

839 mg/g on a dry-weight basis (Li et al., 2021).
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6.4 Saponins

In the Plant Kingdom, saponins are present in at least 400 plant

species from 40 different families. The term “saponin” is derived

from the Latin word “sapo,”meaning soap, because of its surfactant

properties that allow it to produce persistent, soap-like foam when

agitated in an aqueous solution. Saponins decrease vitamin

absorption and form complexes with sterols that are structurally

similar to fat-soluble vitamins, which further interferes with

vitamin absorption and sterol activity (El Hazzam et al., 2020;

Otterbach et al., 2021). The bitter taste of saponins makes them

poisonous in large quantities. The presence of saponins in quinoa is

commonly believed to serve as a defence mechanism against natural

enemies owing to their bitter and toxic properties (Dong et al.,

2020). For example, a crude saponin extract of C. quinoa has

antifungal properties (Pillimué et al., 2024). Moreover, quinoa

saponins significantly improve the germination rate of rice seeds

and show a biocidal effect against the rice seed-eating snail,

Pomacea canaliculata (Lin et al., 2019; Zaynab et al., 2021).

Recent genetic studies have identified the key genes involved in

the regulation of saponin metabolism in quinoa. Similarly,

expression analysis in quinoa has revealed that TSARL1 is mainly

expressed in immature seeds and flowers (Jarvis et al., 2017; Trinh

et al., 2024), whereas TSARL2 is expressed only in root tissues

(Trinh et al., 2024). The TSAR binding motif has been detected

upstream of various genes in the saponin biosynthetic pathway in

quinoa. A comparison of TSARL1 transcripts between bitter and

sweet quinoa accessions identified an alternative splicing event in

sweet accessions that resulted from a single nucleotide

polymorphism (SNP) affecting the intron/exon splicing boundary.

In sweet quinoa varieties, further analysis of TSARL1 showed

various independent gene mutations that co-segregated with the

sweet phenotype, suggesting that this gene controls saponin levels in

seeds (Jarvis et al., 2017; Otterbach et al., 2021; Trinh et al., 2024).

Numerous biological, chemical, and physiological properties of

saponins are known, including hemolytic, anti-inflammatory,

antibacterial, antiviral, and cytotoxic effects (Tan et al., 2022).

Like, four fractions of quinoa saponins Q30, Q50, Q70, and Q90

extracted from quinoa have shown anti-inflammatory effects. The

saponin fractions inhibited the production of inflammatory

cytokines such as interleukin-6 and tumour necrosis factor in

lipopolysaccharide-induced RAW264.7 cells (Wijesekara et al.,

2024). Another study showed that quinoa saponins enhance

antibody responses (IgA and IgG) by increasing mucosal

permeability for greater antigen absorption (Yao et al., 2015).

Moreover, they affect the absorption of specific minerals and

vitamins as well as the growth of eating organisms (San Martıń

et al., 2008). Currently, 40 saponins have been reported, and the

four major sapogenins of quinoa are phytolaccagenic acid,

hederagenin, 30-O-methyl-espergulagenate, and oleanolic acid

(Otterbach et al., 2021). In quinoa, saponin concentrations vary

from 0.1% to 5.0%. Quinoa can be bitter or sweet, depending on the

quinoa variety and saponin concentration. They can be used in the

production of beer, detergents, cosmetics, fire extinguishers, and

immunologic adjuvants in vaccines (Tan et al., 2022).
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7 Factors affecting nutritional
composition of quinoa

In recent years, farmers have been encouraged to cultivate

quinoa instead of traditional crops because of their nutritional

benefits and increasing demand in the global market. The crop

requires appropriate agronomic practices such as optimal crop

geometry, water management, high-yielding cultivars, correct

nutrition, and proper harvesting to ensure enhanced nutritional

components and gain yield. Agronomic approaches employed in

crop production systems can regulate plant development (i.e., shelf

life, colour, texture, and appearance) by improving grain quality

attributes and altering the transcriptome.
7.1 Sowing date

Sowing is a crucial agrotechnology, as seedling emergence

affects the plant population, grain quality, and yield. In mid-

October in India, November-December in Morocco, and mid-

November in Bhutan are the preferred sowing times for quinoa

cultivars with high yield (Ramesh et al., 2019; Dorji et al., 2020;

Taaime et al., 2022). These conditions decreased the risk of heat

stress and ensured better grain filling to achieve higher yields.

Rathore et al. (2019) observed that the proximal composition of

quinoa seeds is affected by sowing time. Higher protein and fat

contents were observed in quinoa seeds sown in January, likely

because of thermal conditions during grain filling. Late sowing

increases air temperature and reduces rainfall, resulting in less

nitrogen leaching from the soil and a gradual increase in protein

content (Zulkadir and Idikut, 2021). The protein content in quinoa

varies from 13.5% to 17.7% based on the different sowing dates

(Temel and Keskin, 2019). Moreover, variations in sowing time and

rising air temperatures resulted in an increase in Mg and P levels in

late sowing; however, this increase declined in late sowing (Zou et

al., 2021). This decline was attributed to the grain-filling and

flowering periods of quinoa, a short-day plant, coinciding with

the maximum day length and high temperature (Zulkadir, 2021).

Similarly, variations in P and Mg contents have been reported in

quinoa varieties (Kaya and Aydemir, 2020; Gómez et al., 2021).

When cultivated at the Research and Didactic Station in Psary, early

August-sown quinoa accumulated 39.4% less N-NO3 and 44.4%

more P. A gradual delay in harvest results in an increase in Mg and

Ca levels and a reduction in P content among different quinoa

varieties (Liu et al., 2021; Adamczewska-Sowińska et al., 2021).
7.2 Temperature

Temperature is the primary abiotic factor influencing quinoa

germination, development, quality, and production. The ideal

temperature for quinoa germination is approximately 8-10 °C

(Ayala et al., 2020); however, it grows well in later stages at

temperatures ranging from 15 °C to 20 °C and can even tolerate

extreme temperatures − 8 °C or 38 °C (Ain et al., 2023). The fatty acid
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content of quinoa is directly affected by temperature (Matıás et al.,

2022). Linolenic acid is a major fatty acid found in higher contents at

the seed-filling stage in quinoa due to elevated temperatures. This

temperature-dependent response is similar to the response observed

by Curti et al. (2020), who demonstrated that most of the quinoa

cultivars produced less polyunsaturated fatty acids (PUFA), including

oleic acid, under high temperature (except for linolenic acid). The

increase in the concentration of unsaturated fatty acids in quinoa

seeds at high temperatures during the seed-filling stage might be due

to the temperature-sensitive nature of fatty acid biosynthesis. Elevated

temperatures also accelerate the enzyme activity involved in the

desaturation process, particularly the conversion of saturated fatty

acids to polyunsaturated fatty acids such as linoleic acid. The increase

in enzymatic activity changes the equilibrium towards the production

of linoleic acid (Song and Tang, 2023). Matıás et al. (2022) also

reported changes in the fatty acid composition with significantly

lower monounsaturated fatty acids with changing temperature,

whereas there was no change in the overall amount of saturated

fatty acids. The various impacts of temperature on the concentrations

of seed elements in quinoa were also revealed such as, plants grown at

a shoot temperature of 22 °C and root temperature of 30 °C exhibited

lower concentrations of elements such as Cd, B, As, Al, Rb, Sr, Cu,

and Ni (Tovar et al., 2020).
7.3 Fertilizers and water management

Quinoa is known for its low nutrient requirements and ability to

grow in impoverished soils (Jacobsen et al., 2003; Adolf et al., 2013).

However, N fertilization can improve the quinoa’s ability to grow

under drought conditions (Bascuñán-Godoy et al., 2018; Zamani

et al., 2023) and further boost the nutritive value of quinoa by

improving protein content in grains and enhancing P, K, and N

concentrations in quinoa (Ibrahim et al., 2020). Gomaa (2013) and

Wang et al. (2020) reported that appropriate N supply was the

dominant factor for protein accumulation in quinoa seeds. N

fertilization significantly affects the chemical traits of quinoa,

including the contents of N, P, K, total protein, starch, fat, and

ash (Wali et al., 2022; Van Minh et al., 2022). Vermicompost serves

as an organic nutrient source for quinoa cultivation. Applying 5

tons/ha of vermicompost results in an increase in quinoa grain

output along with higher crude fiber, fat, and carbohydrate (Rathore

and Kumar, 2021).

The water requirement of quinoa is low, and it can tolerate dry

spells, yet irrigation has a significant impact on quality and

productivity (Angeli et al., 2020). Different irrigation treatments

influenced the concentrations of several seed minerals in quinoa,

including Cu, Ca, Mg, P, Fe, and Zn. The concentrations of Mg, Fe,

and P were enhanced under irrigated conditions, whereas Zn, Ca,

and Cu concentrations increased under drought conditions

(Walters et al., 2016). One reason for the difference in mineral

concentrations between water-deficient and irrigated plants might

be the variations in seed size and plants. Irrigation at crucial stages,

such as germination, seed set, and initial flowering, ensures high

mineral concentrations and maximum grain yield. In the last two
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decades, metabolomics has emerged as a robust molecular profiling

technology, and its results can be integrated with data from other

technologies (Riekeberg and Powers, 2017; Tong and Nikoloski,

2021). These developments have enabled the identification and

annotation of previously unknown metabolites as well as the

documentation of underlying biochemical reactions and

associated enzymes (Sharma et al., 2021).
8 Unanswered questions and a way
forward

As shown in this study (Figure 1), the use of traditional cereal

crops such as wheat or rice will be severely hampered by future

climate scenarios, making their production economically unfeasible

and unsustainable. Quinoa (Chenopodium quinoa) has a great

potential to occupy this niche. However, before this can happen,

several issues need to be resolved. These can be roughly divided into

two categories: biological and social.
8.1 Biological aspects

From an agronomical perspective, quinoa can tolerate both

salinity and drought stress and is ideally suited for cool-climate

production systems. However, originating from high-altitude regions

in South America, it is less suitable for production at high

temperatures (unless irrigation is used). This trait needs

improvement, along with its photoperiodic sensitivity (most quinoa

genotypes have a requirement for a short day), tolerance to downy

mildew, and several yield-related components, such as seed size and

shattering and pre-harvest sprouting (Lopes-Marques et al., 2020).

High quantities of saponins are also considered a major hurdle, as

they imply an extra step in food processing. Improving these traits

using genetic means will accelerate the broader use of quinoa in

agricultural production systems. With over 16,000 quinoa accessions

existing and given the availability of several high-quality genome

drafts (Jarvis et al., 2017; Zou et al., 2017), such genetic improvement

should be rather straightforward and are only hindered by the lack of

dedicated funding. The task is not trivial but still much easier than

regaining abiotic stress tolerance in traditional cereal crops (see

arguments in Palmgren and Shabala, 2024).

In broad terms, the above tasks can be divided into short-term (1–

5 years) and long-term (over 5 years). The former should focus on

applying existing genomic tools to address immediate challenges in

quinoa production. Marker-assisted selection (MAS) can be employed

to rapidly introgressed known disease-resistance genes, such as those

conferring resistance to downy mildew or fungal pathogens, into elite

quinoa lines. Similarly, high-throughput phenotyping and genomic

screening can identify accessions with desirable abiotic stress tolerance

traits such as salt tolerance mediated by NHX1 transporters or

drought resilience linked to osmoprotectants biosynthesis enabling

faster development of climate-resilient varieties (Lozano‐Isla et al.,

2025). These efforts can be accelerated by leveraging publicly available

quinoa genome assemblies (e.g., Chenopodium quinoa v1.0) and trait-
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associated SNP markers from recent genome-wide association studies

(GWAS) (Maldonado-Taipe et al., 2022; Rahman et al., 2024). For the

medium- and long-term objectives, genomic selection (GS) and gene

editing hold significant promise. GS models trained on large-scale

quinoa germplasm datasets can predict breeding values for complex

traits like yield stability, protein content, and saponin levels, reducing

reliance on time-consuming phenotypic selection (Kumar et al., 2021).

Additionally, CRISPR-Cas9 could be used to precisely edit genes

involved in anti-nutritional factors, such as the CYP72A family

responsible for bitter saponin production, facilitating the

development of “sweet” quinoa varieties without lengthy

backcrossing (Liu et al., 2019). Hybrid breeding programs could

also benefit from genomic insights by identifying heterotic groups

and optimizing cross-combinations using SNP-based genetic distance

analyses. Quinoa improvement may also shift toward transformative

genetic engineering and synthetic biology approaches. For example,

metabolic engineering of lysine biosynthesis pathways (AK1, DHDPS)

could improve quinoa’s protein quality, making it a more complete

dietary staple (Kiekens et al., 2022). Exploring the genetic diversity of

wild relatives (e.g., C. berlandieri) through de novo domestication

could also unlock novel alleles for extreme heat tolerance or pest

resistance. These efforts will require advanced genomic resources, such

as a fully annotated pan-genome encompassing global quinoa

diversity, as well as interdisciplinary collaboration between breeders,

bioinformaticians, and biotechnologists.

In parallel to promoting quinoa as a potential substitute for

traditional cereals, some of its key traits conferring superior abiotic

stress tolerance may also be potentially introduced in wheat and rice

(Chen et al., 2022; Shabala and Palmgren, 2020). It was argued that

the traditional focus of breeders on targeting SOS1 and HKT1 genes

to improve salinity stress tolerance in these species is

counterproductive (Shabala et al., 2025) and called for a need for a

major shift in a breeding paradigm to incorporate some halophytic

traits that were present in wild relatives but were lost in modern crops

during domestication (Rawat et al., 2022). Amongst the latter,

efficient vacuolar Na+ sequestration, ROS desensitization,

succulence, and a possibility for salt deposition in trichomes have

been named as most promising novel traits. In this context, quinoa

represents an ideal model species, ticking on all “boxes” such as

possessing a superior ability to prevent back-leak of toxic Na+ from

vacuole into cytosol by efficient control of slow (SV) and fast (FV)

vacuolar ion channels (Bonales-Alatorre et al., 2013a, b); reduced

sensitivity of K+ transporters to ROS (Tanveer et al., 2024); and ability

of deposit substantial amount of salt into epidermal bladder cells

(Kiani-Pouya et al., 2017; Bohm et al., 2018). By using modern

breeding technologies, these features may be incorporated into cereal

elite germplasm, to regain abiotic stress tolerance.
8.2 Social aspects

The global expansion of quinoa over the past few decades

highlights its strong potential for economic scalability, which is a

critical factor supporting its adoption by farmers. The number of

countries importing quinoa is increasing, with new producers
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emerging and cultivation expanding outside the Andean regions.

This growing geographical distribution reflects quinoa rising

importance in the international market. The increase in demand

for gluten-free, high-protein foods across North America, Europe,

and Asia has created new opportunities for farmers to adopt quinoa

as a profitable crop. Moreover, the development of value-added

products such as quinoa flour, starch, milk, and processed snacks

has further enhanced its commercial application.

Importantly, quinoa is primarily cultivated by smallholder and

family farms in both traditional and newly adopting regions,

emphasizing its suitability for scalable, low-input farming

systems. Countries such as China, Canada, and France have

increase significant growth in quinoa production, scaling up from

fewer than 100 farmers in 2012 to hundreds by 2018, with China

alone reaching 17,000 hectares by 2019 (Xiu-Shi et al., 2019). In

many new production areas, quinoa is introduced to diversify

cropping systems or replace less resilient crops an approach

driven to adapt agriculture due to increasing impacts of climate

change. However, to sustain this growth and ensure long-term

farmer engagement, it is essential to establish stable market

channels and secure favourable pricing to enhance farmer

incomes and encourage continued cultivation.

The social aspects of this issue should not be underestimated.

Rice is a traditional food for more than half of the world’s

population, especially in Asia and Sub-Saharan Africa, and

replacing it with quinoa may clash with many traditional values

and habits. The same may be true for wheat as well. Thus, the

acceptance of quinoa as a major staple food requires time. Recent

surveys conducted in various regions have provided a clear link

between cultural background and consumer acceptance of quinoa.

The survey of 381 peoples in Lima revealed that individuals with

stronger ethnic identities were less willing to consume quinoa,

suggesting that cultural perceptions and traditional food

preferences play a crucial role in dietary choices (Higuchi et al.,

2022). Similarly, Wang et al. (2024) conduct survey analysis of 1078

individuals in 16 different administrative districts of Shanghai and

demonstrated that only 38.22% of individuals have purchased

quinoa products. The trust in nutrition and personal norms

significantly influenced the willingness to purchase quinoa

products. In Europe, consumer acceptance of quinoa is mostly

influenced by health perceptions, dietary habits, and product

availability. A cross-sectional survey conducted in Italy analyzed

the nutritional quality of quinoa food products available in the

market and found that consumers are attracted to quinoa due to its

nutritional benefits, gluten-free nature, and ethical rights associated

with its production (Melini et al., 2023). These findings underscore

the importance of cultural factors in consuming quinoa in market,

as acceptance is not only based on nutritional value but also on

cultural perceptions and compatibility.

Importantly, this cultural shift should come from the grassroots

rather than being imposed from the top. In lay terms, farmers need

to realize that the production of traditional cereal crops cannot be

considered a long-term strategy, due to economic reasons, and

make this paradigm shift on their own. Appropriate government

incentives may accelerate this process.
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