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Introduction: Leaf area index (LAI) of rice is a crucial parameter for assessing the
growth conditions and predicting yields. However, traditional measurement
methods are inefficient and insufficient for large-scale monitoring.

Methods: This study proposes a CNN-LSTM-Attention (CLA) model that
integrates convolutional neural networks (CNN), long short-term memory
(LSTM), and a self-attention mechanism, aiming to achieve high-precision
estimation of rice LAl across all growth stages based on the unmanned aerial
vehicle (UAV) multispectral imagery and deep learning techniques. The
estimation performance of vegetation indices (VIs), machine learning methods
(SVR, RFR, PLSR, XGBoost), and deep learning models (DNN, CNN, LSTM) were
comparatively analyzed.

Results and discussion: The results show that the CLA model outperforms other
approaches in estimating rice LAl throughout the entire growing period, achieving
a coefficient of determination (R?) of 0.92 and a relative root mean square error
(RRMSE) below 9%, significantly better than linear regression and machine learning
methods. Moreover, the CLA model maintains high stability and accuracy across
different LAl ranges, with notably reduced errors for low LAl values (one to three),
effectively mitigating the influence of soil background. This research offers an
efficient and accurate technological approach for rice growth monitoring and
holds significant implications for precision agricultural management.

LAI, UAV, multispectral imagery, deep learning, remote sensing
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1 Introduction

Rice is one of the world’s most important staple crops, together
with maize and wheat, providing approximately 30% of caloric
intake in 94 developing countries (Wang et al., 2025).
Consequently, effectively monitoring rice growth and health has
become an urgent and significant issue. The leaf area index (LAI),
defined as the total one-sided leaf surface area per unit ground area,
is tightly linked to diverse vegetation parameters like pigment
content, growth density, and disease and pest levels (Chen and
Black, 1992; Yan et al., 2019). Furthermore, LAI acts as a crucial
proxy of crop photosynthesis and growth status and plays an
essential role in yield prediction (Roosjen et al, 2018). As a
critical parameter for evaluating canopy photosynthetic capacity,
LAI significantly affects crop productivity throughout the growing
season (Zhang et al., 2021). Dynamic monitoring of LAI provides
valuable insights into the crop’s response to environmental changes
and allows for more accurate yield evaluation (Jay et al., 2017).

Currently, LAI is commonly measured by lossy sampling and
non-contact measurements. The first offers relatively accurate
results but are labor-intensive and inefficient, rendering them
impractical for large-scale automated monitoring (Yuan et al,
2017). Indirect methods, often employing optical instruments, are
also limited by low efficiency and inadequate capacity for rapid,
large-scale assessment (Bhadra et al., 2024). Satellite remote sensing
enables large-area data acquisition, but its low spatial and temporal
resolution makes it unsuitable for precision agriculture (Fang et al.,
2019). In contrast, low-altitude remote sensing represented by
unmanned aerial vehicle (UAV) has come to the fore as a
superior alternative due to its ability to collect data flexibly and at
high resolution over large areas. In the past few years, UAV remote
sensing has played an increasingly significant role in agricultural
surveillance because of its excellent spatial and temporal details and
operational flexibility (Yue et al., 2023, 2023). Multispectral cameras
mounted on UAVs can acquire high-resolution (centimeter-level)
data across multiple spectral bands (from visible to near-infrared),
offering an effective balance between cost and usability (Deng et al.,
2018). Therefore, this study adopts UAV multispectral imagery as
the primary data source.

Canopy reflectance, captured by remote sensing sensors
deployed on various platforms from ground to satellite, is
primarily influenced by vegetation absorption and scattering (Yu
et al,, 2024), both of which are strongly correlated with crop LAI
(Zou et al., 2024). By integrating reflectance across multiple bands
into vegetation indices (VIs) (Jay et al., 2017; Kross et al., 2015), and
applying multivariate regression and machine learning techniques
using multispectral or hyperspectral data, effective methods have
been developed for extracting spectral features essential to LAI
estimation (Zou et al, 2024). Remote sensing-based inversion
methods offer a new and efficient approach for large-scale, rapid,
and accurate LAI assessment, allowing better representation of its
spatial distribution and temporal dynamics (Liang et al., 2015; Yang
etal., 2017). These methods also enhance our understanding of LAI
variation, contributing to improved vegetation ecosystem
management (Li et al,, 2022). In addition to these methods,
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physically-based inversion approaches have also been employed
for LAI retrieval. For example, high-precision models have been
constructed for rice LAI estimation using the PROSAIL model
combined with Bayesian networks (Xu et al., 2019). Yue et al.
proposed a hybrid LAI estimation approach for wheat, maize,
potato, rice, and soybean using deep learning and hyperspectral
data integrated with radiative transfer models, achieving
significantly higher accuracy than traditional statistical regression
techniques (Yue et al, 2024). Although physically-based models
offer clear interpretability, they require numerous input parameters
and involve complex processes, often leading to ill-posed inversion
problems, thus limiting their practical applicability.

Numerous studies have demonstrated the effectiveness of VI-
based remote sensing models in estimating the LAI of field crops
(Liang et al., 2020; Ma et al., 2022). Although multispectral images
are relatively cost-effective, their limited spectral bands can lead to
issues such as spectral confusion (same spectrum, different objects
or vice versa). Texture features, another important source of remote
sensing information, reflect spatial variation characteristics in the
imagery. Many researchers have combined spectral and texture
features to estimate LAI for different crops, showing that
incorporating texture information can improve LAI monitoring
accuracy (Li et al,, 2019; Zhuang et al., 2024; Zhang et al., 2022).
However, the role and optimal scale of various texture types in
estimating canopy LAI for crops like wheat and maize remain
unclear, and their underlying mechanisms are difficult to interpret.
Furthermore, most prior studies have focused on a single or a few
growth stages, with limited research covering the entire crop
growth cycle.

There are two main challenges that hinder the practical
application of remote sensing-based LAI estimation models. First,
during the early stages of crop growth, soil background interference
leads to inaccurate canopy information (Yue et al., 2024). In rice,
low LAI values during the seedling stage result in large proportions
of exposed soil, with leaves primarily growing horizontally. Given
the distinct spectral characteristics between soil and rice leaves,
direct use of canopy spectra can compromise estimation accuracy
(Jay et al,, 2017). Therefore, removing soil background effects is
essential for improving LAI estimation. Several background
removal methods have been proposed and shown effective for
crop monitoring (Liu et al., 2023; Darvishzadeh et al, 2008).
However, their performance significantly declines in low-
resolution images. For example, imagery captured at high UAV
altitudes using multispectral or hyperspectral cameras often lacks
sufficient resolution for soil-background separation. Second, during
the mid-to-late stages of crop growth, vegetation canopy becomes
denser with vertically growing leaves, leading to VIs saturation and
reduced LAI estimation accuracy and model generalizability (Li and
Liang, 2023). To address this, fusing multimodal remote sensing
data (e.g., thermal infrared, hyperspectral, LIDAR) has been shown
to mitigate indices saturation (Zhang et al., 2024, 2023).
Nonetheless, the data acquisition and processing costs remain
high, limiting widespread application.

With the rapid development of artificial intelligence, machine
learning (ML) and deep learning (DL) techniques have emerged as
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powerful tools for estimating crop LAI (Li et al., 2025). Traditional
ML algorithms, including partial least squares regression (PLSR),
artificial neural networks (ANN) (Liang et al., 2020), Gaussian
process regression (GPR) (Sinha et al., 2020), Bayesian algorithms,
support vector regression (SVR), and random forest regression
(RFR) (Li et al., 2019; Yue et al., 2018), have demonstrated
effectiveness in crop LAI prediction, particularly in scenarios with
limited training data. Among these, ANN, a computational model
inspired by biological neural networks, has outperformed empirical
methods in estimating biophysical parameters due to its superior
nonlinear modeling capability (Danson et al., 2003). For instance, a
multimodal deep neural network (DNN) framework achieved
higher accuracy than SVR, RFR, and PLSR in LAI estimation
across different growth stages (Liu et al., 2021). Similarly, an
improved convolutional neural network (CNN) accurately
estimated maize LAI at critical developmental phases, including
jointing, small trumpet, and large trumpet stages (Yang et al., 2025).

Despite these advancements, conventional ML methods face
limitations in handling large-scale spatiotemporal data due to their
reliance on manual feature engineering and weak temporal modeling
capacity. Deep learning, particularly recurrent neural networks
(RNNs), has addressed these challenges by automatically extracting
hierarchical features from raw data. Long short-term memory
(LSTM), a specialized RNN variant, has shown exceptional
performance in time-series LAI estimation by capturing long-range
dependencies in multitemporal remote sensing data (Liu et al., 2025).
However, existing approaches often neglect the dynamic importance
of different growth stages, leading to suboptimal performance in full-
season LAI estimation. To overcome these limitations, we propose an
integrated CNN-LSTM-Attention framework for accurate and
adaptive rice LAI estimation across the entire growth cycle. This
model synergistically combines: (1) CNN extracts high-level spatial
features from multispectral imagery, capturing localized crop canopy
structures; (2) LSTM models temporal dependencies in LAT dynamics,
accounting for cumulative environmental effects (e.g., temperature,
precipitation) on crop growth; and (3) attention mechanism

10.3389/fpls.2025.1636967

dynamically weights critical growth stages (e.g., tillering, heading) to
enhance model interpretability and prediction robustness.

Against the above presentation, this study integrates CNN,
LSTM, and a self-attention mechanism to effectively capture the
spatial and temporal features of rice canopy spectral data, thereby
constructing an accurate LAI estimation model across the entire
growing season. The proposed approach is also compared with
traditional linear regression and several commonly used machine
learning methods. The main objectives and contributions of this
study are (1) to develop a high-precision LAI estimation model by
proposing a CLA model that combines CNN, LSTM, and self-
attention mechanism, aiming to realize high-precision estimation of
rice LAI during the whole growing season; (2) to evaluate the
different methods’ performance by comparing and analyzing the
performance of VlIs, traditional machine learning methods (SVR,
RFR, PLSR, and XGBoost), and deep learning models (DNN, CNN,
LSTM) in LAI estimation; and (3) to solve the challenges of
practical applications by addressing the problems of soil
background disturbance in the early stage of rice growth and the
saturating of vegetation indices in the middle and late stages,
proposing effective solutions to improve the stability and accuracy
of the model in different LAI ranges.

2 Materials and Methods
2.1 Experimental design

The study utilized 30 rice varieties, with each variety planted in a
separate plot, totaling 30 experimental plots under normal field
management conditions in Xinyang city, Henan province. All plots
received consistent cultivation practices including irrigation,
fertilization, and pest control to ensure uniform growing conditions
across the study area (as shown in Figure 1). Rice seedlings were sown
on May 10, 2024, and transplanted on June 12 at a uniform spacing of
0.25 m x 0.25 m, with a planting density of 25 plants/m’.
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2.2 LAl data acquisition

The rice LAI data (unit: m*/m?) were measured using a LI-COR
LAI-2200C Plant Canopy Analyzer (LI-COR Biosciences, USA).
Prior to each measurement, the LAI measuring instrument was
recalibrated to guarantee reliability, and care was taken to avoid
operation under direct sunlight. Measurements were conducted
between 9:00-10:00 a.m. and 3:00-5:00 p.m. (local time). Ten
replicate observations were carried out in each plot to ensure
coverage of the regional spatial diversity of the rice population.
Field measurements were synchronized with UAV image
acquisition, covering key rice growth stages: tillering, jointing,
booting, heading, grain filling, milky, and maturity stages, on the
following dates: June 30 (S1), July 10 (S2), July 19 (S3), July 25 (S4),
August 5 (S5), August 14 (S6), August 28 (S7), September 5 (S8),
and September 12 (S9), totaling 9 time points. The approximate
interval between these data acquisition dates is one week.

2.3 UAV multispectral image acquisition
and processing

In this study, an octocopter UAV was utilized to carry a
multispectral camera (RedEdge-P), which was composed of 5
individual miniature cameras. Each camera was equipped with
different filter sizes to obtain the radiation information in the
desired wavelength band, and the corresponding center
wavelengths and band widths of the 5 cameras are shown in
Table 1. The selected bands span the visible to near-infrared
regions (Kimes et al., 1981), including red-edge bands known for
their utility in crop surveillance (Schlemmer et al., 2013; Clevers and
Gitelson, 2013). Flights were executed between 10:00 a.m. and 2:00
p.m. under clear sky and no wind conditions, with a flight altitude
of 40 m. All UAV flights were conducted under strictly controlled
environmental conditions to ensure data quality. Single UAV flights
were limited to three minutes to ensure that light variations were
minimal. The UAV shootings produced images with a resolution of
1456x1088 pixels and a ground sampling distance of 2.6 cm/pixel.

Data processing is a critical step in UAV-based multispectral data
analysis, as raw images captured by the RedEdge-P camera require
correction and calibration before further use. The initial pixel values
lack physical meaning and often contain geometric and radiometric
distortions. The processing workflow includes geometric correction,
image stitching, and radiometric calibration, all performed using

TABLE 1 Bands information of multispectral camera.

Band Center wavelength Bandwidth
number (nm) (nm)
1 475 32
2 560 27
3 668 14
4 717 12
5 842 57
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Pix4D Mapper (Pix4D SA, Prilly, Switzerland). First, the raw
multispectral images (in .tiff format) were imported into Pix4D for
automatic geometric correction and image stitching. The software
utilized the embedded GPS/IMU data from the M350 drone and
ground control points to align and orthorectify the images,
minimizing distortions caused by terrain variations and camera tilt.
After processing, the software generated a high-resolution
orthomosaic and a digital surface model (DSM). A comparison
between pre- and post-geometric correction is illustrated in
Figure 2. Before correction, the RGB composite image exhibited
noticeable pixel misalignment, with significant distortions and shape
deformations that sometimes rendered objects unrecognizable. After
geometric correction, the misalignment and distortion were effectively
eliminated, resulting in sharper object boundaries and improved
overall image clarity. Radiometric calibration was then applied to
convert raw digital numbers into reflectance values. This process
involved using reference tarps with known reflectance to derive the
reflectance of other targets in the scene. Before each flight, three
calibration tarps made of polyester fabric with known reflectance
values (0.10, 0.30, 0.50) were placed on flat ground for radiometric
calibration. The piecewise empirical line (PEL) method was used for
calibration (Luo et al., 2022). As shown in Figure 2, a comparison of
UAV multispectral images before and after radiometric calibration
reveals significant improvements in image quality. Prior to calibration,
the RGB composite image appears visibly darker, with low contrast
between rice plants and other ground objects. After radiometric
calibration, the RGB composite image exhibits enhanced brightness,
significantly improving the distinguishability of rice canopies from
surrounding features. Additionally, the soil background, field ridges,
and pathways become more clearly delineated, resulting in sharper
details across the entire image.

2.4 Selection and calculation of vegetation
indices

Vegetation indices, computed from combinations of spectral
bands, are widely used to enhance crop canopy signals, which have
been proved to be effective in LAI estimation. Indices such as NDVT,
SAVI, EVI2 have showed excellent results in LAI inversion (Han
etal., 2021). Lately, red-edge-based indices such as NDRE (Gitelson
and Merzlyak, 1994) and Clyeq edge (Gitelson et al., 2003) have
gained attention for their superior performance, particularly when
there is a thick cover (Delegido et al., 2013; Deng et al., 2018; Wang
etal., 2022). Based on the above prior knowledge, fifteen vegetation
indices as shown in Table 2 were considered and selected for this
study. Since these VIs have been demonstrated to exhibit superior
performance in crop growth monitoring, after the importance
ranking analysis, we incorporated several important VIs for rice
LAI estimation as input variables during model construction.

2.5 Deep learning methods

2.5.1 CNN

CNNs are primarily used to extract spatial features from
sequential or structured data. By applying convolutional kernels
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Before geometric correction

After geometric correction

Before radiometric calibration

FIGURE 2
Comparison of multispectral images before and after preprocessing

that slide across the input data, CNNs are capable of quickly
identifying local layouts, like edges in pictures or certain
waveforms in time-series data. In sequence modeling, CNNs are
capable of capturing local dependencies within the input by
focusing on adjacent feature relationships (Du et al., 2025). The
convolution operation is typically followed by pooling layers, which
reduce the spatial dimensions of the feature maps and help decrease
computational complexity while preserving the most salient
features. A standard CNN design was made up of five essential
elements: input layers, convolutional layers, pooling layers, fully
connected layers, and an output layer, as illustrated in Figure 3.
The input layer is responsible for receiving and pre-processing
raw data. The convolutional layers usually contain multiple
convolutional kernels of varying sizes, each responsible for
learning specific patterns from the input. These layers are
designed to extract significant information from the original data.
Pooling layers perform downsampling on the outputs of
convolutional layers, reducing feature dimensionality and network
parameters while retaining essential information. The fully
connected layers transform the three-dimensional feature maps
produced by the pooling layers into a one-dimensional vector,
which is then passed to subsequent layers (the output layers).

Frontiers in Plant Science
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After radiometric calibration

2.5.2 LSTM

The LSTM is an advanced network of the RNN, which is
specialized in processing the temporal dependency in sequence
data. It is capable of addressing the disappearance of the gradient
problem that occurs when RNN learns sequences of too long
duration, and may avoid the long-term dependency problem
(Guo et al., 2024). Extensive studies have demonstrated the
effectiveness of LSTM networks in processing various types of
sequential data, including time-series signals, textual data, speech,
and video (Murugesan et al., 2022). The primary breakthrough of
LSTM depends on the connection of cell states, allowing for
selective information retention and forgetting through three
specialized gating mechanisms: the input gate, the forget gate, and
the output gate. They regulate the flow of information, allowing the
network to preserve related features and discarding the unrelated.
The architecture of the LSTM network is illustrated in Figure 4.
Bidirectional LSTM (BiLSTM) networks (Dhaka and Nagpal, 2023)
were not considered due to considerations of temporal dependency
directionality (future LAI values are primarily influenced by past
and present conditions), computational efficiency (BiLSTM
processes data in both forward and backward directions, doubling
the parameters and training time compared to LSTM), avoidance of

frontiersin.org


https://doi.org/10.3389/fpls.2025.1636967
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Li et al.

TABLE 2 The vegetation indices used in this study and their calculations.

10.3389/fpls.2025.1636967

Vegetation indices Formula References
NDVI (R842nm + R668nm) / (R842nm + R668nm) (Rouse et al., 1974)
NDRE (R842nm + R717nm) / (R842nm + R717nm) (Gitelson and Merzlyak 1994)
NIRv NDVIxR842nm (Badgley et al., 2017)
EVI2 2.5%(R842nm + R668nm) / (R842nm + 2.4* R668nm + 1) (Jiang et al., 2008)

WDRVI (0.2*R842nm + R668nm) / (0.2*R842nm + R668nm) (Gitelson 2004)
VARI (R560nm + R668nm) / (R560nm + R668nm) (Gitelson et al., 2002)

DVI R842nm + R668nm (Jordan 1969)

RVI R842nm/R668nm (Jordan 1969)

EVI 2.5%(R842nm + R668nm)/(R842nm + 2.4* R668nm + 1) (Jiang et al., 2008)
OSAVI 1.16%(R842nm + R668nm)/(R842nm + R668nm + 0.16) (Rondeaux et al., 1996)
MTCI (R842nm + R717nm)/(R717nm + R668nm) (Dash and Curran 2004)

TVI 60*(R842nm + R560nm) + 100*(R668nm + R560nm) (Broge and Leblanc 2001)
GNDVI (R842nm + R560nm)/(R842nm + R560nm) (Gitelson et al., 1996)

LCI (R842nm + R717nm)/(R842nm + R668nm) (Datt 1999)

SAVI (1+L)*(R842nm + R668nm)/R842nm + R668nm + L, (L=0.5) (Huete 1988)

overfitting risks, and physical interpretability (crop growth follows
unidirectional physiological processes).

2.5.3 Attention mechanism

The self-attention mechanism is employed to compute the
dependencies between different time steps within an input
sequence. By calculating attention weights that reflect the
relevance of each time step to every other time step, the model is
able to perform a weighted aggregation of information across the
entire sequence. This allows the model to dynamically focus on the
most informative parts of the sequence while reducing the influence
of less relevant components (Choi et al., 2018).

Attention mechanisms are categorized into hard and soft ones.
The hard one operates as a stochastic process, attending to only one

vector. However, due to its discontinuous nature, it is not well-
suited for time-series prediction tasks. In contrast, soft attention
considers all positions simultaneously and assigns a learnable
attention weight to each feature. This continuous and
differentiable formulation makes it more appropriate for sequence
modeling and prediction tasks. The following is a general
expression (Equation 1) for the attention mechanism’s calculating:

h* = Z(Xihi (1)

where hjis the input data and /* is the final result. Self-attention
is to calculate the weight . We chose the additive self-attention to
calculate the weight, and the Equations 2, 3 is as follows:

specific position at a time, typically represented using a one-hot sy, ) = vgtanh(Ugh; + Wos,_y) 2)
Kernel Pooling Pooling Flatten
A o
Do : 0
(LI - « +« H . Output
IR e layer
Input layer Convolution Convolution Fully connected layer

FIGURE 3
CNN model structure.
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where W, U, v, is the weight matrix.

o explals, hy)
Ot = ST explatsis, hy) @)
where s;; is the hidden state of ¢-1, a,; is the weight of
parameter j in time f.

2.5.4 CNN-LSTM-Attention

The CNN-LSTM-Attention (CLA) network is a hybrid
architecture that integrates CNN, LSTM networks, and the
attention mechanism. This model is specifically designed to
capture both local spatial features and long-range temporal
dependencies in sequential data, while dynamically focusing on
the most informative time steps through the attention mechanism.
The data processing flow of the CLA model consists of five main
steps: 1). The input time series is reshaped into a matrix format
compatible with neural network processing. 2). This matrix is fed
into a CNN for local feature extraction and dimensionality
reduction. 3). The extracted feature sequence is then passed to the
LSTM network to model temporal dependencies. 4). An attention
mechanism is applied to the LSTM output to compute a weighted
average, allowing the model to emphasize important time steps. 5).
Finally, a fully connected layer is used to generate the prediction
output. The overall architecture of the CLA model is illustrated
in Figure 5.

As shown in Figure 6, to address the generalization issue
between the hidden states and output layer in LSTM networks, an
attention mechanism is introduced between the hidden layer and
the output layer. In the figure, x, x,, ..., x, denote the input

sequence at a given time step, while hy, hy, ..., h; represent the
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corresponding hidden states of the LSTM. By incorporating an
attention mechanism after the hidden layer, attention weights ¢,
0, ..., 0y are computed for each hidden state. These weights are
then used to perform a weighted average to obtain the context
vector v, which is subsequently passed to a Softmax layer. The final
output y is generated via a fully connected computation based on v.

Moreover, we implemented multiple safeguards against
overfitting in our CLA model: (1) dropout layers (rate=0.3) after
each LSTM and dense layer; (2) L2 weight regularization (A = 0.01)
on all trainable parameters; (3) early stopping with patience being
equal to 10 epochs monitoring validation loss. These measures
ensured our final model achieved comparable performance on
training (R*> = 0.93) and validation (R*> = 0.92) sets, indicating
effective generalization.

2.6 Technical route and performance
assessments

The technical workflow about the rice LAI estimation is
illustrated in Figure 7. A sample dataset was constructed by
integrating the UAV remote sensing data with time-series LAL A
total of 270 samples were collected and split into a training and
validation datasets according to 2:1. In addition to applying deep
learning methods (DNN, CNN, LSTM, and CLA) for rice LAI
estimation, traditional regression and machine learning algorithms
—including linear regression, RFR, PLSR, SVR, and XGBoost—
were also employed to benchmark model performance. The model
accuracy was evaluated using four metrics: the coefficient of
determination (R?), root mean square error (RMSE), mean
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absolute error (MAE), and relative RMSE (RRMSE). The following where y, y, and y stand for the measured, predicted, and average
are the pertinent calculation formulas (Equations 4-7): of the measured values, respectively. # is the number of samples.
s S
R=1-Siow @ _ .
3 Results and discussion
RMSE= /3L, (M ) 3.1 Time-series changes in LAI, canopy
reflectance, and Vls
RRMSE = RMSE 5 100 % (6) ) )
7 The results of the feature importance scores of the 15 vegetation
indices calculated based on the random forest approach are shown
MAE = 3301y -7 ) in Figure 8. Significant differences in the contribution of each index
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Variable importance ranking based on random forest.

to the model can be found. Among them, NDRE has the highest
importance (more than 0.2), followed by NIRv, EVI2, RVI, OSAVI,
and NDVI (more than 0.1), respectively, suggesting that these
indices have a greater contribution to the target LAI prediction.
The remaining nine vegetation indices have lower importance (all
below 0.1) and may have limited enhancement to the model
performance. Based on the above analysis, we finally selected the
top six vegetation indices that are most important for rice LAI
prediction for our analysis.

The temporal variation and distribution of rice LAI across ten
growth stages are illustrated in Figure 9. Overall, the LAI exhibits a
“rise-then-decline” pattern during the rice growing season. This is
primarily due to the redistribution of dry matter from vegetative
organs (e.g., leaves and stems) to reproductive organs (e.g., panicles)
after the booting stage. During the ripening stage, leaf senescence
occurs, leading to the gradual yellowing and drying of leaves and
consequently a decrease in LAI following its peak (Fang et al., 2014).
Taking the case plot shown in Figure 1 as an example, the canopy

reflectance at different growth stages is compared in Figure 9. It can
be observed that spectral reflectance changes markedly during
stages S1 to S3, with only minor fluctuations in subsequent stages.
In the near-infrared (NIR) range (842 nm), the reflectance initially
increases substantially and then becomes more variable. In the
visible band (475-668 nm), the reflectance initially increases
substantially and then becomes more variable. In the visible band
(490-680 nm), the reflectance generally shows a decreasing trend
followed by a slight increase.

This variation can be attributed to two main factors: (1) the
changing ratio of leaf to soil background throughout the rice growth
period; and (2) the intrinsic differences in reflectance between rice
plants and bare soil. Specifically, soil has higher reflectance in the
visible range but lower reflectance in the NIR band compared to rice
vegetation (Luo et al., 2022). Since the rice field consists of a mixture
of rice canopy and soil, the composition and proportion of these
components vary over time. Shortly after transplanting, the canopy
is dominated by exposed soil. As tillering and vegetative growth
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progress, rice becomes the dominant component. From booting to
heading stages, the emergence of panicles further alters the canopy
composition. These dynamic changes in field components lead to
complex variations in canopy spectra, which can affect the accuracy
of optical remote sensing for rice growth parameter estimation
(Duan et al., 2019; Wang et al., 2021).

By combining different spectral bands, VIs enhance sensitivity
to specific crop parameters while reducing the influence of
confounding factors (Verrelst et al., 2015). Numerous indices
have been developed to minimize such disturbances, including
background soil reflectance, leaf pigment content, leaf water
content, leaf inclination angle, atmospheric conditions, and
structural parameters of leaves or canopies (Huete, 1988;
Rondeaux et al.,, 1996; Cao et al, 2017; Fang et al., 2017).
However, the performance of VIs can vary under different
conditions. For example, the NDVI is highly sensitive to soil
background when LAI is low (Shang et al., 2015), and it tends to
saturate at high LAI values, losing sensitivity as LAI increases (Liu
et al, 2012). The temporal variation in VIs during the rice growth
period is shown in Figure 9. Compared to reflectance, the temporal
trends of VIs exhibit more consistent patterns, with most VIs
increasing initially and then decreasing. Among them, NDVT and
OSAVI exhibit the most pronounced saturation. Overall, the
trajectories of VIs align more closely with those of LAI,
suggesting their potential for LAI estimation.

10.3389/fpls.2025.1636967

3.2 Estimation of rice LAl based on
different Vis

A linear regression model was employed to estimate rice LAI
across all growth stages based on individual VIs selected in this
study. The results are presented in Figure 10. Except for RVI, the
other VIs yielded similar estimation accuracy, with R values
around 0.52 and RRMSE slightly above 20%. Among these, EVI2
produced the highest estimation accuracy, with R* = 0.58, RMSE =
1.18, MAE = 0.99, and RRMSE = 20.24%. However, notable
deviations from the 1:1 line were observed in the LAI predictions
for NDVI and RVI at low LAI values (0-4), and saturation occurred
at high LAT values (> 4), where predicted values varied little despite
increases in measured LAI. This is because, in the mid-to-late
growth stages, canopy closure reduces red band reflectance
changes while NIR reflectance remains high, leading to VI
saturation (Gu et al., 2013). In contrast, NIRv performed better
for high LAI but showed clear underestimation for low LAI values,
likely due to soil background influence on NIR reflectance when the
canopy is sparse (Darvishzadeh et al., 2008). NDRE demonstrated
similar behavior to NIRv, but its estimates at low LAI were slightly
more accurate due to its reduced sensitivity to soil background
(Deng et al,, 2018). Compared to NDVI, NIRv, OSAVI, NDRE, and
RV, EVI2 performed slightly better across both low and high LAI
ranges, indicating its potential in reducing background noise and
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mitigating saturation (Liu et al., 2012). These results suggest that
linear regression with single VIs is insufficient for accurately
estimating rice LAI across all growth stages.

3.3 Machine learning-based estimation of
LAl in rice

In addition to simple linear regression and traditional
multivariate regression methods (e.g., multiple linear regression
and stepwise regression), machine learning demonstrates distinct
advantages in multi-variable integration and nonlinear modeling.
For instance, by integrating data from multiple sensors, the RFR
method achieved high accuracy in estimating cotton LAI, with R* =
0.95 and RMSE = 0.33 (Yan et al,, 2022). When comparing SVR,
RFR, and XGBoost for estimating jointing-stage winter wheat LAI
using fused spectral, texture, and height data, XGBoost exhibited
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the highest performance (R* = 0.88, RMSE = 0.69) (Zou et al., 2024).
Although various machine learning approaches have achieved
relatively high estimation accuracy, most studies rely on multi-
source sensors (e.g., RGB, multispectral, hyperspectral, and LIDAR)
or heterogeneous variable types (e.g., spectral, texture, and
structural features), which not only increase equipment and
computational costs, but also reduce interpretability, especially for
texture-based metrics.

In this study, SVR, RFR, PLSR, and XGBoost were applied to
estimate rice LAI across the entire growing season. The results
(Figure 11) indicate that, compared with simple linear regression,
machine learning algorithms significantly improved estimation
accuracy. Among them, SVR and PLSR showed limited
improvements, while RFR and XGBoost yielded more notable
performance gains. Of the four tested machine learning
algorithms, RFR achieved the highest accuracy for full-season LAI
estimation (R* = 0.81, RRMSE< 14%), representing an approximate
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6% improvement in RRMSE over linear models using
individual VIs.

3.4 Deep learning-based estimation of LAl
in rice

Deep learning, a rapidly emerging subfield of machine learning,
constructs hierarchical models by simulating biological neural
networks, enabling automatic feature extraction and learning from
complex datasets (Yue et al,, 2024; Liu et al, 2021). Compared to
conventional machine learning methods, deep learning models offer
superior feature extraction and generalization capabilities,
particularly for high-dimensional and heterogeneous data (Liu
et al, 2025; Yue et al, 2024). Fully connected neural networks
(FCNNs) are a typical deep learning architecture where each
neuron is connected to all neurons in the preceding layer, allowing
the model to learn intricate patterns and features (Jia and Zhang,
2023). With the development of CNNG, it has become feasible to
extract deeper image features, making CNN-based approaches
particularly effective for LAI estimation (Yang et al., 2025).

In this study, four deep learning models, DNN, LSTM, CNN,
and CLA, were employed to estimate rice LAI across the full growth
period. As shown in Figure 12, compared to linear regression and
most machine learning models (except RFR), deep learning models

10.3389/fpls.2025.1636967

substantially improved LAI estimation accuracy. The CLA model
achieved the best performance (R*> = 0.92, RRMSE< 9%), while
other deep learning models exhibited estimation errors above 10%.
Notably, not all deep learning models outperformed traditional
machine learning: both DNN and LSTM showed lower accuracy
than RFR, with estimation errors exceeding 15%, compared to<14%
for RFR. CNN yielded higher accuracy than all machine learning
models, though lower than CLA. Additionally, deep learning
models demonstrated superior performance in estimating both
low and high LAI values.

Previous studies have shown that DNN models outperformed
PLSR, SVR, and RFR when estimating maize LAI using multi-modal
UAV data (RGB, multispectral, and thermal infrared), achieving R*
= 0.89 and RRMSE = 12.92% (Liu et al,, 2021). The integration of
canopy spectral, structural, thermal, and texture features from multi-
sensor UAV imagery has also demonstrated the advantages of DNNs
in soybean yield estimation (Maimaitijiang et al., 2020). Moreover,
combining vegetation indices, texture, and VI-derived deep features
through a deep learning model (ResNet50) has further improved
maize LAI estimation accuracy (Qiao et al., 2022). These findings
suggest that leveraging structural and multi-modal data beyond
spectral features holds great potential for enhancing rice LAI
estimation accuracy, warranting further investigation.

Furthermore, in order to explore the effect of different VI
combinations on the accuracy of deep learning models. We
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Comparison of rice LAl estimation results based on different deep learning models.
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respectively take the top six, top ten and top fifteen VIs in the
importance ranking as the inputs to the CLA model, and a
comparison of the results is shown in Figure 12. It can be found
that it is not the case that the more input variables, the higher the
model accuracy. After filtering the importance of variables, the CLA
model obtained the highest accuracy of rice LAI prediction when
the first six VIs were used as inputs. When the VIs increased, the
model accuracy gradually decreased. When all VIs were input, the
model accuracy was the lowest. The above results indicate that
redundant variables negatively affect the accuracy of deep learning
models. Therefore, the screening of input variables is necessary
when fusing multivariate features.

10.3389/fpls.2025.1636967

3.5 Comparison of model performance
with existing studies

The proposed CLA model demonstrated superior performance
in rice LAT estimation compared to existing approaches. As shown
in Table 3, our model achieved an R? of 0.92 and RRMSE of 8.96%,
outperforming previous studies using similar UAV data. For
instance, the maize LAI predicted was reported R’=0.89 and
RRMSE=12.92% with a DNN model by fusing multimodal
remote sensing data (RGB + multispectral + thermal infrared)
(Liu et al.,
obtained R®=0.87 using texture-enhanced vegetation indices

2021), while another maize LAI estimation study

TABLE 3 Comparison of the performance of the LAl estimation model in this study with the accuracy in existing studies.

Models Crops R? RMSE MAE RRMSE (%) Reference
DNN maize 0.89 0.47 0.38 12.92 (Liu et al., 2021)
SVR maize 0.87 0.24 / / (Zhang et al., 2022)

Gradient-boosting decision trees (GBDT) maize 0.78 0.44 0.30 30.79 (Liu et al., 2023)
RFR Rice 0.65 0.92 0.72 / (Zhang et al., 2024)
SVR Rice 0.84 0.40 / / (Vishwakarma et al., 2025)
CLA Rice 0.92 0.52 0.42 8.96% This study
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(Zhang et al., 2022). Few studies have obtained high LAI estimation
accuracy using only multispectral remote sensing data. These
comparisons confirm that the CLA framework advances the state-
of-the-art in crop LAI estimation, while maintaining computational
efficiency suitable for operational agricultural monitoring.
However, cross-validation across different geographical regions
and growing seasons remains necessary to fully assess its
generalization capability. The performance improvement of the
CLA model can be attributed to three key factors: (1) the effective
integration of spatial-temporal features through CNN-LSTM
architecture; (2) the attention mechanism’s ability to weight
critical growth stages; and (3) comprehensive coverage of all
phenological stages in model training.

3.6 Comparison of estimation accuracy

To further compare the performance of different models in
estimating full-season rice LAI, a comprehensive comparison of
accuracy metrics is presented in Figure 13. Among the screening
vegetation indices, NDVI, NIRv, OSAVI, NDRE, and EVI2 showed
similar performance (R*> = 0.5, RMSE = 1.3, MAE = 1, RRMSE =

10.3389/fpls.2025.1636967

22%), while RVI performed slightly poorly. Among machine
learning methods, RFR showed the best performance (R* = 0.81,
RMSE< 1, MAE = 0.6, RRMSE< 14%), while other machine learning
algorithms performed comparably. Overall, machine learning
significantly outperformed linear regression models based on
individual vegetation indices. Among deep learning models, CLA
0.92, RMSE< 0.6, MAE< 0.5,
RRMSE< 9%), while other deep learning models performed

achieved the highest accuracy (R* =

similarly to RFR. These results demonstrate the superior
capability of deep learning models in capturing nonlinear and
spatiotemporal patterns in rice LAI estimation.

To evaluate model performance across different LAI ranges,
measured LAI values were stratified into three groups: low (1-3),
medium (3-6), and high (6-10). Estimation errors for each range are
shown in Figure 14. When LAI< 3, simple linear regression based
on most vegetation indices produced errors exceeding 100%. In
contrast, all machine learning models achieved errors< 80%, with
REFR achieving< 50%. Deep learning models performed even better,
with CLA reducing error to about 20%. For LAI values between 3
and 6, estimation errors were generally below 30% for all methods,
around 20% for machine learning models, and below 20% for deep
learning models, with CLA again achieving the lowest error (<
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15%). In the high LAI range (6-10), model performance slightly
declined: linear models yielded about 15% error, machine learning
about 13%, and CLA< 8%. Overall, LAI estimation accuracy
improved as rice developed, highlighting the robust performance
of the proposed CLA model across all growth stages.

Although this study utilized data covering the entire growing
season for model development, a notable limitation is the use of
only a single-year dataset, which does not account for interannual
variability. Consequently, the model’s generalizability across
multiple years remains unverified. To address this limitation,
future studies should incorporate multi-season validation,
including: (1) testing model performance under different climatic
conditions (e.g., drought, excessive rainfall); (2) evaluating
robustness against interannual variations in crop management
practices; and (3) expanding datasets to include multiple growing
seasons to enhance model reliability. This improvement would
further strengthen the model’s applicability in precision
agriculture under varying environmental conditions.

4 Conclusions

This study developed a CLA model based on UAV multispectral
imagery and deep learning techniques to achieve high-accuracy
estimation of rice LAI across all growth stages. Comparative
analyses were conducted against traditional vegetation index-based
regression and machine learning methods. The main conclusions are
as follows:

1. The proposed CLA model effectively integrates CNN,
LSTM, and an attention mechanism to capture the
spatiotemporal features of canopy spectral data. It
significantly improves the accuracy of full-season LAI
estimation (R*> = 0.92, RRMSE< 9%), outperforming
traditional linear regression and individual machine
learning models.

. Linear regression models based on vegetation indices are
limited by soil background effects and saturation issues,
yielding relatively low estimation accuracy (R*> = 0.5).
Although machine learning methods such as RFR show
improved performance (R* = 0.81), deep learning models,
particularly CLA, demonstrate superior capability in modeling
nonlinear relationships and enhancing generalization.

. The CLA model exhibits robust performance across different
LAI ranges. Notably, it achieves the lowest estimation error
(~20%) in the low LAI range (1-3), effectively addressing the
challenges faced by traditional approaches during early
growth stages and in dense canopy conditions.

Subsequent studies should investigate the merging of
multimodal data (e.g., hyperspectral and LiDAR) with deep
learning models to further enhance estimation robustness under
complex conditions. In addition, optimizing lightweight model
architectures will be essential for facilitating practical deployment
in agricultural monitoring.
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