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Estimating the full-period
rice leaf area index using
CNN-LSTM-Attention and
multispectral images from
unmanned aerial vehicles
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1Huanghe University of Science and Technology, Zhengzhou, China, 2Aerospace Information
Research Institute, Henan Academy of Sciences, Zhengzhou, China
Introduction: Leaf area index (LAI) of rice is a crucial parameter for assessing the

growth conditions and predicting yields. However, traditional measurement

methods are inefficient and insufficient for large-scale monitoring.

Methods: This study proposes a CNN-LSTM-Attention (CLA) model that

integrates convolutional neural networks (CNN), long short-term memory

(LSTM), and a self-attention mechanism, aiming to achieve high-precision

estimation of rice LAI across all growth stages based on the unmanned aerial

vehicle (UAV) multispectral imagery and deep learning techniques. The

estimation performance of vegetation indices (VIs), machine learning methods

(SVR, RFR, PLSR, XGBoost), and deep learning models (DNN, CNN, LSTM) were

comparatively analyzed.

Results and discussion: The results show that the CLA model outperforms other

approaches in estimating rice LAI throughout the entire growing period, achieving

a coefficient of determination (R²) of 0.92 and a relative root mean square error

(RRMSE) below 9%, significantly better than linear regression andmachine learning

methods. Moreover, the CLA model maintains high stability and accuracy across

different LAI ranges, with notably reduced errors for low LAI values (one to three),

effectively mitigating the influence of soil background. This research offers an

efficient and accurate technological approach for rice growth monitoring and

holds significant implications for precision agricultural management.
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1 Introduction

Rice is one of the world’s most important staple crops, together

with maize and wheat, providing approximately 30% of caloric

intake in 94 developing countries (Wang et al., 2025).

Consequently, effectively monitoring rice growth and health has

become an urgent and significant issue. The leaf area index (LAI),

defined as the total one-sided leaf surface area per unit ground area,

is tightly linked to diverse vegetation parameters like pigment

content, growth density, and disease and pest levels (Chen and

Black, 1992; Yan et al., 2019). Furthermore, LAI acts as a crucial

proxy of crop photosynthesis and growth status and plays an

essential role in yield prediction (Roosjen et al., 2018). As a

critical parameter for evaluating canopy photosynthetic capacity,

LAI significantly affects crop productivity throughout the growing

season (Zhang et al., 2021). Dynamic monitoring of LAI provides

valuable insights into the crop’s response to environmental changes

and allows for more accurate yield evaluation (Jay et al., 2017).

Currently, LAI is commonly measured by lossy sampling and

non-contact measurements. The first offers relatively accurate

results but are labor-intensive and inefficient, rendering them

impractical for large-scale automated monitoring (Yuan et al.,

2017). Indirect methods, often employing optical instruments, are

also limited by low efficiency and inadequate capacity for rapid,

large-scale assessment (Bhadra et al., 2024). Satellite remote sensing

enables large-area data acquisition, but its low spatial and temporal

resolution makes it unsuitable for precision agriculture (Fang et al.,

2019). In contrast, low-altitude remote sensing represented by

unmanned aerial vehicle (UAV) has come to the fore as a

superior alternative due to its ability to collect data flexibly and at

high resolution over large areas. In the past few years, UAV remote

sensing has played an increasingly significant role in agricultural

surveillance because of its excellent spatial and temporal details and

operational flexibility (Yue et al., 2023, 2023). Multispectral cameras

mounted on UAVs can acquire high-resolution (centimeter-level)

data across multiple spectral bands (from visible to near-infrared),

offering an effective balance between cost and usability (Deng et al.,

2018). Therefore, this study adopts UAV multispectral imagery as

the primary data source.

Canopy reflectance, captured by remote sensing sensors

deployed on various platforms from ground to satellite, is

primarily influenced by vegetation absorption and scattering (Yu

et al., 2024), both of which are strongly correlated with crop LAI

(Zou et al., 2024). By integrating reflectance across multiple bands

into vegetation indices (VIs) (Jay et al., 2017; Kross et al., 2015), and

applying multivariate regression and machine learning techniques

using multispectral or hyperspectral data, effective methods have

been developed for extracting spectral features essential to LAI

estimation (Zou et al., 2024). Remote sensing-based inversion

methods offer a new and efficient approach for large-scale, rapid,

and accurate LAI assessment, allowing better representation of its

spatial distribution and temporal dynamics (Liang et al., 2015; Yang

et al., 2017). These methods also enhance our understanding of LAI

variation, contributing to improved vegetation ecosystem

management (Li et al., 2022). In addition to these methods,
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physically-based inversion approaches have also been employed

for LAI retrieval. For example, high-precision models have been

constructed for rice LAI estimation using the PROSAIL model

combined with Bayesian networks (Xu et al., 2019). Yue et al.

proposed a hybrid LAI estimation approach for wheat, maize,

potato, rice, and soybean using deep learning and hyperspectral

data integrated with radiative transfer models, achieving

significantly higher accuracy than traditional statistical regression

techniques (Yue et al., 2024). Although physically-based models

offer clear interpretability, they require numerous input parameters

and involve complex processes, often leading to ill-posed inversion

problems, thus limiting their practical applicability.

Numerous studies have demonstrated the effectiveness of VI-

based remote sensing models in estimating the LAI of field crops

(Liang et al., 2020; Ma et al., 2022). Although multispectral images

are relatively cost-effective, their limited spectral bands can lead to

issues such as spectral confusion (same spectrum, different objects

or vice versa). Texture features, another important source of remote

sensing information, reflect spatial variation characteristics in the

imagery. Many researchers have combined spectral and texture

features to estimate LAI for different crops, showing that

incorporating texture information can improve LAI monitoring

accuracy (Li et al., 2019; Zhuang et al., 2024; Zhang et al., 2022).

However, the role and optimal scale of various texture types in

estimating canopy LAI for crops like wheat and maize remain

unclear, and their underlying mechanisms are difficult to interpret.

Furthermore, most prior studies have focused on a single or a few

growth stages, with limited research covering the entire crop

growth cycle.

There are two main challenges that hinder the practical

application of remote sensing-based LAI estimation models. First,

during the early stages of crop growth, soil background interference

leads to inaccurate canopy information (Yue et al., 2024). In rice,

low LAI values during the seedling stage result in large proportions

of exposed soil, with leaves primarily growing horizontally. Given

the distinct spectral characteristics between soil and rice leaves,

direct use of canopy spectra can compromise estimation accuracy

(Jay et al., 2017). Therefore, removing soil background effects is

essential for improving LAI estimation. Several background

removal methods have been proposed and shown effective for

crop monitoring (Liu et al., 2023; Darvishzadeh et al., 2008).

However, their performance significantly declines in low-

resolution images. For example, imagery captured at high UAV

altitudes using multispectral or hyperspectral cameras often lacks

sufficient resolution for soil-background separation. Second, during

the mid-to-late stages of crop growth, vegetation canopy becomes

denser with vertically growing leaves, leading to VIs saturation and

reduced LAI estimation accuracy and model generalizability (Li and

Liang, 2023). To address this, fusing multimodal remote sensing

data (e.g., thermal infrared, hyperspectral, LiDAR) has been shown

to mitigate indices saturation (Zhang et al., 2024, 2023).

Nonetheless, the data acquisition and processing costs remain

high, limiting widespread application.

With the rapid development of artificial intelligence, machine

learning (ML) and deep learning (DL) techniques have emerged as
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powerful tools for estimating crop LAI (Li et al., 2025). Traditional

ML algorithms, including partial least squares regression (PLSR),

artificial neural networks (ANN) (Liang et al., 2020), Gaussian

process regression (GPR) (Sinha et al., 2020), Bayesian algorithms,

support vector regression (SVR), and random forest regression

(RFR) (Li et al., 2019; Yue et al., 2018), have demonstrated

effectiveness in crop LAI prediction, particularly in scenarios with

limited training data. Among these, ANN, a computational model

inspired by biological neural networks, has outperformed empirical

methods in estimating biophysical parameters due to its superior

nonlinear modeling capability (Danson et al., 2003). For instance, a

multimodal deep neural network (DNN) framework achieved

higher accuracy than SVR, RFR, and PLSR in LAI estimation

across different growth stages (Liu et al., 2021). Similarly, an

improved convolutional neural network (CNN) accurately

estimated maize LAI at critical developmental phases, including

jointing, small trumpet, and large trumpet stages (Yang et al., 2025).

Despite these advancements, conventional ML methods face

limitations in handling large-scale spatiotemporal data due to their

reliance on manual feature engineering and weak temporal modeling

capacity. Deep learning, particularly recurrent neural networks

(RNNs), has addressed these challenges by automatically extracting

hierarchical features from raw data. Long short-term memory

(LSTM), a specialized RNN variant, has shown exceptional

performance in time-series LAI estimation by capturing long-range

dependencies in multitemporal remote sensing data (Liu et al., 2025).

However, existing approaches often neglect the dynamic importance

of different growth stages, leading to suboptimal performance in full-

season LAI estimation. To overcome these limitations, we propose an

integrated CNN-LSTM-Attention framework for accurate and

adaptive rice LAI estimation across the entire growth cycle. This

model synergistically combines: (1) CNN extracts high-level spatial

features from multispectral imagery, capturing localized crop canopy

structures; (2) LSTMmodels temporal dependencies in LAI dynamics,

accounting for cumulative environmental effects (e.g., temperature,

precipitation) on crop growth; and (3) attention mechanism
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dynamically weights critical growth stages (e.g., tillering, heading) to

enhance model interpretability and prediction robustness.

Against the above presentation, this study integrates CNN,

LSTM, and a self-attention mechanism to effectively capture the

spatial and temporal features of rice canopy spectral data, thereby

constructing an accurate LAI estimation model across the entire

growing season. The proposed approach is also compared with

traditional linear regression and several commonly used machine

learning methods. The main objectives and contributions of this

study are (1) to develop a high-precision LAI estimation model by

proposing a CLA model that combines CNN, LSTM, and self-

attention mechanism, aiming to realize high-precision estimation of

rice LAI during the whole growing season; (2) to evaluate the

different methods’ performance by comparing and analyzing the

performance of VIs, traditional machine learning methods (SVR,

RFR, PLSR, and XGBoost), and deep learning models (DNN, CNN,

LSTM) in LAI estimation; and (3) to solve the challenges of

practical applications by addressing the problems of soil

background disturbance in the early stage of rice growth and the

saturating of vegetation indices in the middle and late stages,

proposing effective solutions to improve the stability and accuracy

of the model in different LAI ranges.
2 Materials and Methods

2.1 Experimental design

The study utilized 30 rice varieties, with each variety planted in a

separate plot, totaling 30 experimental plots under normal field

management conditions in Xinyang city, Henan province. All plots

received consistent cultivation practices including irrigation,

fertilization, and pest control to ensure uniform growing conditions

across the study area (as shown in Figure 1). Rice seedlings were sown

onMay 10, 2024, and transplanted on June 12 at a uniform spacing of

0.25 m × 0.25 m, with a planting density of 25 plants/m².
FIGURE 1

Experimental design and plots distribution.
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2.2 LAI data acquisition

The rice LAI data (unit: m2/m2) were measured using a LI-COR

LAI-2200C Plant Canopy Analyzer (LI-COR Biosciences, USA).

Prior to each measurement, the LAI measuring instrument was

recalibrated to guarantee reliability, and care was taken to avoid

operation under direct sunlight. Measurements were conducted

between 9:00–10:00 a.m. and 3:00–5:00 p.m. (local time). Ten

replicate observations were carried out in each plot to ensure

coverage of the regional spatial diversity of the rice population.

Field measurements were synchronized with UAV image

acquisition, covering key rice growth stages: tillering, jointing,

booting, heading, grain filling, milky, and maturity stages, on the

following dates: June 30 (S1), July 10 (S2), July 19 (S3), July 25 (S4),

August 5 (S5), August 14 (S6), August 28 (S7), September 5 (S8),

and September 12 (S9), totaling 9 time points. The approximate

interval between these data acquisition dates is one week.
2.3 UAV multispectral image acquisition
and processing

In this study, an octocopter UAV was utilized to carry a

multispectral camera (RedEdge-P), which was composed of 5

individual miniature cameras. Each camera was equipped with

different filter sizes to obtain the radiation information in the

desired wavelength band, and the corresponding center

wavelengths and band widths of the 5 cameras are shown in

Table 1. The selected bands span the visible to near-infrared

regions (Kimes et al., 1981), including red-edge bands known for

their utility in crop surveillance (Schlemmer et al., 2013; Clevers and

Gitelson, 2013). Flights were executed between 10:00 a.m. and 2:00

p.m. under clear sky and no wind conditions, with a flight altitude

of 40 m. All UAV flights were conducted under strictly controlled

environmental conditions to ensure data quality. Single UAV flights

were limited to three minutes to ensure that light variations were

minimal. The UAV shootings produced images with a resolution of

1456×1088 pixels and a ground sampling distance of 2.6 cm/pixel.

Data processing is a critical step in UAV-based multispectral data

analysis, as raw images captured by the RedEdge-P camera require

correction and calibration before further use. The initial pixel values

lack physical meaning and often contain geometric and radiometric

distortions. The processing workflow includes geometric correction,

image stitching, and radiometric calibration, all performed using
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Pix4D Mapper (Pix4D SA, Prilly, Switzerland). First, the raw

multispectral images (in .tiff format) were imported into Pix4D for

automatic geometric correction and image stitching. The software

utilized the embedded GPS/IMU data from the M350 drone and

ground control points to align and orthorectify the images,

minimizing distortions caused by terrain variations and camera tilt.

After processing, the software generated a high-resolution

orthomosaic and a digital surface model (DSM). A comparison

between pre- and post-geometric correction is illustrated in

Figure 2. Before correction, the RGB composite image exhibited

noticeable pixel misalignment, with significant distortions and shape

deformations that sometimes rendered objects unrecognizable. After

geometric correction, the misalignment and distortion were effectively

eliminated, resulting in sharper object boundaries and improved

overall image clarity. Radiometric calibration was then applied to

convert raw digital numbers into reflectance values. This process

involved using reference tarps with known reflectance to derive the

reflectance of other targets in the scene. Before each flight, three

calibration tarps made of polyester fabric with known reflectance

values (0.10, 0.30, 0.50) were placed on flat ground for radiometric

calibration. The piecewise empirical line (PEL) method was used for

calibration (Luo et al., 2022). As shown in Figure 2, a comparison of

UAV multispectral images before and after radiometric calibration

reveals significant improvements in image quality. Prior to calibration,

the RGB composite image appears visibly darker, with low contrast

between rice plants and other ground objects. After radiometric

calibration, the RGB composite image exhibits enhanced brightness,

significantly improving the distinguishability of rice canopies from

surrounding features. Additionally, the soil background, field ridges,

and pathways become more clearly delineated, resulting in sharper

details across the entire image.

2.4 Selection and calculation of vegetation
indices

Vegetation indices, computed from combinations of spectral

bands, are widely used to enhance crop canopy signals, which have

been proved to be effective in LAI estimation. Indices such as NDVI,

SAVI, EVI2 have showed excellent results in LAI inversion (Han

et al., 2021). Lately, red-edge-based indices such as NDRE (Gitelson

and Merzlyak, 1994) and CIred edge (Gitelson et al., 2003) have

gained attention for their superior performance, particularly when

there is a thick cover (Delegido et al., 2013; Deng et al., 2018; Wang

et al., 2022). Based on the above prior knowledge, fifteen vegetation

indices as shown in Table 2 were considered and selected for this

study. Since these VIs have been demonstrated to exhibit superior

performance in crop growth monitoring, after the importance

ranking analysis, we incorporated several important VIs for rice

LAI estimation as input variables during model construction.
2.5 Deep learning methods

2.5.1 CNN
CNNs are primarily used to extract spatial features from

sequential or structured data. By applying convolutional kernels
TABLE 1 Bands information of multispectral camera.

Band
number

Center wavelength
(nm)

Bandwidth
(nm)

1 475 32

2 560 27

3 668 14

4 717 12

5 842 57
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that slide across the input data, CNNs are capable of quickly

identifying local layouts, like edges in pictures or certain

waveforms in time-series data. In sequence modeling, CNNs are

capable of capturing local dependencies within the input by

focusing on adjacent feature relationships (Du et al., 2025). The

convolution operation is typically followed by pooling layers, which

reduce the spatial dimensions of the feature maps and help decrease

computational complexity while preserving the most salient

features. A standard CNN design was made up of five essential

elements: input layers, convolutional layers, pooling layers, fully

connected layers, and an output layer, as illustrated in Figure 3.

The input layer is responsible for receiving and pre-processing

raw data. The convolutional layers usually contain multiple

convolutional kernels of varying sizes, each responsible for

learning specific patterns from the input. These layers are

designed to extract significant information from the original data.

Pooling layers perform downsampling on the outputs of

convolutional layers, reducing feature dimensionality and network

parameters while retaining essential information. The fully

connected layers transform the three-dimensional feature maps

produced by the pooling layers into a one-dimensional vector,

which is then passed to subsequent layers (the output layers).
Frontiers in Plant Science 05
2.5.2 LSTM
The LSTM is an advanced network of the RNN, which is

specialized in processing the temporal dependency in sequence

data. It is capable of addressing the disappearance of the gradient

problem that occurs when RNN learns sequences of too long

duration, and may avoid the long-term dependency problem

(Guo et al., 2024). Extensive studies have demonstrated the

effectiveness of LSTM networks in processing various types of

sequential data, including time-series signals, textual data, speech,

and video (Murugesan et al., 2022). The primary breakthrough of

LSTM depends on the connection of cell states, allowing for

selective information retention and forgetting through three

specialized gating mechanisms: the input gate, the forget gate, and

the output gate. They regulate the flow of information, allowing the

network to preserve related features and discarding the unrelated.

The architecture of the LSTM network is illustrated in Figure 4.

Bidirectional LSTM (BiLSTM) networks (Dhaka and Nagpal, 2023)

were not considered due to considerations of temporal dependency

directionality (future LAI values are primarily influenced by past

and present conditions), computational efficiency (BiLSTM

processes data in both forward and backward directions, doubling

the parameters and training time compared to LSTM), avoidance of
FIGURE 2

Comparison of multispectral images before and after preprocessing.
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overfitting risks, and physical interpretability (crop growth follows

unidirectional physiological processes).

2.5.3 Attention mechanism
The self-attention mechanism is employed to compute the

dependencies between different time steps within an input

sequence. By calculating attention weights that reflect the

relevance of each time step to every other time step, the model is

able to perform a weighted aggregation of information across the

entire sequence. This allows the model to dynamically focus on the

most informative parts of the sequence while reducing the influence

of less relevant components (Choi et al., 2018).

Attention mechanisms are categorized into hard and soft ones.

The hard one operates as a stochastic process, attending to only one

specific position at a time, typically represented using a one-hot
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vector. However, due to its discontinuous nature, it is not well-

suited for time-series prediction tasks. In contrast, soft attention

considers all positions simultaneously and assigns a learnable

attention weight to each feature. This continuous and

differentiable formulation makes it more appropriate for sequence

modeling and prediction tasks. The following is a general

expression (Equation 1) for the attention mechanism’s calculating:

h* =o
k

i=1
aihi (1)

where hiis the input data and h* is the final result. Self-attention

is to calculate the weight a. We chose the additive self-attention to

calculate the weight, and the Equations 2, 3 is as follows:

a(st−1,     hj) = vTa tanh(Uahi +Wa st−1) (2)
TABLE 2 The vegetation indices used in this study and their calculations.

Vegetation indices Formula References

NDVI (R842nm + R668nm) / (R842nm + R668nm) (Rouse et al., 1974)

NDRE (R842nm + R717nm) / (R842nm + R717nm) (Gitelson and Merzlyak 1994)

NIRv NDVI×R842nm (Badgley et al., 2017)

EVI2 2.5*(R842nm + R668nm) / (R842nm + 2.4* R668nm + 1) (Jiang et al., 2008)

WDRVI (0.2*R842nm + R668nm) / (0.2*R842nm + R668nm) (Gitelson 2004)

VARI (R560nm + R668nm) / (R560nm + R668nm) (Gitelson et al., 2002)

DVI R842nm + R668nm (Jordan 1969)

RVI R842nm/R668nm (Jordan 1969)

EVI 2.5*(R842nm + R668nm)/(R842nm + 2.4* R668nm + 1) (Jiang et al., 2008)

OSAVI 1.16*(R842nm + R668nm)/(R842nm + R668nm + 0.16) (Rondeaux et al., 1996)

MTCI (R842nm + R717nm)/(R717nm + R668nm) (Dash and Curran 2004)

TVI 60*(R842nm + R560nm) + 100*(R668nm + R560nm) (Broge and Leblanc 2001)

GNDVI (R842nm + R560nm)/(R842nm + R560nm) (Gitelson et al., 1996)

LCI (R842nm + R717nm)/(R842nm + R668nm) (Datt 1999)

SAVI (1+L)*(R842nm + R668nm)/R842nm + R668nm + L, (L=0.5) (Huete 1988)
FIGURE 3

CNN model structure.
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where  Wa ,Ua , va   is the weight matrix.

at,j =
exp (a(st−1,     hj))

oT
j=1

exp (a(st−1,     hj)) (3)

where st-1 is the hidden state of t–1, at,j is the weight of

parameter j in time t.
2.5.4 CNN-LSTM-Attention
The CNN-LSTM-Attention (CLA) network is a hybrid

architecture that integrates CNN, LSTM networks, and the

attention mechanism. This model is specifically designed to

capture both local spatial features and long-range temporal

dependencies in sequential data, while dynamically focusing on

the most informative time steps through the attention mechanism.

The data processing flow of the CLA model consists of five main

steps: 1). The input time series is reshaped into a matrix format

compatible with neural network processing. 2). This matrix is fed

into a CNN for local feature extraction and dimensionality

reduction. 3). The extracted feature sequence is then passed to the

LSTM network to model temporal dependencies. 4). An attention

mechanism is applied to the LSTM output to compute a weighted

average, allowing the model to emphasize important time steps. 5).

Finally, a fully connected layer is used to generate the prediction

output. The overall architecture of the CLA model is illustrated

in Figure 5.

As shown in Figure 6, to address the generalization issue

between the hidden states and output layer in LSTM networks, an

attention mechanism is introduced between the hidden layer and

the output layer. In the figure, x1, x2, …, xn denote the input

sequence at a given time step, while h1, h2, …, ht represent the
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corresponding hidden states of the LSTM. By incorporating an

attention mechanism after the hidden layer, attention weights a1,

a2, …, at are computed for each hidden state. These weights are

then used to perform a weighted average to obtain the context

vector v, which is subsequently passed to a Softmax layer. The final

output y is generated via a fully connected computation based on v.

Moreover, we implemented multiple safeguards against

overfitting in our CLA model: (1) dropout layers (rate=0.3) after

each LSTM and dense layer; (2) L2 weight regularization (l = 0.01)

on all trainable parameters; (3) early stopping with patience being

equal to 10 epochs monitoring validation loss. These measures

ensured our final model achieved comparable performance on

training (R² = 0.93) and validation (R² = 0.92) sets, indicating

effective generalization.
2.6 Technical route and performance
assessments

The technical workflow about the rice LAI estimation is

illustrated in Figure 7. A sample dataset was constructed by

integrating the UAV remote sensing data with time-series LAI. A

total of 270 samples were collected and split into a training and

validation datasets according to 2:1. In addition to applying deep

learning methods (DNN, CNN, LSTM, and CLA) for rice LAI

estimation, traditional regression and machine learning algorithms

—including linear regression, RFR, PLSR, SVR, and XGBoost—

were also employed to benchmark model performance. The model

accuracy was evaluated using four metrics: the coefficient of

determination (R2), root mean square error (RMSE), mean
FIGURE 4

LSTM model structure(xt is the model input, the hidden state at the previous time is ht–1, the memory unit state at the previous time is Ct–1, the
hidden state at the current time is ht, and the memory unit state at the current time is Ct).
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FIGURE 5

CLA model structure.
FIGURE 6

The LSTM with the introduction of attention.
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absolute error (MAE), and relative RMSE (RRMSE). The following

are the pertinent calculation formulas (Equations 4–7):

R2 =   1 −   o
n
i=1

(y−ŷ )2

on
i=1

(y−�y)2
(4)

RMSE =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i¼1
ŷ  � yÞ2

n

�r
(5)

RRMSE =   RMSE
�y � 100% (6)

MAE =   1non
i¼1 y − ŷj j (7)
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where y, ŷ , and �y stand for the measured, predicted, and average

of the measured values, respectively. n is the number of samples.
3 Results and discussion

3.1 Time-series changes in LAI, canopy
reflectance, and VIs

The results of the feature importance scores of the 15 vegetation

indices calculated based on the random forest approach are shown

in Figure 8. Significant differences in the contribution of each index
FIGURE 7

Technical route for LAI estimation in rice.
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to the model can be found. Among them, NDRE has the highest

importance (more than 0.2), followed by NIRv, EVI2, RVI, OSAVI,

and NDVI (more than 0.1), respectively, suggesting that these

indices have a greater contribution to the target LAI prediction.

The remaining nine vegetation indices have lower importance (all

below 0.1) and may have limited enhancement to the model

performance. Based on the above analysis, we finally selected the

top six vegetation indices that are most important for rice LAI

prediction for our analysis.

The temporal variation and distribution of rice LAI across ten

growth stages are illustrated in Figure 9. Overall, the LAI exhibits a

“rise-then-decline” pattern during the rice growing season. This is

primarily due to the redistribution of dry matter from vegetative

organs (e.g., leaves and stems) to reproductive organs (e.g., panicles)

after the booting stage. During the ripening stage, leaf senescence

occurs, leading to the gradual yellowing and drying of leaves and

consequently a decrease in LAI following its peak (Fang et al., 2014).

Taking the case plot shown in Figure 1 as an example, the canopy
Frontiers in Plant Science 10
reflectance at different growth stages is compared in Figure 9. It can

be observed that spectral reflectance changes markedly during

stages S1 to S3, with only minor fluctuations in subsequent stages.

In the near-infrared (NIR) range (842 nm), the reflectance initially

increases substantially and then becomes more variable. In the

visible band (475-668 nm), the reflectance initially increases

substantially and then becomes more variable. In the visible band

(490–680 nm), the reflectance generally shows a decreasing trend

followed by a slight increase.

This variation can be attributed to two main factors: (1) the

changing ratio of leaf to soil background throughout the rice growth

period; and (2) the intrinsic differences in reflectance between rice

plants and bare soil. Specifically, soil has higher reflectance in the

visible range but lower reflectance in the NIR band compared to rice

vegetation (Luo et al., 2022). Since the rice field consists of a mixture

of rice canopy and soil, the composition and proportion of these

components vary over time. Shortly after transplanting, the canopy

is dominated by exposed soil. As tillering and vegetative growth
FIGURE 8

Variable importance ranking based on random forest.
FIGURE 9

Trends in LAI, canopy reflectance, and vegetation indices in rice.
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progress, rice becomes the dominant component. From booting to

heading stages, the emergence of panicles further alters the canopy

composition. These dynamic changes in field components lead to

complex variations in canopy spectra, which can affect the accuracy

of optical remote sensing for rice growth parameter estimation

(Duan et al., 2019; Wang et al., 2021).

By combining different spectral bands, VIs enhance sensitivity

to specific crop parameters while reducing the influence of

confounding factors (Verrelst et al., 2015). Numerous indices

have been developed to minimize such disturbances, including

background soil reflectance, leaf pigment content, leaf water

content, leaf inclination angle, atmospheric conditions, and

structural parameters of leaves or canopies (Huete, 1988;

Rondeaux et al., 1996; Cao et al., 2017; Fang et al., 2017).

However, the performance of VIs can vary under different

conditions. For example, the NDVI is highly sensitive to soil

background when LAI is low (Shang et al., 2015), and it tends to

saturate at high LAI values, losing sensitivity as LAI increases (Liu

et al., 2012). The temporal variation in VIs during the rice growth

period is shown in Figure 9. Compared to reflectance, the temporal

trends of VIs exhibit more consistent patterns, with most VIs

increasing initially and then decreasing. Among them, NDVI and

OSAVI exhibit the most pronounced saturation. Overall, the

trajectories of VIs align more closely with those of LAI,

suggesting their potential for LAI estimation.
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3.2 Estimation of rice LAI based on
different VIs

A linear regression model was employed to estimate rice LAI

across all growth stages based on individual VIs selected in this

study. The results are presented in Figure 10. Except for RVI, the

other VIs yielded similar estimation accuracy, with R2 values

around 0.52 and RRMSE slightly above 20%. Among these, EVI2

produced the highest estimation accuracy, with R2 = 0.58, RMSE =

1.18, MAE = 0.99, and RRMSE = 20.24%. However, notable

deviations from the 1:1 line were observed in the LAI predictions

for NDVI and RVI at low LAI values (0-4), and saturation occurred

at high LAI values (> 4), where predicted values varied little despite

increases in measured LAI. This is because, in the mid-to-late

growth stages, canopy closure reduces red band reflectance

changes while NIR reflectance remains high, leading to VI

saturation (Gu et al., 2013). In contrast, NIRv performed better

for high LAI but showed clear underestimation for low LAI values,

likely due to soil background influence on NIR reflectance when the

canopy is sparse (Darvishzadeh et al., 2008). NDRE demonstrated

similar behavior to NIRv, but its estimates at low LAI were slightly

more accurate due to its reduced sensitivity to soil background

(Deng et al., 2018). Compared to NDVI, NIRv, OSAVI, NDRE, and

RVI, EVI2 performed slightly better across both low and high LAI

ranges, indicating its potential in reducing background noise and
FIGURE 10

Comparison of rice LAI estimation results based on different vegetation indices.
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mitigating saturation (Liu et al., 2012). These results suggest that

linear regression with single VIs is insufficient for accurately

estimating rice LAI across all growth stages.
3.3 Machine learning-based estimation of
LAI in rice

In addition to simple linear regression and traditional

multivariate regression methods (e.g., multiple linear regression

and stepwise regression), machine learning demonstrates distinct

advantages in multi-variable integration and nonlinear modeling.

For instance, by integrating data from multiple sensors, the RFR

method achieved high accuracy in estimating cotton LAI, with R² =

0.95 and RMSE = 0.33 (Yan et al., 2022). When comparing SVR,

RFR, and XGBoost for estimating jointing-stage winter wheat LAI

using fused spectral, texture, and height data, XGBoost exhibited
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the highest performance (R² = 0.88, RMSE = 0.69) (Zou et al., 2024).

Although various machine learning approaches have achieved

relatively high estimation accuracy, most studies rely on multi-

source sensors (e.g., RGB, multispectral, hyperspectral, and LiDAR)

or heterogeneous variable types (e.g., spectral, texture, and

structural features), which not only increase equipment and

computational costs, but also reduce interpretability, especially for

texture-based metrics.

In this study, SVR, RFR, PLSR, and XGBoost were applied to

estimate rice LAI across the entire growing season. The results

(Figure 11) indicate that, compared with simple linear regression,

machine learning algorithms significantly improved estimation

accuracy. Among them, SVR and PLSR showed limited

improvements, while RFR and XGBoost yielded more notable

performance gains. Of the four tested machine learning

algorithms, RFR achieved the highest accuracy for full-season LAI

estimation (R² = 0.81, RRMSE< 14%), representing an approximate
FIGURE 11

Comparison of rice LAI estimation results based on different machine learning methods.
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6% improvement in RRMSE over linear models using

individual VIs.
3.4 Deep learning-based estimation of LAI
in rice

Deep learning, a rapidly emerging subfield of machine learning,

constructs hierarchical models by simulating biological neural

networks, enabling automatic feature extraction and learning from

complex datasets (Yue et al., 2024; Liu et al., 2021). Compared to

conventional machine learning methods, deep learning models offer

superior feature extraction and generalization capabilities,

particularly for high-dimensional and heterogeneous data (Liu

et al., 2025; Yue et al., 2024). Fully connected neural networks

(FCNNs) are a typical deep learning architecture where each

neuron is connected to all neurons in the preceding layer, allowing

the model to learn intricate patterns and features (Jia and Zhang,

2023). With the development of CNNs, it has become feasible to

extract deeper image features, making CNN-based approaches

particularly effective for LAI estimation (Yang et al., 2025).

In this study, four deep learning models, DNN, LSTM, CNN,

and CLA, were employed to estimate rice LAI across the full growth

period. As shown in Figure 12, compared to linear regression and

most machine learning models (except RFR), deep learning models
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substantially improved LAI estimation accuracy. The CLA model

achieved the best performance (R² = 0.92, RRMSE< 9%), while

other deep learning models exhibited estimation errors above 10%.

Notably, not all deep learning models outperformed traditional

machine learning: both DNN and LSTM showed lower accuracy

than RFR, with estimation errors exceeding 15%, compared to<14%

for RFR. CNN yielded higher accuracy than all machine learning

models, though lower than CLA. Additionally, deep learning

models demonstrated superior performance in estimating both

low and high LAI values.

Previous studies have shown that DNN models outperformed

PLSR, SVR, and RFR when estimating maize LAI using multi-modal

UAV data (RGB, multispectral, and thermal infrared), achieving R²

= 0.89 and RRMSE = 12.92% (Liu et al., 2021). The integration of

canopy spectral, structural, thermal, and texture features frommulti-

sensor UAV imagery has also demonstrated the advantages of DNNs

in soybean yield estimation (Maimaitijiang et al., 2020). Moreover,

combining vegetation indices, texture, and VI-derived deep features

through a deep learning model (ResNet50) has further improved

maize LAI estimation accuracy (Qiao et al., 2022). These findings

suggest that leveraging structural and multi-modal data beyond

spectral features holds great potential for enhancing rice LAI

estimation accuracy, warranting further investigation.

Furthermore, in order to explore the effect of different VI

combinations on the accuracy of deep learning models. We
FIGURE 12

Comparison of rice LAI estimation results based on different deep learning models.
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respectively take the top six, top ten and top fifteen VIs in the

importance ranking as the inputs to the CLA model, and a

comparison of the results is shown in Figure 12. It can be found

that it is not the case that the more input variables, the higher the

model accuracy. After filtering the importance of variables, the CLA

model obtained the highest accuracy of rice LAI prediction when

the first six VIs were used as inputs. When the VIs increased, the

model accuracy gradually decreased. When all VIs were input, the

model accuracy was the lowest. The above results indicate that

redundant variables negatively affect the accuracy of deep learning

models. Therefore, the screening of input variables is necessary

when fusing multivariate features.
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3.5 Comparison of model performance
with existing studies

The proposed CLA model demonstrated superior performance

in rice LAI estimation compared to existing approaches. As shown

in Table 3, our model achieved an R² of 0.92 and RRMSE of 8.96%,

outperforming previous studies using similar UAV data. For

instance, the maize LAI predicted was reported R²=0.89 and

RRMSE=12.92% with a DNN model by fusing multimodal

remote sensing data (RGB + multispectral + thermal infrared)

(Liu et al., 2021), while another maize LAI estimation study

obtained R²=0.87 using texture-enhanced vegetation indices
TABLE 3 Comparison of the performance of the LAI estimation model in this study with the accuracy in existing studies.

Models Crops R2 RMSE MAE RRMSE (%) Reference

DNN maize 0.89 0.47 0.38 12.92 (Liu et al., 2021)

SVR maize 0.87 0.24 / / (Zhang et al., 2022)

Gradient-boosting decision trees (GBDT) maize 0.78 0.44 0.30 30.79 (Liu et al., 2023)

RFR Rice 0.65 0.92 0.72 / (Zhang et al., 2024)

SVR Rice 0.84 0.40 / / (Vishwakarma et al., 2025)

CLA Rice 0.92 0.52 0.42 8.96% This study
FIGURE 13

Comparison of LAI estimation accuracy in rice.
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(Zhang et al., 2022). Few studies have obtained high LAI estimation

accuracy using only multispectral remote sensing data. These

comparisons confirm that the CLA framework advances the state-

of-the-art in crop LAI estimation, while maintaining computational

efficiency suitable for operational agricultural monitoring.

However, cross-validation across different geographical regions

and growing seasons remains necessary to fully assess its

generalization capability. The performance improvement of the

CLA model can be attributed to three key factors: (1) the effective

integration of spatial-temporal features through CNN-LSTM

architecture; (2) the attention mechanism’s ability to weight

critical growth stages; and (3) comprehensive coverage of all

phenological stages in model training.
3.6 Comparison of estimation accuracy

To further compare the performance of different models in

estimating full-season rice LAI, a comprehensive comparison of

accuracy metrics is presented in Figure 13. Among the screening

vegetation indices, NDVI, NIRv, OSAVI, NDRE, and EVI2 showed

similar performance (R² ≈ 0.5, RMSE ≈ 1.3, MAE ≈ 1, RRMSE ≈
Frontiers in Plant Science 15
22%), while RVI performed slightly poorly. Among machine

learning methods, RFR showed the best performance (R² = 0.81,

RMSE< 1, MAE ≈ 0.6, RRMSE< 14%), while other machine learning

algorithms performed comparably. Overall, machine learning

significantly outperformed linear regression models based on

individual vegetation indices. Among deep learning models, CLA

achieved the highest accuracy (R² = 0.92, RMSE< 0.6, MAE< 0.5,

RRMSE< 9%), while other deep learning models performed

similarly to RFR. These results demonstrate the superior

capability of deep learning models in capturing nonlinear and

spatiotemporal patterns in rice LAI estimation.

To evaluate model performance across different LAI ranges,

measured LAI values were stratified into three groups: low (1-3),

medium (3-6), and high (6-10). Estimation errors for each range are

shown in Figure 14. When LAI< 3, simple linear regression based

on most vegetation indices produced errors exceeding 100%. In

contrast, all machine learning models achieved errors< 80%, with

RFR achieving< 50%. Deep learning models performed even better,

with CLA reducing error to about 20%. For LAI values between 3

and 6, estimation errors were generally below 30% for all methods,

around 20% for machine learning models, and below 20% for deep

learning models, with CLA again achieving the lowest error (<
FIGURE 14

Comparison of estimation errors for refined rice LAI range.
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15%). In the high LAI range (6-10), model performance slightly

declined: linear models yielded about 15% error, machine learning

about 13%, and CLA< 8%. Overall, LAI estimation accuracy

improved as rice developed, highlighting the robust performance

of the proposed CLA model across all growth stages.

Although this study utilized data covering the entire growing

season for model development, a notable limitation is the use of

only a single-year dataset, which does not account for interannual

variability. Consequently, the model’s generalizability across

multiple years remains unverified. To address this limitation,

future studies should incorporate multi-season validation,

including: (1) testing model performance under different climatic

conditions (e.g., drought, excessive rainfall); (2) evaluating

robustness against interannual variations in crop management

practices; and (3) expanding datasets to include multiple growing

seasons to enhance model reliability. This improvement would

further strengthen the model’s applicability in precision

agriculture under varying environmental conditions.
4 Conclusions

This study developed a CLA model based on UAV multispectral

imagery and deep learning techniques to achieve high-accuracy

estimation of rice LAI across all growth stages. Comparative

analyses were conducted against traditional vegetation index-based

regression and machine learning methods. The main conclusions are

as follows:
Fron
1. The proposed CLA model effectively integrates CNN,

LSTM, and an attention mechanism to capture the

spatiotemporal features of canopy spectral data. It

significantly improves the accuracy of full-season LAI

estimation (R² = 0.92, RRMSE< 9%), outperforming

traditional linear regression and individual machine

learning models.

2. Linear regression models based on vegetation indices are

limited by soil background effects and saturation issues,

yielding relatively low estimation accuracy (R² ≈ 0.5).

Although machine learning methods such as RFR show

improved performance (R² = 0.81), deep learning models,

particularly CLA, demonstrate superior capability inmodeling

nonlinear relationships and enhancing generalization.

3. The CLAmodel exhibits robust performance across different

LAI ranges. Notably, it achieves the lowest estimation error

(~20%) in the low LAI range (1-3), effectively addressing the

challenges faced by traditional approaches during early

growth stages and in dense canopy conditions.
Subsequent studies should investigate the merging of

multimodal data (e.g., hyperspectral and LiDAR) with deep

learning models to further enhance estimation robustness under

complex conditions. In addition, optimizing lightweight model

architectures will be essential for facilitating practical deployment

in agricultural monitoring.
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