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Leveraging window-pane
analysis with environmental
factor loadings of genotype-
by-environment interaction
to identify high-resolution
weather-based variables
associated with plant disease
Vinicius C. Garnica and Peter S. Ojiambo*

Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North
Carolina State University, Raleigh, NC, United States
Designing and identifying biologically meaningful weather-based predictors of

plant disease is challenging due to the temporal variability of conducive

conditions and interdependence of weather factors. Confounding effects of

plant genotype further obscure true environmental signals within observed

disease responses. To address these limitations, this study leveraged window-

pane analysis with feature engineering and stability selection, to identify weather-

based variables associated with latent environmental factors (l̂ ) of a factor

analytic model explaining genotype-by-environment (GEI) effects on disease

severity in multi-environment trials. Using Stagonospora nodorum blotch of

wheat as a case study and a two-stage feature engineering procedure, hourly

weather data, i.e., air temperature (T), precipitation (R), and relative humidity (RH),

were aggregated into 1,530 distinct time series, in the first stage feature

engineering procedure. These series were correlated daily with l̂ throughout

the second half of the wheat growing season. In the second stage procedure,

significant daily weather variables were consolidated into optimal

epidemiological periods relative to wheat anthesis, yielding 60, 19, and 28

second-level weather-based variables derived from the first (l̂ 1), second (l̂ 2),

and third (l̂ 3) environmental factor loadings, respectively. Among the weather-

based predictors identified, fa1.41_18.TRH.13T16nRH.G80.daytime.sum_25 and

fa1.11_5.R.S.dawn.sum_10, were positively associated with l̂ 1 (i.e., the dominant

environmental gradient underlying variation in SNB severity across environments)

pre-anthesis, during a period of 24 and 7 consecutive days, respectively. In

contrast , fa1 .22_16.TR.19T22nR.G0.2 .dawn.sum_20 and fa1 .2_-

12.RH.L35.daytime.sum_15 were negatively associated with l̂ 1 at pre-anthesis

and post-anthesis, respectively. Additional predictors derived from T, R, and RH,

were identified up to 63 days pre-anthesis. However, no single predictor

consistently maintained an association with l̂ during the entire study period.
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This framework advances the development of weather ‘markers’ for detailed

environmental profiling of GEI drivers and improves upon prior approaches that

limited window-pane analysis to disease outcomes from susceptible hosts to

identify weather-based variables for predicting plant disease epidemics.
KEYWORDS

disease prediction, environmental covariates, factor analytic model, feature
engineering, moving average, stability selection
Introduction

Weather exerts a substantial influence on the dynamics plant

disease at different spatio-temporal scales. Temperature, humidity,

and precipitation affect pathogen life-cycle processes, such as

sporulation, dispersal and germination, while also modulating

host defense mechanisms (Noel et al., 2024). This interplay

among weather factors, often driven by mesoscale weather

turbulences, is particularly critical during the lag phase of

epidemics as it affects the onset, rate and intensity of disease

(Schein, 1963). Weather also affects plant physiological processes

that influence canopy development, flowering, and yield. Since crop

plants are susceptible to disease, weather factors that affect pathogen

reproduction and dispersal will influence whether disease will occur

(Madden et al., 2007). Thus, weather factors that have been shown

to be correlated with a disease outcome are subsequently used as

predictors in models for predicting disease epidemics. However,

designing and identifying useful weather-based predictor variables

within the complex network of weather factors is challenging and

has long been a key research topic in botanical epidemiology

(Coakley et al., 1988; Shah et al., 2019). A common approach

involves aggregating daily weather data over fixed calendar periods

or key crop growth stages (Cucak et al., 2019; Mehra et al., 2017).

However, fixed temporal frameworks may inadequately capture

epidemic dynamics, since ecological processes are inherently fluid,

and favorable conditions often arise intermittently. Thus, useful

predictors of plant disease need to integrate both biological

relevance (e.g., pathosystem-specific temperature thresholds) and

critical temporal windows, because sporadic favorable conditions

alone are rarely sufficient to trigger an epidemic.

Botanical epidemiologists commonly mine a time series of

weather variables to identify periods and variables correlated with

presence of disease (Carisse et al., 2018). A popular approach for

aggregating weather data is the window-pane analysis, which

identifies key time-window lengths or temporal ‘hotspots’ where

weather variables are significantly associated with disease intensity

during the growing season (Coakley et al., 1988; Kriss et al., 2010).

This technique investigates statistical correlations between weather

features, summarized within discrete fixed-length intervals, i.e.,

‘window-pane’, and a disease outcome. By varying the window

length, numerous overlapping windows are created. With the
02
ending points of a window sliding along a time series, the

aggregated variables themselves evolve into a time series. Further,

applying feature engineering (Verdonck et al., 2024) to hourly

weather data enables a high-resolution window-pane analysis

that’s provides a fine-scale representation of environmental

factors associated with a disease outcome (Dalla Lana et al.,

2021a; Sanjel et al., 2024; Webster et al., 2023). However, one

criticism of the window-pane is the multiple correlation tests that

can lead to inflated Type I error rates due to the exhaustive search

for associations in time (Shah et al., 2019). As the number of

hypotheses tested increases, so does the risk of detecting false-

positive correlations. To address this concern, several variable

selection techniques such as the Simes’ method and machine

learning variable mining have been adopted (Gouache et al., 2015;

Kriss et al., 2010; Sanjel et al., 2024). In this study, we employ

stability selection, a feature selection technique in machine learning

that combines resampling methods with regularization (Bodinier

et al., 2023; Meinshausen and Bühlmann, 2010), to identify sparse

and non-redundant sets of weather-based predictors for

plant disease.

Studies on weather-disease associations using window-pane

analysis in botanical epidemiology typically use disease

observations from selected susceptible cultivars in field surveys or

variety performance trials as the response variable (Kriss et al.,

2010). While this simplifies the analysis, it assumes that the

identified weather patterns uniformly influence disease

development across all cultivars. In addition, the selected

susceptible cultivars may not represent cultivars planted by

growers, and their performance may not reflect realistic field-level

cultivar performance. Further, cultivar reaction to disease can vary

in response to environmental factors, expressing genotype-by-

environment interaction (GEI) that leads to differential responses

of the same genotype across various environments (Garnica, 2024;

Malosetti et al., 2013; Twizeyimana et al., 2008). Such location-

specific cultivar rank changes are common in large multi-

environment trials (MET) that lack universally susceptible checks

and employ commercial cultivars that have undergone multiple

selection cycles. Consequently, a highly susceptible cultivar in one

environment may perform markedly differently in another

environment. Thus, a more practical approach would be to model

the GEI effect with a factor analytic (FA) linear mixed model
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(Resende et al., 2022; Smith et al., 2001) and extract appropriate

model outputs for use as response variables in window-pane

analysis. A FA model, similar to principal component analysis,

partitions GEI effects into kth-order components: environmental

loadings (l, representing environmental drivers), genotypic scores

(ς, representing plant genotype effects) and residual variances (y ).

Here, l captures orthogonal environmental drivers that shape

phenotypic responses, while still incorporating complete cultivar

trial data. Values of l can then be associated with weather variables

to identify biologically relevant weather-based predictors for plant

disease. This approach has been used to associate environmental

variables to quantitative traits in crop (Azevedo et al., 2023; Rogers

et al., 2021) and animal (Sae-Lim et al., 2014) systems.

In this study, we devise a high-resolution window-pane

analytical framework to link hourly weather data to l from a FA

analysis of GEI effects in MET of plant disease response. This

framework is applied to Stagonospora nodorum blotch (SNB) of

winter wheat as a case study. The disease is caused by the fungus

Parastagonospora nodorum and is prevalent in regions with warm,

humid conditions and frequent rainfall (Shanner and Buechley,

1995). Yield losses of up to 30% have been reported in the Eastern

and Pacific Northwest regions of the U.S., Western Australia, and

Europe (Murray and Brennan, 2009). In the Southeastern U.S.,

severe SNB epidemics occur sporadically, with the disease being

driven primarily by moderate temperatures and moist conditions. A

risk model, developed based on accumulated temperature and

moisture, performed well in predicting SNB onset in North

Carolina (Mehra et al., 2017). However, the model was found to

over-predict disease onset in the Piedmont region of the state

(Adhikari et al., 2023a), highlighting a need to further refine

weather predictors of SNB. Thus, the objective of this study was

to identify weather-based predictors of SNB associated with l using

window-pane analysis augmented by stability selection. This

framework is expected to improve on modeling efforts on SNB

for accurate disease prediction and facilitate more targeted disease

management strategies. Beyond SNB, this framework advances

environmental profiling, offering potential for broader

applications across agricultural systems where GEI plays a critical

role in shaping biological outcomes of interest.
Materials and methods

Methodological overview

A schematic representation of the workflow outlining the steps

used to identify weather-based variables associated with plant

disease is provided in Figure 1. The key steps can be summarized

as follows: i) Extraction of environmental loading: obtaining rotated

estimates of environmental loadings (l̂ 1, l̂ 2, and l̂ 3; collectively

referred to as l̂ ) from the analysis of GEI using a factor analytic

linear mixed model (FA). In this study, l̂ were obtained from FA

analysis of SNB data collected from MET in North Carolina

(Garnica, 2024); ii) First-level feature engineering: creating a

matrix of first-level weather-based variables from hourly weather
Frontiers in Plant Science 03
data based on the epidemiology of SNB; iii) Stability selection:

applying the stability selection algorithm on the weather matrix to

identify consistent associations between l̂ and first-level weather

variables over time; iv) Bootstrap correlation analysis: perform

bootstrap Spearman correlation analysis to evaluate the strength

of stable associations between first-level weather-based variables

and l̂ ; v) Epidemiological periods: visualizing periods of continuous

disease risk via heatmaps, and vi) Second-level feature engineering:

aggregating first-level weather predictors over optimal

epidemiological period for each first-level weather variable to

refine the library of predictors.
Response variables

The dataset analyzed in this study, originally curated by Garnica

(2024), is referred to as the ‘SNB dataset’. It comprises outputs of a

third-order FAmixedmodel evaluating the performance and stability

of 18 commercial winter wheat cultivars to SNB from 2021 to 2024

across 18 environments in North Carolina. These outputs are l̂ 1, l̂ 2,

and l̂ 3 and represent the estimated environmental loadings of the

final SNB severity. Disease severity was expressed as the diseased leaf

area (%), collected at Zadoks 75 – 80 growth stages (Zadoks et al.,

1974). Essentially, these loadings represent latent environmental

patterns that are linked to disease severity variation across different

environments. Specifically, l̂ 1 captures the dominant environmental

gradient most strongly aligned with changes in disease severity,

while l̂ 2 and l̂ 3 represent secondary and tertiary orthogonal

environmental patterns, respectively. Thus, each environment in

the ‘SNB dataset’ has three l̂ outputs as responses, resulting in a

total of 54 (= 18 environments × 3 l̂ s) measurements that were used

as responses in the study.
First-level feature engineering

Hourly weather observations were obtained from on-site

weather monitoring stations (WatchDog 1000 Series Micro

Station, Spectrum Technologies, Aurora, IL) equipped with

internal sensors for air temperature (T; °C; accuracy ± 0.6 °C),

dew point (D; °C; accuracy ± 0.6 °C), precipitation (R; mm;

resolution 0.2 mm), and relative humidity (RH; %; accuracy ±

3%). Sensors were positioned about 1.5-m above the soil surface in

the center of each field site. Collected hourly weather data (h =[D, R,
RH, T]) extended from early-February (around 60 days before

disease onset) to the last disease assessment date (around mid-

May). This timeframe coincided with critical phases of SNB onset

and development. Prior to data processing, the h time series was

visually inspected to detect outliers and missing data. Data gaps due

to sensor failure were filled-in with hourly weather records from the

ECMWF, ERA5, and ERA5-Land reanalysis datasets accessed

through the Open-Meteo API (Zippenfenig, 2023). Sensors

malfunctioned at three of the eighteen sites for about 20 days

during the growing season and the missing data were added based

on the reanalysis records.
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Drawing on previous studies exploring weather-disease

associations (Dalla Lana et al., 2021a) and the sensitivity of weather

sensors, h was engineered into various weather-based variables

encompassing the mean, minima, maxima, cumulative summaries

of hours meeting specific conditions, combinations of these

summaries, and indices, such as dew point depression (DPD; °C),

vapor pressure deficit (VPD, kPa), and growing degree days (GDD; °C)

(Table 1). To explore the biological relevance of oscillations in

RH and T on disease dynamics, a z-score peak detection algorithm

was used. This algorithm triggers a signal (-1 or +1) when a new data

point deviates by a set number of standard deviations from themoving

average. The parameters are the lag (size of the moving average),
Frontiers in Plant Science 04
threshold (z-score emitting signals), and influence (algorithm

sensitivity; set to 0 in this study) (Brakel, 2014).

Weather-based variables were further summarized across

various intra-day periods; 24-hour, daytime, nighttime, dawn (8-

hour period starting 4 hours before sunrise), and dusk (8-hour

period starting 3 hours before sunset). Intra-day periods were

defined using site-specific sunrise and sunset times to account for

seasonal variation (e.g., shorter nights in summer). This aimed to

identify transitory variables associated with SNB dynamics.

Weather variables were then aggregated into six rectangular

(Pierre et al., 2021) rolling windows (w) of 5, 10, 15, 20, 25, and

30 days in length (i.e. , w5,  w10,  w15,  w20,  w25, and w30,
FIGURE 1

A schematic representation of the workflow adopted to identify weather-based variables associated with Stagonospora nodorum blotch in winter

wheat from a multi-environmental trial. Briefly, environmental loading factors, l̂ , which are outputs of a third-order factor analytic (FA3) linear mixed
model, are used as response variables. A first-level feature engineering is then used to create a matrix of time series variables. A stability selection

algorithm is subsequently used to identify first-level weather-based variables consistently associated with l̂   in time and bootstrap correlation is
then performed. Second-level feature engineering is used to aggregate significant first-level weather-based predictors over optimal epidemiological
period and heatmaps used to visualize periods of continuous risk for each predictor.
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TABLE 1 Description of weather variables used to evaluate their association with environmental loading factors of a factor analytic model explaining
genotype-by-environment interaction.

Abbreviation Description

Relative humidity, (RH) %

RH.A Mean RH

RH.max Maximum RH

RH.min Minimum RH

RH.AMP Daily amplitude in RH

RH.L35 Number of hours with RH ≤ 35%

RH.G90 Number of hours with RH ≥ 90%

RH.40.rl.count6 Number of events with at least 6 consecutive hours of RH ≤ 40%

RH.90.rl.count6 Number of events with at least 6 consecutive hours of RH ≥ 90%

RH.40.rl.count8 Number of events with at least 8 consecutive hours of RH ≤ 40%

RH.90.rl.count8 Number of events with at least 8 consecutive hours of RH ≥ 90%

RH6.peak4 Number of oscillations (positive and negative) in RH within a range of 4 standard deviation

Temperature (T), °C

T.A Mean T

T.max Maximum T

T.min Minimum T

T.AMP Daily amplitude in T

T.L0 Number of hours with T ≤ 0°C

T.3T7 Number of hours with 3°C ≤ T ≤ 7°C

T.7T10 Number of hours with 7°C ≤ T ≤ 10°C

T.10T13 Number of hours with 10°C ≤ T ≤ 13°C

T.13T16 Number of hours with 13°C ≤ T ≤ 16°C

T.16T19 Number of hours with 16°C ≤ T ≤ 19°C

T.19T22 Number of hours with 19°C ≤ T ≤ 22°C

T.22T25 Number of hours with 22°C ≤ T ≤ 25°C

T.25T28 Number of hours with 25°C ≤ T ≤ 28°C

T.G28 Number of hours with T ≥ 28°C

T6.peak4 Number of oscillations (positive and negative) in T within a range of 4 standard deviations from a 6-h moving average

Precipitation (R), mm

R.S Total precipitation (mm)

R.AH Number of hours with R > 0 mm

R.1.rl.max Maximum number of consecutive hours with R ≥ 1 mm

R.2.rl.max Maximum number of consecutive hours with R ≥ 2 mm

R.0.5.rl.count5 Number of events with at least 5 consecutive hours of R ≥ 0.5 mm

Combinations of T and RH (TRH)

TRH.16T19nRH.L40 Number of hours with 16°C ≤ T ≤ 19°C and RH ≤ 40%

TRH.19T22nRH.L40 Number of hours with 19°C ≤ T ≤ 22°C and RH ≤ 40%

TRH.22T25nRH.L40 Number of hours with 22°C ≤ T ≤ 25°C and RH ≤ 40%

(Continued)
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respectively). A total of 1,530 weather time series were generated

from a combinations of h, intra-day periods, and w. The naming

convention of first-level weather variables is based on the weather

element, feature engineering criteria, intra-day period, aggregation

function (sum or mean), and the length of w. For example,

RH.L35.dusk.sum_5 represents the cumulative dusk hours with

RH ≤ 35% over a 5-day rolling window.
Reference point

Window-pane analysis was conducted as described by Dalla

Lana et al. (2021a). The data processing and engineering processes

above yielded an inventory of six datasets, one for each w. Each

dataset included a vector of l̂ as the response variable and the

matrix of first-level time series weather variables as independent

variables. For correlation analysis, all series were synchronized to

the predicted anthesis date (Zadoks 50 growth stage; i.e., LAG = 0),

providing a standardized developmental timescale across

location-years. Anthesis marks floral initiation in wheat and is

often used as a reference point for various cultural practices,
Frontiers in Plant Science 06
including timing of the last fungicide application in wheat (Paul

et al., 2018).

The date of wheat anthesis in each environment was predicted

using a modified version of the growth stage model by Zhao et al.

(2021). This process-based model is a composite of four parameters

(Equations 1–6) namely: i) nonlinear daily thermal time (DTTd , °C),

ii) vernalization (fvd , days), iii) photoperiod (fpd , hours), and iv) a

unitless temperature stress factor (Tsd). The mathematical

formulations underlying the prediction model for phenological

events are described as follows:

PVTd = o
t

d=1

(DTTd  �fvd  �fpd � Tsd) (1)

where

DTTd =  

0 Td ≤ 1:5°C   or  Td ≥ 37°C

26* exp −( Td−26
2sp

� �2h � i
1:5°C < Td ≤ 26°C

26* 1 − Td−26
37−26

� �2h i
26°C < Td ≤ 37°C

8>>>><
>>>>:

(2)
TABLE 1 Continued

Abbreviation Description

Combinations of T and RH (TRH)

TRH.25T28nRH.L40 Number of hours with 25°C ≤ T ≤ 28°C and RH ≤ 40%

TRH.G28nRH.L40 Number of hours with T ≥ 28°C and RH ≤ 40%

TRH.3T7nRH.G80 Number of hours with 3°C ≤ T ≤ 7°C and RH ≥ 80%

TRH.7T10nRH.G80 Number of hours with 7°C ≤ T ≤ 10°C and RH ≥ 80%

TRH.10T13nRH.G80 Number of hours with 10°C ≤ T ≤ 13°C and RH ≥ 80%

TRH.13T16nRH.G80 Number of hours with 13°C ≤ T ≤ 16°C and RH ≥ 80%

TRH.16T19nRH.G80 Number of hours with 16°C ≤ T ≤ 19°C and RH ≥ 80%

TRH.19T22nRH.G80 Number of hours with 19°C ≤ T ≤ 22°C and RH ≥ 80%

Combinations of T and R (TR)

TR.3T7nR.G0.2 Number of hours with 3°C ≤ T ≤ 7°C and R ≥ 0.2 mm

TR.7T10nR.G0.2 Number of hours with 7°C ≤ T ≤ 10°C and R ≥ 0.2 mm

TR.10T13nR.G0.2 Number of hours with 10°C ≤ T ≤ 13°C and R ≥ 0.2 mm

TR.13T16nR.G0.2 Number of hours with 13°C ≤ T ≤ 16°C and R ≥ 0.2 mm

TR.16T19nR.G0.2 Number of hours with 16°C ≤ T ≤ 19°C and R ≥ 0.2 mm

TR.19T22nR.G0.2 Number of hours with 19°C ≤ T ≤ 22°C and R ≥ 0.2 mm

Weather indicesa

DPD Dew point depression (°C)

VPD Vapor pressure deficit (kPa)

GDD Sum of growing degree days (°C)
aDPD was calculated as described by Bosen (1958) as: DPD = T − ½(112 + 0:9T)RH0:125 − 112 + 0:1T�, where T and RH are mean air temperature (°C) and relative humidity (%), respectively.

VPD was calculated as: VPD = VPS − VPA, where VPS = 0:611� 10(7:5D)=(237:3+D) and VPA = VPS�  RH=100, where D is the dewpoint temperature (°C). GDD was calculated as GDD =
½(Tmax + Tmin)=2� –Tbase , where Tmax and Tmin are maximum and minimum temperatures (°C) and Tbase was 0 °C (Kimball et al., 2012).
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fvd =  

0 VDDd < 30   days
VDDd−30
80−30 30   days <  VDDd ≤ 80   days

1 VDDd > 80   days

8>><
>>:

(3)

VDDd =  

0 Td < −4°C   or  Td > 17°C
Td−(−4)
3−(−4) −4°C ≤  Td < 3°C

1 3°C ≤  Td < 10°C
17−Td
10−17 10°C ≤ Td ≤ 17°C

8>>>>><
>>>>>:

(4)

fpd =  

0 phd < 5   hours

phd−5
20−5 5   hours <   phd ≤ 20   hours

1 phd > 20   hours

8>><
>>:

(5)

and

Tsd   =  sin
p
2
Td − 1:5
26 − 1:5

� �
(6)

In this model, PVTd (°C days) represents the accumulated

thermal time from emergence (day 1) to day t, Td is the daily

average T, sp is a plant growth rate fixed at 7.6. The variable VD

Dd refers to accumulated vernalization days and phd is the daily

photoperiod. In this study, DTTd began accumulating on October 10,

20, and 30 in the Piedmont, Southeastern Plains, andMiddle Atlantic

Coastal Plain region, respectively, reflecting regional differences in

optimal wheat sowing timing in North Carolina (Post and Heiniger,

2021). An additional 148 degree days were added to PVTd to account

for sowing-to-emergence phase (Zhao et al., 2021). Anthesis was

reached when the adjusted accumulated PVTd at each environment

exceeded 500 °C days. All weather data for the wheat anthesis model

were sourced via the Open-Meteo API (Zippenfenig, 2023).
Stability selection

Stability-based LASSO-regression was used to assess joint

associations of SNB-l metrics with time series weather variables.

Stability selection is a feature selection technique in machine learning

that combines resampling methods (e.g., bootstrapping) with

regularized models to identify sparse, non-redundant sets of

predictor variables (Meinshausen and Bühlmann, 2010). The

method applies the LASSO regularization (Tibshirani, 1996) to

each resampling iteration. For example, consider the dataset DLAG =

(xij,   yj) for one of the six w investigated, where each observation of

DLAG is indexed by LAG (i.e., days relative to anthesis). In this dataset,

yj is the vector of l̂ 1j observed across j = 1, 2,…, n environments and

xij denotes the matrix of weather variables, indexed by j and i = 1, 2,

…, p, where p represents the total number of first-level weather

variables. The LASSO procedure applied on DLAG is defined as:

argmin on
j=1(yj −op

i=1b
T
ifxij)

2 + fop
i=1 bif
��� ���n o

, where f ≥ 0 is a

penalty parameter controlling the amount of shrinkage. LASSO

executes variable selection by gradually shrinking the model

parameters bi to zero as f increases. In this study, we generated
Frontiers in Plant Science 07
B = 1,000 bootstrap resampling datasets from DLAG. The selection

probability, pf(i), is calculated as: pf(i) = Cf(i)=B, where Cf(i) is the

number of times feature i is selected at penalty f across over B

bootstrap samples. The stability selection model (Vf,p ) consists of

features with pf(i) above a certain threshold p ∈ (0,   1), defined as

Vf,p = (i :   pf(i) ≥ p). Consequently, two tuning parameters (f,   p)
for Vf,p need to be calibrated. The tuning parameters were calibrated

by maximizing an internal stability score derived from the likelihood

of uninformative feature selection (Bodinier et al., 2023). The

resulting vector of stable first-level weather variable names was

then used to subset the variables within DLAG for subsequent

correlation analysis.
Daily bootstrap correlation analysis

The degree of association between stable first-level weather-

based variables and l̂ was examined using Spearman’s correlation

test. This rank-based correlation method is resilient to outliers and

is often used for non-linear associations of continuous variables. For

each stable variable and LAG of DLAG, mean (r̂ *) and 95%

confidence interval of estimates ½r̂ �
lower , r̂

�
upper� were calculated

from 1,000 bootstrap correlation samples. From the Central Limit

Theorem, the sampling distribution of r̂ approximates normality

for sufficiently large sample sizes (Efron, 1982). Daily correlation

analyses were conducted only when j ≥ 10.
Second-level feature engineering

Window-pane analysis identifies relevant variables associated

with response outcomes on a daily basis throughout the growing

season. However, intermittent weather effects may not be sufficient

to trigger biological processes that lead to an epidemic. To address

this, we aggregated first-level variables that exhibited continuously

significant daily associations (≥ 7 LAGs and 0 ∉ ½r̂ �
lower , r̂

�
upper�)

with l̂ , defining this as the optimal epidemiological period in the

SNB etiology. For instance, if RH.L35.dusk.sum_5 had an optimal

epidemiological period for l̂ 1 between LAGs 12 to 10, then the

corresponding second-level variable would be named

fa1.12_10.RH.L35.dusk.sum_5 (Figure 1). In this naming

convention, the prefix ‘fa1 ’ designates the first latent

environmental factor (l̂ 1), while ‘fa2’ and ‘fa3’ correspond to the

second (l̂ 2) and third (l̂ 3) environmental loadings, respectively.

This systematic labeling facilitated tracking of feature derivation

and biological relevance across the analytical framework. Further, if

in a given environment, RH.L35.dusk.sum_5 recorded 9, 18, 14, 5, 3,

2, and 1 hour(s) from LAGs 15 and 9, the aggregated second-level

variable, fa1.12_10.RH.L35.dusk.sum_5, was calculated as 10 hours

(= 5 + 3 + 2), representing the variable values at LAGs 12, 11, and

10. This methodology was systematically applied across all

environments to generate distributions for each second-level

numerical weather-based predictor. A description of weather-

based variables examined in this study is presented in Table 1.
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Performance of second-level weather-
based predictors

To evaluate the performance of identified second-level weather-

based variables as potential predictors of SNB severity, the average

SNB severity was calculated for all environments in the ‘SNB

dataset’ (Garnica, 2024). For selected second-level weather-based

variables, the average SNB severity was then plotted against

cumulative hours (or events) of each weather-based variable over

the optimum epidemiological period. Pearson correlation analysis

was then used to determine the direction and strength of the linear

relationship between the average SNB severity and cumulative

hours (or events) for each variable.
Software and code availability

Reproducible scripts and documentation related to this study

are available at https://github.com/vcgarnica/SNB_window_pane.

The code was written in R Studio (version 2024.04.2) and executed

in R (version 4.4.1) (R Core Team, 2024). Stability selection and

bootstrap correlation analyses were conducted on the North

Carolina State University Hazel High-Performance Computing

Cluster. Custom shell and R scripts managed job execution,

specifying core count, memory, local directory, and the R script.

Correlation results for each w and l̂ were saved as RData objects

and imported back into R Studio for visualization. Key R packages

used included furrr (Vaughan and Dancho, 2022), future

(Bengtsson, 2021), lubridate (Grolemund and Wickham, 2011),

meteor for obtaining site-specific photoperiod (Hijmans et al.,

2023), openmeteo for filling weather gaps and predicting anthesis

date (Pisel, 2023), rstatix for correlation analysis (Kassambara,

2023), sharp for stability selection (Bodinier, 2023), suncalc for

site-specific sunset and sunrise hours (Thieurmel and Elmarhraoui,

2022), and tidyverse (Wickham et al., 2019).
Results

Prediction of anthesis date

Anthesis date, defined as the day of year (DOY) when most

wheat cultivars in each environment began flowering, served as the

reference point for the window-pane analysis. The observed

anthesis date ranged from DOY 100 in KS23 to DOY 118 in

ROX24 (Table 2), with an average date of DOY 108 across all

environments. Averages of observed anthesis date by region were

DOY 110 (Piedmont), DOY 104 (Southeastern Plains), and DOY

108 (Middle Atlantic Coastal Plain). The model predicted anthesis

within ±5 days of the observed dates for about 83% of the

environments, except in LB23, SB23, and SB24, where deviations

of -8, +7 and +9 days, respectively, occurred (Table 2). Averages of

the predicted anthesis date within a region were within ±1 day of

the observed date of anthesis across all the regions.
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Descriptive analysis of weather-based
variables

A total of 1,307 first-level weather-based variables exhibited

stable associations with l̂ for at least one day within the study

period, with r̂ * values ranging from -0.93 to 0.92. Many variables

were associated with multiple l̂ components. For example, 1,038

variables were associated with l̂ 1, 1,111 variables with l̂ 2, and 929

variables with l̂ 3. While association strengths were consistent

across components, temporal patterns differed markedly, with

most variables exhibiting sporadic, single-day correlations rather

than sustained relationships over multiple days. For visualization,

we considered only weather-based variables showing continuous

associations (i.e., ≥ 7 LAGs) associated with l̂ 1, l̂ 2, and l̂ 3 (see

details below). A complete set of first-level weather variables

associated with each   l̂   can be accessed in the project’s

associated GitHub repository https://github.com/vcgarnica/

SNB_window_pane. Below, we describe results for each l̂ with

particular emphasis on l̂ 1, which is the dominant loading factor

explaining most of the environmental variations in SNB epidemics

(Garnica, 2024).

First-level weather-based variables associated with l̂ 1: Persistent

associations of first-level weather-based variables with l̂ 1 were

predominantly positive, except in a few cases involving the

families TR.19T22nR.G0.2 and RH.40.rl.count8 at pre-anthesis

and RH.L35 and T.A at post-anthesis (Figure 2). The earliest and

most prolonged associations of variables with l̂ 1 were observed

about 45 days pre-anthesis and involved three variable families;

TRH.13T16nRH.G80, R.0.5.rl.count5, and TR.3T7nR.G0. For

example, the variable R.0.5.rl.count5.dusk.sum_10 exhibited a

moderately positive association with l̂ 1 from LAG 47 to 24.

Variables of this same family, such as R.0.5.rl.count5.dusk.sum_25

and R.0.5.rl.count5.dusk.sum_30, displayed different and more

continuous temporal patterns (Figure 2). The variable

TRH.13T16nRH.G80.daytime.sum_30 exhibited a stronger and

less intermittent positive association with l̂ 1 from LAG 37 to 9.

Further, TR.3T7nR.G0.2.dawn.sum_30 exhibited a persistent and

positive association from LAG 37 to 12. Additional positive

a s soc i a t ions were observed near anthes i s w i th the

TR.16T19nR.G0.2 and TRH.16T19nRH.G80 families. Further,

weather variables reflecting oscillations in RH (e.g., RH6.peak4),

were positively associated 30 days pre-anthesis. Additional

variables, including those derived from R.S and T.AMP

conditions at dawn, also displayed positive associations with l̂ 1

around anthesis (Figure 2).

A few negative associations between first-level weather-based

variables and l̂ 1 were also detected, especially post-anthesis

(Figure 2). The earliest negative associations were observed

between LAG 56 and 32 involving variables from the family

RH.40.rl.count8.dusk at different w. Mid-season, negative

associations were identified for the family TR.19T22nR.G0.2 at

different w between LAG 42 to 10 days pre-anthesis. The

strongest negative associations were found post-anthesis with

family RH.L35. For example, RH.L35.daytime.sum_30 exhibited a
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negative association with l̂ 1 post-anthesis from LAG 5 to -18

(Figure 2). Indices based on DPD, GDD, and VPD did not exhibit

continuous significant associations with l̂ 1.

First-level weather variables associated with l̂ 2: Unlike for l̂ 1,

associations between first-level weather-based variables and l̂ 2

were predominantly negative (Figure 3), with only a few

exceptions (e.g., RH6.peak4.dusk, RH.90.rl.count6.dawn, and

T.3T7.dawn, each occurring at different temporal scales and w).

Early and strong negative associations with l̂ 2   were observed for

TR.19T22nR.G0.2.dusk (from LAG 58 to 50), T.G28.dusk (from

LAG 50 to 10) and intermittently for TRH.G28nRH.L40.dusk (from

LAG 42 to 21). Among these variables, the T.G28.dusk family

exhibited the most prolonged negative association with l̂ 2, while

TR.19T22nR.G0.2.dusk exhibited the strongest correlation with l̂ 2  

near anthesis and post-anthesis. Precipitation variables such as

R.0.5.rl.count5.24h at w25 and w20 and temperature-precipitation

combinations TRH.19T22nRH.L40.dawn at w15 and w10 also

showed negative correlations for more than 10 consecutive days

around and post-anthesis (Figure 3).

First-level weather variables associated with l̂ 3: First-level weather

variables associated with l̂ 3 exhibited a mix of positive and negative
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correlations (Figure 4). Early-season negative associations with l̂ 3 were

observed for the TRH.25T28nRH.L40.dawn (from LAG 64 to 36) and

T.3T7.dusk (from LAG 55 to 43) families. Mid-season, negative

associations with l̂ 3 were observed for TRH.13T16nRH.G80.daytime

and TRH.10T13nRH.G80.dawn families from LAG 40 and 12, while

post-anthesis, the TRH.22T25nRH.L40.nighttime family was associated

with l̂ 3 (Figure 4). Further, the variable RH6.peak4.nighttime.sum_20

was negatively associated with l̂ 3 from LAG 25 to 8 pre-anthesis, while

T.16T19.nighttime.sum_30 was positively associated with l̂ 3 in the 7

days leading up to anthesis (Figure 4).
Library of second-level weather-based
variables

Window-pane analysis involved two stages: first, identifying daily

associations between first-level variables and l̂ during the study

period (earl-February to mid-May), as described above; second,

consolidating first-level variables into optimal epidemiological

periods relative to anthesis to design second-level weather-based

variables. To qualify as a second-level variable, a variable had to
TABLE 2 Observed and predicted date of wheat anthesis in each environment in the ‘SNB dataset’ used to associate weather-based variables to
Stagonopora nodorum blotch in multi-environment trials.

Date of anthesis

Regiona Environmenta Observed (mm/dd/yy) Observed (DOY)b Predicted (DOY)b DDOYc

Piedmont AL24 4/15/2024 106 109 3

Piedmont CL22 4/24/2022 114 114 0

Piedmont MR22 4/22/2022 112 111 -1

Piedmont OX23 4/22/2023 112 111 -1

Piedmont RO24 4/27/2024 118 116 -2

Piedmont SB22 4/23/2022 113 115 2

Piedmont SB23 4/14/2023 104 111 7

Piedmont SB24 4/15/2024 106 115 9

Piedmont UN23 4/20/2023 110 105 -5

Southeastern Plains KS22 4/17/2022 107 107 0

Southeastern Plains KS23 4/10/2023 100 104 4

Southeastern Plains KS24 4/13/2024 104 107 3

Southeastern Plains LB23 4/18/2023 108 100 -8

Southeastern Plains LB24 4/18/2024 109 105 -4

Southeastern Plains RW22 4/13/2022 103 103 0

Middle Atlantic
Coastal Plains

BE24 4/13/2024 104 109 5

Middle Atlantic
Coastal Plains

PY22 4/20/2022 110 112 2

Middle Atlantic
Coastal Plains

PY23 4/22/2023 112 107 -5
aA description of geographic regions and environments is provided in Garnica, (2024).
bDOY denotes the day of the year.
cDifference between the observed date of anthesis and predicted date; predicted data was determined based on a modified version of a mechanistic model by Zhao et al. (2021).
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FIGURE 2

Heatmap illustrating the association of first-level weather variable (y-axis) with the first environmental loading factor, l̂ 1, during the growing season

(x-axis), relative to the anthesis date (LAG = 0). The response variable, l̂ 1, is from a factor analysis of foliar severity of Stagonospora nodorum blotch
in winter wheat in a multi-environment trial. The y-axis is limited to weather-based variables displaying continuously significant associations (≥ 7

LAGs and 0 ∉ ½r̂ �
lower , r̂

�
upper �) with l̂ 1 :   Colors in the heatmap denote the strength of Spearman correlation (r̂ *), ranging from -1 (yellow) to +1

(blue).
FIGURE 3

Heatmap illustrating the association of first-level weather variable (y-axis) associated with the second environmental loading factor, l̂ 2, during the

growing season (x-axis), relative to the anthesis date (LAG = 0). The response variable, l̂ 2, is from a factor analysis of foliar severity of Stagonospora
nodorum blotch in winter wheat in a multi-environment trial. The y-axis is limited to weather-based variables displaying continuously significant

associations (≥ 7 LAGs and 0 ∉ ½r̂ *lower , r̂
*
upper �) with l̂ 2 :   Colors in the heatmap denote the strength of Spearman correlation (r̂ *), ranging from -1

(yellow) to +1 (blue).
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exhibit a significant and continuous correlation (≥ 7 LAGs and 0 ∉
½r̂ �

lower , r̂
�
upper�) with l̂   during optimal epidemiological periods

and a 3-day separation between periods. Based on these criteria, 60,

19, and 28 second-level weather-based variables were identified for

l̂ 1 (Table 3), l̂ 2 (Supplementary Table S1), and l̂ 3 (Supplementary

Table S2). Variables from the TRH, T, and RH families exhibited a

more Gaussian-like distribution, while those related to R and TR

conditions were more skewed. Below, we highlight some second-level

weather variables that were associated with l̂ 1, l̂ 2, and l̂ 3.

The variable fa1.62_54.R.0.5.rl.count5.dawn.sum_15 was one of

the second-level weather-based variables associated with l̂ 1 early in

the season. This variable exhibited associations with l̂ 1 about 62

days pre-anthesis and with events ranging from 0 to 9 (mean = 3.3)

across environments (Table 3). Prior to anthesis, variables that

exhibited associations with l̂ 1 over the longest epidemiological

period included fa1.41_18.TRH.13T16nRH.G80.daytime.sum_25

that showed associations for 24 continuous days, with values

ranging from 183 to 836 hours across environments. This

variation in accumulated hours represents about 3.3% to 14.4% of

the possible 6,250 hours in this window (assuming a 10-hour

daytime period over a 25-day window). The other variable was

fa1.38_13.TR.3T7nR.G0.2.dawn.sum_30 that exhibited associations

with l̂ 1 for 26 days with values ranging from 0 to 140 hours

(mean = 17.4). The variable fa1.28_12.T.13T16.daytime.sum_30 was

associated with l̂ 1 for 18 days and accumulated up to a maximum

of 1,534 hours, the highest among all the variables examined

(Table 3). Post-anthesis, the variables fa1.-2_-9.T.7T10.

nighttime.sum_30 and fa1.-6_-13.RH.L35.daytime.sum_20 were

also associated with l̂ 1, accumulating up to 506 and 215 hours,

respectively, over an 8-day epidemiological period (Table 3).

Pre-anthesis, fa2.46_22.T.G28.dusk.sum_25 was associated with

l̂ 2 over the longest epidemiological period of 25 days, accumulating

a maximum of 39 hours (mean = 4.6) (Supplementary Table S1),
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reflecting a low but significant contribution of dusk hours with T ≥

28°C to disease severity variation. In contrast, fa2.51_44.T.3T7.dawn.

sum_25 was associated with l̂ 2 for only 8 days but accumulated a

maximum of 443 hours in a single environment, one of the highest

totals within this group of variables. Among variables associated with

l̂ 3, which accounted for the smallest portion of environmental

variation driving cultivar-specific SNB responses across

environments, fa3.31_22.TRH.13T16nRH.G80.daytime.sum_25 was

associated with l̂ 3 as early as 31 days before anthesis, accumulating

as much as 413 hours in one environment. The variable fa3.14_-

15.TRH.22T25nRH.L40.nighttime.sum_30 exhibited the longest

association with l̂ 3 post-anthesis, spanning a 30-day optimal

epidemiological period and reaching 29 hours in the highest

environment (Supplementary Table S2).
Performance of selected weather variables

Cumulative hours (or events) of selected second-level weather-

based variables associated with l̂ 1 were correlated with SNB severity

but the direction and strength of that association varied among the

variables (Figure 5). Among variables that were positively associated

with disease severity, significant correlations were observed for

fa1.38_30.R.0.5.rl.count5.dusk.sum_15 (r = 0.64; P = 0.004)

(Figure 5A), fa1.11_5.R.AH.dawn.sum_10 (r = 0.68; P = 0.002)

(Figure 5B), and fa1.41_18.TRH.13T16nRH.G80.daytime.sum_25

(r = 0.65; P = 0.006) (Figure 5D), while the correlation for fa1.-2_-

9.T.7T10.nighttime.sum_30 was marginally non-significant (r = 0.46;

P = 0.082) (Figure 5C). In contrast, correlations for

fa1.22_16.TR.19T22nR.G0.2.dawn.sum_20 (r = −0.42; P = 0.079)

(Figure 5E) were negative and marginally non-significant, and that

of fa1.2_-12.RH.L35.daytime.sum_15 (r = −0.40; P = 0.103)

(Figure 5F) was negative and non-significant.
FIGURE 4

Heatmap illustrating the association of first-level weather variable (y-axis) associated with the third environmental loading factor, l̂ 3, during the

growing season (x-axis), relative to the anthesis date (LAG = 0). The response variable, l̂ 3, is from a factor analysis of foliar severity of Stagonospora
nodorum blotch in winter wheat in a multi-environment trial. The y-axis is limited to meteorological variables displaying continuously significant

associations (≥ 7 LAGs and 0 ∉ ½r̂ �
lower , r̂

�
upper �) with l̂ 3 :   Colors in the heatmap denote the strength of Spearman correlation (r̂ *), ranging from -1

(yellow) to +1 (blue).
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TABLE 3 Description of weather-based variables associated with the first environmental loading factor, l̂ 1.

LAG Descriptive statisticsa (hours or events)

in q1 mean q3 max

0 0 3.3 9 9

0 2 11.1 15.5 32

0 0 4.2 10 10

0 1.8 11.6 17.8 31

0 0 2.8 8 8

16 74.2 110.4 133.5 240

0 0 3.3 9 9

0 0 1.4 3 8

28 115.2 154.6 179 298

0 0 4.4 0 36

183 334.8 431.1 491.2 836

0 0 2.6 0 28

0 0 13.8 0 105

0 0 6.7 0 60

0 0 1.6 3 9

0 0 17.4 0 140

244 376.2 508.5 592.8 978

6 14.2 27.4 37.8 47

0 10.2 35.7 45.8 130

0 6.2 15.3 20.8 60

0 0 5.9 12.8 22

685 915.8 1,138.80 1,354.00 1,534.00

0 0 8.4 14.8 44

182 243.2 328.9 399 473

0 0 7.4 16.2 26

(Continued)
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First-level weather-based variable
Duration
(days)

Second-level
weather-based variableStart End NAb

Pre-anthesis

R.0.5.rl.count5.dawn.sum_15 62 54 9 fa1.62_54.R.0.5.rl.count5.dawn.sum_15 6

R.2.rl.max.daytime.sum_15 59 52 7 fa1.59_52.R.2.rl.max.daytime.sum_15 4

R.0.5.rl.count5.dawn.sum_20 58 49 11 fa1.58_49.R.0.5.rl.count5.dawn.sum_20 6

R.2.rl.max.daytime.sum_20 55 49 7 fa1.55_49.R.2.rl.max.daytime.sum_20 4

RH.40.rl.count8.dusk.sum_25 47 40 7 fa1.47_40.RH.40.rl.count8.dusk.sum_25 1

TRH.13T16nRH.G80.daytime.sum_15 44 37 7 fa1.44_37.TRH.13T16nRH.G80.daytime.sum_15 0

RH.40.rl.count8.dusk.sum_30 43 35 8 fa1.43_35.RH.40.rl.count8.dusk.sum_30 2

R.0.5.rl.count5.dusk.sum_10 42 30 11 fa1.42_30.R.0.5.rl.count5.dusk.sum_10 0

TRH.13T16nRH.G80.daytime.sum_20 42 34 8 fa1.42_34.TRH.13T16nRH.G80.daytime.sum_20 0

TR.3T7nR.G0.2.nighttime.sum_25 41 27 9 fa1.41_27.TR.3T7nR.G0.2.nighttime.sum_25 0

TRH.13T16nRH.G80.daytime.sum_25 41 18 25 fa1.41_18.TRH.13T16nRH.G80.daytime.sum_25 0

TR.3T7nR.G0.2.dawn.sum_20 40 34 11 fa1.40_34.TR.3T7nR.G0.2.dawn.sum_20 0

TR.3T7nR.G0.2.dawn.sum_25 40 16 25 fa1.40_16.TR.3T7nR.G0.2.dawn.sum_25 0

TR.3T7nR.G0.2.nighttime.sum_30 39 22 10 fa1.39_22.TR.3T7nR.G0.2.nighttime.sum_30 1

R.0.5.rl.count5.dusk.sum_15 38 30 15 fa1.38_30.R.0.5.rl.count5.dusk.sum_15 0

TR.3T7nR.G0.2.dawn.sum_30 38 13 26 fa1.38_13.TR.3T7nR.G0.2.dawn.sum_30 1

TRH.13T16nRH.G80.daytime.sum_30 36 13 25 fa1.36_13.TRH.13T16nRH.G80.daytime.sum_30 0

RH6.peak4.nighttime.sum_10 35 28 8 fa1.35_28.RH6.peak4.nighttime.sum_10 0

TR.19T22nR.G0.2.daytime.sum_30 32 19 14 fa1.32_19.TR.19T22nR.G0.2.daytime.sum_30 0

TR.13T16nR.G0.2.daytime.sum_15 29 22 8 fa1.29_22.TR.13T16nR.G0.2.daytime.sum_15 0

R.0.5.rl.count5.dusk.sum_25 28 11 17 fa1.28_11.R.0.5.rl.count5.dusk.sum_25 0

T.13T16.daytime.sum_30 28 12 18 fa1.28_12.T.13T16.daytime.sum_30 0

TR.13T16nR.G0.2.daytime.sum_10 28 22 8 fa1.28_22.TR.13T16nR.G0.2.daytime.sum_10 0

T.13T16.daytime.sum_20 26 20 7 fa1.26_20.T.13T16.daytime.sum_20 0

R.0.5.rl.count5.dusk.sum_30 25 7 7 fa1.25_7.R.0.5.rl.count5.dusk.sum_30 0
m
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TABLE 3 Continued

LAG Descriptive statisticsa (hours or events)

min q1 mean q3 max

296 401.2 517.2 626.5 702

0 0 1.9 5.2 7

0 1.2 13.6 17.5 51

0 0 18.1 28.8 82

58 98.2 134.5 167.8 231

0 0 19.2 29.5 90

20 45 67.2 83.8 124

40 62 96.1 112.8 192

0 21.2 35 41.2 111

0 18 62.9 93.7 235.7

350 400.8 458.8 506 604

0 13.5 54.4 87.5 126

165 244.2 318.3 382.5 515

96 141.2 191.6 246 319

0 0 9.8 13.2 52

0 0 13.1 20.5 60

0 0 15.2 25.8 60

0 9.5 32.8 52 78

4 20.2 35.9 49 74

0 41 134.1 188.5 351

35 71.5 103.3 130.8 222

18.1 53.2 55.4 62.4 68.5

19.7 58 61.1 68.7 75.8

286 313.2 383.8 451.8 506

(Continued)
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First-level weather-based variable
Duration
(days)

Second-level
weather-based variableStart End NAb

Pre-anthesis

T.13T16.daytime.sum_25 25 17 14 fa1.25_17.T.13T16.daytime.sum_25 0

R.0.5.rl.count5.dusk.sum_20 22 16 8 fa1.22_16.R.0.5.rl.count5.dusk.sum_20 0

TR.19T22nR.G0.2.dawn.sum_20 22 16 8 fa1.22_16.TR.19T22nR.G0.2.dawn.sum_20 0

TR.13T16nR.G0.2.nighttime.sum_15 19 10 9 fa1.19_10.TR.13T16nR.G0.2.nighttime.sum_15 0

TRH.16T19nRH.G80.daytime.sum_20 15 4 9 fa1.15_4.TRH.16T19nRH.G80.daytime.sum_20 0

TR.13T16nR.G0.2.nighttime.sum_20 14 5 10 fa1.14_5.TR.13T16nR.G0.2.nighttime.sum_20 0

TR.16T19nR.G0.2.24h.sum_20 14 4 7 fa1.14_4.TR.16T19nR.G0.2.24h.sum_20 0

TR.16T19nR.G0.2.24h.sum_25 12 0 12 fa1.12_0.TR.16T19nR.G0.2.24h.sum_25 0

R.AH.dawn.sum_10 11 5 11 fa1.11_5.R.AH.dawn.sum_10 0

R.S.dawn.sum_10 11 5 8 fa1.11_5.R.S.dawn.sum_10 0

T.7T10.nighttime.sum_30 9 2 7 fa1.9_2.T.7T10.nighttime.sum_30 0

RH.L35.daytime.sum_10 6 0 7 fa1.6_0.RH.L35.daytime.sum_10 0

Post-anthesis

TRH.16T19nRH.G80.daytime.sum_30 13 -5 19 fa1.13_-5.TRH.16T19nRH.G80.daytime.sum_30 0

TRH.16T19nRH.G80.daytime.sum_25 12 -1 14 fa1.12_-1.TRH.16T19nRH.G80.daytime.sum_25 0

TR.16T19nR.G0.2.dawn.sum_10 8 -2 11 fa1.8_-2.TR.16T19nR.G0.2.dawn.sum_10 0

TR.16T19nR.G0.2.dawn.sum_15 7 -2 10 fa1.7_-2.TR.16T19nR.G0.2.dawn.sum_15 0

TR.16T19nR.G0.2.dawn.sum_20 6 -2 9 fa1.6_-2.TR.16T19nR.G0.2.dawn.sum_20 0

RH.L35.dusk.sum_15 4 -2 7 fa1.4_-2.RH.L35.dusk.sum_15 0

TR.16T19nR.G0.2.daytime.sum_30 3 -6 10 fa1.3_-6.TR.16T19nR.G0.2.daytime.sum_30 0

RH.L35.daytime.sum_15 2 -12 15 fa1.2_-12.RH.L35.daytime.sum_15 0

TRH.7T10nRH.G80.dawn.sum_20 2 -4 7 fa1.2_-4.TRH.7T10nRH.G80.dawn.sum_20 0

T.AMP.dawn.mean_10 0 -6 7 fa1.0_-6.T.AMP.dawn.mean_10 0

T.AMP.dawn.mean_15 0 -7 8 fa1.0_-7.T.AMP.dawn.mean_15 0

T.7T10.nighttime.sum_30 -2 -9 8 fa1.-2_-9.T.7T10.nighttime.sum_30 2
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TABLE 3 Continued

LAG Second-level
weather-based variable

Descriptive statisticsa (hours or events)

NAb min q1 mean q3 max

.-4_-13.TR.16T19nR.G0.2.dawn.sum_30 1 0 0 27.5 38 117

.-5_-13.TRH.13T16nRH.G80.dusk.sum_30 1 19 72 107 142 180

.-6_-12.RH.L35.24h.sum_15 2 0 9.5 61.9 92.5 167

.-6_-13.RH.L35.daytime.sum_20 2 0 15.8 95 150.5 215

.-6_-17.RH.L35.daytime.sum_25 2 0 29 167.9 257 490

.-7_-13.RH.90.rl.count8.dusk.sum_10 2 0 0 1.6 1.8 7

.-7_-13.RH.90.rl.count8.dusk.sum_30 2 0 0 5 7 21

.-7_-13.RH.L35.daytime.sum_30 2 12 43.5 136.2 193.2 462

.-7_-15.T.A.dusk.mean_30 2 70.1 155.9 154.8 166.2 172.1

.-8_-16.T.A.dusk.mean_20 2 53.4 154.3 153.6 171.3 176.6

.-11_-18.T.25T28.dusk.sum_30 3 24 72 122.6 171.5 203

maximum values. ‘Count’-based variables (e.g., R.0.5.rl.count5.dusk.sum_15) and ‘peak’-based variables (e.g., RH6.peak4.nighttime.sum_10) measure the number of

n the length of the growing season among environments.
lative to predicted wheat anthesis, LAG), along with its duration and descriptive statistics for the corresponding second-level aggregated variables, are presented.
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First-level weather-based variable
Duration
(days)Start End

Post-anthesis

TR.16T19nR.G0.2.dawn.sum_30 -4 -13 10 fa

TRH.13T16nRH.G80.dusk.sum_30 -5 -13 9 fa

RH.L35.24h.sum_15 -6 -12 7 fa

RH.L35.daytime.sum_20 -6 -13 8 fa

RH.L35.daytime.sum_25 -6 -17 12 fa

RH.90.rl.count8.dusk.sum_10 -7 -13 7 fa

RH.90.rl.count8.dusk.sum_30 -7 -13 7 fa

RH.L35.daytime.sum_30 -7 -13 7 fa

T.A.dusk.mean_30 -7 -15 9 fa

T.A.dusk.mean_20 -8 -16 9 fa

T.25T28.dusk.sum_30 -11 -18 8 fa

aNA is the number of missing values, min = minimum, q1 = first quartile, q3 = third quartile, and max =
events during the optimal period, while other variables indicate accumulated hours.
bMissing values in descriptive summary at the beginning and end of the season was due to variations
For each first-level variable, the start and end of the optimal epidemiological period (defined as days r
1

1

1

1

1

1

1

1

1

1

1
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Discussion

Plant disease prediction models are integral components of

decision support systems that help growers evaluate epidemic risk

and the need for intervention to prevent disease from economically

impacting yield (Madden et al., 2007; González-Domıńguez et al.,

2023). These models are driven by weather variables reflecting

conditions that favor disease development at critical crop

developmental stages during the season. In most cases, weather

variables from research linking weather conditions to a disease

outcome are used as predictors in these models. However, designing

and identifying suitable weather-based predictors continues to be a

significant challenge (Shah et al., 2019). This challenge could be due

to the stochastic nature of weather, the complex interactions among

weather variables and how this affects both the host and the

pathogen, confounding effects of host resistance on disease

expression under varying weather conditions, and the resolution

of weather data used to design predictors. To address these
Frontiers in Plant Science 15
limitations, this study developed an environmental profiling

pipeline to identify weather-based predictors associated with GEI

effects in MET. This framework captures potential weather-driven

GEI factors contributing to variability in disease severity across

environments and genotypes. A high-resolution window-pane

analysis was augmented with stability selection to identify robust

first level predictors associated with l̂ , that were aggregated over

optimal epidemiological periods to generate second-level variables.

Using SNB of wheat as a case study, several second-level weather-

based predictors that were significantly associated with l̂ 1 were

identified. Further, second-level weather variables such as

fa1.38_30.R.0.5.r l .count5.dusk.sum_15 , fa1.11_5.R.AH.

dawn.sum_10 and fa1.41_18.TRH.13T16nRH.G80.daytime.sum_25

were strongly correlated with disease severity. The identified

weather-based variables could be useful predictors in models that

assess the risk of SNB. To the best of our knowledge, this is the first

study that provides a framework to design and identify weather-

based predictors of plant disease associated with latent
FIGURE 5

Scatterplot of values of six selected second-level weather-based variables associated with the first environmental loading factor (l̂ 1) and the average
SNB severity (%) across environments in the SNB dataset. (A) fa1.38_30.R.0.5.rl.count5.dusk.sum_15, i.e., cumulative number of dusk events with at
least 5 consecutive hours of precipitation ≥ 0.5 mm over a 15-day rolling window from LAG 38 to 30 (e.g., days relative to the anthesis date);
(B) fa1.11_5.R.AH.dawn.sum_10, i.e., the cumulative number of precipitation events over a 10-day rolling window from LAG 11 to 5; (C) fa1.-2_-
9.T.7T10.nighttime.sum_30, i.e., the cumulative number of nighttime hours with air temperature between 7 – 10 °C over a 30-day rolling window
from LAG - 2 to -9; (D) fa1.41_18.TRH.13T16nRH.G80.daytime.sum_25, i.e., cumulative number of daytime hours with air temperature between
13 – 16 °C and relative humidity ≥ 80%, over a 25-day rolling window from LAG 41 to 18; (E) fa1.22_16.TR.19T22nR.G0.2.dawn.sum_20, i.e., the
cumulative number of dawn hours with air temperature between 16 – 19 °C over a 20-day rolling window from LAG 22 to 16; and (F) fa1.2_-
12.RH.L35.daytime.sum_15, i.e., the cumulative number of daytime hours with relative humidity ≤ 35%, over a 15-day rolling window from LAG 2 to
-12. Pearson correlation coefficient (r) and its associated P-value measure the strength of association between levels of a weather-based variables
and average SNB severity. The smoothed line represents predicted values and its corresponding confidence interval (gray area) generated by fitting a
linear model with the geom_smooth function in the R package ggplot2.
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environmental effects from analysis of MET using high-throughput

weather data.

Studies in botanical epidemiology that use window-pane

analysis to identify weather-based predictors of disease, have

typically relied on correlations between time series of weather

variables with disease from a susceptible cultivar (Coakley et al.,

1988; Dalla Lana et al., 2021a; Kriss et al., 2010; Pietravalle et al.,

2003; Sanjel et al., 2024). However, the use of disease from a

susceptible cultivar as a response variable does not accurately

represent the expected host response to the pathogen, since it is a

product of genetic, environmental and experimental noise. Further,

disease outcome is limited to a single environment within which a

trial is conducted. In this present study, l̂ , an estimated parameter

output from a FA model fitted to disease observations collected

from a cultivar performance MET, was used as the response

variable. As such, l̂ provides a more generalized measure of the

environmental qualities on disease development, devoid of genetic

factors, while incorporating data from all test cultivars. In this

study, l̂ was composed of three estimates of rotated environmental

loadings, i.e., l̂ 1, l̂ 2, and l̂ 3. The first loading l̂ 1 is the dominant

factor and second-level weather-based variables associated with l̂ 1

are expected to be the primary determinants of weather-driven

variations in the severity of SNB. In contrast, l̂ 2 and l̂ 3 played

secondary roles, with varying levels depending on the level of

association with specific weather variables. The use of l̂ as a

response variable in studies on weather-disease associations offers

a better characterization of the effect of environment on disease,

potentially improving inference of the influence of weather on a

disease outcome. Thus, this approach provides an advantage over

previous approaches that solely utilize raw disease data from

susceptible genotypes to identify weather predictors of disease

using window-pane analysis.

The relationship between weather and disease is complex due to

the potentially high number of non-linear associations and variable

interactions among weather factors during the growing season

(Cunniffe et al., 2015). Incorporating higher-order l̂ components

(l̂ 2 and l̂ 3) into the analysis, enabled uncovering of cultivar-

specific responses to temperature regimes. For example, variables

such as fa2.51_44.T.3T7.dawn.sum_25 (i.e., accumulated hours with

dawn temperatures between 3 - 7°C in late winter/early spring) and

fa2.12_-1.T.22T25.dusk.sum_30 (i.e., accumulated hours with dusk

temperatures between 22 - 25°C near anthesis) were associated with

l̂ 2, contributing to cultivar rank changes in SNB susceptibility

across environments. Temperature-sensitive SNB resistance has

been reported previously (Kim and Bockus, 2003; Da Luz and

Bergstrom, 1986). For instance, the reaction of wheat cultivar

AGSECO 7853 to SNB shifted from susceptible at cooler

temperatures (10 - 18°C) to moderately resistant at warmer

temperatures (21 - 29°C), while Heyne maintained resistance

across all temperatures, and Newton remained susceptible (Kim

and Bockus, 2003). This differential response may reflect

temperature-modulated expression of susceptibility genes like

Snn1, a wall-associated kinase with demonstrated temperature

sensitivity (Noel et al., 2024; Shi et al., 2016). Analogous

mechanisms occur in the wheat-Puccinia striiformis pathosystem
Frontiers in Plant Science 16
(Feng et al., 2018). Our empirical analyses suggest that temperature

regimes linked to l̂ 2 and l̂ 3 appear to affect host physiology or

pathogen virulence, driving environment-dependent variation in

cultivar performance in MET. Thus, incorporating the

corresponding variables into predictive models could improve

GEI resolution and accuracy of SNB prediction models at the

landscape level.

In this study, many of the identified weather-based predictors

associated with l̂ were not simple 24-hour summaries, but rather

intra-day conditions such as dawn, dusk, and even nighttime,

depending on the order of l̂ . This may be because daily averages

mask fine-scale weather variations that influence P. nodorum

processes such as spore production, deposition, and infection. El

Jarroudi et al. (2017) and Bernard et al. (2022) reported that intra-

day variations and oscillations in T and RH were positively

associated with the development of Septoria leaf blotch of wheat

caused by Zymoseptoria tritici but did not establish the time when

these oscillations coincided with disease development. Results of the

present study indicate these oscillations may play a role in the

development of SNB epidemics pre-anthesis. More specifically, the

variable fa1.35_28.RH6.peak4.nighttime.sum_10, which was

associated with l̂ 1 for 8 continuous days ~30 days pre-anthesis

and fa3.39_31.RH6.peak4.dusk.sum_25, which was associated with

l̂ 3 for 9 continuous days ~40 days pre-anthesis and other l̂ 3

-related variables, were found to influence disease dynamics. These

findings are consistent with observations by Scharen (1966), who

reported that drying and wetting cycles were conducive to the

production of pycnidia and the release of pycnidiospores of Septoria

nodorum. Thus, we expected to see a greater contribution of

oscillations in RH and T earlier in the season. We indeed

observed a strong positive association between another RH

oscillation variable (RH8.peak4.nighttime) and l̂ 1 for around 3

weeks about 50 days pre-anthesis, based on the 2022 and 2023 data.

However, this association weakened when the 2024 data was

incorporated into the analysis. Additional studies are needed to

better understand the role of these RH oscillations in the risk of

SNB, particularly during tillering and stem elongation.

Weather conducive to SNB development occurred in

discrete patterns rather than as continuous trends during the

growing season. For example, the frequency of precipitation

events lasting 5 hours or more with ≥ 0.5 mm of rainfall (e.g.,

fa1.62_54.R.0.5.rl.count5.dawn.sum_15), as early as 60 days pre-

anthesis, was associated with l̂ 1. In contrast, some weather-based

variables representing combinations of T and RH were associated

with l̂ 1 both pre-anthesis and post-anthesis. For example, first-level

variables such as TRH.13T16nRH.G80.daytime.sum and

TRH.16T19nRH.G80.daytime.sum were positively associated with

l̂ 1 early in the season pre-anthesis and post-anthesis, depending on

the rolling-day window used to summarize the weather data. Thus,

careful considerations are needed when selecting appropriate

weather-based variables as disease predictors. Predicting risk of

disease pre-anthesis is important in wheat, and thus weather-based

variables significantly associated with l̂ 1 early in the season will

probably be more appropriate. The significant association between

l̂ 1   and weather-based variables representing combinations of T
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and RH, is supported by the observation that for SNB, RH interacts

with temperature, with RH having a stronger effect on lesion

expansion under higher temperatures than at lower temperatures

(Adhikari et al., 2023b). Weather-based variables such as

R . 0 . 5 . r l . c o u n t 5 . d u s k . s um_3 0 a nd TRH . 1 3T 16nRH .

G80.daytume.sum_25, which persisted for over longer periods

during the season, were not always strongly associated with   l̂ 1

during the corresponding time periods. In contrast, variables such

R.0.5.r l . count5.dusk.sum_20 and TRH.13T16nRH.G80.

daytime.sum_25 that persisted for a relatively shorter time were

strongly associated with l̂ 1 within the corresponding temporal

window. In most cases, intermittent weather effects may not be

sufficient to trigger biological processes that lead to an epidemic.

Thus, optimal epidemiological periods were defined to identify first-

level variables that exhibited continuous significant association with

l̂ 1. This step ensured that the resultant second-level weather-based

variables would have effects that are adequate to trigger disease.

As latent environmental metrics, l̂ represent unknown

components that collectively capture influences of the environment,

including weather, biological, soil and other uncharacterized factors,

on disease. Since field trials in this study were conducted in the same

locations across different years, variations in l̂ within the SNB dataset

were thus predominantly driven by weather. This observation seems

reasonable since genetic variation in P. nodorum populations across

the region is low (Kaur et al., 2024). Weather variables were

differentially associated with l̂ , with each loading factor absorbing

complementary weather signals. The dominant loading factor l̂ 1 was

associated with weather-based variables that generally enhanced

disease risk, indicating an overall environmental predisposition to

increase risk of disease. In contrast, l̂ 2 and l̂ 3 were associated with

variables that reduced disease risk and likely captured environment-

drive variation in cultivar response. To improve robustness against

temporal offsets in weather-disease relationships, we aggregated

stable first-level variables (those with single-day associations with l̂
  components) over key epidemiological periods to create second-

level predictors. This approach provides an advantage over plant

disease prediction methods that rely solely on first-level weather

variables (Dalla Lana et al., 2021b), as it enhances the likelihood of

detecting weather drivers even when the optimal epidemiological

window shifts by 1 – 2 days. However, the presence of autocorrelation

in these second-level features may inflate the importance of the

predictors as described below. This arises because the moving

window approach aggregates information across overlapping time

intervals, meaning that consecutive windows often include many of

the same days. As a result, the derived variables are not temporally

independents, since the values for adjacent windows are correlated

due to shared underlying weather patterns. This redundancy can bias

effect size estimates or variable selection processes by over-

representing temporally clustered environmental signals.

Disentangling this autocorrelation is at best challenging, due to the

operations involving adjacent days within the optimal

epidemiological period. The matrix of weather-based predictors

identified in this study is analogous to DNA markers of plant

genotypes, and can be used to describe the ‘E’ component of the

GEI, casting multiple weather markers supporting wide-scale
Frontiers in Plant Science 17
environmental prediction (Costa-Neto et al., 2021; Resende et al.,

2022). This matrix could also be valuable for predicting disease risk as

it optimizes decisions across environments that may never have been

experimentally tested (Li et al., 2021; Piepho and Williams, 2024).

A granular feature engineering approach was used to identify

intricate weather-based variables associated with SNB risk. This

process produced a matrix of highly correlated elements, with over

1,500 time series evaluated daily for correlation with l̂   during the

growing season. Conducting such an extensive number of

hypothesis tests may lead to spurious correlations and increased

Type I error rate. Previous studies have handled this complexity in

various ways. Kriss et al. (2010) employed the Simes’ method

(Simes, 1986), while Gouache et al. (2015) applied a three-step

variable selection method combining elastic-net, cross-validation,

and classic stepwise selection to reduce the number of weather

variables examined. Others adopted a combination of biologically

meaningful criteria and expert knowledge to select weather factors

(Pietravalle et al., 2003; te Beest et al., 2009). Sanjel et al. (2024)

applied LASSO regression to the window-pane data and used cross

validation to tune the penalty parameter controlling the degree of

shrinkage. In this study, we employed stability selection

(Meinshausen and Bühlmann, 2010; Shah and Samworth, 2012),

which combines LASSO regularization and resampling techniques,

and an internal stability score (Bodinier et al., 2023) to automate

variable selection. Unlike traditional dimensionality reduction

methods, stability selection focuses on reproducibly detecting

interactions across data subsets, reducing the number of testable

hypotheses. To minimize the number of hypothesis tests, effective

feature engineering through careful selection of summary metrics

(e.g., means, minima, maxima or their combinations) is applied to

align with biologically meaningful thresholds and the sensitivity of

the weather sensors. Further, while there have been some valid

criticisms with the window-pane analysis, specifically with the use

of fixed-length windows for variable aggregation (Shah et al., 2019),

our approach generated interpretable predictors that captured

distinct temporal dimensions of SNB dynamics. For instance,

variable families differed in unique predictors, with some families

yielding a few predictors (e.g., RH6.peak4.nighttime, R.S.dawn,

RH.40.rl.count8.dusk), while others (e.g., RH.L35.daytime,

RH.L35.daytime) recurring across time windows. This balance of

diversity and redundancy demonstrates the capacity of the method

to capture both broad and granular weather signals.

In summary, there is growing interest in mining field-level

weather data for plant disease predictive modeling (Dalla Lana et al.,

2021b; Shah et al., 2019). This study examined a framework to

detect and quantify associations between weather variables and

metrics describing environmental components of GEI effects in

MET, using SNB as a case study. More specifically, since GEI effects

on SNB foliar severity were predominantly non-crossover (i.e.,

strictly positive l̂ 1) (Garnica, 2024), weather variables derived

from   l̂ 1 are expected to influence disease severity uniformly

across all cultivars, irrespective of the cultivar susceptibility

profile. In contrast, variables derived from l̂ 2 and l̂ 3, will likely

influence cultivar-specific rank changes across environments. The

latter reflects the differential response of cultivars to the local
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environment. Incorporating these weather variables in prediction

models will likely result in accurate estimates of the actual risk of

disease outbreak, which will help growers better determine the need

for intervention. The methodology described in this study can also

be customized to generate weather predictors for other host-

pathogen systems with similar attributes as SNB, provided there

is sufficient knowledge on weather factors driving the dynamics of

the disease of interest.
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Verdonck, T., Baesens, B., Óskarsdóttir, M., and vanden Brouck, S. (2024). Special
issue on feature engineering editorial. Mach. Learn. 113, 3917–3928. doi: 10.1007/
s10994-021-06042-2

Webster, R. W., Nicolli, C., Allen, T. W., Bishi, M. D., Bissonnette, K., Check, J. C.,
et al. (2023). Uncovering the environmental conditions required for Phyllachora
Frontiers in Plant Science 20
maydis infection and tar spot development on corn in the United States for use as
predictive models for future epidemics. Sci. Rep. 13, 17064. doi: 10.1038/s41598-023-
44338-6

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D. A., François, R., et al.
(2019). Welcome to the tidyverse. J. Open Source Software 4, 1686. doi: 10.21105/joss.01686

Zadoks, J. C., Chang, T. T., and Konzak, C. F. (1974). A decimal code for the growth
stages of cereals. Weed Res. 14, 415–421. doi: 10.1111/j.1365-3180.1974.tb01084.x

Zhao, H. D., Sassenrath, G. F., Zambreski, Z. T., Shi, L., Lollato, R., De Wolf, E., et al.
(2021). Predicting winter wheat heading date: A simple model and its validation in
Kansas. J. Appl. Meteorol. Climatol. 60, 1685–1696. doi: 10.1175/JAMC-D-21-0040.1

Zippenfenig, P. (2023). Open-Meteo.com Weather API (Zenodo). doi: 10.5281/
ZENODO.7970649 (Accessed August 27, 2025).
frontiersin.org

https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1094/PDIS-92-6-0947
https://doi.org/10.32614/CRAN.package.furrr
https://doi.org/10.1007/s10994-021-06042-2
https://doi.org/10.1007/s10994-021-06042-2
https://doi.org/10.1038/s41598-023-44338-6
https://doi.org/10.1038/s41598-023-44338-6
https://doi.org/10.21105/joss.01686
https://doi.org/10.1111/j.1365-3180.1974.tb01084.x
https://doi.org/10.1175/JAMC-D-21-0040.1
https://doi.org/10.5281/ZENODO.7970649
https://doi.org/10.5281/ZENODO.7970649
https://doi.org/10.3389/fpls.2025.1637130
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Leveraging window-pane analysis with environmental factor loadings of genotype-by-environment interaction to identify high-resolution weather-based variables associated with plant disease
	Introduction
	Materials and methods
	Methodological overview
	Response variables
	First-level feature engineering
	Reference point
	Stability selection
	Daily bootstrap correlation analysis
	Second-level feature engineering
	Performance of second-level weather-based predictors
	Software and code availability

	Results
	Prediction of anthesis date
	Descriptive analysis of weather-based variables
	Library of second-level weather-based variables
	Performance of selected weather variables

	Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


