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Spatial and single-cell
transcriptomics capture two
distinct cell states in soybean
defense response to Phakopsora
pachyrhizi infection
Yuzhao Hu1†, Raeann Schaefer1†, Michael Rendleman1,
Andrew Slattery1, Annaliese Cramer1, Abdullah Nahiyan1,
Lori A. Breitweiser2, Mokshada Shah3, Emma Kaehler2,
Chenglin Yao2, Andrew J. Bowling2, John Crow1, Gregory May1,
Girma Tabor1, Shawn Thatcher1, Srinivasa Rao Uppalapati 1*,
Usha Muppirala3 and Stéphane Deschamps1*

1Corteva Agriscience, Johnston, IA, United States, 2Corteva Agriscience, Indianapolis, IN, United
States, 3Corteva Agriscience, Hyderabad, India
Unlike animals, plants are sessile organisms that must adapt to localized and

fluctuating environmental stimuli, including abiotic and biotic stresses. While

animals use mobile immune cells to eliminate pathogens, plants rely on localized

cells in contact with the pathogen to detect and mount immune responses.

Although bulk RNA sequencing (RNA-seq) has enabled the assessment of plant

responses to pathogen infection at the whole transcriptome level, the spatial

coordination of plant immune responses remains elusive. In this study, we

performed both spatial and single-nuclei transcriptomic experiments to capture

the spatial pattern of soybean plant responses to Asian soybean rust infection caused

by the pathogen Phakopsora pachyrhizi. Through the analysis of both spatial and

single-nuclei transcriptomics data, we identified two distinct host cell states with

specific spatial localization in response to pathogen infection: the infected regions

with the presence of the pathogen and the surrounding regions bordering the

infected regions. Importantly, the surrounding regions exhibited higher expression of

defense response-related genes than the infected regions, despite having minimal

presence of the pathogen, indicating a cell non-autonomous defense response in

the surrounding regions. Additionally, gene co-expression network analysis with

single-cell resolution identified a key immune response-related gene module

activated in the stressed cells captured in our single-nuclei RNA-seq data. This

study reveals the intricate spatial coordination of plant defense responses against

pathogen infection and enhances our understanding of the importance of localized

cell non-autonomous defense responses in plant-pathogen interactions.
KEYWORDS

spatial transcriptomics, single cell transcriptomics, immune response, defense
response, localized acquired resistance, gene co-expression network analysis,
Phakopsora pachyrhizi, Asian soybean rust
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1 Introduction

Plant pathogens represent a serious threat to crop production

worldwide. Historically, the agricultural management of diseases

has focused on multi-pronged approaches, including the use of

pesticides, and adapted agronomic practices. More recent efforts

have converged on the discovery of biotechnological solutions

through the characterization of genes involved in resistance to

specific pathogens. However, continuous adaptation of pathogens

to their environment and the resulting emergence of resistance to

treatments are well-known phenomena that require the ongoing

discovery of new resistant genes to create durable and broad-

spectrum resistance.

The mechanisms involved in a plant’s response to pathogen

infection are generally well-known (Ngou et al., 2021). The first

layer involves cell surface pattern recognition receptors (PRR) that

recognize potential pathogens in the environment resulting in pattern-

triggered immunity (PTI) (Dodds and Rathjen, 2010; Ngou et al.,

2022). In turn, PTI initiates downstream molecular responses

including the production of reactive oxygen species, calcium influx,

and hormone production (Aerts et al., 2022). Several studies in

soybean have focused on discovering pathogen elements and their

respective PRRs. For example, Wei et al. determined that soybean had

developed “gain-of-perception” polymorphic versions of a receptor to

the epitope fgl22 from bacterial flagellin, eliciting defense response

against bacterial wilt disease (Wei et al., 2020). Ma et al. demonstrated

that a P. sojae glycoside hydrolase 12 protein acted through its

overexpression as a major virulence factor during infection and

could elicit PTI responses in soybean, although its cell surface PRRs

remained to be identified (Ma et al., 2015). Finally, Wang et al.

identified through forward genetic screens in soybean a malectin-like

receptor kinase, whose overexpression in N. benthamiana suppressed

PTI response, suggesting a similar mechanism in soybean acting as a

molecular switch to control PRR-mediated immune activation (Wang

et al., 2020).

Pathogens, however, have evolved a series of small molecules,

called effectors, which, when injected into host cells, interfere with

PTI. To counteract this effect, another class of intracellular immune

receptors, nucleotide-binding domain leucine-rich repeat-

containing receptors (NLRs), detect the cytoplasmic effectors

delivered by the pathogen and activate effector-triggered

immunity (ETI) (Cui et al., 2015). Contrary to other species, very

little is known in soybean about ETI. Recently, a 27.7-Kb NLR gene

was characterized and shown to confer broad resistance to

Phytophthora root and stem rot (Wang et al., 2021). This gene,

known as Rps11, is located in a NLR gene cluster harboring

significant structural heterogeneity among varieties, suggesting a

very active evolution of NLR genes in response to pathogen effector

diversification. Rpp1, a nucleotide binding site-leucine rich repeat

(NBS-LRR) protein encoding an N-terminal ubiquitin-like protease

1 (ULP1) domain also was identified through germplasm and

genetic analysis of a locus conferring resistance to P. pachyrhizi,

the causal agent of ASR (Pedley et al., 2019). Interestingly, Rpp1 is

one of seven loci (Rpp1 to Rpp7) known to provide race-specific

resistance to P. pachyrhizi (Pedley et al., 2019; Wei et al., 2023). One
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of those, Rpp3, was fine-mapped to a region containing several

homologous nucleotide binding site-leucine rich repeat (NBS-LRR)

genes. Co-silencing of Rpp3 and its homologues in Rpp3-resistant

soybean lines was shown to compromise resistance to P. pachyrhizi

(Bish et al., 2024).

Both PTI and ETI initiate massive transcriptional reprogramming

(Tsuda and Somssich, 2015). Even with significant advancements, the

cellular mechanisms and pathways triggered by PTI and ETI are not

completely understood, and their investigation is often challenged by

the fact that pathogen interaction with plant hosts can be highly

heterogeneous (Latijnhouwers et al., 2003; Fawke et al., 2015). The

host response is generally influenced by the distribution of the

pathogen in the plant and its developmental changes during the

colonization of the tissue (O’Connell et al., 2012). Those variable

interactions can lead to asynchronous cellular interactions and trigger

gene regulatory functions that can be specific to a particular cell type

or cell state. Therefore, to better understand the host transcriptional

responses to variable stages of infection, it is important to account for

the spatial attributes and cell type-specific features of plant defense

mechanisms and interactions with a pathogen.

Several recent studies have explored the underlying mechanisms

of plant immunity at the single-cell level. Tang et al. used single-cell

transcriptomics to determine the cell type-specific response of

Arabidopsis thaliana leaf protoplasts to fungal pathogen

Colletotrichum higginsianum (Tang et al., 2023). They demonstrated

that immune receptor gene expression was highly heterogeneous

across distinct cell types and included an enrichment of intracellular

immune receptors in vasculature cells. Zhu et al. similarly explored the

response of A. thaliana leaf protoplasts to infection with virulent

Pseudomonas syringae using single-cell transcriptomics (Zhu et al.,

2023b). They discovered cluster-specific gene expression patterns

indicative of distinct cell states ranging from immunity to

susceptibility whose nature depended on their proximity to the

bacterial pathogen and the timeline of bacterial infection. More

recently, Nobori et al. combined single-cell transcriptomics,

epigenomics and spatial transcriptomics in A. thaliana infected with

virulent and avirulent P. syringae to identify novel cell states in the

host, in response to infection (Nobori et al., 2025). Specifically, they

demonstrated the existence of a new cell state, labeled as “PRIMER”

(primary immune responder) cells, located in regions of infection

involved in the host ETI response and classified them, based on

pseudotime analysis, as early responders to the bacterial infection.

Additionally, PRIMER cells were surrounded by yet another novel cell

state in response to infection, labeled as “bystander” cells, whose

spatial and molecular profiles suggested they were involved in cell-to-

cell immune signaling (Nobori et al., 2025). Those findings are in

alignment with a perspective offered by Jacob et al, where ETI does not

inhibit pathogen growth inside the initial infection site but rather

induces cells that are not in direct contact with the pathogen through a

process similar to the hypersensitive localized acquired resistance

(LAR) immune response (Jacob et al., 2023a).

Taken together, these studies demonstrate the ability of single-

cell and spatial techniques to characterize rare and localized cell

states involved in early ETI response mechanisms (Delannoy et al.,

2023; Tang et al., 2023; Zhu et al., 2023a), which may include genes
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involved in triggering multimodal resistance pathways, such as

transcription factors. Similarly, pathogens infecting plants trigger

and counteract plant resistance responses, by deploying a variety of

strategies aimed, for example, at facilitating cell penetration or

directing nutrient release (Langenbach et al., 2016). Such

manipulation generally requires the interaction of pathogen

effectors to plant proteins that are typically involved in normal

growth and maintenance aspects of the plant metabolism.

Therefore, both the infection of a plant by a pathogen and its

immune response requires the redirection, either activation or

suppression, of specific plant gene expression.

Phakopsora pachyrhizi is an obligate biotrophic fungus known

to be the causative agent of Asian Soybean Rust (ASR) (Chicowski

et al., 2024). Left untreated, P. pachyrhizi can defoliate soybean

fields within a few days and trigger yield losses of up to 90% (Godoy

et al., 2016). It is especially prevalent in South America, and

especially in Brazil, where it can cause economic losses that can

reach several billion USD (Yorinori et al., 2005; da Silva et al., 2014).

It is currently controlled through the combined use of fungicides

with different modes of action (Langenbach et al., 2016). Genetic

resistance is known but is not effective against all isolates of ASR

(Godoy et al., 2016). A more detailed molecular understanding of

the Soybean-ASR interactions at spatial and single-cell level may

help us identify key effectors and susceptibility genes and develop

novel durable disease management solutions.

In this study, we analyzed the spatial and temporal genic

response of soybean cells in relation to their proximity to

P. pachyrhizi and the extent of infection within different regions

of the leaf tissue. Our findings indicate that soybean cells at the sites

of ASR infection exhibit progressively lower transcriptional defense

response compared to soybean cells in the surrounding regions. On

the other hand, soybean cells in the surrounding non-infected

regions exhibit stronger transcriptional defense response, in

alignment with the “LAR” model of plant cell non-autonomous

immune response (Jacob et al., 2023a).
2 Materials and methods

2.1 Plant growth and pathogen inoculation

For 10x Genomics Visium experiments, 10-day old Williams 82

soybean plants were inoculated with Phakopsora pachyrhizi isolate

FL - 07 (90 - 110K spores/ml) and collected at 4 DPI and 7 DPI. For

10x Genomics Chromium experiments, 14-day old 93Y21 soybean

seedlings were spray inoculated with P. pachyrhizi isolate GA - 05 at

a high spore concentration (~100K spores/ml). Inoculated

unifoliate leaves were collected at 1, 3, and 5 DPI. For each time

point of the 10x Genomics Chromium experiments, we infected 2

different soybean plants with P. pachyrhizi spores and collected

tissue from these 2 different soybean plants, resulting in 2 biological

replicates for each time point.
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2.2 Single-nuclei RNA-seq

2.2.1 Tissue collection
For each single-nuclei RNA-seq (snRNA-seq) sample, about 40

mg of fresh ASR-infected soybean leaf tissue was flash frozen in

liquid nitrogen and stored at -80 °C until processed.

2.2.2 Nuclei isolation
For nuclei isolation, a previously published protocol was used

with modifications (Guillotin et al., 2023). In brief, frozen tissue was

transferred onto a petri dish (Corning #3160-60) pre-cooled on ice

with 300 ml lysis buffer consisting of 0.3 M sucrose, 1.25% Ficoll

(Fisher Scientific #34-169-125GM), 2.5% Dextran 40 (Millipore

Sigma #31389-25G), 15 mM Tris HCl (pH 8), 20 mM 2-(N-

morpholino) ethanesulfonic acid (MES), 10 mM MgCl2, 60 mM

KCl, 15 mM NaCl, 0.5 mM spermine, 0.5 mM spermidine, 0.1%

Triton X - 100, 5 mM dithiothreitol (DTT), 0.1 mM

phenylmethylsulfonyl fluoride (PMSF), 0.1% (v/v) protease

inhibitor cocktail (Millipore Sigma #P9599), 0.4% bovine serum

albumin (BSA), and 0.4 U/ml RNase inhibitor (Fisher Scientific

#NC0148451). From this step forward, the tissue and the

subsequent extracted nuclei were kept on ice throughout the

nuclei isolation process. Next, the tissue is chopped in the petri

dish on ice for 8 to 10 minutes using a razor blade. The samples

were then transferred to a Dounce tissue grinder (DWK Life

Sciences #885302). 400 ml lysis buffer was then used to wash the

petri dish and added to the Dounce tissue grinder. 10 movements

up-down were performed using the A pestle for the Dounce tissue

grinder and the samples were left incubating in the Dounce tissue

grinder for 5 minutes before another 5 movements up-down were

performed. Samples were then filtered through a 20 mm cell strainer

(Sysmex # 04 - 004-2324) into a 1.5 ml tube. 500 ml lysis buffer was
used to wash the Dounce tissue grinder, then filtered through the 20

mm cell strainer into the same 1.5 ml tube. Samples were then

centrifuged at 500 g for 10 minutes at 4 °C. Supernatant was

removed from each tube and 60 ml final buffer (0.3 M sucrose, 15

mM Tris HCl (pH 8), 15 mM MES, 60 mM KCl, 15 mM NaCl, 0.5

mM spermine, 0.5 mM spermidine, 5 mMDTT, 0.1% (v/v) protease

inhibitor cocktail, 1% BSA, 0.2 U/ml RNase inhibitor) was added to

resuspend the nuclei pellet. Resuspended nuclei were filtered

through a 10 mm cell strainer (PluriSelect #43-10010-50). Isolated

nuclei were kept on ice until ready to proceed with 10x Chromium

library preparation.

2.2.3 10x Genomics Chromium library
preparation

Isolated nuclei were counted using a hematocytometer and about

ten thousand nuclei from each sample were loaded onto 10x

Genomics Chromium Next GEM chips. 10x Genomics Chromium

libraries were prepared following manufacturer’s instructions, using

reagents from 10x Genomics Chromium Next GEM Single Cell 3 ′
Reagent Kits v3.1 (10x Genomics #PN-1000121).
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2.2.4 Sequencing
Chromium Next GEM libraries were pooled and sequenced on

Illumina NovaSeq 6000 using read length recommended by 10x

Genomics (Read 1: 28 cycles; i7 index: 10 cycles; i5 index: 10 cycles;

Read 2: 90 cycles) and the sequencing depth of 300 million clusters

per sample.
2.3 Visium spatial transcriptomics

2.3.1 Tissue collection
Leaves were dissected from the plants and dissected further into

small rectangles, placed in embedding molds (Ted Pella #27183)

filled with Sakura Optimal Cutting Temperature (OCT) embedding

medium (Ted Pella #27050) and oriented in cross section or

paradermal using a straight pin. Molds were flash frozen in

liquid nitrogen-chilled isopentane and stored at -80 °C until

further processing.

2.3.2 Cryo-sectioning and fluorescence imaging
Sample blocks were moved to Leica CM1950 Cryostat and

chamber temperature was set to -13 °C. Blocks were allowed to

acclimate and 10 mm-thick sections were cut and observed on Leica

DM1000 to check for fungal structures. To increase the integrity of

cryosections, the plastering technique from Dr. Stephen Peters was

modified, using 1:1 diluted OCT in 10 mM phosphate-buffered

saline (PBS) (Peters, 2003a, b). Sections were stained overnight at 4 °

C using wheat germ agglutinin Alexa Fluor 488 conjugate

(Invitrogen #W11261) in PBS at 1:2000, mounted in 80%

glycerol, and imaged using a 20x air objective on a Leica Upright

DM5000 in fluorescence mode, using filter sets A4, Cy5, and GFP.

After fungal structures were confirmed with staining, 10 mm-thick

sections were collected onto 10x Genomics Visium slides: sections

were individually cut, placed in a capture area on the slide, and

melted to the slide using the tip of a finger applied to the side

opposite the tissue while still in the cryostat chamber. Section and

slide were immediately refrozen in cryostat chamber by placing the

slide on the stage, and sectioning continued in this manner to

complete all capture areas on the slide. Slides were stored at -80 °C

until further processing. After sectioning for the Visium slide, one

additional post-processing section was generated and stained and

imaged using the methods mentioned above to check for fungal

structures again.

2.3.3 Section fixation, staining and imaging
The 10x Genomics Visium slide with sections was removed from

the -80 °C and placed on a 37 °C slide warmer for 1 minute. The slide

was then placed on a plastic tray, and the tray was put on ice for the

following steps. Farmer’s fixative (3-parts 100% Ethanol: 1-part

Glacial Acetic Acid) was chilled to -20 °C and placed on ice.

Approximately 1 ml of fixative was pipetted onto the slide and left

to stand for 2 minutes. The fixative was removed by tipping the slide.

Approximately 1 ml of 100% ethanol, chilled to -20 °C then placed on

ice, was pipetted onto the slide and left to stand for 2 minutes. The

ethanol was tipped off and the slide was allowed to dry for 2 minutes.
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Toluidine blue 1% in 1% Sodium Borate solution (Poly-Sciences

#S2410-320Z) was diluted 1:10 with water, 1 ml pipetted on to the

slide, and left to stand for 2 minutes. The stain was tipped off, 1 ml

distilled water was pipetted to the slide and left to stand for 2 minutes.

After the water was removed, the slide was allowed to dry for 5

minutes before imaging. The slide was imaged with transmitted light

on a Leica Thunder Imager (LeicaMicrosystems) using a 10x/0.30NA

air objective and a K5 monochrome camera. The slide was then

placed on ice until the next steps.

2.3.4 10x Genomics Visium tissue optimization
Tissue optimization was adapted from manufacturer’s

instructions (CG000238 Rev F). 10 mm-thick sections were placed

on Visium Tissue Optimization slides (10x Genomics), processed

and imaged as indicated in section 2.3.3, and then were tested for

various permeabilization times (5 minutes to 15 minutes). Reverse-

transcription and tissue removal were performed using reagents

from the Visium Spatial Tissue Optimization Reagent kits (10x

Genomics #PN-1000193). After processing, the slide was imaged on

a Leica Thunder Imager (Leica Microsystems) using a 10x/0.30NA

air objective and a K5 monochrome camera. The LED3 system and

the filter TXR (Excitation: BP 560/40, Dichroic: LP 585, Emission:

BP 630/75) were used. The exposure time was set using the RNA

control well as a positive control. After fluorescence imaging of the

sections, 10 min permeabilization times were selected based on

maximum fluorescence signal with the lowest signal diffusion. This

permeabilization time was used for subsequent handling of Visium

Gene Expression slides.

2.3.5 10x Genomics Visium gene expression
library preparation

Fixed and stained 10 mm thick sections on Visium Gene

Expression slides (10x Genomics) were processed according to

manufacturer’s instructions, using reagents from the Visium Spatial

Gene Expression Reagent Kit (10x Genomics) and the Library

Construction Kit (10x Genomics), for cDNA amplification and

library construction, respectively. Briefly, for each section, 10-minute

permeabilization at 37 °C was followed by 45-minute reverse

transcription at 53 °C. After second strand synthesis and

denaturation, cDNA fragments were recovered from individual

sections and amplified for 17 cycles, as determined by the Cq value

from the quantitative polymerase chain reaction (qPCR) optimization

steps performed on the recovered cDNA fragments. After enzymatic

fragmentation, end repair, adaptor ligation and size-selection, the

resulting cDNA inserts were amplified using individual barcoded

primers from the Dual Index TT Set A kit (10x Genomics), then

pooled prior to sequencing.

2.3.6 Sequencing
Sequencing was performed on Illumina NovaSeq 6000 and

NextSeq 550 systems according to 10x Genomics’ recommendations

for read length (Read 1: 28 cycles; i7 index: 10 cycles; i5 index: 10

cycles; Read 2: 90 cycles) and depth (50,000 clusters per spot). Spatial

localization and characterization of unique molecular events were

performed using individual spatial barcode and unique molecular
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identifier (UMI) sequences derived from Read 1 sequencing data,

while Read 2 sequencing data were used to determine the molecular

identity (e.g., gene annotation) of the original cDNA fragment and

transcript the sequence was derived from.
2.4 Processing and analysis of Visium
spatial and Chromium snRNA-seq data

2.4.1 Read mapping
The 10x Genomics Space Ranger software (v2.0.1) and 10x

Genomics Cell Ranger software (v8.0.1) were used to process raw

reads into count values for each barcoded Visium spot and

barcoded chromium nuclei respectively (Zheng et al., 2017). For

both experiments, reads were simultaneously aligned to the

Phakopsora pachyrhizi genome (Phapa1, GCA_025201825.1)

(Gupta et al., 2023) and Glycine max Williams 82 (Wm82v4)

(Valliyodan et al., 2019). Data analysis for both the single-nuclei

and spatial data was performed using the Seurat 5.1.0 package in R

4.3.2 (Satija et al., 2015).

2.4.2 Sample filtering
Fiducial frames around the capture area on each Visium slide were

aligned manually, and tissue-covered spots were selected using 10x

Genomics Loupe Browser software (v8.1.2). After this, 33,994 genes

(28,789 from Glycine max, 5,196 from Phakopsora pachyrhizi) across

5,085 spots in the twelve samples were used for further analysis.

High quality nuclei with 300 < UMI < 10,000; 250 < genes <

6000; and less than 10% mitochondrial or chloroplastic reads were

selected for further analysis. Doublets were identified and removed

using DoubletFinder (v2.0.4) (McGinnis et al., 2019). After filtering,

44,478 genes (41,028 from soybean 3,450 from ASR) across 48,358

nuclei in the six samples were used for further analysis.

2.4.3 Normalization and clustering
Spatial and single-nuclei samples were individually processed in

the same manner yielding two distinct Seurat objects. Seurat

SCTransform was used to normalize each sample before canonical

correlation analysis (cca) integration of all capture areas or all

single-nuclei samples (Hafemeister and Satija, 2019). Using the

integrated data object, all spots or cells were clustered using 30

principal components (PCs) using the Louvain algorithm with a 0.5

resolution or 0.25 resolution for spatial and single-nuclei objects

respectively. Uniform manifold approximation and projection

(UMAP) dimensional reductions were also calculated with 30 PCs.

The stressed cell type cluster was subset from the full single-

nuclei object where Louvain clustering was run with a resolution of

0.25. Following this, marker genes for the resulting subclusters were

identified as below and compared to cell clusters identified in the

full dataset. Preserving the original UMAP confirmed subcluster cell

type annotation.
Frontiers in Plant Science 05
2.4.4 Gene level analyses
Cluster marker genes were identified using Seurat function

FindAllMarkers with significance defined by a Wilcoxon Rank

Sum test and adjusted P < 0.05. Differentially expressed genes

(DEGs) between the healthy and infected clusters were identified

using Seurat function FindMarkers with significance defined by a

Wilcoxon Rank Sum test and adjusted P < 0.05. Gene Ontology

(GO) enrichment was determined with fgsea (v1.28.0) (Korotkevich

et al., 2021) ranked by all avg_log2FC values calculated by the above

functions. Seurat function AddModuleScore was used to summarize

expression of 15 ASR induced genes originally identified by Cabre

et al. (2021) and Morales et al (Morales et al., 2013).

2.4.5 Normalized pseudo-bulk analysis
Raw counts were summed per gene for the spatial and single-

nuclei datasets using the Seurat function AggregateExpression. The

summed raw counts were supplied to DESeq2 (v1.42.1) for default

normalization (Love et al., 2014).

2.4.6 Visualizations
Several R packages were used to create data visualizations.

EulerR (v7.0.2) and SuperExactTest (v1.1.0) were used to create

Venn diagrams and the associated statistics (Wang et al., 2015;

Larsson and Gustafsson, 2018). UpsetR (v1.4.0) was used to create

Upset plots (Conway et al., 2017). Pheatmap (v1.0.12) was used to

create all heatmaps (Kolde, 2018).
2.5 High dimensional weighted gene co-
expression network analysis

High dimensional weighted gene co-expression network

analysis (hdWGCNA) was performed using the hdWGCNA

0.3.03 package in R 4.3.3. Before network construction, genes

were filtered to soybean genes expressed in at least 1% of cells

(24,705 genes), and cells were filtered to those labeled as healthy or

stressed mesophyll cells. The ConstructNetwork function was used

to build signed co-expression networks with minModuleSize set to

50, detectCutHeight set to 0.995, and mergeCutHeight set to 0.2. To

select the soft power threshold, a parameter sweep was performed

with the TestSoftPowers function as described by Morabito et al

(Morabito et al., 2023).

To summarize gene expression across the genes in each co-

expression module, module eigengenes (MEs) were calculated. MEs

are defined as the first principal component of the module’s gene

expression matrix, and module hub genes are selected by

correlation with the module’s eigengene. A gene-centric UMAP

reduction was performed on the topological overlap of each gene

with the top 10 hub genes from each module. For statistical

comparison of module eigengene values, the unpaired two-sided

Wilcoxon Rank Sum test was employed.
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3 Results

3.1 Spatial and single nuclei
transcriptomics simultaneously capture
soybean and ASR transcriptome

To characterize the spatial and temporal changes in the

transcriptome during soybean-ASR interaction, we infected

soybean unifoliate leaves with ASR spores (Figure 1A). We

generated paradermal (PD) sections of soybean leaves at 4 days

post-infection (DPI) and cross-sections (CS) of soybean leaves at

both 4 DPI and 7 DPI (Figure 1A). For each sample type, four serial

sections were used for 10x Genomics Visium experiments

(Supplementary Figure S1A). Once tissue sections were placed

onto Visium slides, the RNAs were permeabilized onto the slides,

which contain spots with primers that have spatial barcodes, UMIs,

and poly(dT) primers to capture transcripts with poly(A) tails

(Figure 1A) (Marx, 2021). The spatial barcodes allow tracing of

sequencing reads back to specific spots on the Visium slide, which

can then be overlaid and compared to brightfield images of the

sections on the slides to obtain spatial information on gene

expression (Marx, 2021). The poly(dT) primers enable the

capture of poly(A) tailed RNA molecules (Verma, 1978), which

are prevalent in both soybean and ASR nuclei (Fasken and Corbett,

2009), allowing the simultaneous capture of soybean and ASR

transcriptomes in the spatial transcriptomics experiment.

Total soybean genes captured from the 12 Visium sections

ranged from nineteen thousand to thirty-two thousand and ASR

genes ranged from one thousand to six thousand (Supplementary

Figure S1B), indicating sufficient coverage of the whole

transcriptome of both soybean and ASR. Principal component

analysis of all 12 Visium sections revealed that the 4 DPI and 7

DPI samples formed distinct clusters (Supplementary Figure S1C),

suggesting that the expression of ASR and soybean genes changes

over the time course of infection. Additionally, we analyzed the

percentage of ASR reads per spot and found that the ASR read

percentage is significantly higher in 7 DPI cross-sections compared

to either 4 DPI paradermal sections or 4 DPI cross-sections

(Supplementary Figure S1D), indicating the expansion of ASR

infection in soybean leaves as the disease progresses. Spatial

mapping of the percentage of ASR reads per spot shows spots

with high ASR presence in each section (Figure 1B), highlighting

the spatial heterogeneity of ASR infection in soybean leaves. To

analyze the relationship between different spots across all sections,

we combined all spots from the 12 sections and generated a UMAP

(Figure 1C, Supplementary Figure S1E). After combining data from

the different sections, the UMAP showed that spots from different

sections were well integrated (Supplementary Figure S1E).

Furthermore, we examined the percentage of ASR reads per spot

and found that spots with a high percentage of ASR reads localized

closely together on the UMAP (Figure 1C), indicating that ASR-

infected regions have similar gene expression profiles. Together,

these results demonstrate that spatial transcriptomics can

simultaneously capture both soybean and ASR transcriptomes

and identify specific spatial regions of active ASR infection.
Frontiers in Plant Science 06
Although the spatial transcriptomic experiments capture gene

expression along with in situ spatial localization information, the

spots on the Visium slides have a resolution of 55 µm, which is not

true single-cell resolution (Figure 1A). Therefore, we complemented

the spatial transcriptomics study with snRNA-seq using the 10x

Genomics Chromium platform (Figure 1A). We isolated nuclei

from ASR-infected soybean leaves at 1, 3, and 5 DPI, with two

biological replicates for each time point, and subjected the nuclei to

snRNA-seq (Figure 1A). Across the six snRNA-seq samples, the

number of soybean cells captured ranged from five thousand to

eleven thousand, and the total number of soybean genes detected

ranged from forty-two thousand to forty-six thousand

(Supplementary Figure S1F), suggesting that the snRNA-seq data

captured most of the whole transcriptome of soybean cells. Further

PCA analysis of all six snRNA-seq samples showed that all the

biological replicates clustered together (Supplementary Figure S1G),

indicating the reproducibility of the snRNA-seq. Similar to the

Visium platform, the Chromium platform also uses poly(dT)

primers for capturing transcripts, allowing the simultaneous

capture of soybean and ASR transcripts, as indicated by the

capture of a total of three thousand to five thousand ASR genes

in the six snRNA-seq samples (Supplementary Figure S1F).

Accordingly, the percentage of ASR reads per nucleus

significantly increased from 1 DPI to 3 DPI and from 3 DPI to 5

DPI in the snRNA-seq samples (Supplementary Figure S1H),

confirming the progression of ASR infection over time. To

explore the relationship between the gene expression of all nuclei

captured in the six snRNA-seq samples, we generated a UMAP of

all nuclei (Figure 1D, Supplementary Figure S1I). After combining

the data, nuclei from different samples were evenly distributed

across the UMAP (Supplementary Figure S1I), indicating good

integration and allowing for the examination of gene expression

changes between different samples in specific nuclei clusters. In the

snRNA-seq dataset, a small cluster of ASR nuclei showed a high

percentage of ASR reads per nucleus (Figure 1D), again indicating

the successful capture of both soybean and ASR transcriptomes in

the snRNA-seq experiment.

Altogether, these results demonstrate that both spatial

transcriptomics and snRNA-seq can simultaneously capture the

transcriptomes of both the host soybean and the pathogen ASR.

The spatial transcriptomics data allows for the visualization of the

ASR infection center, highlighting the heterogeneity of ASR infection

in soybean leaves. Meanwhile, the snRNA-seq data complements the

spatial transcriptomics data with single-nuclei resolution, enabling

cell-specific analysis of gene expression changes upon ASR infection.
3.2 Single-nuclei RNA-seq captures a
stressed cell cluster

Pathogen infection in plants often results in heterogeneous

responses among different host cells in the infected organ, as

characterized in previous single-cell transcriptomic studies

focusing on plant-pathogen interactions (Cao et al., 2023;

Delannoy et al., 2023; Tang et al., 2023; Nobori et al., 2025; Yan
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et al., 2025). Single-cell/nuclei RNA-seq provides unique

opportunities to identify different cell types and even different cell

states in the host plant in response to pathogen infection (Zhu et al.,

2023b). To elucidate the differential transcriptomic responses

among various soybean cell types/states during ASR infection, we
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performed clustering of all nuclei assayed by snRNA-seq and

identified 12 distinct clusters, labeled from cluster 0 to 11

(Supplementary Figure S2A). It is known in the literature that

soybean homologs of cell type marker genes from other plant

species often exhibit conserved expression in the same soybean
FIGURE 1

Spatial transcriptomics and snRNA-seq simultaneously capture both soybean and ASR transcriptome. (A) Schematic of experiments performed for
various samples of ASR-infected soybean leaf. Leaves infected for 4 days were paradermal (PD) and cross sectioned (CS), leaves infected for 7 days
were cross sectioned for Visium spatial analysis. Leaves infected for 1, 3, and 5 days were subjected to snRNA-seq. (B) Percent ASR reads per spot
mapped spatially reveals localized regions of ASR infection. (C) Spatial UMAP of percent ASR reads per spot. (D) snRNA-seq UMAP of percent ASR
reads per nuclei.
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cell types (Cervantes-Pérez et al., 2024). Therefore, to annotate the

nuclei clusters in our snRNA-seq data, we searched the literature

and the Single Cell Plant Database (scPlantDB) for known leaf cell

type marker genes in soybean and other plant species and checked

the expression of these marker genes or their soybean homologs in

our clusters (He et al., 2024). Based on these known leaf cell type

marker genes, we annotated a majority of the clusters in our

snRNA-seq data: clusters 0, 2, 6, and 9 as mesophyll cells; cluster

1 as pavement cells; cluster 4 as bundle sheath cells; cluster 7 as

phloem parenchyma cells; cluster 8 as phloem companion cells; and

cluster 10 as guard cells (Table 1, Figure 2A).

However, clusters 3 and 5 from the snRNA-seq dataset did not

show enriched expression of any of the previously mentioned

known leaf cell type marker genes and therefore could not be

annotated using this approach. Since pathogen infection can induce

drastic gene expression changes in host cells and obscure their cell

type identities (Tang et al., 2023), we derived cluster-specific marker

genes from clusters 3 and 5 and performed GO term analysis using

these cluster marker genes (Supplementary Figure S2C,

Supplementary Table S1). Interestingly, marker genes from both

clusters 3 and 5 showed enrichment in GO terms related to immune

response (Supplementary Figure S2C, Supplementary Table S1).

This result suggests that clusters 3 and 5 are immune-responsive or

stressed cells, likely caused by ASR infection. Therefore, we

annotated clusters 3 and 5 together as stressed cells (Figure 2A).

To verify if clusters 3 and 5 are indeed immune-responsive cells in

response to ASR infection, we curated a list of ASR-induced genes

from previous bulk transcriptome studies performed using ASR-

infected soybean leaves (Supplementary Table S2) (Morales et al.,

2013; Cabre et al., 2021). To check the expression of these ASR-

induced genes, we treated these genes as an ASR-induced gene

module and calculated the expression of this module across all

nuclei (Supplementary Figure S2D, Supplementary Table S2).

Interestingly, the ASR-induced gene module expression is mostly

enriched in clusters 3 and 5 (Supplementary Figure S2D),

suggesting that these stressed cells exhibit transcriptional changes

in response to ASR infection. Apart from the clusters we have

annotated, cluster 11 had the fewest number of cells and did not

show specific cell type marker gene expression, so we designated

cluster 11 as an unknown cluster and excluded it from the rest of the

analysis (Figure 2A, Supplementary Figure S2A). Moreover, in our

snRNA-seq data, there are ASR cells assigned based on the mapping

of the majority of reads within the cell barcode to the ASR genome,

so we designated those cells as ASR cells instead of one of the

annotated soybean cell types (Figure 2A). Since we detected fewer

than 100 ASR cells (Supplementary Figures S1F, Figure 2A), we also

excluded the ASR cells from the rest of our snRNA-seq analysis to

focus on host responses.

After annotating most of the nuclei clusters, we also examined

the soybean cell type composition at different time points: 1 DPI, 3

DPI, and 5 DPI (Supplementary Figure S2E). Furthermore, we

identified cell type-specific marker genes for the annotated cell types

and demonstrated that the expression of these marker genes is

highly enriched in the corresponding cell types (Figure 2B). This

will be a valuable resource for annotating cell clusters in future
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soybean single-cell transcriptomic studies. Altogether, these results

suggest that our snRNA-seq data captures not only the major cell

types in soybean leaves but also a cluster of stressed cells in response

to ASR infection.
3.3 Spatial transcriptomics identify sites of
ASR infection

To gain more insight into the spatial organization of the

soybean immune response to ASR, we next sought to cluster the

different spatial spots from all 12 sections and to annotate the spot

clusters. We performed clustering analysis for all spots and

identified 10 different spatial clusters, labeled from 0 to 9

(Figure 2C). Since we had already annotated the snRNA-seq

clusters and derived cell type-specific marker genes for soybean

leaves infected with ASR (Figures 2A, B), we correlated marker

genes of the spatial clusters with the cell type-specific marker genes

to facilitate the annotation of the spatial clusters (Figure 2D).

Interestingly, spatial clusters 3, 2, 6, and 0 clustered strongly with

mesophyll marker genes derived from the snRNA-seq performed in

this study (Figure 2D), suggesting that these four spatial clusters can

be annotated as the mesophyll region (Figures 2D, E). Moreover,

spatial cluster 7 had the highest correlation with marker genes from

guard cells and pavement cells (Figure 2D), indicating that spatial

cluster 7 corresponds to the epidermis region (Figures 2D, E).

Similarly, spatial clusters 8 and 1 strongly correlated with the

marker genes identified for vasculature-related cells, including

phloem companion cells, phloem parenchyma cells, and bundle

sheath cells (Figure 2D), indicating that these spatial clusters

correspond to the vasculature region (Figures 2D, E). Finally,

spatial clusters 4, 9, and 5 had high correlation with marker genes

from the stressed cells identified in the snRNA-seq experiment in

this study (Figure 2D), suggesting that these spatial clusters are the

stressed or infected regions (Figure 2D).

By overlaying the spatial clusters with the brightfield image for the

sections, we visually confirmed the spatial clusters that correspond to

the vasculature and epidermis regions (Supplementary Figure S2F).

The vasculature-related spatial clusters, clusters 1 and 8, are localized

to the vasculature regions shown in both the paradermal sections and

the cross sections (Supplementary Figure S2F). Similarly, the

epidermis-related spatial cluster, cluster 7, clearly localized to the

epidermis regions, which is especially evident in the paradermal

sections (Supplementary Figure S2F). These results further validate

the spatial cluster annotations. When we overlaid all annotated spatial

clusters on the brightfield image of the sections, it further showed that

the stressed/infected clusters, clusters 9, 5, and 4, had a specific spatial

organization pattern: cluster 9 forming the infection center, cluster 5

forming the infection periphery that surrounds the infection center,

and cluster 4 forming the surrounding region that further borders the

infection center and infection periphery regions (Figure 2E). After

annotating the spatial clusters using the transcriptomics data, we also

sought to independently verify this annotation by staining the adjacent

serial section of the same tissue block after generating the sections for

spatial transcriptomics experiment. For the tissue block used for the 7
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DPI cross-sections, we stained the post-processing section with wheat

germ agglutinin Alexa Fluor 488 conjugate and imaged the section

using a fluorescence microscope (Supplementary Figure S2G). We

found that the ASR cells indicated by green fluorescence overlapped

with the infection center regions identified in the spatial

transcriptomics data (Supplementary Figure S2G). This result

suggests that the annotated infection center regions using the

snRNA-seq and spatial transcriptomics data agree with the

visualized ASR infection sites. Altogether, the spatial transcriptomics

experiment performed in this study revealed the spatial organization

of the soybean response to ASR infection and further underscored the

heterogeneity in soybean-ASR interactions.
3.4 Single-nuclei RNA-seq and spatial
transcriptomics reveal both key pathways
and distinct spatial regions in soybean
response to ASR infection

It is known that pathogen infection can induce defense-related

gene expression changes in different host cell types and obscure cell

identity in single-cell RNA-seq experiments, but sub-clustering can

disentangle and further annotate obscured cell clusters (Tang et al.,

2023). We have already annotated a cluster of stressed cells that

showed immune response-related activity (Figures 2A, 3A). To

unravel cell type identity, we performed sub-clustering for the

stressed cells (Figure 3B), considering their relative relationship

with the rest of the cells in the UMAP, and generated seven sub-

clusters, labeled from sub-cluster 0 to 6 (Figure 3B). To further

annotate these sub-clusters, we correlated their marker gene

expression with the marker genes of the annotated cell types in

the snRNA-seq data (Figure 3C). Sub-clusters 0, 1, and 2 correlated

strongly with mesophyll cells (Figure 3C), suggesting that these sub-

clusters correspond to stressed mesophyll cells (Figures 3C, D).

Similarly, sub-clusters 4 and 3 had high correlations with bundle

sheath cells (Figure 3C), prompting us to annotate these sub-

clusters as stressed bundle sheath cells (Figures 3C, D). Finally,

sub-clusters 5 and 6 had strong correlations with pavement cells

(Figure 3C), suggesting that these sub-clusters are stressed

pavement cells (Figures 3C, D).

After annotating the sub-clusters for the stressed cells, the

UMAP of all annotated cells further validated the sub-cluster

annotations, with the stressed mesophyll cells localizing close to
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the mesophyll cells, and similarly for the stressed bundle sheath cells

and the stressed pavement cells (Figure 3D). This annotation of the

sub-clusters of the stressed cells allowed us to perform DEG analysis

by comparing the stressed mesophyll cells to the healthy mesophyll

cells, the stressed bundle sheath cells to the healthy bundle sheath

cells, and the stressed pavement cells to the healthy pavement cells

(Figure 3E). After identifying the DEGs for mesophyll, bundle

sheath, and pavement cells, we also performed GO term

enrichment analysis for these three cell types and compared the

GO terms (Supplementary Figure S3A). By overlapping the

significantly enriched GO terms for all three cell types, we found

significant overlap between the mesophyll, bundle sheath, and

pavement cells (Supplementary Figure S3A), suggesting that

different soybean cell types can activate similar defense response

pathways in reaction to ASR infection. Moreover, we also checked

the expression of ASR-induced genes from the literature in stressed

mesophyll cells versus healthy mesophyll cells, stressed pavement

cells versus healthy pavement cells, and stressed bundle sheath cells

versus healthy bundle sheath cells (Supplementary Figure S3B,

Supplementary Table S2) (Morales et al., 2013; Cabre et al., 2021).

We found that the ASR-induced genes had increased expression in

the stressed cells from all three cell types (Supplementary Figure

S3B), indicating that ASR infection could induce similar gene

expression changes in different soybean cell types.

Similar to the snRNA-seq, we also aimed to decipher the gene

expression changes upon ASR infection in the spatial data. As

elucidated earlier in this study, there are three spatial clusters

(clusters 4, 5 and 9) that correlated strongly with the stressed cells

identified in the snRNA-seq (Figures 2C, D), suggesting that these

three spatial clusters are related to the host response to the

pathogen. Among these spatial clusters, spatial clusters 9 and 5

are closely localized on the spatial UMAP (Figure 2C), with spatial

cluster 4 being further away from spatial clusters 9 and 5

(Figure 2C). Importantly, the percentage of ASR reads per spot

are much higher in spatial cluster 9 and 5, compared to spatial

cluster 4 (Figures 1C, 2C). Therefore, we combined the annotation

of spatial cluster 9 (infection center) and spatial cluster 5 (infection

periphery) together and annotated them as the infected region

(Figures 2C, E, 3F), while spatial cluster 4 was annotated as the

surrounding region (Figures 2C, E, 3F). Spatially, the surrounding

regions are bordering the infected regions (Figure 2E). Next, we

divided all spots into three categories: the infected region, the

surrounding region, and the healthy region, and performed DEG
TABLE 1 Summary of known leaf cell type marker genes used to annotate snRNA-seq clusters.

Cell type Arabidopsis marker gene Soybean marker gene snRNA-seq cluster Reference

Bundle sheath AT3G51895 Glyma.10G028900 4 (Kim et al., 2021)

Guard cell AT3G24140 Glyma.02G129100 10 (Kim et al., 2021)

Pavement cell AT1G27950 Glyma.18G005800 1 (Kim et al., 2021)

Phloem parenchyma cell AT3G56620 Glyma.03G122200 7 (Liu et al., 2022)

Phloem companion cell Glyma.07G222500 8 (Cervantes-Pérez et al., 2024)

Mesophyll cell AT3G01500 Glyma.05g007100 0, 2, 6, 9 (Procko et al., 2022)
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analysis by comparing the infected region to the healthy region, as

well as comparing the surrounding region to the healthy region

(Figure 3F). We then performed GO term analysis using the DEGs

identified in the infected and surrounding regions and overlapped

the significantly enriched GO terms (Supplementary Figure S3C).
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We found significant overlap in the GO terms for both the increased

and decreased genes between the infected regions and surrounding

regions (Supplementary Figure S3C), suggesting that similar

transcriptomic pathways are perturbed in the infected and

surrounding regions compared to the healthy regions.
FIGURE 2

Annotation of snRNA-seq and spatial clusters. (A) UMAP of annotated snRNA-seq clusters. (B) heatmap of normalized pseudo-bulked expression of
top marker genes for each annotated cell type within snRNA-seq. (C) UMAP of Spatial clusters. (D) Correlation heatmap of marker genes in
annotated snRNA-seq cell types and spatial clusters. (E) Annotation of all spots for spatial transcriptomics data.
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FIGURE 3

ASR Infection induces two spatially distinct response programs. (A) UMAP of stressed cell cluster in snRNA-seq dataset. (B) UMAP of subclustered
stressed cells in snRNA-seq. (C) Correlation heatmap of marker genes in annotated snRNA-seq clusters and sub-clusters of stressed cells. (D) UMAP
of snRNA-seq annotated clusters including annotated subclusters of stressed cells. (E) Volcano plots of significantly differentially expressed soybean
genes (adjusted p value < 0.05) in each stressed cell type compared to its corresponding healthy cluster. (F) Volcano plots of significantly
differentially expressed soybean genes (adjusted p value < 0.05) in each spatial region compared to the remaining healthy spots. (G) Dot plot of
enriched GO terms associated with differentially expressed genes from each comparison using both snRNA-seq and spatial transcriptomics data.
Size of dots corresponds to -log10 of adjusted p value, colored by NES. (H) Percent ASR reads per spot in each annotated spatial region. * indicates
p < 0.05, ** indicates p > 0.01, *** indicates p < 0.001, **** indicates p < 0.0001. (I) Defense response GO term-associated gene expression
described as a single score per spot in each spatial region. * indicates p < 0.05, ** indicates p > 0.01, *** indicates p < 0.001, **** indicates p <
0.0001. (J) Dot plot of enriched GO terms associated with genes differentially expressed between the infected and surrounding spatial regions. Size
of dots corresponds to -log10 of adjusted p value, colored by NES.
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Furthermore, we examined the GO terms derived from DEGs

from both the snRNA-seq and the spatial transcriptomics data and

found many overlapping GO terms between these two datasets

(Figure 3G, Supplementary Figure S3D, Supplementary Table S1),

suggesting that spatial and single-cell transcriptomics capture

similar transcriptional changes in the soybean response to ASR

infection. Interestingly, the GO term “photosynthesis” was shown

in the downregulated genes in all five comparisons: stressed

mesophyll versus healthy mesophyll, stressed bundle sheath

versus healthy bundle sheath, stressed pavement cells versus

healthy pavement cells, surrounding region versus healthy region,

and infected region versus healthy region (Figure 3G,

Supplementary Table S1). This aligns with previous studies

reporting a decrease in photosynthesis activity in pathogen-

infected host leaves (Bilgin et al., 2010). Similarly, immune

response-related GO terms, such as “calcium-mediated signaling,”

“signaling receptor activity,” and “defense response,” were enriched

in the upregulated genes in all five comparisons from both snRNA-

seq and spatial transcriptomics data (Figure 3G, Supplementary

Table S1), validating our findings that the stressed cells in the

snRNA-seq and the surrounding and infected regions in the spatial

transcriptomics data are all responsive to ASR infection. Altogether,

these results show that both snRNA-seq and spatial transcriptomics

reveal the key immune response pathways activated in soybean cells

in response to ASR infection.
3.5 Infection surrounding regions have
minimal ASR presence yet strong defense
response

Upon examination of the GO term dot plot of DEGs in the spatial

data, we noticed that the normalized enrichment score (NES) value

for the GO term “defense response” is higher in the surrounding

region compared to the infected region (Figure 3G, Supplementary

Table S1). However, as discussed earlier in this study, the infected

region had a higher ASR read content compared to the surrounding

region (Figures 1C, 2C, E). This result suggests that the surrounding

region identified in the spatial transcriptomics data has less ASR

presence but potentially a higher defense response compared to the

infected regions. This is reminiscent of localized acquired resistance

(Ross, 1961; Jacob et al., 2023a). It has been observed in the literature

that in Arabidopsis leaves infected with the bacteria Pseudomonas

syringae pv. tomato DC3000 AvrRps4, the defense-related gene PR1 is

highly expressed in the surrounding regions of the pathogen infection

site but is rather repressed in the infected leaf region with pathogen

presence (Jacob et al., 2023a, b). In the same study, the authors

proposed that in the pathogen-infected regions, the immune response

of the host cells is suppressed by pathogen-derived effectors, while in

the surrounding regions, the host cells activate a cell non-

autonomous immune response, with high defense response activity

and yet low presence of the pathogen (Jacob et al., 2023a, b).

Therefore, we sought to examine whether the surrounding and

infected regions identified in our spatial transcriptomic study

exhibit similar characteristics.
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We first compared the percentage of ASR reads among the

healthy, surrounding, and infected regions in the spatial

transcriptomics data (Figure 3H). Although both the surrounding

regions and the infected regions had higher percentage of ASR reads

per spot than the healthy regions, the surrounding regions had a

much lower percentage of ASR reads per spot compared to the

infected regions (Figure 3H). These results suggest that the

surrounding regions indeed had a very low presence of the ASR

pathogen. Next, we examined the expression of defense response-

related genes in the surrounding and infected regions (Figure 3I).

We combined the genes from the GO term “defense response” as a

gene module and plotted the expression of these genes as a module

score in the healthy, surrounding, and infected regions (Figure 3I,

Supplementary Table S2). We found that although both

surrounding and infected regions had higher expression of this

defense response gene module compared to the healthy regions, the

surrounding regions had significantly higher expression of the

defense response genes than the infected regions (Figure 3I,

Supplementary Table S2). These results suggest that although the

surrounding regions had a lower number of ASR reads than the

infected regions, the surrounding regions had higher expression of

defense response genes.

To further verify the defense-related gene expression pattern in

the surrounding and infected regions, we examined the expression

of known ASR-induced genes from the literature and found that the

ASR-induced genes had higher expression in the surrounding

regions compared to the infected regions (Supplementary Figure

S3E, Supplementary Table S2) (Morales et al., 2013; Cabre et al.,

2021), further confirming that the surrounding regions had higher

activation of defense-related genes than the infected regions.

Moreover, when we plotted the expression of the ASR-induced

genes across spots, we observed clear enrichment of these genes in

the surrounding regions and less enrichment in the infected regions

(Supplementary Figure S3F, Supplementary Table S2). Consistently,

the expression of the ASR-induced genes showed enriched spots on

the sections (Supplementary Figure S3G, Supplementary Table S2),

and these enriched spots overlapped with the surrounding regions

instead of the infected regions, which is evident in the paradermal

sections (Figure 2E, Supplementary Figure S3G, Supplementary

Table S2). This further supports that the surrounding regions

bordering the infected regions had higher expression of defense

response-related genes than the infected regions.

To better understand the differences between the infected

regions and the surrounding regions, we performed DEG analysis

by directly comparing the infected regions to the surrounding

regions (Supplementary Figure S3H). Using the DEGs derived

from this comparison, we further performed GO term analysis

and found that many defense response-related GO terms, such as

“defense response to other organism” and “flavonoid biosynthetic

process,” were enriched in the downregulated genes in the infected

regions compared to the surrounding regions (Figure 3J,

Supplementary Table S1). This suggests that the defense response

in the infected regions is likely suppressed as compared with the

surrounding regions. Altogether, we revealed that the surrounding

regions and the infected regions correspond to two distinct cell
frontiersin.org

https://doi.org/10.3389/fpls.2025.1637176
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Hu et al. 10.3389/fpls.2025.1637176
states during the plant response to pathogen infection, with the

surrounding regions bordering the infected regions. The

surrounding regions had a much lower presence of the pathogen

than the infected regions but had higher expression of defense

response-related genes.
3.6 Gene co-expression network analysis
identifies key immune responsive gene
module in stressed cells

The plant defense response to pathogens involves complex

changes at the whole transcriptome level, encompassing many

different transcriptional pathways and potentially various waves

of gene expression activation and suppression (Dobon et al., 2016).

To delineate the soybean defense response at the systems biology

level using single-cell transcriptomics data, we constructed a single-

cell gene co-expression network through hdWGCNA using the

mesophyll cells in our snRNA-seq data (Figure 4A, Supplementary

Figure S4A) (Morabito et al., 2023). This co-expression network was

constructed using both the healthy and stressed mesophyll cells

annotated in our snRNA-seq dataset (Figure 4A, Supplementary

Figure S4A), facilitating the identification of gene co-expression

modules in the stressed mesophyll cells. The mesophyll co-

expression network analysis identified nine different co-

expression gene modules, labeled from M1 to M9 (Figure 4A,

Supplementary Figure S4A). UMAP visualization of all gene

modules revealed the relative relationship between individual

modules and showed that module M3 and module M4 were the

two largest gene modules in the network (Figure 4A).

To further understand the biological significance of the different

gene modules, we performed GO term analysis using the genes

assigned to each module (Figure 4B, Supplementary Table S1). The

GO term analysis revealed that module M3 included many genes

involved in defense response-related GO terms, such as “defense

response to fungus,” while module M4 encompassed many genes

involved in photosynthesis-related GO terms, such as

“photosynthesis, light harvesting” (Figure 4B, Supplementary

Table S1). These results suggest that module M3 is an immune

response-related module, while module M4 is a photosynthesis-

related module. To further understand the expression of the various

modules identified in the co-expression network, we plotted the

expression of the eigengenes of each module across all nuclei

(Figure 4C, Supplementary Figure S4B). Interestingly, module M3

had enriched expression in the stressed cells in the snRNA-seq

dataset (Figure 4C), indicating that module M3 is activated in the

stressed cells, in line with the observation that defense response-

related GO terms are enriched in the genes assigned to module M3.

Moreover, module M4 had enriched expression in the healthy

mesophyll cells in the snRNA-seq dataset (Figure 4C), agreeing

with the observation that photosynthesis-related GO terms were

enriched in the genes assigned to module M4.

Next, we performed differential module eigengene analysis,

examining the eigengenes for modules M3 and M4 and

comparing their expression in stressed cells versus healthy cells
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(Figure 4D, Supplementary Figure S4C). We found that the

eigengene of module M3 was upregulated in the stressed

mesophyll cells compared to healthy mesophyll cells (Figure 4D),

indicating that module M3 is indeed an immune response-related

gene module. Interestingly, even though module M3 is derived from

mesophyll cells, its eigengene was upregulated in stressed bundle

sheath and pavement cells compared to their healthy counterparts

(Figure 4D), suggesting that different soybean cell types share

similar transcriptional changes in response to ASR infection.

Additionally, we performed differential module eigengene analysis

for the photosynthesis-related module M4 (Supplementary Figure

S4C). We found that the eigengene of module M4 was

downregulated in stressed mesophyll cells compared to healthy

mesophyll cells (Supplementary Figure S4C), verifying the finding

that photosynthesis-related pathways are downregulated upon ASR

infection (Bilgin et al., 2010). Altogether, we identified a

key immune response gene module that is highly induced

in the stressed cells in the snRNA-seq data, deepening our

understanding of the sophisticated transcriptional network

involved in the soybean defense response to ASR invasion.
4 Discussion

In this study, using snRNA-seq and spatial transcriptomics, we

have characterized the spatially organized soybean plant response to

ASR pathogen infection. The spatial and single-nuclei

transcriptomics technologies used in this study allowed the

simultaneous capture of the soybean and ASR transcriptomes,

enabling the identification of infection sites within the soybean

leaf sections. Furthermore, the high resolution of the single-nuclei

transcriptomics and the annotation of snRNA-seq clusters

facilitated the annotation of clusters in the spatial transcriptomics

data. The functional annotation of the spatial transcriptomics data

led to the important finding that the soybean immune response is

spatially organized into two different cell states/regions: the infected

regions at the center of pathogen infection exhibiting a relatively

weak defense response, and the surrounding regions bordering the

infected regions mounting a stronger defense response with

minimal pathogen contact. Finally, through gene co-expression

network analysis, we identified a defense response-related gene

module that is induced in the stressed cells identified in the

snRNA-seq. Together, the findings in this study provide new

evidence supporting the recently emerged hypothesis that

localized acquired resistance in the surrounding regions of the

infection site could be important for pathogen containment,

despite the host cells in the infection center being immune-

suppressed by effectors secreted from the pathogen (Jacob

et al., 2023a).
4.1 Localized acquired resistance

The concept of localized acquired resistance was first proposed

in 1961 by A. F. Ross, with the observation that a 1 – 2 mm zone
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surrounding the tobacco mosaic virus infection lesion developed

resistance to subsequent inoculation of tobacco mosaic virus in the

host species Nicotiana tabacum. However, the mechanism and

importance of this localized acquired resistance remained elusive

(Ross, 1961). Recently, a study revisited the concept of localized

acquired resistance and proposed that its induction is a key

component of the mechanism through which effector-triggered

immunity circumvents effector-triggered susceptibility (Jacob

et al., 2023a). This newly proposed spatially organized mechanism

of plant immune response is supported by another recently

published study where single-cell and spatial transcriptomics

technologies were applied to study Arabidopsis immune response

to bacterial infection (Nobori et al., 2025). In their study, two cell

populations were identified in plant immunity: the primary

immune responder (PRIMER) cells and the bystander cells. The

PRIMER cells had the strongest association with the pathogen and

were surrounded by the bystander cells. Similarly, in our study, we

identified two distinct cell states/regions that are spatially organized

at or near the ASR infection site. On the one hand, the infected

regions correspond to the PRIMER cells, with the presence of the

ASR pathogen, and have a weaker defense response than the

surrounding regions, in line with the proposed pathogen effector-
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triggered suppression of immune response (Jacob et al., 2023a). On

the other hand, the surrounding regions resemble the bystander

cells with localized acquired resistance. We observed that the

surrounding regions had minimal presence of P. pachyrizi but a

stronger defense response compared to the infected regions. This

observation aligns with the hypothesis by Jacob et al. that the

infected cells release an uncharacterized signaling molecule that

travels to the surrounding regions to activate a cell non-

autonomous defense response (Jacob et al., 2023a). Therefore, our

study provides important further evidence that the plant immune

response to pathogen invasion involves two spatially organized

regions: the infected regions in contact with the pathogen and the

surrounding regions bordering the infected regions that exhibit cell

non-autonomous localized acquired resistance.
4.2 Spatial and single cell transcriptomics
of both host and pathogen transcriptome

Plant-microbe interaction is an important field of study in

crops, encompassing interactions between plants and beneficial

microbes to form root nodules, as well as interactions between
frontiersin.o
FIGURE 4

Gene co-expression network analysis with single cell resolution captures key defense response-related gene module. (A) Gene-centric UMAP of
mesophyll co-expression modules constructed with hdWGCNA using snRNA-seq data. Dots indicate genes, and lines indicate strength of
relationship with module hub genes. (B) Dot plot of enriched GO terms associated with genes by mesophyll co-expression module membership.
Size of dots corresponds to -log10 of adjusted p value, colored by NES. (C) Module eigengene values for modules M3 and M4 plotted in snRNA-seq
UMAP. (D) Comparison of M3 module eigengene distributions in stressed and healthy cells across three cell types in snRNA-seq. Significance was
determined via an unpaired two-sided Wilcoxon Rank Sum test.
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plants and various disease-triggering pathogens (Zhu et al., 2023b;

Hu et al., 2024; Serrano et al., 2024b). During these plant-microbe

interactions, the plant response is usually very heterogeneous (Zhu

et al., 2023b; Hu et al., 2024; Serrano et al., 2024b). Depending on

whether the plant cells are directly contacting the microbes, their

responses can vary significantly (Betsuyaku et al., 2018). Moreover,

during plant-pathogen interaction, the plant cells in contact with

the pathogen and the plant cells surrounding the infection site can

mount very different spatially organized responses (Jacob et al.,

2023b). Therefore, cell-specific high resolution and spatial

information are crucial aspects of characterizing plant-microbe

interactions (Zhu et al., 2023b; Hu et al., 2024; Serrano et al., 2024b).

Many single-cell/nuclei RNA-seq studies have been conducted

to study plant-microbe interactions (Cao et al., 2023; Delannoy

et al., 2023; Liu et al., 2023b; Tang et al., 2023; Cervantes-Perez et al.,

2024; Pereira et al., 2024; Yan et al., 2025), but spatial

transcriptomics studies are less prevalent (Liu et al., 2023a;

Serrano et al., 2024a; Nobori et al., 2025). Similar to another

study that used spatial transcriptomics technology to capture host

response to pathogen infection (Nobori et al., 2025), our current

study captured the host and pathogen transcriptomes in the same

spatial transcriptomics experiment. This technical aspect of our

study is especially important as it enabled us to identify specific

regions of pathogen infection within the tissue sections sampled for

the spatial transcriptomics experiment. It also allowed us to

delineate the surrounding and infected regions, which play

different roles in the plant immune response.

Our snRNA-seq data also captured both the host and pathogen

nuclei. However, the total number of pathogen nuclei captured was

fewer than 100, which is not enough to perform conclusive

statistical analysis. This low number of captured pathogen nuclei

could be related to the relatively early stages of infection, up to 5

DPI. Future studies could expand the time course to later infection

stages to capture more pathogen nuclei for transcriptome

examinations. Nevertheless, the transcriptomic response of the

pathogen in the early stages of infection could be of interest as

well (Gervais et al., 2017). Therefore, future studies could focus on

using enrichment techniques, such as the recently published

Programmable Enrichment via RNA FlowFISH by sequencing

(PERFF-seq) (Abay et al., 2025), to enrich for pathogen nuclei

and study their transcriptomic activities.

In our snRNA-seq data, we observed that the percentage of

stressed cells was highest at 1 DPI, slightly dropped at 3 DPI, and

then increased again at 5 DPI (Supplementary Figure S2E). This

observation aligns with the reported biphasic transcriptional

response to ASR infection in soybean leaves (van de Mortel et al.,

2007; Schneider et al., 2011; Chicowski et al., 2024). The 1 DPI time

point processed in our study could correspond to the initial

phase of transcriptional changes, while the 3 DPI time point

resembles the middle quiescent period of the transcriptional

response, and the 5 DPI time point indicates a second phase of

transcriptional response. Future in-depth examination of this

biphasic transcriptional response with single-cell resolution could

deepen our understanding of the temporal and spatial plant defense

response to pathogen infection.
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4.3 Gene co-expression networks for
immune response at single cell resolution

Plant responses to pathogen infection encompass complex

regulatory pathways, including PAMP-triggered immunity (PTI)

activated by cell surface-localized pattern recognition receptors and

effector-triggered immunity (ETI) initiated by intracellular

nucleotide-binding leucine-rich repeat receptors (Ngou et al.,

2022). PTI and ETI pathways function synergistically to activate

similar pathways, such as calcium signaling, reactive oxygen species

(ROS) burst, mitogen-activated protein kinase (MAPK) signaling

pathway, and transcriptomic activation of defense-related genes

(Dodds et al., 2024). The transcriptomic response itself is

sophisticated and may constitute multiple waves of transcriptional

regulation, such as the transcriptional activation of a transcription

factor, which in turn activates or represses the expression of other

defense response-related genes (Dobon et al., 2016).

The advent of transcriptomics technologies has enabled the

simultaneous examination of changes at the whole transcriptome

level in plant responses to pathogen infection (van de Mortel et al.,

2007; Wise et al., 2007), but the analysis is often performed by

comparing different conditions and focusing on genes with the

most extreme expression changes (Peyraud et al., 2017). This

approach is sometimes not fruitful due to the redundancy of the

biological gene network, with redundancy of various genes and

different signaling pathways. Because of these redundancies,

modifying the function of individual genes may not be sufficient

to generate the desired disease resistance phenotype at the whole

organism level (Peyraud et al., 2017). Therefore, modeling the

gene network for plant immunity and identifying gene modules

important for the immune response can provide great insights

into the sophisticated gene network in host cells that are

responsive to pathogen infection.

So far, studies of plant pathogen interactions have built gene

networks using bulk transcriptome data or at the cell type-specific

level (Yuan et al., 2018; Yue et al., 2024), but plant immunity gene

networks with high cell resolution remain limited (Cao et al., 2023).

In our current study, we have built a gene co-expression network for

soybean cells in response to ASR pathogen infection using an

approach that provides high cell resolution to reveal more granular

gene co-expression relationships. Importantly, combined with our

carefully annotated snRNA-seq data, we showed that the immune

response-related gene co-expression module we identified is indeed

highly enriched and induced in the stressed soybean cell population.

This identification of this specific immune response module serves as

a foundation for future studies examining gene networks for plant

immune responses and opens the door for examination of the effects

of gene perturbations on disease resistance at the gene network level.
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