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Unlike animals, plants are sessile organisms that must adapt to localized and
fluctuating environmental stimuli, including abiotic and biotic stresses. While
animals use mobile immune cells to eliminate pathogens, plants rely on localized
cells in contact with the pathogen to detect and mount immune responses.
Although bulk RNA sequencing (RNA-seq) has enabled the assessment of plant
responses to pathogen infection at the whole transcriptome level, the spatial
coordination of plant immune responses remains elusive. In this study, we
performed both spatial and single-nuclei transcriptomic experiments to capture
the spatial pattern of soybean plant responses to Asian soybean rust infection caused
by the pathogen Phakopsora pachyrhizi. Through the analysis of both spatial and
single-nuclei transcriptomics data, we identified two distinct host cell states with
specific spatial localization in response to pathogen infection: the infected regions
with the presence of the pathogen and the surrounding regions bordering the
infected regions. Importantly, the surrounding regions exhibited higher expression of
defense response-related genes than the infected regions, despite having minimal
presence of the pathogen, indicating a cell non-autonomous defense response in
the surrounding regions. Additionally, gene co-expression network analysis with
single-cell resolution identified a key immune response-related gene module
activated in the stressed cells captured in our single-nuclei RNA-seq data. This
study reveals the intricate spatial coordination of plant defense responses against
pathogen infection and enhances our understanding of the importance of localized
cell non-autonomous defense responses in plant-pathogen interactions.
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spatial transcriptomics, single cell transcriptomics, immune response, defense
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1 Introduction

Plant pathogens represent a serious threat to crop production
worldwide. Historically, the agricultural management of diseases
has focused on multi-pronged approaches, including the use of
pesticides, and adapted agronomic practices. More recent efforts
have converged on the discovery of biotechnological solutions
through the characterization of genes involved in resistance to
specific pathogens. However, continuous adaptation of pathogens
to their environment and the resulting emergence of resistance to
treatments are well-known phenomena that require the ongoing
discovery of new resistant genes to create durable and broad-
spectrum resistance.

The mechanisms involved in a plant’s response to pathogen
infection are generally well-known (Ngou et al, 2021). The first
layer involves cell surface pattern recognition receptors (PRR) that
recognize potential pathogens in the environment resulting in pattern-
triggered immunity (PTI) (Dodds and Rathjen, 2010; Ngou et al,
2022). In turn, PTT initiates downstream molecular responses
including the production of reactive oxygen species, calcium influx,
and hormone production (Aerts et al., 2022). Several studies in
soybean have focused on discovering pathogen elements and their
respective PRRs. For example, Wei et al. determined that soybean had
developed “gain-of-perception” polymorphic versions of a receptor to
the epitope fgl22 from bacterial flagellin, eliciting defense response
against bacterial wilt disease (Wei et al., 2020). Ma et al. demonstrated
that a P. sojae glycoside hydrolase 12 protein acted through its
overexpression as a major virulence factor during infection and
could elicit PTT responses in soybean, although its cell surface PRRs
remained to be identified (Ma et al., 2015). Finally, Wang et al.
identified through forward genetic screens in soybean a malectin-like
receptor kinase, whose overexpression in N. benthamiana suppressed
PTI response, suggesting a similar mechanism in soybean acting as a
molecular switch to control PRR-mediated immune activation (Wang
et al,, 2020).

Pathogens, however, have evolved a series of small molecules,
called effectors, which, when injected into host cells, interfere with
PTI. To counteract this effect, another class of intracellular immune
receptors, nucleotide-binding domain leucine-rich repeat-
containing receptors (NLRs), detect the cytoplasmic effectors
delivered by the pathogen and activate effector-triggered
immunity (ETT) (Cui et al., 2015). Contrary to other species, very
little is known in soybean about ETI. Recently, a 27.7-Kb NLR gene
was characterized and shown to confer broad resistance to
Phytophthora root and stem rot (Wang et al., 2021). This gene,
known as RpsIl, is located in a NLR gene cluster harboring
significant structural heterogeneity among varieties, suggesting a
very active evolution of NLR genes in response to pathogen effector
diversification. Rppl, a nucleotide binding site-leucine rich repeat
(NBS-LRR) protein encoding an N-terminal ubiquitin-like protease
1 (ULP1) domain also was identified through germplasm and
genetic analysis of a locus conferring resistance to P. pachyrhizi,
the causal agent of ASR (Pedley et al., 2019). Interestingly, Rpp1 is
one of seven loci (Rppl to Rpp7) known to provide race-specific
resistance to P. pachyrhizi (Pedley et al., 2019; Wei et al., 2023). One
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of those, Rpp3, was fine-mapped to a region containing several
homologous nucleotide binding site-leucine rich repeat (NBS-LRR)
genes. Co-silencing of Rpp3 and its homologues in Rpp3-resistant
soybean lines was shown to compromise resistance to P. pachyrhizi
(Bish et al., 2024).

Both PTT and ETI initiate massive transcriptional reprogramming
(Tsuda and Somssich, 2015). Even with significant advancements, the
cellular mechanisms and pathways triggered by PTI and ETI are not
completely understood, and their investigation is often challenged by
the fact that pathogen interaction with plant hosts can be highly
heterogeneous (Latijnhouwers et al., 2003; Fawke et al,, 2015). The
host response is generally influenced by the distribution of the
pathogen in the plant and its developmental changes during the
colonization of the tissue (O’Connell et al, 2012). Those variable
interactions can lead to asynchronous cellular interactions and trigger
gene regulatory functions that can be specific to a particular cell type
or cell state. Therefore, to better understand the host transcriptional
responses to variable stages of infection, it is important to account for
the spatial attributes and cell type-specific features of plant defense
mechanisms and interactions with a pathogen.

Several recent studies have explored the underlying mechanisms
of plant immunity at the single-cell level. Tang et al. used single-cell
transcriptomics to determine the cell type-specific response of
Arabidopsis thaliana leaf protoplasts to fungal pathogen
Colletotrichum higginsianum (Tang et al., 2023). They demonstrated
that immune receptor gene expression was highly heterogeneous
across distinct cell types and included an enrichment of intracellular
immune receptors in vasculature cells. Zhu et al. similarly explored the
response of A. thaliana leaf protoplasts to infection with virulent
Pseudomonas syringae using single-cell transcriptomics (Zhu et al,
2023b). They discovered cluster-specific gene expression patterns
indicative of distinct cell states ranging from immunity to
susceptibility whose nature depended on their proximity to the
bacterial pathogen and the timeline of bacterial infection. More
recently, Nobori et al. combined single-cell transcriptomics,
epigenomics and spatial transcriptomics in A. thaliana infected with
virulent and avirulent P. syringae to identify novel cell states in the
host, in response to infection (Nobori et al., 2025). Specifically, they
demonstrated the existence of a new cell state, labeled as “PRIMER”
(primary immune responder) cells, located in regions of infection
involved in the host ETI response and classified them, based on
pseudotime analysis, as early responders to the bacterial infection.
Additionally, PRIMER cells were surrounded by yet another novel cell
state in response to infection, labeled as “bystander” cells, whose
spatial and molecular profiles suggested they were involved in cell-to-
cell immune signaling (Nobori et al., 2025). Those findings are in
alignment with a perspective offered by Jacob et al, where ETT does not
inhibit pathogen growth inside the initial infection site but rather
induces cells that are not in direct contact with the pathogen through a
process similar to the hypersensitive localized acquired resistance
(LAR) immune response (Jacob et al., 2023a).

Taken together, these studies demonstrate the ability of single-
cell and spatial techniques to characterize rare and localized cell
states involved in early ETT response mechanisms (Delannoy et al.,
2023; Tang et al., 2023; Zhu et al., 2023a), which may include genes
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involved in triggering multimodal resistance pathways, such as
transcription factors. Similarly, pathogens infecting plants trigger
and counteract plant resistance responses, by deploying a variety of
strategies aimed, for example, at facilitating cell penetration or
directing nutrient release (Langenbach et al., 2016). Such
manipulation generally requires the interaction of pathogen
effectors to plant proteins that are typically involved in normal
growth and maintenance aspects of the plant metabolism.
Therefore, both the infection of a plant by a pathogen and its
immune response requires the redirection, either activation or
suppression, of specific plant gene expression.

Phakopsora pachyrhizi is an obligate biotrophic fungus known
to be the causative agent of Asian Soybean Rust (ASR) (Chicowski
et al., 2024). Left untreated, P. pachyrhizi can defoliate soybean
fields within a few days and trigger yield losses of up to 90% (Godoy
et al, 2016). It is especially prevalent in South America, and
especially in Brazil, where it can cause economic losses that can
reach several billion USD (Yorinori et al., 2005; da Silva et al., 2014).
It is currently controlled through the combined use of fungicides
with different modes of action (Langenbach et al., 2016). Genetic
resistance is known but is not effective against all isolates of ASR
(Godoy et al.,, 2016). A more detailed molecular understanding of
the Soybean-ASR interactions at spatial and single-cell level may
help us identify key effectors and susceptibility genes and develop
novel durable disease management solutions.

In this study, we analyzed the spatial and temporal genic
response of soybean cells in relation to their proximity to
P. pachyrhizi and the extent of infection within different regions
of the leaf tissue. Our findings indicate that soybean cells at the sites
of ASR infection exhibit progressively lower transcriptional defense
response compared to soybean cells in the surrounding regions. On
the other hand, soybean cells in the surrounding non-infected
regions exhibit stronger transcriptional defense response, in
alignment with the “LAR” model of plant cell non-autonomous
immune response (Jacob et al., 2023a).

2 Materials and methods
2.1 Plant growth and pathogen inoculation

For 10x Genomics Visium experiments, 10-day old Williams 82
soybean plants were inoculated with Phakopsora pachyrhizi isolate
FL - 07 (90 - 110K spores/ml) and collected at 4 DPI and 7 DPI. For
10x Genomics Chromium experiments, 14-day old 93Y21 soybean
seedlings were spray inoculated with P. pachyrhizi isolate GA - 05 at
a high spore concentration (~100K spores/ml). Inoculated
unifoliate leaves were collected at 1, 3, and 5 DPIL For each time
point of the 10x Genomics Chromium experiments, we infected 2
different soybean plants with P. pachyrhizi spores and collected
tissue from these 2 different soybean plants, resulting in 2 biological
replicates for each time point.
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2.2 Single-nuclei RNA-seq

2.2.1 Tissue collection

For each single-nuclei RNA-seq (snRNA-seq) sample, about 40
mg of fresh ASR-infected soybean leaf tissue was flash frozen in
liquid nitrogen and stored at -80 °C until processed.

2.2.2 Nuclei isolation

For nuclei isolation, a previously published protocol was used
with modifications (Guillotin et al., 2023). In brief, frozen tissue was
transferred onto a petri dish (Corning #3160-60) pre-cooled on ice
with 300 ul lysis buffer consisting of 0.3 M sucrose, 1.25% Ficoll
(Fisher Scientific #34-169-125GM), 2.5% Dextran 40 (Millipore
Sigma #31389-25G), 15 mM Tris HCI (pH 8), 20 mM 2-(N-
morpholino) ethanesulfonic acid (MES), 10 mM MgCl,, 60 mM
KCl, 15 mM NaCl, 0.5 mM spermine, 0.5 mM spermidine, 0.1%
Triton X - 100, 5 mM dithiothreitol (DTT), 0.1 mM
phenylmethylsulfonyl fluoride (PMSF), 0.1% (v/v) protease
inhibitor cocktail (Millipore Sigma #P9599), 0.4% bovine serum
albumin (BSA), and 0.4 U/ul RNase inhibitor (Fisher Scientific
#NC0148451). From this step forward, the tissue and the
subsequent extracted nuclei were kept on ice throughout the
nuclei isolation process. Next, the tissue is chopped in the petri
dish on ice for 8 to 10 minutes using a razor blade. The samples
were then transferred to a Dounce tissue grinder (DWK Life
Sciences #885302). 400 ul lysis buffer was then used to wash the
petri dish and added to the Dounce tissue grinder. 10 movements
up-down were performed using the A pestle for the Dounce tissue
grinder and the samples were left incubating in the Dounce tissue
grinder for 5 minutes before another 5 movements up-down were
performed. Samples were then filtered through a 20 pm cell strainer
(Sysmex # 04 - 004-2324) into a 1.5 ml tube. 500 ul lysis buffer was
used to wash the Dounce tissue grinder, then filtered through the 20
um cell strainer into the same 1.5 ml tube. Samples were then
centrifuged at 500 g for 10 minutes at 4 °C. Supernatant was
removed from each tube and 60 pl final buffer (0.3 M sucrose, 15
mM Tris HCI (pH 8), 15 mM MES, 60 mM KCl, 15 mM NacCl, 0.5
mM spermine, 0.5 mM spermidine, 5 mM DTT, 0.1% (v/v) protease
inhibitor cocktail, 1% BSA, 0.2 U/ul RNase inhibitor) was added to
resuspend the nuclei pellet. Resuspended nuclei were filtered
through a 10 pm cell strainer (PluriSelect #43-10010-50). Isolated
nuclei were kept on ice until ready to proceed with 10x Chromium
library preparation.

2.2.3 10x Genomics Chromium library
preparation

Isolated nuclei were counted using a hematocytometer and about
ten thousand nuclei from each sample were loaded onto 10x
Genomics Chromium Next GEM chips. 10x Genomics Chromium
libraries were prepared following manufacturer’s instructions, using
reagents from 10x Genomics Chromium Next GEM Single Cell 3 ’
Reagent Kits v3.1 (10x Genomics #PN-1000121).
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2.2.4 Sequencing

Chromium Next GEM libraries were pooled and sequenced on
Ilumina NovaSeq 6000 using read length recommended by 10x
Genomics (Read 1: 28 cycles; i7 index: 10 cycles; i5 index: 10 cycles;
Read 2: 90 cycles) and the sequencing depth of 300 million clusters
per sample.

2.3 Visium spatial transcriptomics

2.3.1 Tissue collection

Leaves were dissected from the plants and dissected further into
small rectangles, placed in embedding molds (Ted Pella #27183)
filled with Sakura Optimal Cutting Temperature (OCT) embedding
medium (Ted Pella #27050) and oriented in cross section or
paradermal using a straight pin. Molds were flash frozen in
liquid nitrogen-chilled isopentane and stored at -80 °C until
further processing.

2.3.2 Cryo-sectioning and fluorescence imaging

Sample blocks were moved to Leica CM1950 Cryostat and
chamber temperature was set to -13 °C. Blocks were allowed to
acclimate and 10 pm-thick sections were cut and observed on Leica
DM1000 to check for fungal structures. To increase the integrity of
cryosections, the plastering technique from Dr. Stephen Peters was
modified, using 1:1 diluted OCT in 10 mM phosphate-buffered
saline (PBS) (Peters, 2003a, b). Sections were stained overnight at 4 °
C using wheat germ agglutinin Alexa Fluor 488 conjugate
(Invitrogen #W11261) in PBS at 1:2000, mounted in 80%
glycerol, and imaged using a 20x air objective on a Leica Upright
DM5000 in fluorescence mode, using filter sets A4, Cy5, and GFP.
After fungal structures were confirmed with staining, 10 um-thick
sections were collected onto 10x Genomics Visium slides: sections
were individually cut, placed in a capture area on the slide, and
melted to the slide using the tip of a finger applied to the side
opposite the tissue while still in the cryostat chamber. Section and
slide were immediately refrozen in cryostat chamber by placing the
slide on the stage, and sectioning continued in this manner to
complete all capture areas on the slide. Slides were stored at -80 °C
until further processing. After sectioning for the Visium slide, one
additional post-processing section was generated and stained and
imaged using the methods mentioned above to check for fungal
structures again.

2.3.3 Section fixation, staining and imaging

The 10x Genomics Visium slide with sections was removed from
the -80 °C and placed on a 37 °C slide warmer for 1 minute. The slide
was then placed on a plastic tray, and the tray was put on ice for the
following steps. Farmer’s fixative (3-parts 100% Ethanol: 1-part
Glacial Acetic Acid) was chilled to -20 °C and placed on ice.
Approximately 1 ml of fixative was pipetted onto the slide and left
to stand for 2 minutes. The fixative was removed by tipping the slide.
Approximately 1 ml of 100% ethanol, chilled to -20 °C then placed on
ice, was pipetted onto the slide and left to stand for 2 minutes. The
ethanol was tipped off and the slide was allowed to dry for 2 minutes.
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Toluidine blue 1% in 1% Sodium Borate solution (Poly-Sciences
#52410-320Z) was diluted 1:10 with water, 1 ml pipetted on to the
slide, and left to stand for 2 minutes. The stain was tipped off, 1 ml
distilled water was pipetted to the slide and left to stand for 2 minutes.
After the water was removed, the slide was allowed to dry for 5
minutes before imaging. The slide was imaged with transmitted light
on a Leica Thunder Imager (Leica Microsystems) using a 10x/0.30NA
air objective and a K5 monochrome camera. The slide was then
placed on ice until the next steps.

2.3.4 10x Genomics Visium tissue optimization

Tissue optimization was adapted from manufacturer’s
instructions (CG000238 Rev F). 10 um-thick sections were placed
on Visium Tissue Optimization slides (10x Genomics), processed
and imaged as indicated in section 2.3.3, and then were tested for
various permeabilization times (5 minutes to 15 minutes). Reverse-
transcription and tissue removal were performed using reagents
from the Visium Spatial Tissue Optimization Reagent kits (10x
Genomics #PN-1000193). After processing, the slide was imaged on
a Leica Thunder Imager (Leica Microsystems) using a 10x/0.30NA
air objective and a K5 monochrome camera. The LED3 system and
the filter TXR (Excitation: BP 560/40, Dichroic: LP 585, Emission:
BP 630/75) were used. The exposure time was set using the RNA
control well as a positive control. After fluorescence imaging of the
sections, 10 min permeabilization times were selected based on
maximum fluorescence signal with the lowest signal diffusion. This
permeabilization time was used for subsequent handling of Visium
Gene Expression slides.

2.3.5 10x Genomics Visium gene expression
library preparation

Fixed and stained 10 wm thick sections on Visium Gene
Expression slides (10x Genomics) were processed according to
manufacturer’s instructions, using reagents from the Visium Spatial
Gene Expression Reagent Kit (10x Genomics) and the Library
Construction Kit (10x Genomics), for cDNA amplification and
library construction, respectively. Briefly, for each section, 10-minute
permeabilization at 37 °C was followed by 45-minute reverse
transcription at 53 °C. After second strand synthesis and
denaturation, cDNA fragments were recovered from individual
sections and amplified for 17 cycles, as determined by the Cq value
from the quantitative polymerase chain reaction (QPCR) optimization
steps performed on the recovered cDNA fragments. After enzymatic
fragmentation, end repair, adaptor ligation and size-selection, the
resulting cDNA inserts were amplified using individual barcoded
primers from the Dual Index TT Set A kit (10x Genomics), then
pooled prior to sequencing.

2.3.6 Sequencing

Sequencing was performed on Illumina NovaSeq 6000 and
NextSeq 550 systems according to 10x Genomics’ recommendations
for read length (Read 1: 28 cycles; i7 index: 10 cycles; i5 index: 10
cycles; Read 2: 90 cycles) and depth (50,000 clusters per spot). Spatial
localization and characterization of unique molecular events were
performed using individual spatial barcode and unique molecular
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identifier (UMI) sequences derived from Read 1 sequencing data,
while Read 2 sequencing data were used to determine the molecular
identity (e.g., gene annotation) of the original cDNA fragment and
transcript the sequence was derived from.

2.4 Processing and analysis of Visium
spatial and Chromium snRNA-seq data

2.4.1 Read mapping

The 10x Genomics Space Ranger software (v2.0.1) and 10x
Genomics Cell Ranger software (v8.0.1) were used to process raw
reads into count values for each barcoded Visium spot and
barcoded chromium nuclei respectively (Zheng et al., 2017). For
both experiments, reads were simultaneously aligned to the
Phakopsora pachyrhizi genome (Phapal, GCA_025201825.1)
(Gupta et al., 2023) and Glycine max Williams 82 (Wm82v4)
(Valliyodan et al, 2019). Data analysis for both the single-nuclei
and spatial data was performed using the Seurat 5.1.0 package in R
4.3.2 (Satija et al,, 2015).

2.4.2 Sample filtering

Fiducial frames around the capture area on each Visium slide were
aligned manually, and tissue-covered spots were selected using 10x
Genomics Loupe Browser software (v8.1.2). After this, 33,994 genes
(28,789 from Glycine max, 5,196 from Phakopsora pachyrhizi) across
5,085 spots in the twelve samples were used for further analysis.

High quality nuclei with 300 < UMI < 10,000; 250 < genes <
6000; and less than 10% mitochondrial or chloroplastic reads were
selected for further analysis. Doublets were identified and removed
using DoubletFinder (v2.0.4) (McGinnis et al., 2019). After filtering,
44,478 genes (41,028 from soybean 3,450 from ASR) across 48,358
nuclei in the six samples were used for further analysis.

2.4.3 Normalization and clustering

Spatial and single-nuclei samples were individually processed in
the same manner yielding two distinct Seurat objects. Seurat
SCTransform was used to normalize each sample before canonical
correlation analysis (cca) integration of all capture areas or all
single-nuclei samples (Hafemeister and Satija, 2019). Using the
integrated data object, all spots or cells were clustered using 30
principal components (PCs) using the Louvain algorithm with a 0.5
resolution or 0.25 resolution for spatial and single-nuclei objects
respectively. Uniform manifold approximation and projection
(UMAP) dimensional reductions were also calculated with 30 PCs.

The stressed cell type cluster was subset from the full single-
nuclei object where Louvain clustering was run with a resolution of
0.25. Following this, marker genes for the resulting subclusters were
identified as below and compared to cell clusters identified in the
full dataset. Preserving the original UMAP confirmed subcluster cell
type annotation.
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2.4.4 Gene level analyses

Cluster marker genes were identified using Seurat function
FindAllMarkers with significance defined by a Wilcoxon Rank
Sum test and adjusted P < 0.05. Differentially expressed genes
(DEGs) between the healthy and infected clusters were identified
using Seurat function FindMarkers with significance defined by a
Wilcoxon Rank Sum test and adjusted P < 0.05. Gene Ontology
(GO) enrichment was determined with fgsea (v1.28.0) (KKorotkevich
etal., 2021) ranked by all avg_log2FC values calculated by the above
functions. Seurat function AddModuleScore was used to summarize
expression of 15 ASR induced genes originally identified by Cabre
et al. (2021) and Morales et al (Morales et al., 2013).

2.4.5 Normalized pseudo-bulk analysis

Raw counts were summed per gene for the spatial and single-
nuclei datasets using the Seurat function AggregateExpression. The
summed raw counts were supplied to DESeq2 (v1.42.1) for default
normalization (Love et al., 2014).

2.4.6 Visualizations

Several R packages were used to create data visualizations.
EulerR (v7.0.2) and SuperExactTest (v1.1.0) were used to create
Venn diagrams and the associated statistics (Wang et al., 2015;
Larsson and Gustafsson, 2018). UpsetR (v1.4.0) was used to create
Upset plots (Conway et al., 2017). Pheatmap (v1.0.12) was used to
create all heatmaps (Kolde, 2018).

2.5 High dimensional weighted gene co-
expression network analysis

High dimensional weighted gene co-expression network
analysis (hdWGCNA) was performed using the hdWGCNA
0.3.03 package in R 4.3.3. Before network construction, genes
were filtered to soybean genes expressed in at least 1% of cells
(24,705 genes), and cells were filtered to those labeled as healthy or
stressed mesophyll cells. The ConstructNetwork function was used
to build signed co-expression networks with minModuleSize set to
50, detectCutHeight set to 0.995, and mergeCutHeight set to 0.2. To
select the soft power threshold, a parameter sweep was performed
with the TestSoftPowers function as described by Morabito et al
(Morabito et al., 2023).

To summarize gene expression across the genes in each co-
expression module, module eigengenes (MEs) were calculated. MEs
are defined as the first principal component of the module’s gene
expression matrix, and module hub genes are selected by
correlation with the module’s eigengene. A gene-centric UMAP
reduction was performed on the topological overlap of each gene
with the top 10 hub genes from each module. For statistical
comparison of module eigengene values, the unpaired two-sided
Wilcoxon Rank Sum test was employed.
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3 Results

3.1 Spatial and single nuclei
transcriptomics simultaneously capture
soybean and ASR transcriptome

To characterize the spatial and temporal changes in the
transcriptome during soybean-ASR interaction, we infected
soybean unifoliate leaves with ASR spores (Figure 1A). We
generated paradermal (PD) sections of soybean leaves at 4 days
post-infection (DPI) and cross-sections (CS) of soybean leaves at
both 4 DPI and 7 DPI (Figure 1A). For each sample type, four serial
sections were used for 10x Genomics Visium experiments
(Supplementary Figure SIA). Once tissue sections were placed
onto Visium slides, the RNAs were permeabilized onto the slides,
which contain spots with primers that have spatial barcodes, UMIs,
and poly(dT) primers to capture transcripts with poly(A) tails
(Figure 1A) (Marx, 2021). The spatial barcodes allow tracing of
sequencing reads back to specific spots on the Visium slide, which
can then be overlaid and compared to brightfield images of the
sections on the slides to obtain spatial information on gene
expression (Marx, 2021). The poly(dT) primers enable the
capture of poly(A) tailed RNA molecules (Verma, 1978), which
are prevalent in both soybean and ASR nuclei (Fasken and Corbett,
2009), allowing the simultaneous capture of soybean and ASR
transcriptomes in the spatial transcriptomics experiment.

Total soybean genes captured from the 12 Visium sections
ranged from nineteen thousand to thirty-two thousand and ASR
genes ranged from one thousand to six thousand (Supplementary
Figure S1B), indicating sufficient coverage of the whole
transcriptome of both soybean and ASR. Principal component
analysis of all 12 Visium sections revealed that the 4 DPI and 7
DPI samples formed distinct clusters (Supplementary Figure S1C),
suggesting that the expression of ASR and soybean genes changes
over the time course of infection. Additionally, we analyzed the
percentage of ASR reads per spot and found that the ASR read
percentage is significantly higher in 7 DPI cross-sections compared
to either 4 DPI paradermal sections or 4 DPI cross-sections
(Supplementary Figure S1D), indicating the expansion of ASR
infection in soybean leaves as the disease progresses. Spatial
mapping of the percentage of ASR reads per spot shows spots
with high ASR presence in each section (Figure 1B), highlighting
the spatial heterogeneity of ASR infection in soybean leaves. To
analyze the relationship between different spots across all sections,
we combined all spots from the 12 sections and generated a UMAP
(Figure 1C, Supplementary Figure S1E). After combining data from
the different sections, the UMAP showed that spots from different
sections were well integrated (Supplementary Figure S1E).
Furthermore, we examined the percentage of ASR reads per spot
and found that spots with a high percentage of ASR reads localized
closely together on the UMAP (Figure 1C), indicating that ASR-
infected regions have similar gene expression profiles. Together,
these results demonstrate that spatial transcriptomics can
simultaneously capture both soybean and ASR transcriptomes
and identify specific spatial regions of active ASR infection.
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Although the spatial transcriptomic experiments capture gene
expression along with in situ spatial localization information, the
spots on the Visium slides have a resolution of 55 pm, which is not
true single-cell resolution (Figure 1A). Therefore, we complemented
the spatial transcriptomics study with snRNA-seq using the 10x
Genomics Chromium platform (Figure 1A). We isolated nuclei
from ASR-infected soybean leaves at 1, 3, and 5 DPI, with two
biological replicates for each time point, and subjected the nuclei to
snRNA-seq (Figure 1A). Across the six snRNA-seq samples, the
number of soybean cells captured ranged from five thousand to
eleven thousand, and the total number of soybean genes detected
ranged from forty-two thousand to forty-six thousand
(Supplementary Figure S1F), suggesting that the snRNA-seq data
captured most of the whole transcriptome of soybean cells. Further
PCA analysis of all six snRNA-seq samples showed that all the
biological replicates clustered together (Supplementary Figure S1G),
indicating the reproducibility of the snRNA-seq. Similar to the
Visium platform, the Chromium platform also uses poly(dT)
primers for capturing transcripts, allowing the simultaneous
capture of soybean and ASR transcripts, as indicated by the
capture of a total of three thousand to five thousand ASR genes
in the six snRNA-seq samples (Supplementary Figure SIF).
Accordingly, the percentage of ASR reads per nucleus
significantly increased from 1 DPI to 3 DPI and from 3 DPI to 5
DPI in the snRNA-seq samples (Supplementary Figure SI1H),
confirming the progression of ASR infection over time. To
explore the relationship between the gene expression of all nuclei
captured in the six snRNA-seq samples, we generated a UMAP of
all nuclei (Figure 1D, Supplementary Figure S11). After combining
the data, nuclei from different samples were evenly distributed
across the UMAP (Supplementary Figure S1I), indicating good
integration and allowing for the examination of gene expression
changes between different samples in specific nuclei clusters. In the
snRNA-seq dataset, a small cluster of ASR nuclei showed a high
percentage of ASR reads per nucleus (Figure 1D), again indicating
the successful capture of both soybean and ASR transcriptomes in
the snRNA-seq experiment.

Altogether, these results demonstrate that both spatial
transcriptomics and snRNA-seq can simultaneously capture the
transcriptomes of both the host soybean and the pathogen ASR.
The spatial transcriptomics data allows for the visualization of the
ASR infection center, highlighting the heterogeneity of ASR infection
in soybean leaves. Meanwhile, the snRNA-seq data complements the
spatial transcriptomics data with single-nuclei resolution, enabling
cell-specific analysis of gene expression changes upon ASR infection.

3.2 Single-nuclei RNA-seq captures a
stressed cell cluster

Pathogen infection in plants often results in heterogeneous
responses among different host cells in the infected organ, as
characterized in previous single-cell transcriptomic studies
focusing on plant-pathogen interactions (Cao et al., 2023;
Delannoy et al., 2023; Tang et al., 2023; Nobori et al., 2025; Yan
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FIGURE 1

Spatial transcriptomics and snRNA-seq simultaneously capture both soybean and ASR transcriptome. (A) Schematic of experiments performed for
various samples of ASR-infected soybean leaf. Leaves infected for 4 days were paradermal (PD) and cross sectioned (CS), leaves infected for 7 days
were cross sectioned for Visium spatial analysis. Leaves infected for 1, 3, and 5 days were subjected to snRNA-seq. (B) Percent ASR reads per spot
mapped spatially reveals localized regions of ASR infection. (C) Spatial UMAP of percent ASR reads per spot. (D) snRNA-seq UMAP of percent ASR
reads per nuclei.

et al., 2025). Single-cell/nuclei RNA-seq provides unique  performed clustering of all nuclei assayed by snRNA-seq and
opportunities to identify different cell types and even different cell ~ identified 12 distinct clusters, labeled from cluster 0 to 11
states in the host plant in response to pathogen infection (Zhu etal,,  (Supplementary Figure S2A). It is known in the literature that
2023b). To elucidate the differential transcriptomic responses  soybean homologs of cell type marker genes from other plant
among various soybean cell types/states during ASR infection, we  species often exhibit conserved expression in the same soybean
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cell types (Cervantes-Perez et al., 2024). Therefore, to annotate the
nuclei clusters in our snRNA-seq data, we searched the literature
and the Single Cell Plant Database (scPlantDB) for known leaf cell
type marker genes in soybean and other plant species and checked
the expression of these marker genes or their soybean homologs in
our clusters (He et al., 2024). Based on these known leaf cell type
marker genes, we annotated a majority of the clusters in our
snRNA-seq data: clusters 0, 2, 6, and 9 as mesophyll cells; cluster
1 as pavement cells; cluster 4 as bundle sheath cells; cluster 7 as
phloem parenchyma cells; cluster 8 as phloem companion cells; and
cluster 10 as guard cells (Table 1, Figure 2A).

However, clusters 3 and 5 from the snRNA-seq dataset did not
show enriched expression of any of the previously mentioned
known leaf cell type marker genes and therefore could not be
annotated using this approach. Since pathogen infection can induce
drastic gene expression changes in host cells and obscure their cell
type identities (Tang et al., 2023), we derived cluster-specific marker
genes from clusters 3 and 5 and performed GO term analysis using
these cluster marker genes (Supplementary Figure S2C,
Supplementary Table S1). Interestingly, marker genes from both
clusters 3 and 5 showed enrichment in GO terms related to immune
response (Supplementary Figure S2C, Supplementary Table S1).
This result suggests that clusters 3 and 5 are immune-responsive or
stressed cells, likely caused by ASR infection. Therefore, we
annotated clusters 3 and 5 together as stressed cells (Figure 2A).
To verify if clusters 3 and 5 are indeed immune-responsive cells in
response to ASR infection, we curated a list of ASR-induced genes
from previous bulk transcriptome studies performed using ASR-
infected soybean leaves (Supplementary Table S2) (Morales et al.,
2013; Cabre et al,, 2021). To check the expression of these ASR-
induced genes, we treated these genes as an ASR-induced gene
module and calculated the expression of this module across all
nuclei (Supplementary Figure S2D, Supplementary Table S2).
Interestingly, the ASR-induced gene module expression is mostly
enriched in clusters 3 and 5 (Supplementary Figure S2D),
suggesting that these stressed cells exhibit transcriptional changes
in response to ASR infection. Apart from the clusters we have
annotated, cluster 11 had the fewest number of cells and did not
show specific cell type marker gene expression, so we designated
cluster 11 as an unknown cluster and excluded it from the rest of the
analysis (Figure 2A, Supplementary Figure S2A). Moreover, in our
snRNA-seq data, there are ASR cells assigned based on the mapping
of the majority of reads within the cell barcode to the ASR genome,
so we designated those cells as ASR cells instead of one of the
annotated soybean cell types (Figure 2A). Since we detected fewer
than 100 ASR cells (Supplementary Figures S1F, Figure 2A), we also
excluded the ASR cells from the rest of our snRNA-seq analysis to
focus on host responses.

After annotating most of the nuclei clusters, we also examined
the soybean cell type composition at different time points: 1 DPI, 3
DPI, and 5 DPI (Supplementary Figure S2E). Furthermore, we
identified cell type-specific marker genes for the annotated cell types
and demonstrated that the expression of these marker genes is
highly enriched in the corresponding cell types (Figure 2B). This
will be a valuable resource for annotating cell clusters in future
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soybean single-cell transcriptomic studies. Altogether, these results
suggest that our snRNA-seq data captures not only the major cell
types in soybean leaves but also a cluster of stressed cells in response
to ASR infection.

3.3 Spatial transcriptomics identify sites of
ASR infection

To gain more insight into the spatial organization of the
soybean immune response to ASR, we next sought to cluster the
different spatial spots from all 12 sections and to annotate the spot
clusters. We performed clustering analysis for all spots and
identified 10 different spatial clusters, labeled from 0 to 9
(Figure 2C). Since we had already annotated the snRNA-seq
clusters and derived cell type-specific marker genes for soybean
leaves infected with ASR (Figures 2A, B), we correlated marker
genes of the spatial clusters with the cell type-specific marker genes
to facilitate the annotation of the spatial clusters (Figure 2D).
Interestingly, spatial clusters 3, 2, 6, and 0 clustered strongly with
mesophyll marker genes derived from the snRNA-seq performed in
this study (Figure 2D), suggesting that these four spatial clusters can
be annotated as the mesophyll region (Figures 2D, E). Moreover,
spatial cluster 7 had the highest correlation with marker genes from
guard cells and pavement cells (Figure 2D), indicating that spatial
cluster 7 corresponds to the epidermis region (Figures 2D, E).
Similarly, spatial clusters 8 and 1 strongly correlated with the
marker genes identified for vasculature-related cells, including
phloem companion cells, phloem parenchyma cells, and bundle
sheath cells (Figure 2D), indicating that these spatial clusters
correspond to the vasculature region (Figures 2D, E). Finally,
spatial clusters 4, 9, and 5 had high correlation with marker genes
from the stressed cells identified in the snRNA-seq experiment in
this study (Figure 2D), suggesting that these spatial clusters are the
stressed or infected regions (Figure 2D).

By overlaying the spatial clusters with the brightfield image for the
sections, we visually confirmed the spatial clusters that correspond to
the vasculature and epidermis regions (Supplementary Figure S2F).
The vasculature-related spatial clusters, clusters 1 and 8, are localized
to the vasculature regions shown in both the paradermal sections and
the cross sections (Supplementary Figure S2F). Similarly, the
epidermis-related spatial cluster, cluster 7, clearly localized to the
epidermis regions, which is especially evident in the paradermal
sections (Supplementary Figure S2F). These results further validate
the spatial cluster annotations. When we overlaid all annotated spatial
clusters on the brightfield image of the sections, it further showed that
the stressed/infected clusters, clusters 9, 5, and 4, had a specific spatial
organization pattern: cluster 9 forming the infection center, cluster 5
forming the infection periphery that surrounds the infection center,
and cluster 4 forming the surrounding region that further borders the
infection center and infection periphery regions (Figure 2E). After
annotating the spatial clusters using the transcriptomics data, we also
sought to independently verify this annotation by staining the adjacent
serial section of the same tissue block after generating the sections for
spatial transcriptomics experiment. For the tissue block used for the 7

frontiersin.org


https://doi.org/10.3389/fpls.2025.1637176
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Hu et al.

10.3389/fpls.2025.1637176

TABLE 1 Summary of known leaf cell type marker genes used to annotate snRNA-seq clusters.

Cell type Arabidopsis marker gene Soybean marker gene snRNA-seq cluster Reference
Bundle sheath AT3G51895 Glyma.10G028900 4 (Kim et al., 2021)
Guard cell AT3G24140 Glyma.02G129100 10 (Kim et al., 2021)
Pavement cell AT1G27950 Glyma.18G005800 1 (Kim et al., 2021)
Phloem parenchyma cell AT3G56620 Glyma.03G122200 7 (Liu et al,, 2022
Phloem companion cell Glyma.07G222500 8 (Cervantes-Peérez et al., 2024)
Mesophyll cell AT3G01500 Glyma.05¢007100 0,2,6,9 (Procko et al., 2022)

DPI cross-sections, we stained the post-processing section with wheat
germ agglutinin Alexa Fluor 488 conjugate and imaged the section
using a fluorescence microscope (Supplementary Figure S2G). We
found that the ASR cells indicated by green fluorescence overlapped
with the infection center regions identified in the spatial
transcriptomics data (Supplementary Figure S2G). This result
suggests that the annotated infection center regions using the
snRNA-seq and spatial transcriptomics data agree with the
visualized ASR infection sites. Altogether, the spatial transcriptomics
experiment performed in this study revealed the spatial organization
of the soybean response to ASR infection and further underscored the
heterogeneity in soybean-ASR interactions.

3.4 Single-nuclei RNA-seq and spatial
transcriptomics reveal both key pathways
and distinct spatial regions in soybean
response to ASR infection

It is known that pathogen infection can induce defense-related
gene expression changes in different host cell types and obscure cell
identity in single-cell RNA-seq experiments, but sub-clustering can
disentangle and further annotate obscured cell clusters (Tang et al.,
2023). We have already annotated a cluster of stressed cells that
showed immune response-related activity (Figures 2A, 3A). To
unravel cell type identity, we performed sub-clustering for the
stressed cells (Figure 3B), considering their relative relationship
with the rest of the cells in the UMAP, and generated seven sub-
clusters, labeled from sub-cluster 0 to 6 (Figure 3B). To further
annotate these sub-clusters, we correlated their marker gene
expression with the marker genes of the annotated cell types in
the snRNA-seq data (Figure 3C). Sub-clusters 0, 1, and 2 correlated
strongly with mesophyll cells (Figure 3C), suggesting that these sub-
clusters correspond to stressed mesophyll cells (Figures 3C, D).
Similarly, sub-clusters 4 and 3 had high correlations with bundle
sheath cells (Figure 3C), prompting us to annotate these sub-
clusters as stressed bundle sheath cells (Figures 3C, D). Finally,
sub-clusters 5 and 6 had strong correlations with pavement cells
(Figure 3C), suggesting that these sub-clusters are stressed
pavement cells (Figures 3C, D).

After annotating the sub-clusters for the stressed cells, the
UMAP of all annotated cells further validated the sub-cluster
annotations, with the stressed mesophyll cells localizing close to
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the mesophyll cells, and similarly for the stressed bundle sheath cells
and the stressed pavement cells (Figure 3D). This annotation of the
sub-clusters of the stressed cells allowed us to perform DEG analysis
by comparing the stressed mesophyll cells to the healthy mesophyll
cells, the stressed bundle sheath cells to the healthy bundle sheath
cells, and the stressed pavement cells to the healthy pavement cells
(Figure 3E). After identifying the DEGs for mesophyll, bundle
sheath, and pavement cells, we also performed GO term
enrichment analysis for these three cell types and compared the
GO terms (Supplementary Figure S3A). By overlapping the
significantly enriched GO terms for all three cell types, we found
significant overlap between the mesophyll, bundle sheath, and
pavement cells (Supplementary Figure S3A), suggesting that
different soybean cell types can activate similar defense response
pathways in reaction to ASR infection. Moreover, we also checked
the expression of ASR-induced genes from the literature in stressed
mesophyll cells versus healthy mesophyll cells, stressed pavement
cells versus healthy pavement cells, and stressed bundle sheath cells
versus healthy bundle sheath cells (Supplementary Figure S3B,
Supplementary Table S2) (Morales et al., 2013; Cabre et al., 2021).
We found that the ASR-induced genes had increased expression in
the stressed cells from all three cell types (Supplementary Figure
S3B), indicating that ASR infection could induce similar gene
expression changes in different soybean cell types.

Similar to the snRNA-seq, we also aimed to decipher the gene
expression changes upon ASR infection in the spatial data. As
elucidated earlier in this study, there are three spatial clusters
(clusters 4, 5 and 9) that correlated strongly with the stressed cells
identified in the snRNA-seq (Figures 2C, D), suggesting that these
three spatial clusters are related to the host response to the
pathogen. Among these spatial clusters, spatial clusters 9 and 5
are closely localized on the spatial UMAP (Figure 2C), with spatial
cluster 4 being further away from spatial clusters 9 and 5
(Figure 2C). Importantly, the percentage of ASR reads per spot
are much higher in spatial cluster 9 and 5, compared to spatial
cluster 4 (Figures 1C, 2C). Therefore, we combined the annotation
of spatial cluster 9 (infection center) and spatial cluster 5 (infection
periphery) together and annotated them as the infected region
(Figures 2C, E, 3F), while spatial cluster 4 was annotated as the
surrounding region (Figures 2C, E, 3F). Spatially, the surrounding
regions are bordering the infected regions (Figure 2E). Next, we
divided all spots into three categories: the infected region, the
surrounding region, and the healthy region, and performed DEG
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analysis by comparing the infected region to the healthy region, as
well as comparing the surrounding region to the healthy region
(Figure 3F). We then performed GO term analysis using the DEGs
identified in the infected and surrounding regions and overlapped
the significantly enriched GO terms (Supplementary Figure S3C).
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We found significant overlap in the GO terms for both the increased
and decreased genes between the infected regions and surrounding
regions (Supplementary Figure S3C), suggesting that similar
transcriptomic pathways are perturbed in the infected and
surrounding regions compared to the healthy regions.
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Furthermore, we examined the GO terms derived from DEGs
from both the snRNA-seq and the spatial transcriptomics data and
found many overlapping GO terms between these two datasets
(Figure 3G, Supplementary Figure S3D, Supplementary Table S1),
suggesting that spatial and single-cell transcriptomics capture
similar transcriptional changes in the soybean response to ASR
infection. Interestingly, the GO term “photosynthesis” was shown
in the downregulated genes in all five comparisons: stressed
mesophyll versus healthy mesophyll, stressed bundle sheath
versus healthy bundle sheath, stressed pavement cells versus
healthy pavement cells, surrounding region versus healthy region,
and infected region versus healthy region (Figure 3G,
Supplementary Table S1). This aligns with previous studies
reporting a decrease in photosynthesis activity in pathogen-
infected host leaves (Bilgin et al., 2010). Similarly, immune
response-related GO terms, such as “calcium-mediated signaling,”
“signaling receptor activity,” and “defense response,” were enriched
in the upregulated genes in all five comparisons from both snRNA-
seq and spatial transcriptomics data (Figure 3G, Supplementary
Table S1), validating our findings that the stressed cells in the
snRNA-seq and the surrounding and infected regions in the spatial
transcriptomics data are all responsive to ASR infection. Altogether,
these results show that both snRNA-seq and spatial transcriptomics
reveal the key immune response pathways activated in soybean cells
in response to ASR infection.

3.5 Infection surrounding regions have
minimal ASR presence yet strong defense
response

Upon examination of the GO term dot plot of DEGs in the spatial
data, we noticed that the normalized enrichment score (NES) value
for the GO term “defense response” is higher in the surrounding
region compared to the infected region (Figure 3G, Supplementary
Table S1). However, as discussed earlier in this study, the infected
region had a higher ASR read content compared to the surrounding
region (Figures 1C, 2C, E). This result suggests that the surrounding
region identified in the spatial transcriptomics data has less ASR
presence but potentially a higher defense response compared to the
infected regions. This is reminiscent of localized acquired resistance
(Ross, 19615 Jacob et al., 2023a). It has been observed in the literature
that in Arabidopsis leaves infected with the bacteria Pseudomonas
syringae pv. tomato DC3000 AvrRps4, the defense-related gene PRI is
highly expressed in the surrounding regions of the pathogen infection
site but is rather repressed in the infected leaf region with pathogen
presence (Jacob et al, 2023a, b). In the same study, the authors
proposed that in the pathogen-infected regions, the immune response
of the host cells is suppressed by pathogen-derived effectors, while in
the surrounding regions, the host cells activate a cell non-
autonomous immune response, with high defense response activity
and yet low presence of the pathogen (Jacob et al, 2023a, b).
Therefore, we sought to examine whether the surrounding and
infected regions identified in our spatial transcriptomic study
exhibit similar characteristics.
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We first compared the percentage of ASR reads among the
healthy, surrounding, and infected regions in the spatial
transcriptomics data (Figure 3H). Although both the surrounding
regions and the infected regions had higher percentage of ASR reads
per spot than the healthy regions, the surrounding regions had a
much lower percentage of ASR reads per spot compared to the
infected regions (Figure 3H). These results suggest that the
surrounding regions indeed had a very low presence of the ASR
pathogen. Next, we examined the expression of defense response-
related genes in the surrounding and infected regions (Figure 3I).
We combined the genes from the GO term “defense response” as a
gene module and plotted the expression of these genes as a module
score in the healthy, surrounding, and infected regions (Figure 31,
Supplementary Table S2). We found that although both
surrounding and infected regions had higher expression of this
defense response gene module compared to the healthy regions, the
surrounding regions had significantly higher expression of the
defense response genes than the infected regions (Figure 3I,
Supplementary Table S2). These results suggest that although the
surrounding regions had a lower number of ASR reads than the
infected regions, the surrounding regions had higher expression of
defense response genes.

To further verify the defense-related gene expression pattern in
the surrounding and infected regions, we examined the expression
of known ASR-induced genes from the literature and found that the
ASR-induced genes had higher expression in the surrounding
regions compared to the infected regions (Supplementary Figure
S3E, Supplementary Table S2) (Morales et al., 2013; Cabre et al.,
2021), further confirming that the surrounding regions had higher
activation of defense-related genes than the infected regions.
Moreover, when we plotted the expression of the ASR-induced
genes across spots, we observed clear enrichment of these genes in
the surrounding regions and less enrichment in the infected regions
(Supplementary Figure S3F, Supplementary Table S2). Consistently,
the expression of the ASR-induced genes showed enriched spots on
the sections (Supplementary Figure S3G, Supplementary Table S2),
and these enriched spots overlapped with the surrounding regions
instead of the infected regions, which is evident in the paradermal
sections (Figure 2E, Supplementary Figure S3G, Supplementary
Table S2). This further supports that the surrounding regions
bordering the infected regions had higher expression of defense
response-related genes than the infected regions.

To better understand the differences between the infected
regions and the surrounding regions, we performed DEG analysis
by directly comparing the infected regions to the surrounding
regions (Supplementary Figure S3H). Using the DEGs derived
from this comparison, we further performed GO term analysis
and found that many defense response-related GO terms, such as
“defense response to other organism” and “flavonoid biosynthetic
process,” were enriched in the downregulated genes in the infected
regions compared to the surrounding regions (Figure 3],
Supplementary Table S1). This suggests that the defense response
in the infected regions is likely suppressed as compared with the
surrounding regions. Altogether, we revealed that the surrounding
regions and the infected regions correspond to two distinct cell
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states during the plant response to pathogen infection, with the
surrounding regions bordering the infected regions. The
surrounding regions had a much lower presence of the pathogen
than the infected regions but had higher expression of defense
response-related genes.

3.6 Gene co-expression network analysis
identifies key immune responsive gene
module in stressed cells

The plant defense response to pathogens involves complex
changes at the whole transcriptome level, encompassing many
different transcriptional pathways and potentially various waves
of gene expression activation and suppression (Dobon et al., 2016).
To delineate the soybean defense response at the systems biology
level using single-cell transcriptomics data, we constructed a single-
cell gene co-expression network through hdWGCNA using the
mesophyll cells in our snRNA-seq data (Figure 4A, Supplementary
Figure S4A) (Morabito et al., 2023). This co-expression network was
constructed using both the healthy and stressed mesophyll cells
annotated in our snRNA-seq dataset (Figure 4A, Supplementary
Figure S4A), facilitating the identification of gene co-expression
modules in the stressed mesophyll cells. The mesophyll co-
expression network analysis identified nine different co-
expression gene modules, labeled from M1 to M9 (Figure 4A,
Supplementary Figure S4A). UMAP visualization of all gene
modules revealed the relative relationship between individual
modules and showed that module M3 and module M4 were the
two largest gene modules in the network (Figure 4A).

To further understand the biological significance of the different
gene modules, we performed GO term analysis using the genes
assigned to each module (Figure 4B, Supplementary Table S1). The
GO term analysis revealed that module M3 included many genes
involved in defense response-related GO terms, such as “defense
response to fungus,” while module M4 encompassed many genes
involved in photosynthesis-related GO terms, such as
“photosynthesis, light harvesting” (Figure 4B, Supplementary
Table S1). These results suggest that module M3 is an immune
response-related module, while module M4 is a photosynthesis-
related module. To further understand the expression of the various
modules identified in the co-expression network, we plotted the
expression of the eigengenes of each module across all nuclei
(Figure 4C, Supplementary Figure S4B). Interestingly, module M3
had enriched expression in the stressed cells in the snRNA-seq
dataset (Figure 4C), indicating that module M3 is activated in the
stressed cells, in line with the observation that defense response-
related GO terms are enriched in the genes assigned to module M3.
Moreover, module M4 had enriched expression in the healthy
mesophyll cells in the snRNA-seq dataset (Figure 4C), agreeing
with the observation that photosynthesis-related GO terms were
enriched in the genes assigned to module M4.

Next, we performed differential module eigengene analysis,
examining the eigengenes for modules M3 and M4 and
comparing their expression in stressed cells versus healthy cells
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(Figure 4D, Supplementary Figure S4C). We found that the
eigengene of module M3 was upregulated in the stressed
mesophyll cells compared to healthy mesophyll cells (Figure 4D),
indicating that module M3 is indeed an immune response-related
gene module. Interestingly, even though module M3 is derived from
mesophyll cells, its eigengene was upregulated in stressed bundle
sheath and pavement cells compared to their healthy counterparts
(Figure 4D), suggesting that different soybean cell types share
similar transcriptional changes in response to ASR infection.
Additionally, we performed differential module eigengene analysis
for the photosynthesis-related module M4 (Supplementary Figure
54C). We found that the eigengene of module M4 was
downregulated in stressed mesophyll cells compared to healthy
mesophyll cells (Supplementary Figure S4C), verifying the finding
that photosynthesis-related pathways are downregulated upon ASR
infection (Bilgin et al., 2010). Altogether, we identified a
key immune response gene module that is highly induced
in the stressed cells in the snRNA-seq data, deepening our
understanding of the sophisticated transcriptional network
involved in the soybean defense response to ASR invasion.

4 Discussion

In this study, using snRNA-seq and spatial transcriptomics, we
have characterized the spatially organized soybean plant response to
ASR pathogen infection. The spatial and single-nuclei
transcriptomics technologies used in this study allowed the
simultaneous capture of the soybean and ASR transcriptomes,
enabling the identification of infection sites within the soybean
leaf sections. Furthermore, the high resolution of the single-nuclei
transcriptomics and the annotation of snRNA-seq clusters
facilitated the annotation of clusters in the spatial transcriptomics
data. The functional annotation of the spatial transcriptomics data
led to the important finding that the soybean immune response is
spatially organized into two different cell states/regions: the infected
regions at the center of pathogen infection exhibiting a relatively
weak defense response, and the surrounding regions bordering the
infected regions mounting a stronger defense response with
minimal pathogen contact. Finally, through gene co-expression
network analysis, we identified a defense response-related gene
module that is induced in the stressed cells identified in the
snRNA-seq. Together, the findings in this study provide new
evidence supporting the recently emerged hypothesis that
localized acquired resistance in the surrounding regions of the
infection site could be important for pathogen containment,
despite the host cells in the infection center being immune-
suppressed by effectors secreted from the pathogen (Jacob
et al., 2023a).

4.1 Localized acquired resistance

The concept of localized acquired resistance was first proposed
in 1961 by A. F. Ross, with the observation that a 1 - 2 mm zone
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surrounding the tobacco mosaic virus infection lesion developed
resistance to subsequent inoculation of tobacco mosaic virus in the
host species Nicotiana tabacum. However, the mechanism and
importance of this localized acquired resistance remained elusive
(Ross, 1961). Recently, a study revisited the concept of localized
acquired resistance and proposed that its induction is a key
component of the mechanism through which effector-triggered
immunity circumvents effector-triggered susceptibility (Jacob
et al., 2023a). This newly proposed spatially organized mechanism
of plant immune response is supported by another recently
published study where single-cell and spatial transcriptomics
technologies were applied to study Arabidopsis immune response
to bacterial infection (Nobori et al.,, 2025). In their study, two cell
populations were identified in plant immunity: the primary
immune responder (PRIMER) cells and the bystander cells. The
PRIMER cells had the strongest association with the pathogen and
were surrounded by the bystander cells. Similarly, in our study, we
identified two distinct cell states/regions that are spatially organized
at or near the ASR infection site. On the one hand, the infected
regions correspond to the PRIMER cells, with the presence of the
ASR pathogen, and have a weaker defense response than the
surrounding regions, in line with the proposed pathogen effector-
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triggered suppression of immune response (Jacob et al., 2023a). On
the other hand, the surrounding regions resemble the bystander
cells with localized acquired resistance. We observed that the
surrounding regions had minimal presence of P. pachyrizi but a
stronger defense response compared to the infected regions. This
observation aligns with the hypothesis by Jacob et al. that the
infected cells release an uncharacterized signaling molecule that
travels to the surrounding regions to activate a cell non-
autonomous defense response (Jacob et al., 2023a). Therefore, our
study provides important further evidence that the plant immune
response to pathogen invasion involves two spatially organized
regions: the infected regions in contact with the pathogen and the
surrounding regions bordering the infected regions that exhibit cell
non-autonomous localized acquired resistance.

4.2 Spatial and single cell transcriptomics
of both host and pathogen transcriptome

Plant-microbe interaction is an important field of study in

crops, encompassing interactions between plants and beneficial
microbes to form root nodules, as well as interactions between
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plants and various disease-triggering pathogens (Zhu et al., 2023b;
Hu et al., 2024; Serrano et al., 2024b). During these plant-microbe
interactions, the plant response is usually very heterogeneous (Zhu
et al., 2023b; Hu et al.,, 2024; Serrano et al., 2024b). Depending on
whether the plant cells are directly contacting the microbes, their
responses can vary significantly (Betsuyaku et al., 2018). Moreover,
during plant-pathogen interaction, the plant cells in contact with
the pathogen and the plant cells surrounding the infection site can
mount very different spatially organized responses (Jacob et al,
2023b). Therefore, cell-specific high resolution and spatial
information are crucial aspects of characterizing plant-microbe
interactions (Zhu et al., 2023b; Hu et al., 2024; Serrano et al., 2024b).

Many single-cell/nuclei RNA-seq studies have been conducted
to study plant-microbe interactions (Cao et al.,, 2023; Delannoy
etal., 2023; Liu et al., 2023b; Tang et al., 2023; Cervantes-Perez et al.,
2024; Pereira et al., 2024; Yan et al., 2025), but spatial
transcriptomics studies are less prevalent (Liu et al, 2023a;
Serrano et al., 2024a; Nobori et al, 2025). Similar to another
study that used spatial transcriptomics technology to capture host
response to pathogen infection (Nobori et al., 2025), our current
study captured the host and pathogen transcriptomes in the same
spatial transcriptomics experiment. This technical aspect of our
study is especially important as it enabled us to identify specific
regions of pathogen infection within the tissue sections sampled for
the spatial transcriptomics experiment. It also allowed us to
delineate the surrounding and infected regions, which play
different roles in the plant immune response.

Our snRNA-seq data also captured both the host and pathogen
nuclei. However, the total number of pathogen nuclei captured was
fewer than 100, which is not enough to perform conclusive
statistical analysis. This low number of captured pathogen nuclei
could be related to the relatively early stages of infection, up to 5
DPI. Future studies could expand the time course to later infection
stages to capture more pathogen nuclei for transcriptome
examinations. Nevertheless, the transcriptomic response of the
pathogen in the early stages of infection could be of interest as
well (Gervais et al., 2017). Therefore, future studies could focus on
using enrichment techniques, such as the recently published
Programmable Enrichment via RNA FlowFISH by sequencing
(PERFF-seq) (Abay et al, 2025), to enrich for pathogen nuclei
and study their transcriptomic activities.

In our snRNA-seq data, we observed that the percentage of
stressed cells was highest at 1 DPI, slightly dropped at 3 DPI, and
then increased again at 5 DPI (Supplementary Figure S2E). This
observation aligns with the reported biphasic transcriptional
response to ASR infection in soybean leaves (van de Mortel et al.,
2007; Schneider et al., 2011; Chicowski et al., 2024). The 1 DPI time
point processed in our study could correspond to the initial
phase of transcriptional changes, while the 3 DPI time point
resembles the middle quiescent period of the transcriptional
response, and the 5 DPI time point indicates a second phase of
transcriptional response. Future in-depth examination of this
biphasic transcriptional response with single-cell resolution could
deepen our understanding of the temporal and spatial plant defense
response to pathogen infection.
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4.3 Gene co-expression networks for
immune response at single cell resolution

Plant responses to pathogen infection encompass complex
regulatory pathways, including PAMP-triggered immunity (PTI)
activated by cell surface-localized pattern recognition receptors and
effector-triggered immunity (ETI) initiated by intracellular
nucleotide-binding leucine-rich repeat receptors (Ngou et al,
2022). PTI and ETI pathways function synergistically to activate
similar pathways, such as calcium signaling, reactive oxygen species
(ROS) burst, mitogen-activated protein kinase (MAPK) signaling
pathway, and transcriptomic activation of defense-related genes
(Dodds et al., 2024). The transcriptomic response itself is
sophisticated and may constitute multiple waves of transcriptional
regulation, such as the transcriptional activation of a transcription
factor, which in turn activates or represses the expression of other
defense response-related genes (Dobon et al., 2016).

The advent of transcriptomics technologies has enabled the
simultaneous examination of changes at the whole transcriptome
level in plant responses to pathogen infection (van de Mortel et al.,
2007; Wise et al., 2007), but the analysis is often performed by
comparing different conditions and focusing on genes with the
most extreme expression changes (Peyraud et al, 2017). This
approach is sometimes not fruitful due to the redundancy of the
biological gene network, with redundancy of various genes and
different signaling pathways. Because of these redundancies,
modifying the function of individual genes may not be sufficient
to generate the desired disease resistance phenotype at the whole
organism level (Peyraud et al, 2017). Therefore, modeling the
gene network for plant immunity and identifying gene modules
important for the immune response can provide great insights
into the sophisticated gene network in host cells that are
responsive to pathogen infection.

So far, studies of plant pathogen interactions have built gene
networks using bulk transcriptome data or at the cell type-specific
level (Yuan et al., 2018; Yue et al,, 2024), but plant immunity gene
networks with high cell resolution remain limited (Cao et al,, 2023).
In our current study, we have built a gene co-expression network for
soybean cells in response to ASR pathogen infection using an
approach that provides high cell resolution to reveal more granular
gene co-expression relationships. Importantly, combined with our
carefully annotated snRNA-seq data, we showed that the immune
response-related gene co-expression module we identified is indeed
highly enriched and induced in the stressed soybean cell population.
This identification of this specific immune response module serves as
a foundation for future studies examining gene networks for plant
immune responses and opens the door for examination of the effects
of gene perturbations on disease resistance at the gene network level.
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