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Jana Žiarovská,
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Functional markers (FMs) are derived from polymorphisms that confer

phenotypic trait variation, making them powerful tools in plant breeding.

Unlike random markers, for which trait associations are unknown, or at best

established via linkage or quantitative trait locus (QTL) analysis, FMs are

associated with causative polymorphisms, providing precise and reliable

information for trait selection. Since the concept of FMs was first proposed in

2003, the emergence and adoption of technologies that were not available at the

time have significantly advanced FM discovery and application by enhancing the

ability to precisely identify causal variants underlying complex traits, which is a

critical prerequisite for FM development. Novel technologies such as high-

throughput sequencing, multi-omics, gene editing, and advanced

computational tools have enabled the precise identification and functional

validation of DNA polymorphisms associated with trait variation. FMs can be

used in genomic selection (GS) and modern plant breeding programs by

improving selection efficiency and accuracy. While FMs provide numerous

benefits, challenges still remain regarding their stability and transferability, and

innovative approaches to overcome these limitations are continually being

explored. The role of FMs in plant breeding is expected to grow as functional

annotation of genomes improves and technologies like genome editing become

more accessible. These developments will enable breeders to effectively

integrate FMs into breeding pipelines for accelerating genetic gains and

addressing global agricultural challenges.
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1 Introduction

Functional markers (FMs) are based on sequences that have

been functionally characterized (Andersen and Lübberstedt, 2003;

Salgotra and Neal Stewart, 2020). FMs can be developed from any

type of DNA polymorphism. To qualify as FMs, polymorphisms

between different alleles of genes must cause trait variation. FMs

originate from quantitative or qualitative trait polymorphisms

(QTPs), which include quantitative or qualitative trait nucleotides

(QTNs), based on single nucleotide polymorphisms (SNPs), or

indel polymorphisms (QTINDELs). Causes of allelic differences in

trait expression include loss-of-function of mutations, changes in

gene expression levels, or alterations in gene product structure. FMs

are also known as perfect, precision, or diagnostic markers (Salgotra

and Neal Stewart, 2020; Salgotra et al., 2014).

Random DNA markers (RDMs) report the state of

polymorphisms in randomly selected positions in the genome.

RDMs are distributed throughout the genome and are used to

assess overall genetic diversity. They serve as tools in genetic

mapping and diversity studies. These markers are relatively easy

to construct and are effective for characterizing the genetic structure

of diverse populations. However, RDMs lack a direct causal

relationship with specific gene functions, which can limit their

predictive power in marker-assisted selection (MAS). Due to

recombination, the association between RDMs and target alleles

weakens over successive generations. Despite these limitations,

RDMs play a critical role in initial QTL mapping and genomic

diversity analyses, providing essential baseline information for

further genetic studies (Andersen and Lübberstedt, 2003; Bagge

et al., 2007). While RDMs and FMs are indistinguishable from a

technical perspective based on marker assays, their distinction lies

in the association with traits (Andersen and Lübberstedt, 2003;

Bagge et al., 2007). In applications such as MAS, where the goal is to

efficiently transfer target traits into different genetic backgrounds,

FMs provide a distinct advantage. These applications include

marker-assisted backcrossing (MABC) (e.g., Frisch and

Melchinger, 2001), F2 enrichment (Bonnett et al., 2005), and

MAS (Lande and Thompson, 1990). The key advantage of FMs

lies in their perfect association with target traits, which reduces the

risk of false positives due to recombination and improves the

accuracy of marker-trait associations (Guo et al., 2010).

Therefore, FMs are preferable over RDMs when they are available

for tracking specific genes in breeding programs (Hasan

et al., 2021).

Although FMs are defined based on polymorphisms with a

clearly demonstrated causal relationship to phenotypic variation,

not all markers are functionally characterized from the outset. In

particular, when the FM concept was first introduced in the early

2000s, limitations in genomic and functional genomics technologies

often made it difficult to draw a clear distinction between RDMs and

FMs. However, with technological advances, an increasing number of

markers initially used as RDMs have since been experimentally

validated and reclassified as FMs. For example, in maize, the
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opaque2 (o2) gene was identified in 1964 as a key regulator of

lysine content in the endosperm. It was not until the 1980s that

simple sequence repeat (SSR) markers such as phi057, umc1066, and

phi112, located within the o2 gene, were developed by Pioneer and the

University of Missouri. These markers were initially used as

associative or linked markers to facilitate MAS in quality protein

maize (QPM) breeding programs. However, later studies revealed

that some of these polymorphisms are closely linked to, or even

causative of, the trait by directly affecting gene function.

Consequently, markers that were originally used as indirect

indicators, or RMD, were later reclassified as gene-based or FMs

after functional validation confirmed their biological effects on lysine

content (Chand et al., 2024). In rice, a SNPmarker within the BADH2

gene, which was initially a simple association marker, became a FM

when the gene was identified as the genetic determinant of 2-acetyl-1-

pyrroline, the major compound responsible for aroma (Singh et al.,

2022). In wheat, polymorphisms in the Ppd-D1 gene were shown to

play a major role in controlling flowering time, and markers targeting

this gene are now widely used as FMs (Beales et al., 2007). These

examples illustrate that the boundary between RDMs and FMs is not

fixed, and marker classification can evolve with the emergence of new

empirical evidence. This continuum is a critical aspect for

understanding the historical development of FMs and evaluating

their utility in practical crop breeding.

The agricultural sector is currently facing a range of complex

challenges, including climate change, emerging pests and diseases,

soil degradation, and the urgent need to sustainably feed a growing

global population (Hickey et al., 2019; Farooq et al., 2022). These

pressures have significantly increased the demand for more precise,

rapid, and efficient crop improvement strategies. In this context,

FMs which directly target causal variants underlying phenotypic

traits, offer high potential. Since the concept was first introduced in

2003 (Andersen and Lübberstedt, 2003), advancements in various

technologies have greatly expanded the possibilities for FM

development and application. High-throughput sequencing (Sun

et al., 2022), genomic resources, and bioinformatics tools (Marsh

et al., 2021) now enable the precise and efficient identification of

causal variants for target traits (Figure 1). Furthermore, gene editing

tools have provided experimental means to functionally validate

candidate markers (Ahmar et al., 2020). Beyond traditional

genome-wide marker effect-based GS, FMs are gaining attention

as tools capable of directly capturing trait-associated variation, thus

opening new possibilities for their integration into GS pipelines

(Zhang et al., 2023). As such, FMs are no longer just molecular

markers but are emerging as core components in breeding strategies

aimed at dissecting and harnessing key genetic determinants of

agronomic traits.

This paper provides a critical review of the progress in FM

development and application in plant breeding since the

publication of the FM concept in 2003. It includes, (i) the

discovery and development of FMs using forward and reverse

genetics, (ii) strategies for FM validation, (iii) the application of

FMs in MAS and GS, (iv) recent expansions of FM applications
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including genome construction and gene editing-based breeding

strategies, and (v) current challenges and future prospects for FM-

based breeding.
2 Functional marker discovery and
development

2.1 Forward genetics for gene and QTP
identification

Forward genetics begins with an observable phenotype and

aims to uncover the genes and genetic polymorphisms responsible

for trait variation (Sahu et al., 2020). Over the past two decades,

advances in mapping technologies, in particular the introduction of

genome-wide association studies (GWAS), have greatly increased

the precision of forward genetics. While QTL mapping locates

larger genome regions affecting traits of interest, GWAS enables

fine-scale detection of genetic variants. Map-based cloning is a

strategy to confirm gene-trait associations rather than

systematically identifying functional variants (Yu et al., 2021).

This approach begins with a genetic mapping procedure such as

QTL mapping, or other methods to localize genomic regions

associated with the trait of interest (Shen et al., 2004). Once a

target region has been identified, recombinant individuals are used

to progressively narrow down the interval containing the causal

gene. The population sizes required to identify causal

polymorphisms at high resolution would need to be extremely

large, likely in the tens of thousands or more. Thus, while map-

based cloning is an established strategy to systematically clone genes

for qualitative and quantitative traits, this approach is not feasible

for QTP detection (Ganal et al., 2009; Watanabe et al., 2009).

Development of high-throughput and low-cost marker systems,

such as Genotyping-by-Sequencing (GBS) were prerequisite for

high-resolution GWAS (Thomson et al., 2022). These marker

systems dramatically reduced the cost per sample, allowing for

large populations to be analyzed. GWAS leverage high-density

genotyping and populations with rapid linkage disequilibrium

(LD) decay to fine-map candidate genes at high resolution. LD

refers to the non-random association of alleles at different loci in a

population. In plant breeding, LD is a crucial concept because it

affects how genetic markers are associated with traits of interest

(Flint-Garcia et al., 2003), and allows to efficiently pinpoint causal

genetic variants. In QTL mapping populations, where LD decay is

slow, large genomic regions spanning several mega-bases are

identified, making it difficult to identify causal genes (Yan et al.,

2009; Wallace et al., 2014). By exploiting low LD associations

between specific polymorphisms and target traits in GWAS

populations, candidate QTPs can be identified (Lu et al., 2010;

Wallace et al., 2014). In maize, GWAS has revealed key genetic loci

associated with agronomic traits. For example, SNPs associated

with plant height have been linked to genes such as

Zm00001d018617 and Zm00001d023659, which are involved in

gibberellin and auxin signaling pathways (Zhang et al., 2019).

Similarly, husk number was associated with variation in the 3’
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UTR of the ZMET2 gene, a DNA methyltransferase (Wang et al.,

2025c). However, distinguishing true causal variants from those

merely linked through LD remains a limitation. In maize, LD

typically decays within 1–5 kb, depending on population structure

and local genomic context (Flint-Garcia et al., 2005; Yan et al.,

2011), underscoring the need for further functional validation of

candidate QTPs.

Some notable examples highlight the success of forward genetics

in QTP discovery. For instance, the Sub1A gene in rice was

identified by fine mapping of the Sub1 QTL on chromosome 9

(Figure 2). Expression and functional analyses confirmed that

Sub1A-1, a specific allele present in tolerant varieties, regulates

submergence tolerance. A SNP in Sub1A-1 was identified as a QTP

associated with enhanced survival under flooding. FMs derived

from Sub1A-1 have been successfully implemented in MAS, leading

to the development of submergence-tolerant rice varieties such as

Swarna-Sub1 (Xu et al., 2006). Similarly, theMATRILINEAL (MTL)

gene in maize, encoding a patatin-like phospholipase, was identified

as a key determinant of maternal haploid induction through GWAS

and QTLmapping. Additional QTL, including a significant locus on

chromosome 10 harboring a Kokopelli ortholog, were identified,

confirming the polygenic nature of haploid induction rate (HIR)

regulation. A frameshift mutation caused by a 4-bp insertion within

MTL was validated as a QTP by demonstrating a strong association

with increased HIR across diverse maize lines. FMs developed based

on this QTP have been successfully used to enhance the efficiency of

haploid inducer breeding (Trentin et al., 2023).
2.2 Reverse genetics for candidate gene
and QTP identification

Reverse genetics enables researchers to directly verify the

function of known genes by deliberately modifying them and

observing the resulting phenotypic changes. In contrast to

forward genetics, reverse genetics starts with a gene sequence and

uses genomic sequencing, functional genomics, and gene editing

technologies (Slade et al., 2005; Barkley and Wang, 2008) to assess

its role in trait expression. By altering target genes through

knockout, knockdown, or precise editing, researchers can evaluate

the impact of specific allelic variants and establish causal links

between gene function and phenotype.

In 2003, only Arabidopsis and rice had fully sequenced genomes

(Yu et al., 2002; The Arabidopsis Genome Initiative, 2000). Today,

most major crop species, including maize, have multiple high-quality

genome assemblies available in public databases. For example, over

40 maize genomes are accessible in MaizeGDB (Portwood et al.,

2019). This expansion enables researchers not only to work from a

single reference genome, but also to explore allelic variation,

presence/absence variation (PAV), and structural genome changes

across diverse lines. Pan-genome resources capture genomic diversity

beyond a single reference and enable development of broadly

applicable markers. PAV offers particularly promising opportunities

for designing highly selective markers that target lineage-specific or

unique trait-associated genes (Hirsch et al., 2014). These advances
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have deepened our understanding of core and orphan genes and

made it increasingly feasible to link polymorphisms with biological

function (Gao et al., 2019). Nevertheless, while access to extensive

genome sequence resources greatly enhances candidate gene

discovery, it does not replace the necessity of validating QTPs

through experimental studies.

Candidate genes identified by GWAS often serve as starting point

for reverse genetics studies. Once loci associated with traits are

discovered, targeted mutagenesis or gene editing can be applied to

validate gene functions or those of specific polymorphisms.

Mutagenesis arises from spontaneous errors during DNA replication

and can be artificially induced using a variety of methods, such as

chemical mutagenesis (e.g., ethyl methanesulfonate, EMS), physical

treatments (e.g., ultraviolet radiation, UV or gamma irradiation), and

biological approaches such as transposon insertions and targeted gene-

editing technologies like CRISPR/Cas9 (Miao et al., 2013; Udage, 2021;

Chen et al., 2023a). Mutagenesis enables validation of the function of

specific polymorphisms. By deliberately introducing mutations,

scientists can observe the resulting changes in phenotype, thereby

separate causal from linked variants to elucidate gene function

(Oladosu et al., 2016).

Transposons are mobile genetic elements that are integrated

into the genome. They can disrupt gene sequences and regulatory

regions. Transposon insertion and excision events can lead to loss-

of-function or gain-of-function mutations. Insertion events caused

by transposons can lead to loss-of-function or gain-of-function

mutations. Transposon tagging has advanced significantly through

the integration of NGS, enabling high-throughput identification of

insertion sites. Large-scale mutant libraries with mapped or

sequenced insertions have been developed in model and crop

species, supporting genome-wide reverse genetics studies (Cain

et al., 2020; Johnson et al., 2021). One example of using

transposons for reverse genetic identification in maize is the Ac/
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Ds system applied to the teosinte branched1 (tb1) gene. In this

approach, Ds transposons were mobilized in the presence of the

autonomous Ac element and inserted randomly into the genome.

Through high-throughput sequencing of Ds insertion sites,

researchers identified a Ds-tagged allele disrupting the tb1 gene,

which was previously known to control plant architecture. The

tagged mutants displayed altered tillering phenotypes, validating

the gene’s function. This insertional mutant population, with

sequenced Ds locations, allowed rapid identification of candidate

genes and their associated stocks, providing a valuable resource for

reverse genetics studies in maize (Studer et al., 2011).

Targeting Induced Local Lesions In Genomics (TILLING) uses

chemical or physical mutagens to generate genetic variation and

discover beneficial or novel alleles (Barkley and Wang, 2008).

TILLING can be applied as reverse-genetics tool in any plant

species. It facilitates the speedy and inexpensive generation of

induced point mutations (G/C to A/T transition distributed

randomly in the genomes) as well as the study of the functions of

specific genes in mutants (McCallum et al., 2000). A public reverse

genetics TILLING platform is available at the UC Davis Genome

Center (https://genomecenter.ucdavis.edu/), providing EMS-

induced mutant populations and sequencing-based screening for

rice, wheat, Arabidopsis, and tomato (Comai and Henikoff, 2006;

Studer et al., 2011). Despite the randomness of the induced

mutations, systematically screening large mutant populations

enables to detect mutations in genes of interest (Gilchrist and

Haughn, 2005). In wheat, for example, TILLING has enabled the

identification of novel alleles in functionally relevant genes such as

Wx-A1, Wx-D1, and Ppd-D1, which are associated with starch

composition and flowering time, respectively (Dong et al., 2009;

Chen et al., 2012). In contrast, EcoTILLING uncovers natural

genetic variation in specific genes, eliminating the need for

artificial mutagenesis (Garvin and Gharett, 2007; Backes, 2013).
FIGURE 1

A timeline for the evolution of marker technologies and their integration into plant breeding from 1980s to the present.
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SequeTILLING has been proposed as an extension of TILLING

with the help of NGS techniques (Weil and Monde, 2009; Backes,

2013). One disadvantage of TILLING is the presence of background

mutations that can affect the phenotype and, hence, impede gene

function analysis (Szurman-Zubrzycka et al., 2023). Backcrossing

may be needed, which is time-consuming. TILLING has inherent

limitations. To induce mutations at every nucleotide position within

a target gene, an extremely large mutant population would be

required which is not feasible, both experimentally and

logistically. Thus, the probability of accurately targeting and

identifying a specific QTP by TILLING is low. While TILLING is

useful for identifying candidate genes, it has limited utility for the

precise validation of specific QTPs (Tsai et al., 2011).

Finally, the increasing application of artificial intelligence (AI)

and machine learning (ML) models has expanded the toolkit for

QTP validation. Deep learning models trained on genomic,

transcriptomic, and epigenomic datasets have been used to

predict regulatory elements and prioritize functional variants.

Notably, AI-guided prioritization of candidate genes has been

applied in maize and soybean to narrow down GWAS signals and

select variants for functional assays (Washburn et al., 2019; Zhang

et al., 2023). As such, AI-assisted validation strategies are expected

to play an increasingly important role in bridging large-scale

association data with FM development (Washburn et al., 2019;

Yoosefzadeh-Najafabadi et al., 2022) (Figure 3).
3 Validation of FMs

The primary goal of validation is to firmly establish a causal

relationship between a specific genetic variant and trait expression.

Validation is necessary when candidate QTPs have been identified

through statistical associations. In some cases, validation methods

not only confirm gene function but lead to discovery of new genes

or QTPs. For example, gene editing approaches such as CRISPR/

Cas9 can be used to create targeted mutations, revealing novel

insights into gene function beyond initial candidate predictions.

Thus, validation serves both as a confirmation tool and a discovery

mechanism (Gaj et al., 2013; Arora and Narula, 2017). Recent

advances in gene editing over the past decade have enabled precise,

targeted mutagenesis, providing a more efficient and broadly

applicable approach.

Gene editing begins with careful selection of a target gene and

the design of specific mutations based on predicted functional

domains or regulatory elements thought to be critical for gene

activity. Subsequently, isogenic mutant and wildtype genotypes are

subjected to comprehensive phenotypic analyses. These

comparative studies reveal, how the specific alteration impacts the

biological processes and trait expression, thereby establishing a

direct link between the engineered mutation and its phenotypic

effect. Moreover, by systematically correlating these changes with

gene function, this approach not only validates candidate genes but
FIGURE 2

The example of functional marker (FM) development process for
Sub1A in Rice (Xu et al., 2006). This diagram outlines the
development of a FM for Sub1A, a key gene conferring
submergence tolerance in rice. The process began with QTL
mapping and fine-mapping using bacterial artificial chromosome
(BAC) clones, leading to the identification of Sub1A. Gene expression
analysis and reverse transcription-polymerase chain reaction (RT-
PCR) confirmed its structure and differential expression. Quantitative
trait polymorphism (QTP) identification revealed sequence variation
between Sub1A-1 (tolerant) and Sub1A-2 (intolerant), followed by
functional validation through RNA interference (RNAi) and
overexpression studies. The FMs were then developed and applied
in MAS, resulting in the Swarna-Sub1 variety with improved flooding
tolerance.
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also aids in validation of QTPs (Gilchrist and Haughn, 2010; Saika

et al., 2011).

CRISPR/Cas9 targets specific genomic sites by generating

double-strand breaks (DSBs) at user-defined sequences using a

single guide RNA (sgRNA) that directs the Cas9 nuclease to its

target (Ferreira and Choupina, 2022). Once the DSB is induced, the

cell predominantly employs the non-homologous end joining

(NHEJ) repair pathway. NHEJ is one of the primary pathways for

repairing DSBs in DNA, playing a crucial role in cellular DNA

damage repair mechanisms (Chang et al., 2017). NHEJ functions by

directly ligating the broken DNA ends, often introducing small

Indels in the process. Due to its error-prone nature, NHEJ is more

useful for intentionally disrupting genes to assess whether a gene is

causally linked to loss-of-function phenotypes, rather than for

validation of specific QTPs. In contrast, targeted genome editing

tools such as TALENs CRISPR-Cas with homology-directed repair

(HDR), or base editing offer higher precision and are more suitable

for validating QTPs (Zhang et al., 2017; Chen et al., 2019; Ferreira

and Choupina, 2022). However, HDR efficiency is generally low in

plant cells due to the strong preference for NHEJ over HDR for

repairing double-strand breaks. This limitation is particularly

evident in somatic tissues, making the practical application of

HDR in plant systems are more challenging. To overcome these

constraints, various strategies have been developed, including the

use of single-stranded oligodeoxynucleotides (ssODNs) as repair

templates (Schubert et al., 2021), synchronization of the cell cycle to

favor HDR activity (Lin et al., 2014), and the application of NHEJ

inhibitors (Yang et al., 2020). Despite its lower efficiency, HDR

remains a critical tool for precise genome editing, especially in

validating candidate FMs.

Base editing is an innovative CRISPR-derived technology that

enables the precise conversion of one nucleotide to another without

inducing DSBs (Gaj et al., 2013; Kantor et al., 2020; Xu et al., 2021).

This method employs a fusion of a catalytically impaired Cas9 (or

Cas9 nickase) with a deaminase enzyme, allowing targeted C-to-T

or A-to-G substitutions. Its precision is particularly beneficial for

creating SNPs (Salgotra and Neal Stewart, 2020). By avoiding DSBs,

base editing minimizes the risk of undesired insertions or deletions

and off-target effects, enhancing its reliability for QTP validation.

Recent studies in rice have demonstrated the potential of base

editing for multiplexed nucleotide modifications, making it a

valuable tool for precise allele correction and crop improvement

(Zong et al., 2017; Kantor et al., 2020; Xu et al., 2021). Prime editing

represents a next-generation approach that extends the capabilities

of precise genome modifications by allowing all 12 types of base

substitutions, as well as small insertions and deletions, without the

need for DSBs or donor DNA templates (Anzalone et al., 2019;

Thomson et al., 2022). This technique utilizes a fusion protein

combining a Cas9 nickase with a reverse transcriptase, guided by a

prime editing guide RNA (pegRNA) that encodes the desired edit.

Although still emerging, prime editing holds significant promise for

accurately delivering beneficial natural mutations (Kantor et al.,

2020; Thomson et al., 2022).

While gene editing enables precise genome modifications at the

single-nucleotide level, increasing attention has been directed
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Indels and structural variations at the chromosomal scale.

Notably, CRISPR-Cas9 was used to induce a pericentric inversion

spanning 75.5 Mb on chromosome 2 in maize, demonstrating the

feasibility of engineering large-scale genomic rearrangements

previously unattainable with conventional editing tools (Schwartz

et al., 2020). Some studies have further extended this capacity using

Cas3-based systems, achieving targeted genomic deletions

exceeding 200 kb (Csörgő et al., 2020). Together, these examples

highlight the growing potential of advanced genome editing

platforms for functional gene analysis and QTP validation,

expanding the scope of FM development beyond simple SNP-

level variation.

The recently developed non-editing approach Fast Identification

of Nucleotide variants by droplet DigITal PCR (FIND-IT) offers a

promising alternative for QTP validation. FIND-IT combines large-

scale mutagenesis with systematic large-scale pooled genotyping to

identify rare mutants, and subsequent genomic and phenomics

characterization to validate candidate QTPs. This approach is

particularly valuable in species where transformation and editing

remain technically challenging or time-consuming (Knudsen et al.,

2022). FIND-IT enables high-throughput mutation-to-phenotype

mapping through pooled genotyping and droplet digital PCR

(ddPCR), offering greater efficiency than traditional TILLING

without requiring transgenesis or targeted editing (Huang et al.,

2023). The FIND-IT technology was used to screen a mutant

library consisting of approximately 500,000 barley individuals. As a

result, more than 125 functional alleles were successfully identified.

This demonstrates that combining large-scale EMS-induced mutant

populations with high-throughput phenotyping is an effective

strategy for validating.

TILLING was employed to generate powdery mildew-resistant

hexaploidy bread wheat by targeting TaMlo genes, orthologues of

the barley Mlo gene, which confers durable resistance to Blumeria

graminis f. sp. Tritici (Bgt). By high-resolution melting (HRM)

analysis, 16 missense mutations were identified in TaMlo-A1,

TaMlo-B1, and TaMlo-D1, with functional validation in a barley

transient expression assay confirming that specific mutations

conferred reduced Mlo function and increased resistance.

Homozygous triple mutants (tamlo-aabbdd) exhibited strong

resistance to Bgt without pleiotropic effects such as early leaf

senescence. This study demonstrates the effectiveness of non-

transgenic gene editing approaches in improving disease

resistance in wheat (Acevedo-Garcia et al., 2017). CRISPR-based

cytosine base editing (CBE) was used to fine-tune amylose content

in rice by precisely modifying theWx gene, which encodes granule-

bound starch synthase I (GBSSI), a key enzyme in amylose

biosynthesis. Three sgRNAs were designed to introduce specific

base substitutions in the N-terminal domain of Wx, generating rice

lines with amylose levels ranging from 1.4% to 11.9%, enabling

precise control over grain quality. Genotypic analysis confirmed

stable inheritance of the mutations, with no detectable off-target

effects. The study highlights how CRISPR base editing can be

leveraged to modify starch composition, improving eating and

cooking quality in rice (Xu et al., 2021). CRISPR-Cas9 genome
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editing was used to modify the ARGOS8 gene in maize, improving

drought tolerance and grain yield. The ARGOS8 promoter was

replaced with the GOS2 promoter or inserted into the 5’-UTR,

leading to increased expression. qRT-PCR analysis confirmed

enhanced transcript levels, validating the modification. Field trials

demonstrated a 5-bushel per acre yield increase under drought

conditions without yield loss in well-watered environments. This

study highlights the potential of precise genome editing for

improving complex agronomic traits in maize (Shi et al., 2017).

In soybean, CRISPR-Cas9-mediated editing of the FAD2–2 gene

significantly increased oleic acid content by disrupting the

microsomal omega-6 desaturase enzyme, which converts oleic

acid to linoleic acid. The targeted mutations, introduced using a

single-guide RNA (sgRNA), resulted in up to a 65.9% oleic acid

content in mutant lines, as confirmed by Near-Infrared

Spectroscopy (NIR) analysis. No off-target effects were detected,

demonstrating the specificity and efficiency of CRISPR-based

genome editing in improving soybean oil quality (Al Amin et al.,

2019) (Table 1).
4 Application of FMs in plant breeding

4.1 FMs for marker-assisted backcrossing
and selection

The following examples were selected to illustrate the diverse

applications of FMs across major crops, including wheat, rice, and

maize. These cases represent both widely adopted andmore specific uses

of FMs in breeding programs, ranging from disease resistance to grain

quality traits. In total, six representative cases are highlighted,

demonstrating how functionally validated polymorphisms have been

successfully integrated into MAS strategies. FMs should be based on

functionally validated QTPs, where they are derived from two

homozygous genotypes with identical genetic backgrounds but

differing QTP alleles, showing clear phenotypic differences for the

target trait. Consequently, fully validatedQTPs in plants remain still rare.

MAS has been instrumental in addressing simple and oligogenic

inherited traits, particularly through methods such as MABC, gene

pyramiding, and F2 enrichment (Cobb et al., 2019). These
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approaches have been utilized for more than 20 years to

efficiently tackle challenges like linkage drag, where undesirable

genes are inherited along with target traits. Progress in marker

technologies has significantly improved the efficiency and precision

of these methods, enabling breeders to better address these

challenges in complex breeding scenarios. In MABC, FMs help

track the introgression of beneficial traits from donor parents into

recipient lines by identifying alleles associated with those traits. This

is particularly important when transferring beneficial traits such as

disease resistance or stress tolerance. By targeting specific functional

loci, FMs ensure that the desired traits are retained. In gene

pyramiding, FMs enable the simultaneous selection of multiple

favorable alleles from different parents, combining them into a

single genotype with improved performance. This approach is

critical for developing crop varieties with stacked traits, such as

combined resistance to multiple pathogens. For F2 enrichment, FMs

allow for the early identification of individuals carrying favorable

alleles in segregating populations, streamlining the breeding process

by focusing resources on the most promising candidates (Collard

and Mackill, 2008; Salgotra and Neal Stewart, 2020). These precise

applications of FMs significantly enhance the effectiveness of MAS

for simple and oligogenic traits (Kumar et al., 2019).

The Lr34/Yr18/Pm38 locus provides durable, non-race-specific

resistance to multiple fungal pathogens, including leaf rust (Puccinia

triticina), stripe rust (Puccinia striiformis), and powdery mildew

(Blumeria graminis). This resistance is controlled by a single gene

encoding an ATP-binding cassette (ABC) transporter, with resistant

and susceptible alleles differing by only three sequence

polymorphisms (Lagudah et al., 2009). The gene originates from

certain wheat landraces and has been introgressed intomodern wheat

cultivars through MAS. To facilitate its use in breeding, FMs (cssfr1–

cssfr6) were developed, enabling precise selection of resistant

genotypes. These markers were validated in a diverse set of wheat

cultivars, improving breeding efficiency by allowing early-generation

screening for durable resistance without the need for pathogen

exposure. Similarly, the Yr36 (WKS1) gene, which confers non-

race-specific stripe rust resistance at elevated temperatures, was

originally identified in wild wheat but was largely absent in modern

bread and pasta wheat varieties due to domestication bottlenecks (Fu

et al., 2009). FMs for Yr36 enabled its targeted reintroduction into
TABLE 1 Comparison of three functional marker (FM) validation methods addressed in this paper.

TILLING (Targeting Induced
Local Lesions IN Genomes)

CRISPR-based
validation

FIND-IT (Fast Identification of Nucleotide
variants by droplet DigITal PCR)

Mutation Source Induced mutations Targeted gene editing Natural or induced variants

Specificity Low (random mutations) Very high (precise targeting) Moderate to high (known variant-based)

Detection Method Mismatch cleavage, sequencing Genotyping of edited lines
(e.g., sequencing)

Droplet digital PCR (ddPCR)

Speed & Efficiency Slow, labor-intensive Moderate to high Fast, high-throughput

Functional Confirmation Phenotypic analysis of mutants Direct gene function validation Screening rare beneficial alleles

Typical Application Loss of function screening QTP validation Mining useful variants in large pools
The table summarized key features of Targeting Induced Local Lesions IN Genomes (TILLING), CRISPR-based validation, and Fast Identification of Nucleotide variants by droplet DigITal PCR
(FINT-IT) in terms of detection mechanism, resolution, speed, and efficiency.
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elite wheat germplasm via MAS, ensuring the incorporation of

resistance without disrupting agronomically favorable traits (Fu

et al., 2009; Lagudah et al., 2009). Amylose content (AC) is a key

determinant of rice grain cooking and eating quality, with the Waxy

(Wx) gene playing a major role in its regulation. The Wx gene

encodes granule-bound starch synthase I (GBSSI), an enzyme critical

for amylose biosynthesis. A SNP in exon 6 (Ex6A/C), which results in

an amino acid substitution from serine to tyrosine, is associated with

intermediate amylose content (Wx-in). To facilitate selection for this

trait in breeding programs, a FM was developed using polymerase

chain reaction with confronting two-pair primers (PCR-CTPP) in a

single-tube assay. This marker allows for efficient and cost-effective

genotyping of Wx-in alleles. The marker was validated in a Chinese

mini core collection (Oryza sativa L.) and a breeding population,

demonstrating high specificity and applicability. By enabling precise

selection of genotypes with intermediate amylose content, this

marker streamlines the development of rice varieties tailored for

consumer preferences in different markets. Its use in breeding

programs ensures accurate trait selection without reliance on labor-

intensive biochemical assays (Zhou et al., 2018). Moreover, Fusarium

head blight1 (FHB1) is a major fungal disease affecting wheat and

barley, causing significant yield losses and grain contamination. Fhb1

is the most widely recognized QTL for FHB1 resistance, playing a

crucial role in reducing disease severity. FMs were developed based

on a critical sequence deletion in the TaHRC gene within the Fhb1

region and were validated in a global wheat collection. Comparative

genomic analysis between near-isogenic lines (NILs) with contrasting

Fhb1 alleles enabled the identification of two diagnostic markers.

Haplotype and sequence analyses across multiple genetic diversity

panels confirmed their effectiveness, demonstrating higher selection

accuracy than previously used markers. These markers provide a

precise and efficient tool for MAS in wheat breeding, facilitating the

development of FHB1-resistant cultivars and improving disease

management strategies (Su et al., 2018).
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The development of maize hybrids with improved tolerance to

drought and low nitrogen, along with higher provitamin A (PVA)

levels in sub-Saharan Africa, can be facilitated by refining and

confirming the function of PVA-associated genes in regionally

adapted inbred lines (Obeng-Bio et al., 2020). This study aimed

to evaluate drought and low-N tolerance and PVA concentrations

in early-maturing PVA-quality protein maize (QPM) inbred lines

and to identify inbred lines carrying the crtRB1 and LcyE genes as

potential sources of favorable PVA alleles. Seventy early-maturing

PVA-QPM inbred lines were evaluated under drought, low-N, and

optimal conditions in Nigeria over two years. PVA levels were

quantified, and allele-specific PCR markers were used to detect the

presence of PVA-associated genes. The inbred lines exhibited

moderate variation in PVA content; however, the TZEIORQ 55

line demonstrated both high PVA concentration and tolerance to

drought and low-N stress. Analysis using the crtRB1-3′TE primer

and the KASP SNP marker (snpZM0015) consistently identified

nine inbred lines, including TZEIORQ 55, harboring the favorable

crtRB1 allele. These inbred lines represent valuable genetic

resources for PVA biofortification in maize breeding programs

(Obeng-Bio et al., 2020).
4.2 Marker-assisted approaches with FMs
including genomic selection

While MAS has been effective for simple or oligogenic traits, it

has proven less effective for quantitative traits, which involve

polygenic inheritance and complex genetic interactions. Moreover,

MAS is advantageous for selecting simple traits, but for complex

traits, GS, which is based on information throughout the genome, is

more effective. Therefore, efforts to integrate FMs into GS models

have emerged (Bhat et al., 2021; Sivabharathi et al., 2024). By

decoupling selection from the need for extensive phenotyping, GS

improves breeding efficiency and scalability for modern breeding
FIGURE 3

A schematic overview illustrating how forward and reverse genetic approaches link various phenotypic traits to genotypic information. Quantitative
trait polymorphism (QTP) identification and validation concludes in Functional Marker (FM) application.
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programs. Although GS does not require FMs, recent advancements

have shown that incorporating fixed effects for known genes can

further improve prediction accuracies. In particular, GS models

incorporating known genes can significantly enhance the prediction

accuracy of complex traits (Jeong et al., 2020). For example,

integrating FMs associated with specific disease resistance genes

into GS models has improved resistance prediction across various

crops (Zhang et al., 2021). This approach combines the strengths of

traditional MAS with advanced genomic prediction methodologies.

Spindel et al. (2016) showed that FMs enhance GS accuracy by

incorporating significant markers identified through GWAS as fixed

effects in GS models. This integration provides population-specific

insights into genetic architecture, improving the reliability of genome

estimated breeding value (GEBV) predictions and supporting

efficient breeding designs. Ultimately, FMs contributes to

maximizing genetic gains while maintaining genetic diversity. Chen

et al. (2025), moreover, proposed a model multi-trait ridge regression

BLUP (rrBLUP) and de novo GWAS to improve genomic prediction

accuracy for agronomic traits in maize. FMs identified through de

novo GWAS were incorporated as fixed effects, significantly

enhancing prediction accuracy for low-heritability traits. The multi-

trait models further leveraged genetic correlations among traits to

improve performance. Bayesian andmulti-trait models outperformed

rrBLUP for certain traits, particularly when known FMs were

included as fixed effects. This suggests that integrating FMs into GS

models can enhance prediction accuracy, thereby improving the

efficiency of selection in breeding programs.

GS models that incorporate known genes have significantly

advanced the field of plant breeding by enhancing the accuracy and

efficiency of trait prediction. These models could leverage FMs that are

directly associated with specific genes known to influence desirable

traits, such as disease resistance, yield, and abiotic stress tolerance. By

integrating these known genes into GS models, breeders can more

precisely predict the performance of breeding lines and make more

informed selection decisions (Jeong et al., 2020; Salgotra and Neal

Stewart, 2020; Chen et al., 2023c). For instance, in maize breeding,

integrating FMs associated with disease resistance genes such as the

Ht1 gene for northern corn leaf blight resistance has improved the

accuracy of resistance prediction (Technow et al., 2013; Hurni et al.,

2015). This integration allows breeders to not only select for high-

yielding varieties but also ensure that these varieties possess robust

disease resistance. Similarly, in wheat, incorporating markers linked to

the Rht-B1 and Rht-D1 genes, which control plant height and lodging

resistance, into GS models has facilitated the development of semi-

dwarf varieties that are less lodging and higher yield potential (Zanke

et al., 2014). Moreover, the use of known genes in GS models can help

address the “large p, small n” problem, where the number of markers

(p) greatly exceeds the number of phenotypic records (n). By focusing

on a subset of markers with known effects, the model complexity is

reduced, leading to more stable and reliable predictions (Robertsen

et al., 2019). Additionally, the incorporation of these known FMs can

improve the transferability of GS models across different breeding

populations and environments, as the effects of these markers are more

consistent and well-understood. This approach not only enhances the

prediction accuracy but also accelerates the breeding cycle by enabling
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earlier selection of superior genotypes (Cerrudo et al., 2018). Overall,

the integration of known genes into GS models enhances the efficiency

and effectiveness of plant breeding programs.
4.3 Expansion of FM applications

FMs are not limited to their traditional use such as MAS and

backcrossing but also have a much broader scope of application in plant

breeding, particularly with the advancement of new technologies. In

modern plant breeding programs, FMs can enhance the utilization in a

way of innovative approaches such as haploid inducer-edit (HI-Edit),

genome construction, and promotion of alleles by genome editing

(PAGE). HI-Edit is an approach that leverages functionally validated

QTPs to directly introduce specific alleles into target genotypes through

precise gene editing. Unlike traditional MAS, which relies on marker-

based selection, HI-edit directly modifies the genome at the QTP sites,

enabling rapid validation and application of functional polymorphisms

(Delzer et al., 2024). For instance, by directly introducing a beneficial

QTP allele into an elite line, researchers can efficiently test and confirm

its phenotypic effect, providing a more accurate understanding of gene-

trait relationships. PAGE is an advanced method that directly increases

the frequency of favorable alleles through genome editing, significantly

enhancing genetic gain compared to traditional GS (Hickey et al., 2016).

By directly targeting specific genes or QTPs, PAGE provides a unique

opportunity to leverage FMsmore efficiently. Based on this background,

a strategy can be proposed that integrates PAGE and FMs for

application in plant breeding. Specifically, functionally validated QTPs

identified through FMs can be used to detect favorable alleles, which can

then be directly edited using PAGE to accelerate genetic improvement.

This approach is expected to be particularly useful for crops where

precise enhancement of complex traits is required. Genome

construction in plant breeding is a strategy that involves designing,

assembling, and optimizing genetic configurations within a plant

genome to achieve desired traits (Varshney et al., 2021). Unlike

traditional breeding methods, which rely on random genetic

recombination, genome construction is a targeted approach that

systematically combines beneficial genes and QTPs to create superior

plant varieties. FMs enhance genome construction by enabling precise

selection of functionally validated QTPs, ensuring that only beneficial

alleles are included in the final genome design. This accelerates trait

improvement, minimizes genetic drag, and increases the reliability of

selected traits.
5 Challenges and future perspectives

5.1 Limitations in FM development and
application

FMs are increasingly valuable tools in plant breeding due to

their ability to directly associate genetic variation with phenotypic

traits, offering precision in selecting desirable traits and accelerating

the breeding process (Kage et al., 2016; Salgotra and Neal Stewart,

2020). However, the application of FMs is not without limitations.
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Key challenges include genetic background differences,

environmental influences (E), and genotype-by-environment

(GxE) interactions, all of which can affect the stability and

transferability of FMs. Additionally, epistasis, which manifests as

genotype-by-genotype (GxG) interactions, can complicate the

predictability of FMs by altering the effects of individual loci

depending on the genetic background. Furthermore, incomplete

penetrance can result in variability in trait expression even when the

causal allele is present. These factors necessitate thorough validation

and careful consideration in breeding schemes. In some cases, a

single gene may contain redundant multiple QTPs that each

contribute to the same phenotype. Traditional FM approaches

often focus on a single SNP or specific QTP to predict a trait,

potentially overlooking other polymorphisms that also influence the

phenotype. This redundancy means that the information provided

by an individual QTP may be duplicated by adjacent QTPs, and a

marker based only on one may fail to capture the cumulative effect

of the entire gene. In contrast, haplotype-based approaches

combine multiple SNPs within a gene to represent the optimal

haplotype that reflects all functional variations. Such an approach

accounts for both additive and epistatic interactions among QTPs,

thereby offering a more comprehensive view of the genotype–

phenotype relationship. Integrating this strategy into FM

development enhances the precision and stability of MAS,

ensuring that the selected alleles truly represent the optimal

genetic configuration. Recent studies advocate for the use of

haplotype-based methods to overcome the limitations inherent in

single-QTP markers (Bhat et al., 2021; Sivabharathi et al., 2024). To

further enhance the utility of haplotype-based FMs, recent advances

in computational tools such as Beagle and SHAPEIT4 have enabled

accurate haplotype phasing and imputation, even in complex

genomic regions (Browning and Browning, 2007; Delaneau et al.,

2019). These tools facilitate the identification of functionally

relevant haplotypes by resolving linkage patterns and structural

variations. Integration with transcriptomic and epigenomic data,

including expression haplotypes (eHaps) and expression

quantitative trait locus (eQTL), informed haplotypes, improves

the biological resolution of genotype, phenotype associations

(Chien et al., 2023). In rice and wheat, for example, haplotype

analyses at key loci such as GW3, GW5, and FHB1 have enabled the

selection of elite alleles for grain shape, and disease resistance

(Radecka-Janusik et al., 2022; Xia et al., 2025). Moreover,

incorporating haplotype-based markers into GS models has

shown improved prediction accuracy, especially for traits

influenced by multiple interacting loci (Alemu et al., 2023). This

makes haplotype-based FM development a promising strategy for

precision breeding under complex trait architectures.

One obstacle is the presence of repetitive sequences in plant

genomes, which can complicate primer design and limit the

specificity of marker assays. This is particularly problematic in large,

complex, or polyploid genomes such as those of wheat or sugarcane,

where homoeologous and paralogous sequences share high similarity

across subgenomes or gene families. Such redundancymakes it difficult

to design markers that uniquely target a single locus, increasing the risk

of cross-amplification or false positives in genotyping assays (Claros
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et al., 2012). Another significant limitation is gene functional

redundancy. In many plant species, important agronomic traits are

controlled not by single genes but by gene families with overlapping or

compensatory functions. When one gene is mutated, other family

members may mask the phenotypic effect, thereby reducing the

likelihood of detecting a clear genotype–phenotype relationship. This

makes it challenging to identify causative polymorphisms suitable for

FM development, especially in cases where loss-of-function alleles do

not lead to observable trait variation (Peng, 2019). To mitigate such

challenges in practical breeding, several crop-specific strategies have

been implemented. For instance, in rice, multi-environment QTL

mapping has been used to identify stable loci for drought tolerance,

which are less affected by G×E interactions (Dixit et al., 2014). Inmaize,

environment-specific genomic prediction models incorporating FM

information have improved trait predictability under varying stress

conditions (Rogers and Holland, 2022). These examples demonstrate

that integrating FMs with tailored breeding strategies can enhance

marker robustness and increase their utility across diverse genetic and

environmental contexts.

Genetic background effects influence the stability of FMs, often

preventing a marker from performing consistently across diverse

genetic backgrounds. These effects arise due to epistasis, where

interactions between different loci modify the expression of a target

allele. For instance, a FM designed based on a specific genetic

variation may work effectively in one genetic background but fail to

produce the expected phenotype in another due to differences in

interactions with other background genes. This occurs because the

phenotypic effect of a given allele is not solely determined by its

presence but also by how it interacts with other alleles in the

genome. If these interacting loci vary between backgrounds, the

expected effect of the FM may not be observed. These interactions

can amplify or suppress the marker’s effects, leading to phenotypic

variability even among individuals carrying the same marker. To

ensure the stability of FMs, thorough validation across diverse

genetic backgrounds and environments is necessary, along with

strategies to minimize the influence of background effects (Guo

et al., 2010; Salgotra and Neal Stewart, 2020). The environment (E)

plays a crucial role in the stability and effectiveness of FMs.

Environmental factors regulate gene expression, altering the

phenotypic expression of traits targeted by specific markers,

leading to phenotypic variation and instability in marker effects.

GxE interaction further complicate this dynamic, as specific genetic

variations may express differently across various environments,

causing the same marker to have varying effects depending on

environmental conditions. For example, an FM associated with

drought tolerance may be effective under drought conditions but

less so under combined stress factors or other environmental

contexts. Due to these environmental influences, markers

validated in one environment may not guarantee the same results

in other settings. Consequently, breeding programs using FMs must

rigorously test marker stability and effectiveness across diverse

environmental conditions (Xu et al., 2012; Salgotra and Neal

Stewart, 2020). Transferability, another critical factor, involves the

ability to apply FMs identified in one population or environment to

another. This is particularly important for global breeding
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programs aiming to develop cultivars suited to diverse

environments. To address these challenges, additional criteria

beyond genetic linkage should be considered when defining a

polymorphism as “functional.” These include the stability of

marker effects across diverse contexts and consistent predictability

of the target trait (Sargent et al., 2007). Thorough validation across

multiple populations and environments is essential to confirm their

reliability and ensure their intended roles in breeding programs.

While FMs hold significant potential for improving plant breeding

efficiency, their effectiveness depends on careful application and

ongoing research to refine their use and address these limitations.
5.2 Future prospects for FMs

Over the next 20 years, FMs are expected to undergo significant

advancements, driven by innovations in gene-editing, sequencing

technologies, and multi-omics approaches, as well as increasing

integration with artificial intelligence (AI) and machine learning

(ML). One of the most transformative areas will be the creation of

FMs with gene-editing technologies (Arora and Narula, 2017) by

directly introducing specific mutations into genes of interest.

Furthermore, as NGS costs continue to decrease, breeders will

increasingly use whole-genome sequencing routinely, leading to

the discovery of high-resolution polymorphisms in both coding and

non-coding regions of the genome. This will include markers for

regulatory elements, such as enhancers and promoters, which play

important roles in gene expression (Salgotra et al., 2014). Looking

forward, the application of ML-based gene–trait association models

is expected to further enhance the predictive power of forward

genetic approaches. By integrating vast datasets from genomic,

phenotypic, and environmental sources, these models can identify

complex and subtle gene–trait relationships, including non-linear

interactions, that might otherwise be overlooked. This will

ultimately accelerate genetic gain and facilitate the development

of more resilient crop varieties (Negus et al., 2024).

The use of AI and ML will revolutionize the discovery and

utilization of FMs and will have a profound impact on future

breeding programs. In the phenotyping stage for FM development,

large-scale visual data on target traits such as growth status,

chlorophyll content, biomass, and disease resistance can be

captured using various high-resolution imaging platforms

including drones, satellites, ground-based sensers, and robots (Gill

et al., 2022; Pinto et al., 2023; DeBruin et al., 2025). Image-based

phenotyping enables accurate and consistent trait evaluation across

large populations, offering significant efficiency over traditional

manual scoring methods that can significantly reduce labor. At

the core of this process is the convolutional neural network (CNN),

a deep learning architecture specialized for image recognition and

feature extraction (Fukushima, 1980). CNNs automatically learn to

detect complex visual patterns and are widely used for tasks such as

disease diagnosis, classification of healthy versus stressed plants,

flowering time prediction, and automated leaf area estimation

(Jiang and Li, 2020). Advanced CNN variants (e.g., ResNet,

U-Net) also facilitate temporal image analysis, enabling dynamic
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monitoring of crop development and high-resolution extraction of

phenotypic states at specific time points (Tausen et al., 2020;

Malagol et al., 2025). These AI-driven phenotypic data can then

be integrated with genomic information to support QTP discovery

and FM development.

Recent advances in AI, ML and multi-omics technologies are

transforming how causal variants are detected and have strong

potential for FM development. ML algorithms are increasingly

applied to large-scale genomic data to distinguish causal

polymorphisms from background noise (Farooq et al., 2024). For

example, models such as eXtreme Gradient Boosting (XGBoost) or

deep learning (DL)-based tools like DeepVariant can effectively

prioritize candidate SNPs that are likely to affect gene function or

regulation, streamlining downstream validation (Poplin et al., 2018;

Wang et al., 2025a). These tools improve the accuracy of variant

calling by reducing false positives and enhancing the detection of

rare or structurally complex polymorphisms that conventional

methods often miss (Chen et al., 2023b). In addition, AI-assisted

primer design platforms, some of which incorporate ML layers into

existing tools help researchers select optimal primers for

experimental validation, thereby improving amplification success

and efficiency (Dwivedi-Yu et al., 2023; Ghorbani et al., 2025).

Integration of multi-omics data, such as transcriptomics,

epigenomics, and chromatin accessibility, provides a more

comprehensive view of how genetic variants influence gene

expression and phenotypes. By correlating sequence variants with

expression profiles, regulatory modifications, and chromatin state

across diverse tissues or developmental stages, researchers can

prioritize variants that are more likely to be functionally relevant

(Mahmood et al., 2022; Liu et al., 2025). Similarly, single-cell

genomics is expected to advance, facilitating the identification of

FMs (Cuperus, 2022). Single-cell genomics offers unprecedented

resolution in understanding how individual cells respond to

environmental stimuli or regulate complex traits. Unlike bulk

sequencing, which averages signals across heterogeneous tissues,

single-cell genomics enables the dissection of cell-type-specific gene

expression and regulatory mechanisms. In plants, this approach has

been successfully applied to uncover developmental trajectories in

Arabidopsis root cells (Denyer et al., 2019) and to map stress-

responsive transcriptional programs in rice and maize (Li et al., 2024;

Wang et al., 2025b). These studies provide valuable insights into how

specific cell types contribute to key agronomic traits such as drought

tolerance, nutrient uptake, and disease resistance. Incorporating single-

cell data into FM development enables the identification of variants

that function in a cell-specific manner, thereby improving the precision

and biological relevance of marker selection. This integrative approach

enhances the resolution of causal variant detection and increases the

biological confidence of selected FMs, ultimately improving the

precision of marker development and downstream breeding

applications. More importantly, this approach offers a more efficient

strategy for FM development, significantly accelerating the overall

process of FM development. As such, the convergence of AI, multi-

omics, and advanced genomics is poised to become a cornerstone of

precision breeding in the coming decades.
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In response to environmental challenges, future breeding programs

will focus on developing resilient crops using FMs for traits such as

abiotic stress tolerance. FMs for genes controlling root architecture,

water-use efficiency, and photosynthetic efficiency will become

essential for developing varieties that can thrive under increasingly

harsh conditions. Additionally, polygenic trait selection will become

more refined through the use of multiple FMs, improving the ability to

select for complex traits that enhance crop adaptation to different

environments (Marsh et al., 2021). The next 20 years will also see the

integration of FMs with multi-omics approaches, combining genomics

with transcriptomics, metabolomics, and epigenomics. This view of

gene-trait relationships will allow breeders to develop more precise

FMs that reflect not only genetic variation but also its effects on gene

expression and metabolic pathways (Cuperus, 2022).

Finally, due to the importance of global food security,

international collaboration in plant breeding programs will become

increasingly important. FMs will serve as a key tool for sharing

genetic information across borders, ensuring that breeding efforts are

aligned to address diverse environmental and agricultural challenges.

Public genomic databases will play a significant role in facilitating this

collaboration. These platforms will enable researchers and breeders

from different areas to access and contribute to a shared pool of

genetic data, including FMs and genomic variants. This will accelerate

the discovery of new markers and their application in breeding

programs, fostering the development of crop varieties that can

thrive in various conditions while contributing to sustainable

agricultural systems worldwide.
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