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Comparative proteomic and
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pepper roots of resistant

and susceptible varieties to
Phytophthora capsici infection

Zhou Heng', Xiaowan Xu', Tao Li and Xiaomei Xu*

Vegetable Research Institute, Guangdong Academy of Agriculture Sciences/Guangdong Key
Laboratory of New Technology Research of Vegetables, Guangzhou, China

Introduction: Phytophthora blight, caused by Phytophthora capsici, poses a
severe threat to global pepper production.

Methods: This study systematically investigated resistance mechanisms in the
root of blight-resistant pepper cultivar CM334 compared to the susceptible
genotype NMCA10399 using integrated proteomic and metabolomic analyses at
0, 12, and 36 hour post-inoculation.

Results: The results showed that arachidonic acid (AA) was the primary
differential metabolite between the resistant and susceptible varieties, while
the ABC transporter pathway was the main differential protein pathway. The
relative content of salicylic acid (SA) showed opposite trends in the early stages of
infection in the two varieties. In the resistant variety, proteins involved in plant—
pathogen interaction pathways, such as NHO1, Rd19, WRKY1, and WRKY2,
were upregulated.

Discussion: This study characterized the differences in metabolite and protein
expression profiles between resistant and susceptible pepper varieties after
inoculation, identified potential key metabolites and proteins, and provided
new theoretical support for the study of pepper blight resistance mechanisms
and the breeding of resistant varieties.

Chilli pepper, proteomic, metabolomic, resistance mechanisms, Phytophthora capsici

Introduction

Chilli pepper (Capsicum annuum) is one of the most economically and agriculturally
important crops, used as a vegetable, spice, food coloring agent, and medicinal material (Liu
et al., 2024). Global annual pepper production reaches approximately 38 million tons
(FAO, 2023). Pepper blight, caused by the oomycete pathogen Phytophthora capsici, is a
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devastating disease in global pepper production areas and causes
more than $100 million in losses annually (Bosland, 2008; Li et al.,
2020). Initially described by L.H. Leonian in 1922 as a pathogen of
peppers in New Mexico, USA, it is now widely distributed in
temperate and tropical countries (Quesada-Ocampo et al., 2023;
Leonian, 1922). As a soil-borne pathogen, it can infect almost all
parts of the pepper plant, causing various symptoms, including root
rot, stem base rot, and leaf and fruit blight (Yuan et al., 2024).
Unfortunately, current management strategies, including
agricultural practices, chemical applications, and planting
resistant varieties, have not effectively prevented this disease
(Garces-Fiallos et al.,, 2025; Kaur et al., 2024). Although pesticide
control efficacy ranges from 14% to 100% under specific
experimental conditions, considering pathogen resistance in
practical production and environmental sustainability, the
development of more efficient and targeted control measures
remains imperative (Wan and Liew, 2020). Therefore, studying
the resistance mechanisms of peppers against P. capsici is crucial for
improving pepper management and resistance breeding programs.

Numerous studies on plant resistance mechanisms have shown
that pattern recognition receptors (PRRs) in plants interact with
various pathogen-associated molecular patterns (PAMPs),
triggering PAMP-triggered immunity (PTI) (Hind et al, 2016;
Morris and Moury, 2019; Dong and Ronald, 2019),. During
infection, PTT can be suppressed by effector proteins encoded by
pathogens. These effectors are recognized by plant-encoded
nucleotide-binding site leucine-rich repeat (NBS-LRR) resistance
(R) genes, leading to effector-triggered immunity (ETI), which often
induces a form of programmed cell death known as the
hypersensitive response (HR) (Mathieu et al, 2014; Morris and
Moury, 2019; Dong and Ronald, 2019).

To effectively manage blight, resistant resources have been
screened (Mohammadbagheri et al,, 2021, 2022), and natural or
genetic populations with different resistance traits have been used to
locate resistance-associated loci (Kaur et al., 2024; Lozada et al.,
2021). Siddique et al (Siddique et al., 2019). identified three major-
effect quantitative trait loci (QTLs) on pepper chromosome P5 (5.1,
5.2, and 5.3), which exhibited broad-spectrum resistance to three P.
capsici strains. Additionally, QTLs with epistatic interactions and
small effects were detected on other chromosomes. Lozada et al
(Lozada et al., 2021). identified major-effect QTLs associated with
resistance to P. capsici root rot on chromosomes P5, P8, and P9 of
pepper based on a recombinant inbred line (RIL) population
derived from the hybridization between ‘CM334’ and ‘Early
Jalapeno’. These QTLs explained 19.7% to 30.4% of the
phenotypic variation in resistance. Zhang et al (Zhang et al,
2023), through genome-wide association study (GWAS) analysis,
located P. capsici resistance loci to a 1.68 Mb interval on
chromosome 5, containing nine genes, with Capana05g000704
encoding a leucine-rich repeat receptor-like serine/threonin
protein kinase being the most likely candidate gene for P. capsici
resistance. Using different germplasm panels with limited overlap
with Zhang’s work, Kaur et al (Kaur et al., 2024). identified 330
single nucleotide polymorphism (SNP) markers significantly
associated with resistance, distributed across all 12 chromosomes,
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indicating a complex genetic basis for pepper resistance to P. capsici.
Yuan et al (Yuan et al., 2024), through GWAS, identified two major
resistance loci on chromosomes 5 (CaRPc5.1) and 10 (CaRPc10.1).
In summary, different resistance materials have been located to
different loci, and it is difficult to find a single major-effect QTL,
indicating that the resistance mechanism to blight is
highly complex.

To further reveal the molecular resistance mechanisms at the
molecular level, single-omics or multi-omics approaches have been
used to analyze differences in various resistant materials during the
infection process. Shi et al (Shi et al., 2024), through iTRAQ-based
proteomic analysis, found that differentially expressed proteins
(DEPs) were significantly enriched in secondary metabolite
biosynthesis, carbon fixation in photosynthesis, and pyruvate
metabolism pathways. Li et al (Li et al., 2024), through analysis of
mRNA and miRNA, revealed the regulatory network of miRNAs
and target genes in peppers infected with P. capsici. Liet al (Li et al.,
2020), through dynamic transcriptome analysis of pepper whole
roots, revealed that pepper roots enhance resistance to P. capsici by
activating the phenylpropanoid biosynthesis pathway. Lei et al (Lei
et al,, 2023), through combined metabolomic and transcriptomic
analysis, found that the flavonoid biosynthesis pathway plays an
important role in pepper resistance to P. capsici.

It is well known that changes at the mRNA level do not always
directly reflect protein expression levels, as mRNA translation
efficiency and protein stability can affect the final protein levels
(Buccitelli and Selbach, 2020). Direct study of protein expression
and modification can more directly reflect the functional state of
cells. However, no studies have combined proteomics with
metabolomics to analyze the resistance mechanisms of pepper
blight. To investigate the changes in pepper roots following
infection by P. capsici at both proteomic and metabolomic levels,
this study used metabolomics combined with proteomics to analyze
the roots of resistant and susceptible pepper varieties at 0, 12, and 36
hour post-inoculation with P. capsici. The study identified key
differential metabolites and proteins, with a focus on differential
proteins in plant-pathogen interaction pathways, and validated
these proteins using qPCR. This study provides new insights into
the molecular mechanisms of pepper resistance to blight and offers
a new theoretical direction for breeding resistant varieties.

Materials and methods
Plant and pathogen materials

The study selected two pepper accessions: CM334 (hereinafter
referred to as R), a landrace from Mexico renowned for its
exceptional resistance to P. capsici, and NMCA10399 (hereinafter
referred to as S), which is highly susceptible to P. capsici, as
evidenced by its vulnerability to all tested P. capsici isolates. Plant
materials were cultivated in plastic pots (20 cm diameter)
containing plant growth substrate (Floragard, Germany) and
grown under controlled conditions at 26 + 2°C with 70% relative
humidity and a 14-h-light/10-h-dark photoperiod. When the plants
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reached the six-leaf stage, they were inoculated with the P. capsici
isolate Byl4, which was originally isolated from infected pepper
plants in Baiyun field, Guangzhou, Guangdong Province, China (Xu
et al., 2016). Twelve hours prior to inoculation, the plants were
thoroughly watered. Subsequently, 2 ml of Byl4 spore suspension, at
a concentration of 5 x 10* zoospores/ml, was injected into the root-
shoot soil line, following the method described by Xu et al (Xu et al,
2016). with minor modifications. In brief, The preserved
Phytophthora capsici (Byl4) isolate was reactivated and cultured
on 20% V8 agar medium(200 mL V8 juice, 3.0 g CaCO,, 20 g agar,
800 mL distilled water, pH 6.3). Initially, it was incubated in the
dark at 25°C for 3 days, followed by 3-4 days under a 12-hour light/
12-hour dark cycle. Subsequently, 10 mL of sterile water was added
to the culture dish, which was then placed in a refrigerator at 4°C for
30 minutes and allowed to stand at room temperature (23-25°C) for
an additional 30 minutes to induce spore release. The spore
suspension was collected, and the number of motile spores was
quantified using a hemocytometer. The suspension was then
adjusted to the required concentration for experimental use. The
inoculated plants were then continued to be grown under the same
environmental conditions.

Referencing our group’s published transcriptomic study (Li
et al, 2020), the experiment included two genotypes (susceptible
‘S’ and resistant ‘R’) across three time points (Oh, 12h, 36h),
designated as SO, S12, S36, RO, R12, R36. Each designation
comprised three biological replicates. To meet the sample
requirements for both metabolomic and proteomic analyses, roots
from four pepper seedlings were pooled per biological replicate. The
harvested roots were subsequently ground into powder using a
mortar and pestle under liquid nitrogen.

Metabolite extraction, detection, data
processing, and annotation

Sample preparation and extraction

Samples were subjected to freeze-drying using a vacuum freeze-
dryer (Scientz-100F). The freeze-dried samples were then crushed
in a mixer mill (MM 400, Retsch) with a zirconia bead for 1.5
minutes at a frequency of 30 Hz. For extraction, 100 mg of the
lyophilized powder was dissolved in 1.2 mL of a 70% methanol
solution. The mixture was vortexed for 30 seconds every 30
minutes, repeated six times in total, and then left in a refrigerator
at 4°C overnight. After centrifugation at 12,000 rpm for 10 minutes,
the supernatant was filtered through a 0.22 um pore size filter
(SCAA-104, ANPEL, Shanghai, China) before being subjected to
UPLC-MS/MS analysis.

UPLC-MS/MS analysis

The sample extracts were analyzed using a UPLC-ESI-MS/MS
system, which consisted of a UPLC (SHIMADZU Nexera X2) and
an MS (Applied Biosystems 4500 Q TRAP). The analytical
conditions were as follows: The UPLC was equipped with an
Agilent SB-C18 column (1.8 pm, 2.1 mm x 100 mm). The mobile
phase was composed of solvent A (pure water with 0.1% formic
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acid) and solvent B (acetonitrile with 0.1% formic acid). The
gradient program started with 95% A and 5% B, linearly changed
to 5% A and 95% B within 9 minutes, held at 5% A and 95% B for 1
minute, then adjusted back to 95% A and 5% B within 1.1 minutes
and maintained for 2.9 minutes. The flow rate was set at 0.35 mL/
min, the column oven temperature was 40°C, and the injection
volume was 4 UL. The eluent was directed to an ESI-triple
quadrupole-linear ion trap (QTRAP)-MS.

The mass spectrometer (AB4500 Q TRAP UPLC/MS/MS
System) was equipped with an ESI Turbo Ion-Spray interface and
operated in both positive and negative ion modes, controlled by
Analyst 1.6.3 software (AB Sciex). The ESI source parameters were
set as follows: ion source, turbo spray; source temperature, 550°C;
ion spray voltage (IS), 5500 V (positive ion mode) or -4500 V
(negative ion mode); ion source gas I (GSI), gas II (GSII), and
curtain gas (CUR) were set at 50, 60, and 25.0 psi, respectively;
collision-activated dissociation (CAD) was set to high. Instrument
tuning and mass calibration were performed using 10 and 100
umol/L polypropylene glycol solutions in QQQ and LIT modes,
respectively. QQQ scans were acquired as MRM experiments with
collision gas (nitrogen) set to medium. DP and CE for individual
MRM transitions were optimized accordingly. Specific MRM
transitions were monitored for each period based on the elution
profile of the metabolites.

Data analysis

Unsupervised principal component analysis (PCA) was performed
using the prcomp function in R (https://www.r-project.org). The data
were scaled to unit variance before PCA. Hierarchical cluster
analysis (HCA) results for samples and metabolites were
visualized as heatmaps with dendrograms, while Pearson
correlation coefficients (PCC) between samples were calculated
using the cor function in R and presented as heatmaps. Both
HCA and PCC were conducted using the R package pheatmap.
For HCA, normalized signal intensities of metabolites (unit
variance scaling) were displayed as a color spectrum. Significantly
regulated metabolites between groups were identified based on VIP
values > 1 and absolute log2 fold changes > 1. VIP values were
extracted from OPLS-DA results, which included score plots and
permutation plots, generated using the R package MetaboAnalystR.
The data were log2-transformed and mean-centered before OPLS-
DA. To prevent overfitting, a permutation test (200 permutations)
was performed. Identified metabolites were annotated using the
KEGG Compound database and mapped to the KEGG Pathway
database. Pathways with significantly regulated metabolites were
subjected to metabolite set enrichment analysis (MSEA), and their
significance was determined by hypergeometric test p-values.

Protein extraction, digestion, and LC-MS/
MS analysis
Sample preparation and processing

The samples were homogenized in a lysis buffer containing 2.5%
SDS and 100 mM Tris-HCI (pH 8.0). Subsequently, the samples
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underwent ultrasonication treatment. After centrifugation, proteins
in the supernatant were precipitated by adding four times the
volume of pre-cooled acetone. The resulting protein pellets were
dissolved in a solution of 8 M urea and 100 mM Tris-Cl. Following
another round of centrifugation, the supernatant was used for a
reduction reaction with 10 mM DTT at 37°C for 1 hour, followed by
an alkylation reaction with 40 mM iodoacetamide at room
temperature in the dark for 30 minutes. The protein
concentration was then measured using the Bradford method.
The urea concentration was diluted to below 2 M using 100 mM
Tris-HCI (pH 8.0). Trypsin was added at an enzyme-to-protein
ratio of 1:50 (w/w) for overnight digestion at 37°C. The next day,
TFA was used to adjust the pH to 6.0 to terminate the digestion.
After centrifugation at 12,000xg for 15 minutes, the supernatant
was subjected to peptide purification using a Sep-Pak C18 desalting
column. The eluate was vacuum-dried and stored at -20°C for
later use.

TMT labeling and fractionation

TMT labeling was performed according to the manufacturer’s
instructions. Peptides were reconstituted in TMT reagent buffer and
labeled with different TMT labeling reagents. The labeled samples
were then mixed and subjected to Sep-Pak C18 desalting. The
complex mixture was fractionated using high pH reverse phase
chromatography and combined into 15 fractions. Each fraction was
vacuum-dried and stored at -80°C until MS analysis.

LC-MS/MS analysis

LC-MS/MS data acquisition was performed on an Orbitrap
Exploris 480 mass spectrometer coupled with an Easy-nLC 1200
system. Peptides were loaded via an auto-sampler and separated on
a C18 analytical column (75 pm x 25 cm, C18, 1.9 um, 100 A). The
mobile phase consisted of solvent A (0.1% formic acid) and solvent
B (80% ACN, 0.1% formic acid) to establish the separation gradient.
A constant flow rate of 300 nL/min was maintained. For DDA mode
analysis, each scan cycle included one full-scan mass spectrum (R =
60 K, AGC = 300%, max IT = 20 ms, scan range = 350-1500 m/z)
followed by 20 MS/MS events (R = 15 K, AGC = 100%, max IT =
auto, cycle time = 2 s, TurboTMT enabled). The HCD collision
energy was set to 35, with an isolation window for precursor
selection of 1.2 Da. Former target ion exclusion was enabled for
35 seconds.

Protein identification and quantification

The MS raw data were processed using MaxQuant (V1.6.6) and
the Andromeda database search algorithm. The spectra files were
compared with the UniProt proteome database
(Capsicum_annuum, https://www.uniprot.org/proteomes/
UP000222542) under the following settings: TMT quantification
mode was enabled; Variable modifications included Oxidation (M),
Acetyl (Protein N-term), and Deamidation (NQ); Fixed
modifications were set as Carbamidomethyl (C); Trypsin/P was
chosen for digestion; For the MS1 match tolerance, it was initially
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set at 20 ppm and then adjusted to 4.5 ppm for the main search,
while the MS2 tolerance was maintained at 20 ppm. The search
outcomes were filtered with a 1% FDR threshold at both the protein
and peptide levels. Proteins identified as decoy hits, contaminants,
or those solely recognized by sites were excluded. The remaining
identifications were utilized for subsequent quantification analysis.

Integrated analysis of proteomics and
metabolomics data

Based on the differential metabolite analysis results of this
experiment, combined with the differential protein analysis results,
the differential proteins and differential metabolites of the same group
were simultaneously mapped onto the KEGG pathway map.

RNA extraction and quantitative real-time
PCR

Total RNA was extracted from frozen root powder using the
Column Plant RNAout Kit (TTANDZ, Beijing, China).
Subsequently, cDNA was synthesized with the PrimeScript™ RT
reagent Kit with gDNA Eraser (Takara, Dalian, China). Three
biological replicates were prepared for each genotype, and each
biological replicate consisted of three technical replicates.The PCR
reactions were conducted in a 20-ul reaction volume, comprising 1
ul of primer (10 pM), 1 ul of cDNA, 8 pl of PCR-grade water, and
10 pl of AceQ qPCR SYBR Green Master Mix (Vazyme, Nanjing,
China), using a Roche LightCycler 480 Q-PCR system (Roche,
Basel, Switzerland).The PCR protocol began with an initial
denaturation step at 95 °C for 5 min, followed by 45 cycles of 95
°C for 10 s and 60 °C for 30 s. After each run, a melting curve
analysis was performed to confirm the specificity of the amplified
products. The primer sequences and reference gene information
used for qPCR are detailed in Supplementary Table S1.

Results

Pepper metabolome profiling in response
to P. capsici infecting

Comprehensive metabolomic profiling identified 997
metabolites across experimental groups, with lipid species
(n=175), alkaloids (n=150), and phenolic acids (n=143)
constituting the predominant chemical classes (Supplementary
Table S2). Principal component analysis (PCA) revealed distinct
temporal dynamics (Figure 1A): SO and S12 formed a tight cluster
indicative of early-stage metabolic stability in susceptible genotypes,
while RO and R12 grouped separately, suggesting genotype-specific
reprogramming during initial defense activation. Notably, S36 and
R36 exhibited spatial divergence from earlier timepoints, implying
progressive metabolic divergence between resistant and susceptible
lines under prolonged pathogen pressure.
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FIGURE 1
Overview of metabolome data. (A) PCA plot of metabolome result.

Differential expression analysis (FDR-corrected p<0.05, |
log2FC|21) identified 69, 306, 115, and 221 differentially
abundant metabolites (DAMs) in SO vs. S12, SO vs. S36, RO vs.
R12, and RO vs. R36 comparisons, respectively (Figure 1B). The
upregulated: downregulated ratios (26:43, 61:245, 49:66, 92:129)
demonstrated asymmetric metabolic reprogramming, with
susceptible genotypes showing pronounced downregulation (245/
306 metabolites) at S36, potentially reflecting resource reallocation
or catabolic dominance during late infection. Venn diagram results
showed that the four comparison groups had 7, 172,10, and 73
unique metabolites, respectively (Figure 1C).

Pepper proteome profiling in response to
P. capsici infecting

Proteomic profiling identified 9,599 proteins (Supplementary
Table S3), with principal component analysis (PCA) demonstrating
robust clustering of biological replicates across experimental
groups. The PCA dimensions revealed distinct temporal
dynamics: SO and S12 clustered closely, as did R12 and R36, while
S36 and RO formed a separate group, suggesting stage-specific
molecular reprogramming during pathogen interaction
(Figure 2A). Differential expression analysis identified 800 (411
upregulated, 389 downregulated), 5,007 (2,5731, 2,434]), 5,778
(2,7531, 3,025]), and 6,055 (2,8771, 3,178]) significantly altered
proteins in the SO vs. S12, SO vs. S36, RO vs. R12, and RO vs. R36
comparisons, respectively (Figure 2B, Supplementary Table S4).
Venn diagram analysis highlighted 76 unique proteins in the
susceptible genotype (SO vs. S12) compared to 191 in the resistant
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genotype (RO vs. R12) (Figure 2C), indicating genotype-specific
proteomic remodeling during early infection.

Subcellular localization predictions revealed cytoplasmic
dominance (46.89%), followed by nuclear (12.92%) and Golgi
apparatus distributions (Figure 2D). Notably, differentially
abundant proteins in SO vs. S12 were primarily localized to the
cytoplasm, extracellular space, chloroplasts, endoplasmic reticulum,
nucleus, and mitochondria. In contrast, other comparisons showed
enrichment in cytoplasmic, nuclear, mitochondrial, Golgi,
chloroplast, and extracellular compartments (Supplementary
Figure S1). The pronounced extracellular proteome alterations in
the susceptible genotype at 12 hours post-inoculation (hpi) suggest
a critical window for pathogen recognition evasion or failed defense
signaling, potentially explaining susceptibility mechanisms.

Combined proteomic and metabolomic
analysis

Integrated proteomic-metabolomic analysis revealed distinct
pathway dynamics between resistant (R) and susceptible (S) genotypes
during P. capsici infection. KEGG enrichment of differentially abundant
proteins (DAPs) and metabolites (DAMSs) was conducted under dual
significance thresholds (p<0.05 and p<0.01) (Figure 3). At the p < 0.05
level, DAPs in SO vs S12 were enriched in the Tropane, piperidine and
pyridine alkaloid biosynthesis pathway, linoleic acid metabolism
pathway, isoflavonoid biosynthesis pathway, carbon metabolism
pathway, and ABC transporters pathway. DAMs were enriched in the
sulfur metabolism pathway. DAMs in RO vs R12 were enriched in the
arachidonic acid metabolism pathway, with no enriched protein
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Overview of proteome data. (A) PCA plot of proteome result. (B) Bar plot of different expressed protein(DEP). (C) Venn plot of DEP. (D) Distribution
of identified proteins from the proteome of chili pepper into Subcellular localization.

pathways. DAPs in SO vs S36 were enriched in the plant hormone signal
transduction pathway and porphyrin and chlorophyll metabolism
pathway. DAMs were enriched in the biosynthesis of amino acids
pathway, monobactam biosynthesis pathway, and aminoacyl-tRNA
biosynthesis pathway. DAPs in RO vs R36 were enriched in the
pyrimidine metabolism pathway and riboflavin metabolism pathway.
DAMs were enriched in the amino sugar and nucleotide sugar
metabolism pathway, arachidonic acid metabolism pathway, and
galactose metabolism pathway. At the p-value < 0.01 level, DAMs in
both SO vs. S12 and RO vs. R12 were enriched in the arachidonic acid
metabolism pathway, and SO vs S12 was also enriched in the ABC
transporters protein pathway. SO vs S36 was enriched in the aminoacyl-
tRNA biosynthesis metabolic pathway, and R0 vs R36 was enriched in
the galactose metabolism metabolic pathway and riboflavin metabolism
protein pathway. None of these combined analysis results showed a
pathway that was simultaneously significantly enriched for both DAPs
and DAMs. Based on these results, we speculate that the arachidonic acid
metabolism pathway and the ABC transporters pathway may be the key
pathway related to P. capsici resistance.

In-depth analysis of metabolomics data

To further elucidate the changes in arachidonic acid (AA)
within the materials, we conducted an in-depth analysis of the
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KEGG enrichment results derived from the metabolomics dataset.
The number of significantly enriched KEGG pathways (P < 0.05)
across the four experimental groups were 2, 2, 3, and 3, respectively
(Supplementary Table S5). Specifically, the pathways identified were
as follows: for the SO vs S12 comparison, the enriched pathways
included arachidonic acid metabolism and sulfur metabolism; for
SO vs S36, the pathways were aminoacyl-tRNA biosynthesis,
monobactam biosynthesis, and biosynthesis of amino acids; in the
RO vs R12 comparison, the pathways were arachidonic acid
metabolism and flavone and flavonol biosynthesis; and for RO vs
R36, the enriched pathways included galactose metabolism,
arachidonic acid metabolism, and amino sugar and nucleotide
sugar metabolism.

Notably, the arachidonic acid metabolism pathway exhibited a
distinct regulatory pattern, being significantly upregulated in the
susceptible variety (S) while being downregulated in the resistant
variety (R) (Figure 4A). Further investigation into this pathway
revealed that arachidonic acid itself was the primary differential
metabolite (Figure 4B). At the initial time point (0 h), the relative
content of arachidonic acid was lower in the susceptible variety (S)
compared to the resistant variety (R). However, during the infection
process, the levels of arachidonic acid increased in S, whereas they
decreased in R (Figure 4B). These findings indicate that arachidonic
acid represents the most significant differential metabolite
distinguishing resistant and susceptible varieties, highlighting its
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potential role in the differential responses to infection. During the
plant resistance process, changes in hormone levels occur.
Metabolomics data showed that Salicylic acid (SA)in S decreased
initially upon infection, while it increased in R (Figure 4B).
Jasmonic acid isoleucine (JA-Ile) is highly correlated with
jasmonic acid (JA) (Shah, 2005). The initial relative content of
JA-Ile was lower in S than in R, but both decreased during the
infection process (Figure 4B). Indole-3-acetic acid (IAA) decreased
in both S and R, and interestingly, it was almost undetectable in S at
36 h (Figure 4B). This result may indicate that root growth was
completely halted due to pathogen infection.

In-depth analysis of proteomics data

KEGG analysis of the proteomics data revealed that the number
of significantly enriched pathways in the comparisons SO vs S12, SO
vs S36, RO vs R12, and RO vs R36 were 36, 11, 16, and 12,
respectively (Supplementary Table S6). Among these, the
differential proteins in SO vs S12 were predominantly enriched in
pathways such as chemical carcinogenesis, drug metabolism-
cytochrome P450, and xenobiotic metabolism by cytochrome
P450, which also included the plant-pathogen interaction
pathway. While the plant-pathogen interaction pathway was
similarly enriched in RO vs R12, it did not reach statistical
significance. Notably, the plant-pathogen interaction pathway

Frontiers in Plant Science 08

contained 235 differential proteins in the resistant variety (R),
compared to only 44 in the susceptible variety (S).

The plant-pathogen interaction pathway is a critical pathway
reflecting plant defense mechanisms. In our analysis of differential
proteins within this pathway, we observed distinct differences in
both PAMP-triggered immunity (PTI) and effector-triggered
immunity (ETI) processes in the resistant variety (Figure 5). In
the PTT pathway, WRKY33, a transcription factor downstream of
the MAPK signaling pathway that suppresses the expression of
resistance genes, was significantly downregulated in the resistant
variety. This downregulation led to the upregulation of NHOI, a
protein that promotes resistance gene expression. In the ETI
pathway, the cytoplasmic protein Rd19, which is induced by
bacterial effector proteins, was upregulated in R, thereby
enhancing the expression of defense-related genes. Additionally,
WRKY1 and WRKY2, which are known to induce defense gene
expression, were also upregulated in R. These findings collectively
highlight the differential regulation of key immune responses in
resistant and susceptible varieties.

The ABC transporters pathway, similar to the plant-pathogen
interaction pathway, was not significantly enriched in R; however, a
greater number of proteins were detected in R than in S. This
observation suggests that R may exhibit a more timely response to
pathogen challenge, potentially leading to a higher number of
detectable proteins. Given that the ABC transporters pathway was
the only pathway significantly enriched at the 0.01 level in the
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combined analysis during the initial infection stage, we conducted a
detailed investigation of the proteins within this pathway. A total of
54 ABC transporter proteins were identified, including the
pleiotropic drug resistance protein 2 (PDR)(Supplementary Table
S7). The expression levels of PDR were significantly lower in SO and
S12 compared to RO and R12. Previous studies have reported that
the interaction of PDR with LecRK influences resistance in pepper
to P. capsica (Wang et al,, 2015).

To validate the expression abundance of key disease resistance-
related proteins, we quantified the relative transcript levels of their
encoding genes. As shown in Figure 6, a positive correlation was
observed between protein abundance and mRNA expression levels
for only WRKY1 and 2. The gene expression levels of NHO1 and
their protein abundance showed a consistent trend only in the
resistant cultivar. The relative gene expression levels of A and B and
their protein abundance failed to show a consistent trend. This
discrepancy may be attributed to post-translational modifications
or other regulatory factors.

Discussion

Pepper, an important vegetable and spice crop, is severely
threatened by Phytophthora blight, a major disease that poses a
significant challenge to the pepper industry (Admassie et al., 2023).
Understanding the molecular mechanisms underlying pepper’s
resistance to blight is critical for developing environmentally
friendly and efficient disease control strategies and for breeding
2020). While
previous studies have identified resistance loci and markers
associated with resistance (Zhang et al., 2023; Yuan et al., 2024;
Siddique et al., 2019; Mohammadbagheri et al., 2022), there is a
notable lack of multi-omics data characterizing the interactions

blight-resistant pepper varieties (Bagheri et al,

between resistant and susceptible varieties and the pathogen. In this

10.3389/fpls.2025.1638114

study, we employed proteomics and metabolomics to analyze
resistant and susceptible pepper materials before and after
inoculation with the blight pathogen. Our analysis identified
several metabolites and proteins associated with resistance,
providing valuable insights into the mechanisms of pepper’s
defense against blight and offering important reference data for
future research in this field.

Arachidonic acid (AA), a fatty acid commonly secreted by
pathogens during plant infection, serves as an elicitor of plant
defense responses to phytopathogens (Dedyukhina et al.,, 2014;
Das, 2018). AA are abundant in the lipids of Phytophthora species
and related oomycetes, and are released into plant tissues from
spores during the early stages of infection (Teresa et al., 2014). In
our study, we observed that after inoculating pepper roots with P.
capsici, the content of AA in the roots exhibited a negative
correlation with resistance. This finding is consistent with a
study on anthracnose infection of Camellia oleifera, where AA
was identified as the main differential metabolite, with higher
levels observed in non-inoculated resistant plants (Yang et al,
2022). As previously reported, AA is a major component of
pathogen cell membranes but is not commonly found in higher
2010). Given that the metabolomics
analysis was conducted on pepper roots post-pathogen

plants (Savchenko et al,

infection, it is not possible to definitively determine whether the
detected AA originated from the pepper plant itself or from P.
capsici. However, our metabolomics analysis of non-inoculated
roots revealed the presence of AA (data not shown), indicating
that AA may present in pepper roots. Although sterile culture
substrate is utilized, we cannot currently rule out the factor of AA
contamination originating from endophytic bacteria within plant
tissues. On the other hand, our proteomic data revealed no
significant enrichment of AA synthesis-related pathways during
the infection process. This finding suggests that pepper plants may
lack the capacity for substantial AA production. Taken together,
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The expression abundance of proteins associated with disease resistance and the relative expression levels of their encoding genes in the pathogen-

plant interaction pathway.
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we propose that AA originates primarily from the pathogen rather
than the host plant—consistent with its documented role as an
elicitor of plant defense responses against phytopathogens
(Dedyukhina et al.,, 2014). In tomato, potato and pepper,
exogenous application of AA enhances plant resistance to P.
capsici (Dye and Bostock, 2021). In summary, AA plays a
significant role as a metabolite during pathogen infection of
plants. Our results suggest that employing the Host-Induced
Gene Silencing (HIGS) strategy to limit the synthesis of AA by
the pathogen may represent a promising approach for
disease control.

Plant hormones are pivotal in orchestrating plant defense
mechanisms against insects and pathogens (Mhlongo et al., 2020).
Salicylic acid (SA) and jasmonic acid (JA) are among the most
extensively investigated hormones in this context. SA is particularly
instrumental in conferring resistance to biotrophic and
hemibiotrophic pathogens (Glazebrook, 1999). A hallmark of
robust resistance in many studies is the elevation of SA levels
following pathogen infection (Zhang et al., 2020; Yang et al., 2023).
This hormone is known to elicit the expression of pathogenesis-
related (PR) proteins, such as PRI, and to reinforce cell walls,
thereby impeding pathogen progression (Sorokan et al., 2023).
Exogenous application of SA has been documented to augment
pepper’s resistance to P. capsici (Yang et al., 2023). Three genes
associated with SA biosynthesis were upregulated in the resistant
pepper variety upon infection with P. capsici (Lei et al., 2023). In the
present study, while SA levels declined in the susceptible variety (S)
post-infection, they exhibited an increase in the resistant variety
(R). This dichotomy suggests the activation of an SA-mediated
immune response in R, thereby underscoring SA’s critical role in the
resistance of pepper to P. capsici.

Jasmonic acid (JA) primarily regulates plant resistance to
necrotrophic pathogens (Glazebrook, 1999). However, the
relationship between JA and resistance mechanisms against P.
capsici in peppers remains underexplored. Methyl jasmonate
(MeJA), an exogenous activator, has been shown to modestly
attenuate symptoms of P. capsici infection (Barraza et al., 2022).
In this study, although JA itself was not detected, its bioactive form,
JA-isoleucine (JA-Ile), was identified. The levels of JA-Ile decreased
in both susceptible (S) and resistant (R) varieties following
infection, but they remained elevated in R compared to S. This
trend aligns with previous findings in studies of P. capsici-infected
resistant pepper leaves (Ueeda et al., 2005). Additionally, indole-3-
acetic acid (IAA) levels decreased in both plant materials, becoming
nearly undetectable in S by 36 hours post-infection, suggesting a
cessation of root growth in the susceptible variety. Notably, the
crosstalk between SA and JA pathways exhibits complexity and
context-dependence (Liu et al, 2016). For instance, in pepper,
CaASR1 promotes SA- but represses JA-dependent signaling to
enhance resistance to bacterial wilt (Huang et al., 2020). The
synergistic regulation of SA and JA signaling pathways in
conferring resistance to P.capsici requires further in-
depth investigation.
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ABC transporters, also known as ATP-binding cassette
transporters, are a class of proteins that rely on the energy
generated by ATP hydrolysis to transport substrates across cell
membranes (Verrier et al., 2008). They represent the most
numerous and functionally diverse class of proteins identified to
date (Verrier et al., 2008). Arabidopsis thaliana contain 130 ABC
transporters (Jasinski et al., 2003). However, only a small fraction of
ABC transporters in Arabidopsis have been functionally
characterized, and the transport substrates and roles of most
members remain unclear. In pepper, Fei et al. identified a novel
transporter gene, CaABCG14, which regulates the accumulation of
capsaicin in pepper septum (Fei et al., 2024). In the present study,
the ABC transporter pathway was significantly enriched during the
early stages of infection. A total of 54 ABC transporters were
identified in pepper roots, including the pleiotropic drug
resistance protein (PDR). The expression levels of PDR were
significantly lower in the susceptible variety (SO and S12)
compared to the resistant variety (RO and R12). In Arabidopsis,
mutations in PDR have been shown to reduce plant resistance to P.
capsici (Wang et al., 2015). Based on these findings, we speculate
that ABC transporters in pepper play a critical role in conferring
resistance to P. capsici.

The plant-pathogen interaction (PPI) pathway plays a crucial role
during pathogen invasion of plants (Azeez and Adeboye, 2024). Based
on our proteomic and metabolomic datasets, we delineated the
potential defense network within Capsicum annuum against P.
capsici infection. Numerous studies have reported that proteins in
this pathway play significant roles in plant-pathogen interactions
(Zhang et al., 2022; Wirthmueller et al., 2013; Peyraud et al., 2017).
In this study, we found that in the PAMP-triggered immunity (PTI)
pathway, the abundance of the protein encoded by the resistance gene
NHOL1 was significantly upregulated in the resistant variety. NHOI, a
nonhost resistance gene first identified in Arabidopsis, encodes a
glycerol kinase that plays a key role in nonhost resistance in plants
(Kang et al,, 2003). It is involved not only in resistance to bacteria but
also to fungi (Lu et al,, 2001). In recent years, the NHOI gene has also
been identified in rice, and its overexpression has been shown to
enhance resistance to bacterial blight and rice blast (Xiao et al., 2022).
These results suggest that a nonhost resistance response occurs in the
resistant variety but not in the susceptible variety.

In effector-triggered immunity (ETI), the cytoplasmic protein
Rd19, induced by bacterial secreted proteins, was upregulated in the
resistant variety (R). Rd19 is a cysteine protease that was first
identified in Arabidopsis as playing an important role in ETT against
Ralstonia solanacearum (Bernoux et al., 2008). In recent years, it has
also been found to be important in resistance to powdery mildew
(Zeng et al., 2024), suggesting that it may play a role in ETT against
multiple pathogens, including blight.

We also found that WRKY1 and WRKY2, which can induce the
expression of plant defense genes, were significantly upregulated in
R. WRKYI plays a key role in resistance to early blight in wild
tomatoes by regulating the expression of downstream genes to
enhance the plant’s defense response (Shinde et al., 2018). In
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Schematic summarizing the different transcriptome and metabolome profiles in resistant CM334 and susceptible 10399 upon P. capsici infection.
(A downward green arrow indicates downregulation of a metabolite or protein after infection, while an upward red arrow indicates upregulation).
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strawberries, FaWRKYI may enhance resistance by activating ROS-
dependent defense pathways (Encinas-Villarejo et al., 2009). In
apple trees, the WRKY1 transcription factor enhances resistance to
powdery mildew through the regulation of the interconversion of
methyl salicylate (MeSA) and salicylic acid (SA) in plant-plant
communication (Lan et al., 2024). Overexpression of grape
VQWRKY2 in Arabidopsis enhances resistance to powdery
mildew, associated with increased cell death and upregulation of
SA signaling pathway-related genes, but not with the JA signaling
pathway (Zhang et al., 2024). In pepper, Cheng et al. found that
CaWRKY0I-10 and CaWRKY08-4 can enhance pepper resistance
to P. capsici by directly binding to resistance genes (Cheng et al.,
2024). However, these transcription factors differ from those
identified in this study, and the functions of WRKYI and WRKY2
in pepper resistance require further validation.

In summary, arachidonic acid (AA) emerged as the most significant
differential metabolite between resistant and susceptible pepper varieties,
while the ABC transporter pathway was identified as the primary differential
protein pathway. Salicylic acid (SA) exhibited significant upregulation in the
resistant variety. Within the plant-pathogen interaction (PPI) pathway, the
nonhost resistance protein NHOI, as well as ETI-related proteins Rd19,
WRKY1, and WRKY?2, were significantly upregulated in the resistant variety
(Figure 7). These findings suggest that both PAMP-triggered immunity
(PTI) and effector-triggered immunity (ETI) are activated in the resistant
variety but not in the susceptible one. The levels of AA appear to have a
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substantial impact on resistance, and Rd19, along with WRKY1 and
WRKY2, may represent key proteins in ETL Future research should focus
on validating the resistance functions of Rd19, WRKY1, and WRKY2
in peppers.

This study, through integrated metabolomics and proteomics
analyses, characterized the differences between resistant and
susceptible pepper varieties. By identifying potential key
metabolites and proteins, this work provides novel insights into
the mechanisms of blight resistance in peppers and offers a
foundation for the development of resistant cultivars.
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