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In planta transformation 
methods to accelerate 
the domestication of 
perennial grain crops 
Pedro M. P. Correia, Xinyi Dong, Mengming Chen, 
Anton Frisgaard Nørrevang, Guangbin Luo 
and Michael Palmgren* 

NovoCrops Center, Department of Plant and Environmental Sciences, University of Copenhagen, 
Frederiksberg, Denmark 
The domestication of grasses has historically favored annual species due to their 
rapid growth and suitability for crop rotation; however, such crops rely heavily on 
human input. In contrast, perennial grasses, which live for multiple years, offer 
significant environmental benefits, such as improved soil health and natural 
resilience to biotic and abiotic stress, but have not yet been domesticated. Gene 
editing of yield-related genes presents an opportunity to improve yield stability in 
perennial cereal  crops. However, this process typically requires transformation to 
introduce gene-editing tools, and many perennial grasses are recalcitrant to 
traditional in vitro transformation. Alternative in planta transformation methods 
have recently emerged, offering simpler, faster, and more genotype-independent 
approaches. These methods bypass the need for tissue culture and could potentially 
be used to transform recalcitrant plants more efficiently. In this review, we evaluate 
the potential of in planta transformation methods for developing perennial cereal 
crops and advocate for exploring the role of such crops in sustainable agriculture. 
KEYWORDS 

In planta transformation, recalcitrance, perennial agriculture, grain crops, monocots 
Perennial grain crops as a sustainable alternative to 
annual cropping systems 

Cereal grain crops, which are members of the grass family (Poaceae), include several 
widely cultivated species, such as wheat (Triticum aestivum), maize (Zea mays), rice (Oryza 
sativa), and barley (Hordeum vulgare), that provide the bulk of calories in the human diet 
(FAO, 2017). Annual grasses were domesticated over thousands of generations, resulting in 
the selection and retention of gene variants underlying desirable traits. Although the 
selected traits benefit agricultural production, artificial selection often works against natural 
selection, resulting in domesticated crops with reduced fitness, an inability to survive 
outside their cultivation areas, and a reliance on intensive chemical management 
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(Chen et al., 2015; Meyer et al., 2012). Annual cropping systems 
involve replanting crops each year, which can negatively affect soil 
health. Frequent tillage contributes to soil degradation, resulting in 
erosion, greenhouse gas emissions, and decreased soil fertility 
(Crews et al., 2018; Olsson et al., 2024). The environmental effects 
of annual cropping underscore the urgent need for a shift toward 
more sustainable practices. 

Perennial agriculture offers numerous advantages over 
traditional annual cropping systems. Perennial crops have 
extensive root systems that reduce soil erosion and benefit soil 
health by improving soil structure and increasing organic matter 
content. Perennial crops also enhance water use efficiency deep in 
the soil, making the plants more resilient to drought and reducing 
the need for irrigation (Figure 1). Additionally, perennial systems 
sequester more carbon, contributing to the mitigation of climate 
change. Economically, these practices reduce the need for annual 
replanting, which lowers labor and input costs while offering more 
stable income streams for farmers (Chapman et al., 2022; Crews 
et al., 2018; Olsson et al., 2024; Paul et al., 2024). By improving soil 
health, water use efficiency, and biodiversity, perennial agriculture 
presents a sustainable alternative that could help address food 
security and environmental sustainability issues (Figure 1). 
Accelerating the domestication of 
perennial grain crops through 
genome editing 

Efforts are underway to develop perennial cereal crops through 
wide hybridization—i.e., crossing existing annual crops with 
perennial relatives—and by traditional breeding of wild perennial 
species. The improvement of perennial intermediate wheatgrass 
(Thinopyrum intermedium) through traditional breeding (Bajgain 
et al., 2022) and the development of perennial rice PR23 from the 
hybridization of Asian cultivated rice (Oryza sativa ssp. indica) with 
its African wild perennial relative (Oryza longistaminata) (Zhang 
et al., 2022) are two successful examples of progress toward 
developing high-yielding perennial cereal crops. 

However, high levels of ploidy and heterozygosity in perennial 
grasses mask alleles that are potentially useful for domestication, 
particularly in the case of recessive loss-of-function mutations 
(Østerberg et al., 2017), thereby complicating traditional breeding 
strategies. Targeted mutagenesis has emerged as a promising 
alternative tool for accelerating the domestication of new 
perennial crops. Leveraging an unprecedented understanding of 
crop domestication processes, the first step in these strategies 
involves precisely mutating a few genes using novel genome-

editing technologies (Østerberg et al., 2017; Chapman et al., 2022; 
Luo et al., 2022). 

There are over 7,000 perennial grass species that remain largely 
unexplored for domestication purposes (Frawley et al., 2020). 
Resources such as the Perennial Agriculture Project Global 
Inventory (PAPGI; http://www.tropicos.org/Project/PAPGI) 
provide information for assessing the potential utility of 
undomesticated perennial species (Ciotir et al., 2019). Allied with 
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new targeted mutagenesis methods such as genome editing, these 
resources could prompt the cultivation of a range of novel perennial 
alternatives to annual crops. Such practices may become common 
if, for example, the EU lifts regulations on gene-editing tools such as 
clustered regularly interspaced palindromic repeats/CRISPR
associated protein9 (CRISPR/Cas9). 
Biological challenges in transforming 
perennial grasses 

Genome editing has unlocked the ability to make precise and 
predictable changes to domestication genes, thereby paving the way 
for the accelerated domestication of wild perennial grain crops. Yet, 
the ability to transform and regenerate the target plant remains a 
prerequisite for successful genome editing. Although the technology 
for creating transgenic plants is decades old, the transformation of 
many plant species remains challenging, with high efficiency limited 
to a few species and even fewer cultivars within these species 
(Ahmar et al., 2023). 

To date, genome-editing components have been delivered into 
annual cereal crops primarily through Agrobacterium-mediated or 
biolistic transformation of suitable explants, typically immature 
embryos. Numerous studies have explored strategies to enhance 
transformation efficiency and develop alternative tissue culture 
protocols (Ahmar et al., 2023). Several improved protocols have 
been published, mainly focusing on optimizing media compositions 
and refining procedures for Agrobacterium-mediated or biolistic 
transformation (Matres et al., 2021). 

Many perennial grasses require exposure to cold (i.e., 
vernalization) or accumulated days of warmth for the vegetative to 
floral transition (Lundgren and Des Marais, 2020), which complicates 
access to reproductive tissues, such as immature embryos, for 
transformation. Another hurdle associated with the domestication of 
perennial grasses is their widespread self-incompatibility, which 
prevents self-fertilization and demands outcrossing (Baumann et al., 
2000). Combined with high levels of ploidy and heterozygosity, this 
adds variability, complicating the optimization of tissue culture media 
compositions and transformation procedures. Self-incompatibility can 
also reduce seed set due to pollen abortion (DeHaan and Van Tassel, 
2014), thereby affecting the availability of immature embryos as 
explants for transformation. Perennials often produce vegetatively 
propagated organs such as rhizomes and bulbous structures 
(Chapman et al., 2022); however, whether these organs can serve as 
substitutes for immature embryos in transformation has not been 
explored. These biological and technical constraints highlight the need 
for alternative strategies for transformation that bypass the reliance on 
immature embryos and tissue culture. 
In planta transformation 

In planta transformation, also known as in situ transformation, 
encompasses a diverse array of techniques aimed at directly 
integrating foreign DNA or editing a plant’s genome, followed by 
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regenerating the cells into a whole plant. These approaches can 
utilize bacteria (e.g., Agrobacterium strains), viruses, or physical 
methods (e.g., particle bombardment) to deliver genetic material to 
cells (e.g., meristem tissues, reproductive tissues, embryos) and 
integrate it into their genomes (Bélanger et al., 2024). 
Transformed plants may consequently produce transformed 
seeds, enabling stable transformation or editing events in the next 
generation. Here we focus on in planta transformation approaches 
that have the potential to transform perennial grass species that are 
recalcitrant to in vitro transformation. We identify the bottlenecks 
of these methods and assess their potential for genome editing and 
domestication of perennial cereal crops (Figure 2, Table 1). 
Direct transformation into meristems 

A major difference between annuals and perennials is that 
perennials have growing points (meristems) that remain 
indeterminate, allowing them to retain the ability to give rise to 
new tissues or organs after the first growing season. These 
indeterminate meristems are often located underground in bulbs, 
rhizomes, tubers, or corms, where they maintain vegetative growth 
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and can undergo a developmental transition to generate a 
new plant. 

In planta transformation of the indeterminate meristems of 
perennial grain crops may target the cell layer of the mature embryo 
that will develop into germ cells from the shoot apical meristem 
(SAM). CRISPR/Cas9 components, such as DNA vectors (Hamada 
et al., 2018, 2017; Liu et al., 2021, Table 1), ribonucleoprotein (RNP) 
(Kumagai et al., 2022, Table 1), and double-stranded DNA 
(dsDNA) donors (Luo et al., 2023, Table 1), can be coated onto 
gold particles for bombardment and delivery to a specific cell layer. 
This goal was first achieved in wheat (Hamada et al., 2017) and 
more recently in barley (Tezuka et al., 2024) (Table 1). However, the 
small size of seeds and their respective SAMs can make the delivery 
of CRISPR components challenging. Directly transforming 
embryonic cells with mobile Cas9 and single-guide RNAs 
(sgRNAs) capable of intercellular movement may increase the 
number of target stem cells in the meristem that undergo gene 
editing. This approach bypasses the need for tissue culture and is 
genotype-independent, but its potential for transforming perennial 
grasses remains to be tested (Figure 2). 

Recent developments in nanoparticle-based delivery systems 
offer a promising alternative to particle bombardment (Wang et al., 
FIGURE 1 

Comparison of annual and perennial cropping systems. (A) Annual crops live for a single season, requiring annual sowing and tilling, which promotes 
soil erosion, depletion of organic matter, and CO2 loss. These crops are highly dependent on human input for fertilization and protection against 
abiotic and biotic stress. (B) Perennial crops are sown only in the first year. These plants develop deep and extensive root systems that help preserve 
soil organic matter, reduce erosion, and improve overall soil health, and offer a sustainable alternative to annual crops. 
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2019). Nanomaterials such as carbon nanotubes, mesoporous silica 
nanoparticles, and lipid-based nanocarriers can also be explored for 
their ability to traverse the plant cell wall and deliver CRISPR/Cas9 
components (Lowry et al., 2024; Wang et al., 2019). Key challenges 
include understanding how nanoparticle physicochemical 
properties, such as size, shape, surface charge, and aspect ratio 
can influence their ability to penetrate plant tissues and reach target 
cells (Hofmann et al., 2020). This approach bypasses the need for 
tissue culture and is genotype-independent, but its potential for 
transforming perennial grasses remains to be tested (Figure 2). 

Mechanically injured embryos from mature seeds and SAMs 
from young seedlings have been used for transformation by 
imbibing the wounded plant material in an Agrobacterium 
solution. This technique has been used to transform rice 
(Supartana et al., 2005; Arockiasamy and Ignacimuthu, 2007; Lin 
et al., 2009; Ho et al., 2023; Tamizi et al., 2023; Sundararajan et al., 
2023), sorghum (Sorghum bicolor) (Yellisetty et al., 2015), wheat 
(Kumar et al., 2024; Tarafdar et al., 2019), and perennial cultivars of 
ryegrass (Lolium perenne) (Esmaeili et al., 2019), and for transient 
transformation of perennial switchgrass (Panicum virgatum) (Chen 
et al., 2010) (Table 1). A modified approach for wheat uses embryos 
excised from mature seeds, which are centrifuged together with 
Agrobacterium, resulting in the direct transformation of the SAM 
(Ye et al., 2022). This method has been used for several plant 
species, but its potential for transforming perennial grasses has not 
been tested. One concern is that chimerism, caused by non-uniform 
transformation, can complicate the transmission of mutations to 
the progeny (Zlobin et al., 2020; Ye et al., 2022). 

Recently, Mei et al. (2024) used the regenerative activity-
dependent in planta injection delivery (RAPID) method to 
successfully transform several dicot species. They directly injected 
A. tumefaciens into the lower excised ends of stem segments of 
sweet potato (Ipomoea batatas) and bayhops (Ipomoea pes-caprae), 
as well as beneath the skin of potato (Solanum tuberosum) tubers. 
Transgenic progeny were obtained via regeneration and vegetative 
propagation at transformation frequencies of 12.5% to 40% (Mei 
et al., 2024). The RAPID system allows for direct gene transfer into 
regenerative plant tissues such as stem segments, tubers, rhizomes, 
and bulbs. This approach depends on the strong ability of 
transformed plants to undergo vegetative propagation, and 
further optimization of herbicide-based selection is needed to 
reduce chimerism (Mei et al., 2024; Zhong et al., 2024). The 
system has been used in sweet potato, potato, bayhops, and 
Panax notoginseng, providing a robust platform for tissue 
culture–free transformation. Since perennials often produce 
vegetatively propagated organs such as rhizomes and bulbous 
structures, they might also prove to be transformable using this 
strategy (Figure 2) However, this potential remains to be confirmed 
in monocot species, which differ significantly  in  their  
developmental and physiological responses. 

Another method, the “cut-dip budding delivery system,” utilizes 
Agrobacterium rhizogenes to induce and transform hairy roots from 
the cut sites of explants (Cao et al., 2023). After generating 
transformed hairy roots with shoot-forming ability, transformed 
plants can be regenerated. The method involves infecting root 
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segments by immersing them in an A. rhizogenes suspension 
(Cao et al., 2023). This technique has been successfully applied 
in a number of dicot species. Broader application to monocots 
might be facilitated by the use of disarmed Agrobacterium 
strains and by excision-based removal of integrated oncogenes 
(Cao et al., 2023). A similar transformation system remains 
to be tested in vegetatively propagated organs of perennial 
grasses (Figure 2). 
De novo induction of meristems 

Meristem identity is, in part, dictated by developmental 
regulators (DRs). DRs work in conjunction with plant growth 
regulators, particularly the plant hormones cytokinin and auxin, 
to establish and maintain meristem identity. The expression of 
specific DRs in plant somatic cells can induce other developmental 
programs. In monocots, Wuschel2 (Wus2) and Baby Boom (Bbm) 
promote somatic cells to form embryos that develop into whole 
plants (Lowe et al., 2018; Wang et al., 2023). By expressing Bbm and 
Wus2, transgenic monocot plants were successfully recovered using 
genotypes or explant types that were otherwise recalcitrant to 
genetic transformation (Wang et al., 2023). Ectopic expression of 
the maize Bbm and Wus2 genes in rice, sugarcane (Saccharum 
officinarum), sorghum, and perennial switchgrass had a similar 
effect, suggesting a conserved function among monocot species 
(Lowe et al., 2016; Xu et al., 2022). Additional DRs, such as 
GROWTH-REGULATING  FACTOR  4  (GRF4) ,  GRF

INTERACTING FACTOR 1 (GIF1) chimera, and WUSCHEL 
RELATED HOMEOBOX 5 (WOX5) have shown potential for 
increasing transformation efficiency and the speed of regeneration 
(Debernardi et al., 2020; Wang et al., 2022; Yang et al., 2024). The 
use of DRs might expand the application of Agrobacterium 
infection of meristems to more plant species (Lian et al., 2022; 
Maher et al., 2020), including perennial grasses (Figure 2). 
Mobile RNAs as carriers of genome-
editing tools 

In plants, messenger RNAs (mRNAs) can move to neighboring 
cells via plasmodesmata and over long distances through the 
vascular system to regulate various biological processes in target 
organs (Kitagawa et al., 2024). The first evidence of RNA mobility 
emerged from studies on RNA viruses, whose movement proteins 
enable their intercellular movement from an infected cell to 
neighboring cells, allowing systemic virus spread (Deom et al., 
1987; Wolf et al., 1989). Subsequent investigations revealed a 
more intricate mechanism that involves transfer RNA-like 
structures (TLSs) at the 3′-ends of RNAs (Zhang et al., 2009, 
2016). Such TLSs are abundant in transcripts found in 
the phloem sap and serve as mobility signals. In transgenic 
Arabidopsis (Arabidopsis thaliana) lines, co-transcription

of mRNA with TLSs triggers the systemic movement of 
mRNA between roots and shoots (Heeney and Frank, 2023; 
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FIGURE 2 

Overview of in planta transformation methods that could be applied to perennial grasses. (A) Floral dip transformation involves dipping young 
flowers in an Agrobacterium tumefaciens suspension, leading to transgenic seeds via natural fertilization. Methods include direct dip, vacuum 
infiltration, floral spray, and brush application. While these methods are effective in some annual grasses (Singh and Kumar, 2022), their efficiency in 
perennial grasses is limited by the unsynchronized anthesis and outcrossing nature of these plants. (B) Pollen transformation is used to deliver gene-
editing tools into pollen grains, which are in turn used for pollination. Methods to overcome the challenges of pollen transformation include 
electroporation, particle bombardment, Agrobacterium infiltration, and magnetofection. Establishing efficient pollen transformation methods and 
using methods such as haploid induction editing (Kelliher et al., 2019) could facilitate the development of perennial grain crops. (C) Meristem 
transformation involves direct transformation into shoot meristems, which are composed of embryonic-type cells that divide to form new cells and 
organs. Methods include Agrobacterium tumefaciens-mediated transformation or bombardment to transform the exposed meristem tissues of 
embryos, seedlings, or mature plants. Targeting the cell layer that will develop into germ cells from the SAMs of mature embryos using CRISPR/Cas9 
can bypass the need for tissue culture and be genotype-independent (Hamada et al., 2018, 2017; Liu et al., 2021; Luo et al., 2023; Tezuka et al., 
2024), making it a potential method for perennial grain crops. Methods utilizing Agrobacterium to transform vegetatively propagated organs such as 
rhizomes and bulbous structures offer new avenues for the transformation of perennial grasses via these organs (Cao et al., 2023; Mei et al., 2024). 
Direct meristem induction by expressing developmental regulators (DRs) such as Wus2 and Bbm promotes embryo formation and can enhance 
transformation efficiency and regeneration speed (Lowe et al., 2018; Wang et al., 2023). (D) Novel delivery methods mediated by mobile RNAs, 
which carry genome-editing tools across plant tissues (Yang et al., 2023), could potentially be employed for targeted heritable gene editing in 
perennial grass crops. 
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TABLE 1 Overview of in planta transformation in monocot grass species. 

Species Delivery Method Plant 
Tissue 

Expression Target 
Gene 

Plant Genotype Efficiency (%) Reference 

Barley 
(Hordeum 
vulgare) 

Virus-induced genome 
editing (VIGE) 

Leaf tissues CRISPR/Cas9 
CMF7, ASY1, 
MUS81, ZYP1 

Golden Promise 
(expressing Cas9) 

T0: 17% - 35% 

Tamilselvan-
Nattar-
Amutha 

et al., 2023 

Biolistics 
(iPB-RNP method) 

Mature 
embryos 

CRISPR/Cas9 Ppd-H1 Nishinohoshi 
T0: 1% - 4.2% 
T1: 0.3% - 1.6% 

Tezuka 
et al., 2024 

Maize 
(Zea mays) 
Wheat 

(Triticum 
aestivum) 

Haploid induction 
(HI-Edit) 

Pollen/Egg CRISPR/Cas9 
VLHP1, 
VLHP2, 

GW2, GT1 

Maize (GP721, GP650, 
ID5829, 412F) Wheat 
(AC Nanda, CMS) 

T0: 0% - 8.8% 
Kelliher 

et al., 2019 

Maize 
(Zea mays), 
Sorghum 
(Sorghum 
bicolor) 

Magnetofection Pollen Reporter gene GUS, GFP 
Maize (FFFMM, W22) 

Sorghum (Tx430) 
Not effective 

Vejlupkova 
et al., 2020 

Perennial 
ryegrass 
(Lolium 
perenne) 

Sonication-assisted 
Agrobacterium-mediated 
transformation (SAAT) 

Seed, 
meristem tip 

Overexpression IPT Grassland, Numan 
T0: 14.2% 
- 46.65% 

(Esmaeili 
et al., 2019) 

Rice 
(Oryza sativa) 

Agrobacterium
mediated transformation 

Coleoptile Overexpression GUS, DREB1A Phyongdo19 T0: 8.4% Ho et al., 2023 

Mature 
embryos 

Reporter gene GUS, GFP R207, Teqing T0: 3.5% - 6.5% Lin et al., 2009 

Mature 
embryos 

Reporter gene GUS Koshihikari T0: 40% - 43% 
Supartana 
et al., 2005 

Seedlings CRISPR/Cas9 

Expression of 
CAS9 
and 

Hygromycin 

MR 219 T0: 9% 
Tamizi 

et al., 2023 

Sorghum 
(Sorghum 
bicolor) 

Agrobacterium
mediated transformation 

Seedlings Reporter gene GUS SPV462 T0: 26% - 38% 
Yellisetty 
et al., 2015 

Switchgrass 
(Panicum 
virgatum) 

Agrobacterium
mediated transformation 

Seedlings Reporter gene GUS Alamo 
T0: 6% - 54% 
(transient 
expression) 

(Chen 
et al., 2010) 

Wheat 
(Triticum 
aestivum) 

Biolistic DNA delivery 
Mature 
embryos 

Reporter gene GFP Fielder, Haruyokoi 
T0: 1.39% - 2.28% 
T1: 0.7% - 0.87% 

Hamada 
et al., 2017 

Biolistic DNA delivery 
Mature 
embryos 

CRISPR/Cas9 GASR7 Bobwhite 
T0: 5.2% 
T1: 1.4% 

(Hamada 
et al., 2018) 

Biolistics (iPB-
RNP method) 

Mature 
embryos 

CRISPR/ 
Cas9 RNP 

Qsd1, 
Or, HRGP 

Haruyokoi 
T0: 1% - 8.3% T1: 

0.9% - 2.1% 
Kumagai 
et al., 2022 

Agrobacterium
mediated transformation 

Mature 
embryos 

Reporter gene GFP HD2894 
T0: 22.5% 
T1: 3.33% 

Kumar 
et al., 2024 

Biolistics (iPB method) 
Mature 
embryos 

CRISPR/Cas9 Qsd1 
Haruyokoi, 

Yumechikara, 
Kitanokaori 

T0: 0.5% - 2.51% 
T1: 0.5% - 1.68% 

Liu et al., 2021 

Biolistics (iPB method) 
Mature 
embryos 

CRISPR/ 
Cas9, GFP 

SD1 Haruyokoi 
T0: 0.17% - 0.86% 
T1: 0.08% - 0.34% 

Luo et al., 2023 

Agrobacterium
mediated transformation 

Flowers Reporter gene GUS 
HD 2967, HD 
3086, Bobwhite 

T0: 0% - 0.23% 
Singh and 

Kumar, 2022 

Agrobacterium
mediated transformation 

Seedlings Overexpression CP4-EPSPS HD2894 T0: 3.07% 
Tarafdar 
et al., 2019 
F
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Kehr et al., 2022). Remarkably, the transported mRNA components 
are translated into functional proteins in the receiving cells 
(Zhang et al., 2016). 

Building on this foundational work, the mobility of target RNA 
has been exploited for genome editing. For example, sgRNAs can be 
mobilized to the shoot apex, as demonstrated using viral vectors to 
transform transgenic Arabidopsis plants expressing Cas9. By fusing 
sgRNAs with mobile Flowering Locus T (FT) transcripts or TLS 
sequences, heritable gene editing was enhanced (Ellison et al., 2020). 
In a more recent study, Cas9 RNA and gRNAs were tagged with 
TLS motifs, allowing both types of RNA to be mobilized across graft 
junctions. The mobile transcripts efficiently moved from the 
transgenic rootstock to the wild-type scion, resulting in targeted 
heritable gene editing in the scion (Yang et al., 2023). The Grafting-
Based Gene Editing approach offers a transgene-free alternative for 
genome editing by delivering mobile gene-editing signals across 
graft unions. While this technique has been successfully 
demonstrated in Arabidopsis and Brassica rapa, its broader 
application is currently constrained by graft incompatibility, 
particularly in monocot crops (Yang et al., 2023). However, the 
recent development of a micrografting method for monocots 
(Reeves et al., 2022) presents an opportunity to achieve 
transgene-free targeted gene editing in major staple crops and 
potentially in new perennial crops (Figure 2). To overcome 
transformation limitations in recalcitrant perennial species, this 
strategy could use model lines with well-established transformation 
protocols as rootstocks. For instance, transgenic cereal grain crops 
such as wheat, transformable wheat cultivar Fielder (Hayta et al., 
2019), which have robust transformation systems could serve as 
donor rootstocks for delivering mobile CRISPR/Cas components 
to grafted scions. Recent research has shed light on the molecular 
basis of graft formation, particularly the genetic control of 
graft attachment and vascular reconnection (Feng et al., 2024; 
Notaguchi et al., 2008). These discoveries may lead to the 
emergence of new graftable combinations, and engineering 
transgenic rootstocks to enhance grafting compatibility could 
facilitate genetic editing through grafting junctions. 
Pollen transformation 

Gene-edited plants have been obtained by delivering gene-
editing tools into pollen grains (Bélanger et al., 2024; Toda et al., 
2023). Here, the pollen grains are transformed and subsequently 
used to pollinate the recipient egg in vivo, resulting in nonchimeric 
transformation. Major challenges of this method include the thick 
cell wall of the pollen grain and the release of nuclease enzymes 
during pollen germination, as these factors hinder pollen grain 
transformation and the integration of exogenous DNA, respectively 
(Eapen, 2011). To overcome these obstacles, various methods 
could be utilized, including electroporation (Obermeyer and 
Weisenseel, 1995), particle bombardment (Touraev et al., 1997), 
Agrobacterium infiltration (Tjokrokusumo et al., 2000), and 
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magnetofection, which uses magnetic force to enhance gene 
delivery (Zhao et al., 2017) (Figure 2). These techniques have 
been applied with varying degrees of success across different 
annual grass species such as maize and sorghum (Eapen, 2011; 
Toda et al., 2023), but with inconsistent results reported between 
different laboratories (Vejlupkova et al., 2020; Zhao et al., 2017; 
Table 1). Some grass species have mechanisms that enhance 
outcrossing by increasing the probability of pollen dispersal 
from one plant and its subsequent receipt by an unrelated plant 
(David and Pham, 1993). Establishing an efficient pollen 
transformation method for outcrossing perennial grasses could be 
advantageous (Figure 2). 

A method involving haploid induction editing (Hi-Edit) 
technology has been used to edit elite lines of maize and wheat 
(Kelliher et al., 2019; Table 1). Here the paternal or maternal plant is 
a transformable cultivar that has been stably transformed with Cas9 
and gRNA. The transformed plant is used as a pollen donor. 
However, the donor plant contains a mutation in MATRILINEAL 
(MATL) that eliminates the donor plant’s genome. After 
fertilization, the Cas9 and gRNA are expressed from the donor 
plant’s sperm or egg cell, editing the recipient’s chromosome and 
resulting in the elimination of the donor plant’s chromosome. This 
results in editing without the need for transformation and the 
production of a transgene-free edited elite crop (Kelliher et al., 
2019). Using this approach, already established transformation 
systems could be used to edit a recalcitrant species such as a 
perennial grass (Figure 2). Hi-Edit has been used to deliver 
genome-editing components into maize and Arabidopsis, 
reducing chimerism and simplifying the production of edited 
lines. While efficient, improvements in haploid-doubling 
protocols are required to enhance their applicability (Kelliher 
et al., 2019). 
Virus-mediated transformation 

RNA viruses infect plants and move systemically within the 
plant. Tobacco rattle virus (TRV), potato virus X (PVX), and 
barley stripe mosaic virus (BSMV) have been used as vectors to 
introduce RNA sequences into plants without the need for 
transformation or regeneration (Awan et al., 2023; Tamilselvan-

Nattar-Amutha et al., 2023). However, because Cas9 exceeds the 
cargo capacity of most viruses, it is usually only feasible to deliver 
sgRNAs, which requires that the plant host is already a transgenic 
Cas9-expressing line (Ellison et al., 2020; Liu et al., 2024, 2022, 
2023). Endonucleases that are smaller and more compact may 
serve as alternatives to Cas9. In a recent study, a transposase
associated TnpB endonuclease was packaged with a guide RNA 
in the RNA virus TRV. Following infection of Arabidopsis 
with the engineered virus, editing was achieved in a single step 
(Weiss et al., 2025). This finding suggests the potential of using 
virus-induced genome editing to transform recalcitrant 
perennial grasses. 
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Genotype-independent fast 
transformation 

Zhong et al. (2024) introduced Genotype-independent Fast 
Transformation (GiFT) as a rapid in planta Agrobacterium

mediated transformation system for soybean (Glycine max). The 
GiFT method uses wounded germinated seeds as explants, followed 
by a brief liquid culture phase under sublethal herbicide selection 
and direct soil transplantation, during which continued in planta 
selection ensures the preferential regeneration of transgenic shoots. 
This approach enabled the recovery of healthy, non-chimeric T0 

plants within approximately 35 days without extensive tissue 
culture. GiFT demonstrated high transformation frequencies 
across a diverse range of elite and recalcitrant soybean varieties 
and was further validated for CRISPR-Cas12a-mediated genome 
editing applications. The general applicability of this novel in planta 
transformation method remains to be tested. 
Conclusion 

Perennial grasses are typically recalcitrant to transformation 
using traditional in vitro methods. More direct in planta 
transformation protocols have recently been shown to be 
successful for the transformation of several dicots and annual 
grasses, but whether these methods can be applied to perennial 
grasses remains to be determined. We hope that this review will 
inspire researchers focused on developing sustainable agricultural 
practices to test whether in planta transformation methods can be 
used to overcome the transformation and genome-editing 
bottlenecks associated with the improvement of perennial 
grain crops. 
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