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High-temperature stress is a major abiotic constraint limiting plant growth and

agricultural productivity. While its adverse effects are well documented, most

studies have examined individual species or isolated physiological mechanisms.

This review provides a comprehensive comparative analysis of heat stress responses

across four major crops - barley (Hordeum vulgare), rice (Oryza sativa), maize (Zea

mays), and tomato (Solanum lycopersicum), alongside the model plant Arabidopsis

thaliana, focusing on their morphological, physiological, and biochemical

adaptations as well as current mitigation strategies. Morphological assessments

reveal that root traits are more heat-sensitive than shoot length, biomass, or

germination rate. Physiologically, all species exhibit reduced photosynthetic rate

and PSII efficiency (Fv/Fm), though stomatal conductance and transpiration

responses vary. Biochemically, the accumulation of reactive oxygen species

(ROS) and antioxidant activity exhibit species- and stress-dependent regulation,

with both upregulation and downregulation observed. Among mitigation

approaches, seed priming emerges as a cost-effective strategy, while miRNA-

mediated regulation shows strong potential for developing heat-tolerant cultivars.

This synthesis highlights critical knowledge gaps and outlines future directions for

enhancing crop resilience in the face of rising temperatures.
KEYWORDS

abiotic stress, high temperature, adaptive changes, morphological parameters,
physiological parameters, mitigation strategies
1 Introduction

Recent urbanization and population growth have placed unprecedented pressure on

agricultural systems, while climate change has emerged as one of the critical threats to

global crop productivity (Kousar et al., 2021; Benitez-Alfonso et al., 2023; Farooq et al.,

2023; Terán et al., 2024). The accelerating pace of global warming is particularly alarming,
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with 2024 projected to be the warmest year on record,

approximately 1.55°C above pre-industrial levels (WMO, 2024).

Climate models suggest 66% probability that at least one year

between 2024 and 2028 will temporarily exceed the 1.5°C

threshold, with sustained exceedance likely by the early 2030s

(IPCC, 2023). This warming trend poses severe challenges to

agriculture, where heat stress, exacerbated by the increasing

frequency of extreme weather events, significantly compromises

crop yields and quality (Mirón et al., 2023; Janni et al., 2024). Meta-

analyses indicate that each 1°C increase in temperature reduces the

yield of major crops by 3–7% (Challinor et al., 2014; Zhao et al.,

2017; Tran et al., 2025), creating substantial risks to global food

security as demand is projected to rise by 50% by 2050 (FAO, 2021).

Addressing these challenges requires both innovative mitigation

strategies and a deeper understanding of plant responses to heat

stress to facilitate breeding of climate-resilient varieties (Kousar

et al., 2021; Terán et al., 2024).

Although plant responses to heat stress have been extensively

studied, most reviews focus on individual species or specific

mechanisms, limiting broad interspecific comparisons (Wu et al.,

2019; Jacott and Boden, 2020; Medina et al., 2021; Elakhdar et al.,

2022; El-Sappah et al., 2022; LI et al., 2022; Singh et al., 2022; Ren

et al., 2023; Sarma et al., 2023; Ruan et al., 2024). Similarly,

comprehensive studies on Oryza sativa (rice) emphasize varietal

differences in thermotolerance, hormonal regulation, and

physiological adaptations (Wu et al., 2019; Ren et al., 2023; Sarma

et al., 2023). In Zea mays (maize), heat stress responses have been

dissected from molecular, transcriptional, and agronomic

perspectives, while studies on Solanum lycopersicum (Tomato)

focus on reactive oxygen species (ROS) signaling and biochemical

adjustments (Medina et al., 2021; El-Sappah et al., 2022; LI et al.,

2022; Singh et al., 2022; Ruan et al., 2024). Despite these advances, a

systematic comparison across species is lacking. Our review

addresses this critical knowledge gap through a comprehensive

interspecific analysis of five representative species – Hordeum

vulgare, Oryza sativa, Zea mays, Solanum lycopersicum, and

Arabidopsis thaliana – spanning both monocots and dicots. These

species were selected based on their agronomic importance, diverse

growth habits, photosynthetic pathways, ecological adaptations,

and availability of heat stress response data, with A. thaliana

included as a well-established model plant. We systematically

evaluate their morphological, physiological, and biochemical

adaptation to heat stress across different experimental systems.

Beyond assessing stress responses, this review critically

compares current mitigation strategies, which are often examined

in isolation rather than across multiple species (Liu et al., 2022;

Zhang et al., 2022; Feng et al., 2023; Iqbal et al., 2023; Louis et al.,

2023; Ma and Hu, 2023). Seed priming, for example, enhances

thermotolerance by boosting antioxidant activity, inducing stress

memory, and even conferring transgenerational resilience (Liu

et al., 2022; Louis et al., 2023). Chemical and nutritional

treatments mitigate heat stress through osmotic regulation and

antioxidant defense activation, while microbial biostimulants

improve tolerance via beneficial plant–microbe interactions (Feng

et al., 2023; Iqbal et al., 2023). Additionally, miRNAs have gained
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attention as key post-transcriptional regulators of heat stress

signaling and adaptation (Zhang et al., 2022; Ma and Hu, 2023).

However, most of these studies evaluate these strategies in a species-

specific context, obscuring broader trends. Here, we systematically

analyze four major mitigation approaches across five species,

assessing comparative efficacy and providing a unified perspective

on heat stress management in crops.
2 Morphological changes in plants
under heat stress

Each plant species possesses unique optimal temperature

conditions, indispensable for sustaining normal growth and

development (Krutovsky et al., 2025). These conditions can

exhibit considerable variation depending on the species’ genetic

background and ecological origins. When the temperatures exceed

this range, morphological disruptions occur, including reduced seed

germination, abnormal root and shoot development, and overall

growth impairment. These changes serve as critical indicators of

heat stress damage, particularly in economically important crops

such as H. vulgare, O. sativa, Z. mays, S. lycopersicum, and the

model plant Arabidopsis thaliana (Ito et al., 2009; Hussain et al.,

2019a; Naz et al., 2022).
2.1 Seed germination response to high
temperatures

Seed germination is one of the most heat-sensitive stages of

plant development, making it a key marker for assessing heat stress

effects (Scandalios et al., 2000; Mei and Song, 2010; Liu et al., 2015).

Supra-optimal temperatures disrupt germination, essential for

successful plant establishment and growth (Table 1) (Baskin and

Baskin, 2000; Brändel, 2004). Above 30°C, germination rates decline

sharply, and under extreme heat (>45°C), germination may be

severely reduced or completely inhibited (Liu et al., 2015).

As shown in Table 1, the extent of germination reduction varies

among plant species. For example, germination rates decrease by

95.3% in barley cv. Pijiu, 90% in rice cv. Peiai, 50% in tomato cv.

C38, and 75% in Arabidopsis cv. Columbia (Labouriau and Osborn,

1984; Mei and Song, 2010; Liu et al., 2015; Afshar et al., 2016; Tokić

et al., 2023). In contrast, heat-tolerant maize cultivars, w64a, r6-67,

and dn-6, exhibit a more moderate decline (~40%), highlighting

genotypic variation in thermotolerance (Scandalios et al., 2000).

However, laboratory-based germination studies may not fully

reflect field conditions, where interacting environmental factors

(temperature fluctuations, humidity, light, soil nutrients) influence

seed behavior (Klupczyńska and Pawłowski, 2021; Qaderi, 2023).

While controlled experiments provide valuable insights into specific

physiological mechanisms, they often fail to capture ecological

complexity and may overestimate seed germination resilience.

Field conditions present a more challenging environment where

seeds encounter unpredictable stress combinations – including

diurnal temperature fluctuations, variable soil moisture, and
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biotic interactions – that collectively alter germination outcomes

compared to uniform laboratory conditions. Additionally,

germination is only significantly affected under extreme heat,

showing low sensitivity at moderate stress levels. Thus, relying

solely on germination data may be insufficient for predicting overall

plant productivity under heat stress, and it requires a broader focus,

incorporating subsequent morphological parameters.
2.2 Impact of heat stress on root and shoot
growth

Elevated temperatures severely suppress root and shoot

expansion, leading to reduced biomass accumulation. Impaired

root function under heat stress disrupts water and nutrient

uptake, further exacerbating growth limitations (Koevoets et al.,

2016; Taratima et al., 2022). Among the analyzed species, root fresh

weight (RFW) emerges as one of the most heat-sensitive root

parameters (Table 2). Arabidopsis, rice, and barley show severe

reductions in RFW, ranging from 52% to 70% under thermal stress,

while maize and tomato exhibit more moderate declines of 29% and

39%, respectively (Abo Gamar et al., 2019; Hussain et al., 2019a;

Guo et al., 2022; Naz et al., 2022; Baloch et al., 2024). This pattern

extends to reduce root dry weight (RDW), where similar percentage

reductions suggest parallel impacts on both biomass accumulation

and water retention capacity (Xia et al., 2021; Guo et al., 2022;

Macabuhay et al., 2022; Naz et al., 2022; Baloch et al., 2024).

While both root and shoot biomass are temperature-sensitive,

shoot fresh weight (SFW) generally displays greater stress resilience

than root parameters (Table 3). Significant SFW reductions (29-

50%) occur in barley, tomato, Arabidopsis, and rice, contrasting

with maize’s notably higher tolerance (only 3.2-8% reduction)

(Hussain et al., 2016; Abo Gamar et al., 2019; Zhou et al., 2019;

Naz et al., 2022; Baloch et al., 2024). This suggests that despite the

negative effects of heat stress, some plant species exhibit a higher

capacity to maintain shoot and leaf biomass production. This

interspecific variation in shoot response is further evidenced by

shoot dry weight (SDW) measurements, where Arabidopsis and

barley suffer substantial losses (20-25%), compared to more modest

impacts on maize (3%), tomato (8%), and rice (11%), highlighting

fundamental differences in thermotolerance mechanisms among

species (Ito et al., 2009; Hussain et al., 2016; Zhou et al., 2019;

Macabuhay et al., 2022; Naz et al., 2022).
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In addition to reducing biomass, heat stress profoundly

influences root and shoot elongation (Table 4). The extent of

these reductions varies among species, reflecting differences in

their ability to tolerate high temperatures. Root length reductions

vary from 12% in rice cv. Vandana, 26% in barley, 48% in tomato, to

55% in Arabidopsis cv. Columbia (Sailaja et al., 2014; Yang et al.,

2017; Guo et al., 2022; Naz et al., 2022). A similar trend is observed

for shoot length, with reductions of 5%-10% in Arabidopsis, 14% in

barley and rice, and 59.1% in tomato under heat-stress conditions

(Sailaja et al., 2014; Ibañez et al., 2017; Guo et al., 2022; Naz et al.,

2022). Maize cv. SD609 again demonstrates exceptional thermal

stability, with only 35% root length reduction and minimal shoot

length impact (6-8%), reinforcing its status as a heat-resilient crop

(Hussain et al., 2016; Xia et al., 2021). This relative stability in shoot

growth suggests species-specific adaptations to thermal stress.

These morphological alterations directly impair critical

physiological functions, including nutrient uptake, water balance,

and overall metabolic homeostasis, collectively compromising

normal growth and development (Yamaura et al., 2021; Barten

et al., 2022; Pérez-Bueno et al., 2022; Visakorpi et al., 2023). The

synergistic effects of diminished biomass production, restricted

elongation growth, and impaired hydration status ultimately lead to

severe yield penalties, particularly in heat-sensitive species (Figure 1).

At the cellular level, these macroscopic changes reflect underlying

disruptions in hormone signaling, oxidative homeostasis, and carbon

metabolism, with suppressed photosynthetic capacity (manifested

through reduced leaf expansion, limited biomass production, and

stunted growth) representing a key factor exacerbating heat stress

impacts on plant performance and productivity (Greer and Weedon,

2012; Brunel-Muguet et al., 2015; Mahmood et al., 2021, 2022;

Bernacchi et al., 2023; Burroughs et al., 2023; Batool et al., 2025; Li

et al., 2025; Secomandi et al., 2025).
3 Formatting physiological changes in
plants under heat stress

High temperatures significantly impair critical physiological

processes, particularly photosynthetic efficiency, which serves as a

key indicator of photosystem functionality. Essential parameters

affected include the maximum quantum efficiency of photosystem

II (PSII), stomatal conductance, and transpiration rate - all crucial

for proper plant growth and development (Rollins et al., 2013;
TABLE 1 Germination rate reduction in different plant species under heat stress.

Plant species Decrease in germination T°C Duration of heat stress treatment References

Hordeum vulgare 95.3% ↓ 40°C 8 days Mei and Song, 2010

Oryza sativa 90% ↓ 45°C 7 days Liu et al., 2015

Zea mays 40% ↓ 40°C 10 days Scandalios et al., 2000

Solanum lycopersicum 50% ↓ 40°C 8 days Tokić et al., 2023

Arabidopsis thaliana 75% ↓ 30°C 8 days Afshar et al., 2016
Arrows heads down (↓) represent negative changes. T°C - temperature in Celsius.
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Zheng et al., 2025). These head-induced disruptions lead to

diminished carbon assimilation, reduced water use efficiency, and

overall growth inhibition.
3.1 Photosynthetic parameters

One of the primary consequences of heat stress is the

inactivation of Rubisco, accompanied by reductions in

chlorophyll content and PSII efficiency, collectively causing a

substantial decline in photosynthetic activity (Wijewardene et al.,

2021; Qu et al., 2023; Scafaro et al., 2023; Zahra et al., 2023).
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Experimental data (Table 5) demonstrate consistent reductions in

both photosynthesis rate and PSII maximum quantum yield (Fv/

Fm) across species: photosynthesis decreases by 30-50% in barley,

23% in rice, 16.6% in maize, 20% in tomato, and 16% in Arabidopsis

(Vile et al., 2012; Zhou et al., 2017; Hussain et al., 2019a; Yang et al.,

2020; Mahalingam et al., 2022). Similarly, Fv/Fm values decrease

under stress, with reductions of 66.6% in rice, 20% in Arabidopsis,

7.5% in barley, 4% in maize, and 7% in tomato (Rollins et al., 2013;

Halter et al., 2017; Zhou et al., 2017; Yang et al., 2018; Zhang et al.,

2018; Doğru, 2021). These species-specific response patterns

highlight distinct thermotolerance mechanisms among plants,

with maize exhibiting relatively greater photosynthetic stability
TABLE 2 Heat stress-induced reduction in root fresh and dry weight.

Plant species Decrease in root weight T°C Duration of heat stress treatment References

Root fresh weight

Hordeum vulgare 52% ↓ 34°C 12 days Naz et al., 2022

Oryza sativa 60% ↓ 40°C 7 days Baloch et al., 2024

Zea mays 29% ↓ 35-40°C 15 days Hussain et al., 2019a

Solanum lycopersicum 39% ↓ 40°C 4 weeks Guo et al., 2022

Arabidopsis thaliana ~70% ↓ 28°C 6 days
Abo Gamar
et al., 2019

Root dry weight

Hordeum vulgare 30% ↓ 34°C 12 days Naz et al., 2022

Oryza sativa 59% ↓ 40°C 7 days Baloch et al., 2024

Zea mays 29.17% ↓ 36°C 8 days Xia et al., 2021

Solanum lycopersicum 50.8% ↓ 40°C 4 weeks Guo et al., 2022

Arabidopsis thaliana 50% ↓ 30°C 20 days Macabuhay et al., 2022
Arrows heads down (↓) represent negative changes. ~ indicates approximately. T°C, temperature in Celsius.
TABLE 3 Heat stress-induced reduction in shoot fresh and dry weight.

Plant species Decrease in shoot weight T°C Duration of heat stress treatment References

Shoot fresh weight

Hordeum vulgare 29% ↓ 34°C 12 days Naz et al., 2022

Oryza sativa 50% ↓ 40°C 7 days Baloch et al., 2024

Zea mays 3.2% - 8% ↓ 38°C 15 days Hussain et al., 2016

Solanum lycopersicum 33% ↓ 26°C 6 days Zhou et al., 2019

Arabidopsis thaliana ~50% ↓ 28°C 6 days
Abo Gamar
et al., 2019

Shoot dry weight

Hordeum vulgare 25% ↓ 34°C 12 days Naz et al., 2022

Oryza sativa 11% ↓ 35°C 7 days Ito et al., 2009

Zea mays 3.35% - 3.75% ↓ 38°C 15 days Hussain et al., 2016

Solanum lycopersicum 8% ↓ 26°C 6 days Zhou et al., 2019

Arabidopsis thaliana 20% ↓ 30°C 20 days Macabuhay et al., 2022
Arrows heads down (↓) represent negative changes. ~ indicates approximately. T°C, temperature in Celsius.
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under heat stress compared to more sensitive species like rice

and barley.

The detrimental effects of heat stress extend beyond simple

reductions in chlorophyll content and PSII efficiency, significantly

disrupting critical regulatory mechanisms including stomatal

conductance and transpiration rate (Marchin et al., 2023; Zahra

et al., 2023; Falcioni et al., 2024; Miao et al., 2025). Under elevated

temperature, stomatal conductance – the crucial regulator of gas
Frontiers in Plant Science 05
exchange and water loss – demonstrates a biphasic response: an

initial increase to promote transpirational cooling, followed by a

decline during prolonged heat exposure (Faralli et al., 2022;

Marchin et al., 2022, 2023; Liang et al., 2023). This dynamic

pattern exhibits considerable interspecies variation, reflecting

distinct evolutionary adaptations to thermal stress. The intricate

relationship between stomatal behavior, transpiration efficiency,

and photosynthetic performance reveals the sophisticated nature
TABLE 4 Heat stress-induced reduction in root and shoot length.

Plant species
Decrease in
length

T°C
Duration of heat
stress treatment

References

Root length

Hordeum vulgare 26% ↓ 34°C 12 days Naz et al., 2022

Oryza sativa 12% ↓ 42°C 5 days Sailaja et al., 2014

Zea mays 35.42% ↓ 36°C 8 days Xia et al., 2021

Solanum lycopersicum 48.07% ↓ 40°C 4 weeks Guo et al., 2022

Arabidopsis thaliana 55% ↓ 30°C 10 days Yang et al., 2017

Shoot length

Hordeum vulgare 14% ↓ 34°C 12 days Naz et al., 2022

Oryza sativa 14% ↓ 42°C 5 days Sailaja et al., 2014

Zea mays 6.4% - 8.8% ↓ 38°C 15 days Hussain et al., 2016

Solanum lycopersicum 59.1% ↓ 40°C 4 weeks Guo et al., 2022

Arabidopsis thaliana 5 - 10% ↓ 28°C 10 days Ibañez et al., 2017
Arrows heads down (↓) represent negative changes. T°C, temperature in Celsius.
FIGURE 1

Effect of heat stress on root and shoot growth parameters. This figure presents species-averaged data illustrating the impact of heat stress on
various crop species, as detailed in Tables 2-4. Red wavy lines indicate an increase in temperature; Bold black arrows represent the reduction of
growth parameters.
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of plant thermoregulation, where maintaining an optimal balance

between water conservation and carbon fixation becomes

paramount for survival under heat stress conditions.
3.2 Stomatal and transpiration responses to
heat stress

Among the key physiological responses to heat stress, stomatal

conductance is crucial in regulating gas exchange and transpiration.

Studies show this parameter exhibits the most pronounced increase

under elevated temperatures, with barley cultivars demonstrating a

50–80% rise after 5–15 days of exposure to 28°C and 38°C

(Mahalingam et al., 2022). Similarly, other species also

demonstrate an increase to varying degrees: rice (20%),

Arabidopsis (11%), maize (10–30%), and decrease tomato (33%)

(Table 6) (Jin et al., 2011; Hussain et al., 2016; Zhou et al., 2017;

Yang et al., 2020; Mahalingam et al., 2022). These disparities

highlight the importance of considering experimental context

when interpreting heat stress responses, particularly regarding

tissue specificity (leaves vs. whole seedlings), plant developmental

stage, duration and intensity of heat exposure, and species-

specific tolerance.

While short-term heat exposure typically enhances stomatal

conductance, prolonged stress often leads to their decline, as

observed in multiple tree species, including various oaks (Quercus

macrocarpa Michx, Q. muehlenbergii Engl., Q. stellata), sweetgum

(Liquidambar styraciflua), and other species like Vitis vinifera L.,

Ficus insipida Willd., and Ochroma pyramidale (Hamerlynck and

Knapp, 1996; Gunderson et al., 2002; Slot et al., 2016; Zhang et al.,

2023; Veloo et al., 2025). Plants employ contrasting strategies to cope

with heat stress - some temporarily increase stomatal opening for
Frontiers in Plant Science 06
evaporative cooling while others rapidly close stomata to conserve

water (Huang et al., 2025; Luo et al., 2025; Wu et al., 2025). These

adaptive responses significantly influence water-use efficiency,

photosynthetic performance, and long-term stress resilience.

Plants activate multiple mechanisms to counter prolonged heat

stress, including transpirational cooling and stomatal regulation,

which help balance water loss and cellular homeostasis (Mathur

et al., 2014). However, while stomatal closure prevents dehydration,

it simultaneously limits CO2 uptake, reducing photosynthetic

efficiency and carbon assimilation (Hasanuzzaman et al., 2013;

Faralli et al., 2022). Species-specific transpiration patterns reflect

this balance, with the increase of 35-62% in rice, 30% in barley, 12%

in Arabidopsis, 6–9% in maize, and 7% in tomato (Table 6). As

highlighted by Jagadish et al., elevated transpiration coupled with

effective leaf cooling can significantly mitigate heat stress impacts

on plant growth and development (Jagadish et al., 2015). This

underscores the critical need to optimize stomatal dynamics in crop

breeding programs to enhance heat tolerance and maintain

agricultural productivity under increasingly frequent and intense

heat stress conditions.

While transpiration provides temporary heat relief, prolonged

exposure disrupts fundamental photosynthetic processes (Figure 2).

Elevated temperatures trigger complex responses, including altered

reactive oxygen species (ROS) dynamics, reduced PSII (Fv/Fm)

efficiency, and suppressed photosynthetic activity, collectively

limiting carbon assimilation (Batool et al., 2025; Li et al., 2025;

Ostendarp et al., 2025). The resulting decline in photosynthetic

efficiency directly constrains plant growth and productivity. A

comprehensive understanding of the interplay between stomatal

behavior, transpiration, and photosynthesis is therefore essential for

developing climate-resilient crops in our warming world (Zeng

et al., 2017).
TABLE 5 Negative effects of heat stress on photosynthetic activity.

Plant species
Decrease in
photosynthetic
activity %

T°C
Duration of heat
stress treatment

References

Photosynthesis rate

Hordeum vulgare ~30-50% ↓ 36°C 6 days Mahalingam et al., 2022

Oryza sativa ~23% ↓ 38°C 9 days Yang et al., 2020

Zea mays ~16.6% ↓ 38°C 15 days Hussain et al., 2016

Solanum lycopersicum 20% ↓ 36°C 4 days Zhou et al., 2017

Arabidopsis thaliana 16% ↓ 30°C 20 days Vile et al., 2012

Maximum quantum yield of photosystem II (Fv/Fm)

Hordeum vulgare ~7.5% ↓ 36°C 7 days Rollins et al., 2013

Oryza sativa ~66.6% ↓ 43°C 1–3 hours Yang et al., 2018; Zhang et al., 2018

Zea mays ~4% ↓ 45°C 20 mins Doğru, 2021

Solanum lycopersicum 7.1% ↓ 36°C 4 days Zhou et al., 2017

Arabidopsis thaliana 20% ↓ 42°C 2–4 hours Halter et al., 2017
Arrows heads down (↓) represent negative changes. ~ indicates approximately. T°C, temperature in Celsius.
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4 Biochemical changes in plants
under heat stress

Environmental stressors such as extreme temperatures,

drought, and salinity frequently induce oxidative stress in plants,

leading to cellular damage (Gill and Tuteja, 2010; Li et al., 2023;

Nurbekova et al., 2024; Rao and Zheng, 2025; Secomandi et al.,

2025). Among these, heat stress poses a particularly severe threat to

plant physiology by triggering excessive accumulation of reactive

oxygen species (ROS) (Fortunato et al., 2023; Rao and Zheng, 2025).

These highly reactive molecules, including hydrogen peroxide

(H2O2) and superoxide (O2
-), disrupt cellular processes and

contribute to oxidative stress, resulting in membrane damage,

impaired metabolism, and overall decline in plant health (Gill

and Tuteja, 2010; Samat et al., 2024; Jardim-Messeder et al., 2025;

Kračun et al., 2025).
4.1 Reactive oxygen species accumulation
under heat stress

Heat stress induces substantial increases in ROS levels across

various plant species, contributing to cellular damage and oxidative

stress. Studies demonstrate that heat exposure leads to significant

rises in H2O2 and O2
- levels, though notable interspecific variation.

For instance, H2O2 increases by approximately 245% in some

species, while barley, maize, and tomato cultivars exhibit a more

moderate increase of around 50% (Zhao et al., 2018; Ahammed

et al., 2019; Ayub et al., 2021; Zahra et al., 2022). Similarly, O2
- levels

surge by 200% in rice, tomato, and maize cultivars (Table 7) (Zhao

et al., 2018; Zhang et al., 2019; Jahan et al., 2022). However,

contrasting reports indicate decreases in O2
- and H2O2 by 26%

and 27%, respectively, in barley shoots under heat stress
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(Zhanassova et al., 2021). These discrepancies may stem from

differences in experimental conditions, as mentioned previously.

Such variations emphasize the complexity of oxidative stress

responses and underscore the importance of standardized

experimental approaches when comparing interspecific ROS

regulation under heat stress, and highlight the need for further

investigation into oxidative stress responses.

A major consequence of excessive ROS accumulation is lipid

peroxidation, which compromises membrane integrity.

Malondialdehyde (MDA), a lipid peroxidation byproduct, serves

as a reliable biomarker for oxidative membrane damage. Under heat

stress, MDA levels increase by 151% and 150% in rice and tomato

cultivars, respectively, with the most pronounced changes observed

in rice cultivars (XQZ and G46) during the reproductive stage

(Zhao et al., 2018; Ahammed et al., 2019). Comparatively, barley,

Arabidopsis, and maize cultivars show increases of 100%, 65%, and

100%, respectively (Table 7), confirming MDA as a consistent

indicator of cellular damage across species (Jin et al., 2011; Zhang

et al., 2019; Zahra et al., 2022).

The threat posed by ROS accumulation triggers diverse

biochemical defense mechanisms to counteract oxidative stress

(Gill and Tuteja, 2010; Fortunato et al., 2023; Li et al., 2023;

Nurbekova et al., 2024; Jardim-Messeder et al., 2025; Kračun

et al., 2025). While some species enhance their antioxidant

capacity, others exhibit reduced efficacy, underscoring the need

for detailed analysis of enzymatic and non-enzymatic systems in

maintaining cellular homeostasis under heat stress (Foyer and

Noctor, 2013; Noctor et al., 2018; Fortunato et al., 2023).
4.2 Antioxidant defense systems

To mitigate ROS-induced damage, plants activate both

enzymatic and non-enzymatic antioxidant systems (Foyer and
TABLE 6 Effects of heat stress on stomatal conductance and transpiration rate.

Plant species Changes in % T°C
Duration of heat
stress treatment

References

Stomatal conductance

Hordeum vulgare ~50-80% ↑ 36°C 5 days Mahalingam et al., 2022

Oryza sativa ~20% ↑ 38°C 9 days Yang et al., 2020

Zea mays ~10%-30% ↑ 38°C 15 days Hussain et al., 2016

Solanum lycopersicum ~33.3% ↓ 36°C 4 days Zhou et al., 2017

Arabidopsis thaliana 11% ↑ 28°C 3 days Jin et al., 2011

Transpiration rate

Hordeum vulgare ~30% ↑ 36°C 5 days Mahalingam et al., 2022

Oryza sativa ~35-62% ↑ 38°C 9 days Yang et al., 2020

Zea mays ~9%- 6% ↑ 38°C 15 days Hussain et al., 2016

Solanum lycopersicum ~10% ↑ 45°С 4 days Zhou et al., 2017

Arabidopsis thaliana 12% ↑ 28°C 3 days Jin et al., 2011
Arrows’ heads up (↑) represent positive changes, and down (↓) represent negative changes. ~ indicates approximately. T°C, temperature in Celsius.
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Noctor, 2013; Noctor et al., 2018; Bhuyan et al., 2019; Jardim-

Messeder et al., 2025; Jiang et al., 2025; Yang et al., 2025). Key

enzymatic antioxidants include superoxide dismutase (SOD),

catalase (CAT), peroxidases (POD), and ascorbate peroxidase

(APX), which collectively scavenge excess ROS and protect

cellular structures (Ru et al., 2023; Jiang et al., 2025; Rao and

Zheng, 2025; Zhou et al., 2025). Non-enzymatic antioxidants such

as ascorbate and glutathione (GSH) further contribute to redox

homeostasis and stress tolerance (Noctor et al., 2018; Jardim-

Messeder et al., 2025; Msarie et al., 2025; Rao and Zheng, 2025).

The activation of these defense mechanisms varies significantly

among plant species (Table 8).

While ROS accumulation under heat stress is well-documented,

the efficiency of antioxidant responses shows remarkable

interspecific variation (Gill and Tuteja, 2010; Foyer and Noctor,

2013; Noctor et al., 2018; Fortunato et al., 2023; Li et al., 2023;

Nurbekova et al., 2024). Some plants exhibit strong activation of

both enzymatic and non-enzymatic antioxidants, effectively

mitigating oxidative damage (Figure 3), while others show

reduced antioxidant capacity, increasing their vulnerability to

stress-induced cellular injury (Foyer and Noctor, 2013; Noctor

et al., 2018; Bhuyan et al., 2019). These findings reveal a spectrum

of defense strategies among species, with some having evolved more

effective mechanisms to maintain redox homeostasis. The

equilibrium between ROS generation and antioxidant defense is

therefore pivotal in determining a plant’s ability to withstand

thermal stress and maintain physiological function (Foyer and

Noctor, 2013; Noctor et al . , 2018). A comprehensive

understanding of these biochemical adaptations is essential for

developing targeted strategies to enhance crop resilience through

breeding and biotechnological approaches.
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5 Mitigation strategies against heat
stress

Heat stress significantly impairs agricultural crops by disrupting

physiological processes and hindering growth and development.

Germination rates can decline by up to 95%, while shoot and root

growth reductions range from 3.2% to 70% (Tables 1, 2). These

morphological changes are accompanied by adaptive physiological

and biochemical responses, which may themselves have detrimental

effects. To address these challenges, biotechnological and

agronomic strategies for enhancing thermotolerance are critical.

Promising approaches include the pre-sowing seed priming

technique, post-germination supplementary treatments, microbial

biostimulation, and microRNA manipulation.
5.1 Pre-sowing seed priming for enhanced
plant thermotolerance

Pre-sowing seed priming has emerged as a promising

agricultural technique to enhance plant resilience to temperature

fluctuations (Filippou et al., 2013; Pagano et al., 2023). This method

involves controlled seed treatment to initiate crucial metabolic

processes prior to radicle emergence, effectively ‘preparing seeds

for faster, more synchronized germination under favorable

conditions. Primed plants exhibit superior survival rates under

extreme conditions compared to non-primed counterparts (Hönig

et al., 2023; Pagano et al., 2023). This method enhances both seed

germination and crop productivity through various approaches,

including osmopriming, hydropriming, halopriming, and nutrient
FIGURE 2

Physiological responses to heat stress. Red wavy lines indicate an increase in temperature; Bold black arrows represent the alterations of parameters.
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priming. Moderate temperature exposure has also been shown to

boost heat tolerance, primarily by stabilizing the photosynthetic

apparatus (Wahid et al., 2008; Ru et al., 2023).

Drought priming, in particular, improves thermotolerance by

enhancing morphological parameters and photosynthetic efficiency

(Table 9). These benefits are mediated through molecular

adaptations, as demonstrated in maize cultivars where

thermopriming significantly increases activity of ROS-scavenging

enzymes (SOD, APX, POD, CAT), thereby reducing oxidative

damage as indicated by lower MDA levels (Ru et al., 2023).

Similarly, cold stress priming (0 °C) improves germination rates

in barley cultivars (Mei and Song, 2010). The efficacy of priming is

closely tied to stress memory mechanisms, where initial mild stress

induces epigenetic modifications that enable more robust responses

to subsequent stress events (Li and Gong, 2011; Walter et al., 2013;

Antoniou et al., 2016). This priming-induced memory represents a

powerful tool for developing climate-resilient crops in the face of

increasing environmental variability.

H2O2 is a cost-effective and widely used priming agent that

promotes root/shoot growth and seed germination under heat

stress. Its ability to enhance these morphological parameters and

germination relies on its capacity to modulate key cellular processes.

In maize, H2O2 pretreatment enhances photosynthetic efficiency

while reducing ROS and MDA concentrations (Wahid et al., 2008).

Additionally, it also activates heat stress proteins (27 and 63 kDa)

that regulate membrane integrity and structure during root and
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shoot development, providing molecular support crucial for overall

growth (Schoffl et al., 1999; Wahid et al., 2008).

Combined salicylic acid (SA) and chitosan pre-sowing seed

treatment enhances rice hybrids’ growth parameters under heat

stress, enhancing morphology, photosynthetic performance, and

antioxidant defense while reducing ROS and MDA levels (Ahmed

et al., 2024). SA alone boosts photosynthetic rate, stomatal

conductance, and transpiration rate in rice, though the combined

treatment offers superior protection (Ahmed et al., 2024). Notably,

unprimed plants are more sensitive to heat during the vegetative

stage than during the flowering stages, as seen in gerbera

(transpiration rates) and hot pepper (photosynthetic efficiency

related to membrane thermostability) (Rajametov et al., 2021;

Yang et al., 2023).

SA priming also prevents heat-induced inhibition of RuBisCo, a

critical enzyme for carbon fixation, thereby maintaining

photosynthetic efficiency comparable to heat-tolerant cultivars

(Wang et al., 2010a; Ahmed et al., 2024). By maintaining

RuBisCo activity, primed plants exhibit photosynthetic efficiency

comparable to heat-tolerant cultivars (Qin et al., 2025; Zheng et al.,

2025). This molecular mechanism directly underpins the improved

growth and productivity observed in chemically primed plants

under heat stress. Likewise, spermidine-treated rice cultivars

demonstrate reduced ROS and MDA levels, leading to improved

shoot growth and overall plant development under high-

temperature conditions (Fu et al., 2019).
TABLE 7 Changes in reactive oxygen species and malondialdehyde levels in different species of plants’ response to heat stress.

Plant species Changes in % T°C
Duration of heat
stress treatment

References

Superoxide (O2
-)

Hordeum vulgare ~27% ↓ 40°C 5 days Zhanassova et al., 2021

Oryza sativa ~199% ↑ 38°C 3 days Zhao et al., 2018

Zea mays ~200% ↑ 40°C 5 days Zhang et al., 2019

Solanum lycopersicum ~200% ↑ 38°C 7 days Jahan et al., 2022

Hydrogen peroxide (H2O2)

Hordeum vulgare
~50% ↑ 42°C 2 days Zahra et al., 2022

~26% ↓ 40°C 5 days Zhanassova et al., 2021

Oryza sativa ~245% ↑ 38°C 3 days Zhao et al., 2018

Zea mays ~50% ↑ 40°C 6 hours Ayub et al., 2021

Solanum lycopersicum 65% ↑ 40°C 9 hours Ahammed et al., 2019

Malondialdehyde (MDA)

Hordeum vulgare ~100% ↑ 42°C 2 days Zahra et al., 2022

Oryza sativa ~151% ↑ 38°C 3 days Zhao et al., 2018

Zea mays ~100% ↑ 40°C 5 days Zhang et al., 2019

Solanum lycopersicum ~150-200% ↑ 40°C 9 hours Ahammed et al., 2019

Arabidopsis thaliana ~65% ↑ 28°C 3 days Jin et al., 2011
Arrows’ heads up (↑) represent positive changes, and down (↓) represent negative changes. ~ indicates approximately. T°C, temperature in Celsius.
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Priming activates ROS-scavenging enzymes, heat shock proteins

(HSPs), and molecular chaperones, enhancing abiotic stress tolerance

in crops like pepper, maize, soybean, spinach, and wheat (Iqbal and

Ashraf, 2007; Farooq et al., 2008; Korkmaz and Korkmaz, 2009; Zhuo

et al., 2009; Chen et al., 2010). Chemical priming agents, including

H2O2, abscisic acid (ABA), and SA, improve resilience by modulating

photosynthesis, ROS detoxification pathways, and MG metabolism

(de Azevedo Neto et al., 2005; Chao et al., 2009; Liu et al., 2010; Wang

et al., 2010a, b; Hasanuzzaman et al., 2011; Ishibashi et al., 2011;

Gondim et al., 2012; Mostofa and Fujita, 2013; Mostofa et al., 2014;

Sathiyaraj et al., 2014; Teng et al., 2014; Ahmed et al., 2024).

Hormonal regulation plays a key role, with heat stress increasing
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ABA while decreasing gibberellic acid (GA) and indole-3-acetic acid

(IAA) levels, leading to reproductive impairment (Shimizu and Kuno,

1967; Nakajima et al., 1991; Tang et al., 1996; El-Maarouf-Bouteau

et al., 2013; Ishibashi et al., 2015, 2017; Kadyrbaev et al., 2021;

Hirayama and Mochida, 2022). These intricate molecular and

hormonal interactively collectively contribute to the observable

improvements in plant morphology and overall thermotolerance.

The synergistic effects of these mechanisms enhance plants’ capacity

to maintain physiological function under elevated temperatures.

Understanding these hormonal interactions may further refine

priming strategies to further enhance plant thermotolerance and

improve crop productivity under extreme environmental conditions.
TABLE 8 Changes in enzymatic and non-enzymatic antioxidant components in different species of plants’ response to heat stress.

Plant species Changes in % T°C
Duration of heat
stress treatment

References

Superoxide dismutase (SOD)

Hordeum vulgare ~205% ↑ 35°C 7 days Hussain et al., 2019b

Oryza sativa ~50% ↓ 38°C 5 days Liu et al., 2019

Zea mays
40-45% ↓ 40°C 20 mins Doğru, 2021

50% ↑ 41°C 6 hours Hussain et al., 2016

Solanum lycopersicum 305% ↑ 40°C 9 hours Ahammed et al., 2019

Arabidopsis thaliana ~500% ↓ 38°C 6 hours Wang et al., 2020

Catalase (CAT)

Hordeum vulgare ~127% ↑ 35°C 7 days Hussain et al., 2019b

Oryza sativa ~50% ↓ 38°C 5 days Liu et al., 2019

Zea mays ~20% ↓ 38°C 15 days Hussain et al., 2019a

Solanum lycopersicum ~50% ↑ 38°C 3 days Ding et al., 2018

Arabidopsis thaliana ~400% ↑ 38°C 6 hours Wang et al., 2020

Peroxidase (POD)

Hordeum vulgare ~128% ↑ 35°C 7 days Hussain et al., 2019b

Oryza sativa ~32.1% ↓ 38°C 5 days Liu et al., 2019

Zea mays ~10% ↓ 38°C 15 days Hussain et al., 2019a

Solanum lycopersicum ~100% ↑ 38°C 3 days Ding et al., 2018

Arabidopsis thaliana ~250% ↑ 38°C 6 hours Wang et al., 2020

Ascorbate peroxidase (APX)

Oryza sativa ~32.1% ↓ 38°C 5 days Liu et al., 2019

Zea mays ~50% ↓ 38°C 15 days Hussain et al., 2019a

Solanum lycopersicum 28% ↑ 40°C 9 hours Ahammed et al., 2019

Glutathione (GSH)

Zea mays 28% ↑ 38°C 15 days Hussain et al., 2019a

Solanum lycopersicum ~150% ↑ 38°C 3 days Ahammed et al., 2019
Arrows’ heads up (↑) represent positive changes, and down (↓) represent negative changes. ~ indicates approximately. T°C, temperature in Celsius.
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5.2 Post-Germination chemical and
nutritional treatments for heat stress
mitigation

Beyond pre-sowing seed priming, post-germination treatments

provide a valuable complementary approach to enhance

thermotolerance in developing plants. The exogenous applications
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of plant growth regulators, essential nutrients, and protective

compounds has demonstrated significant efficacy in maintaining

key morphological parameters – including shoot/root growth, floral

development, and fruit weight (Zhao et al., 2018; Murad Lima et al.,

2025; Ssemugenze et al., 2025; Ali et al., 2021; Khan et al., 2024).

While elevated temperatures typically impair photosynthetic

efficiency (Tables 5, 6), these supplemental treatments effectively
FIGURE 3

Effect of heat stress on ROS accumulation and antioxidant defense and restoration system of plants. Arrows with dotted ends show the transition
between plant states (red - deterioration, green - improvement); Arrow with a blunted-end head represents the inhibitory effect of the antioxidant
system on oxidative damage; SOD, Superoxide dismutase; POD, Peroxidase; APX, Ascorbate peroxidase; GSH, Glutathione.
TABLE 9 Pre-sowing seed physical and chemical priming enhances thermotolerance in various plants.

Priming source Plant species Changes T°C
Duration of heat
stress treatment

References

Physical

Cold 0 °C
(1–4 days)

Hordeum vulgare cv. Pijiu Germination rate increased by 55% ↑ 40°C 2 days Mei and Song, 2010

Artificial drought priming
(6 days)

Zea mays cv. Zhengdan 958 Relative growth rate increased by 29% ↑ 36°C 6 days Ru et al., 2023

Chemical

Hydrogen peroxide
(150µM)

Zea mays cv. SWL-2002 Germination rate increased by 131.5% ↑ 42°C 24 hours Wahid et al., 2008

Spermidine
(1.5mM)

Oryza sativa L. ssp. indica
cv. YLY 689

Germination rate increased by 147.4% ↑
40°C 3 days Fu et al., 2019

Shoot dry weight increased by 121.1% ↑

Salicylic acid
(140 mg L−1)

Oryza sativa cv. Dhan 84

Shoot dry weight increased by 8% ↑

37.1 ± 1.7°C 30-60–90 days Ahmed et al., 2024
Chitosan
(100 mg L−1)

Shoot dry weight increased by 7.5% ↑
Arrows’ heads up (↑) represent positive changes. T°C, temperature in Celsius.
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mitigate such physiological limitation during vegetative growth

(Table 10). Notably, foliar application of exogenous SA increases

chlorophyll content and relative water content (RWC) by

approximately 50% in barley while similarly improving growth

rates in maize (Khanna et al., 2016; Zahra et al., 2022). The

protective mechanisms involve both direct physiological effects

and the upregulation of antioxidant defense systems, as evidenced

by enhanced activity of ROS-scavenging enzymes (Khanna et al.,

2016; Hussain et al., 2019b; Ali et al., 2021; Raghunath et al., 2021;

Jahan et al., 2022; Zahra et al., 2022). These coordinated responses

collectively strengthen plant resilience to thermal stress while

maintaining productivity.

Brassinosteroids post-germination treatments also contribute to

heat stress mitigation by promoting reproductive organ growth and

enhancing photosynthesis-related markers. In contrast, GA has a

stronger impact on morphological traits, such as increasing plant

height in rice exposed to 40 °C (Raghunath et al., 2021). Putrescine,

a spermidine/spermine precursor, protects plants by regulating

potassium channels in guard cells, improving membrane stability.

In tomatoes, exogenous putrescine application in the vegetative

growth stage activates ROS-scavenging enzymes, increases
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photosynthetic pigments, suppresses oxidative stress markers, and

upregulates HSP 70 and HSP 90 (Jahan et al., 2022).

Melatonin, structurally related to putrescine, enhances shoot/

leaf growth while improving tomato thermotolerance when applied

as a foliar spray (Khan et al., 2024). Recent studies have highlighted

the role of silicon and silicon-containing compounds in stress

mitigation as post-germination treatment agents. These molecules

stabilize lipid membranes, enhance thermal stability, and promote

polysaccharide accumulation, boosting heat resilience (Swain and

Rout, 2017; Kumar et al., 2023). Sodium silicate treatment increases

barley growth rates by 40% compared to untreated plants (Hussain

et al., 2019b).

In addition to these compounds, essential minerals like

nitrogen, sodium, and sulfur play a vital role in stress mitigation.

Sulfur, crucial for protein biosynthesis and antioxidant defenses,

can increase tomato growth rate by 77% under heat stress as it is a

central component of thiol groups involved in plant stress responses

(Bashir et al., 2015; Ihsan et al., 2019; Ali et al., 2021). While abiotic

stress priming and chemical treatments are widely used, biotic stress

priming, such as beneficial microbial and viral colonies, also

positively influences plant thermotolerance (Khan et al., 2022).
TABLE 10 Post-Germination chemical and nutritional treatments enhance thermotolerance in various plants.

Treatment source
and conditions

Plant species Changes T°C
Duration of heat
stress treatment

References

Sulfur
2, 4, 6, and 8 ppm
(6 ppm effective
concentration)

Solanum lycopersicum L.
genotypes, “Roma”
(thermotolerant) and
“Ahmar” (thermosensitive)

Increased growth rate ~77% ↑ 45 ± 2°C 20 days Ali et al., 2021

Sodium silicate
1.5 mM Si
(Sprayed)

Hordeum vulgare L. cvr.
Jow-83 and B-12026

Increased growth rate by ~40% ↑ 35/30 ± 2°C 7 days Hussain et al., 2019b

Salicylic acid
2 and 5mM

Hordeum vulgare L. cvr
Jau-87, B-10007, B-14003,
B-14037

Chlorophyll, carotenoid, and RWC
increased by ~50% ↑

42°C 24 hours Zahra et al., 2022

Salicylic acid
10-800 mM
(<400 mM
affects positively)

Zea mays L. cvr. not shown Increased growth rate >50% ↑ 40°C 2 hours Khanna et al., 2016

Putrescine
1 mM

Solanum lycopersicum L.
(cvr. not shown)

Increased antioxidant enzymes: POD
-32% ↑, CAT -38% ↑, APX -35% ↑

38°C 7 days Jahan et al., 2022

Melatonin
25 µM
(field experiments)

Solanum lycopersicum L.
Heat tolerant (T60 F1 and
Super cash F1)
Heat sensitive (Naqeeb
and Nagina)

Increased morphological parameters,
including a growth rate of ~30-50% ↑

41/5°C 40 days Khan et al., 2024

Gibberellic acid (GA3)
50 ppm
(field experiment) Oryza sativa L cvr

Uma (MO-16)

Reproductive organ growth increased
by ~50% ↑

40°C 113 days Raghunath et al., 2021
Photosynthesis-related increased
~20% ↑

Brassinosteroid (BR)
5 ppm
(field experiment)

Increased plant height and panicle
length ↑
Arrows’ heads up (↑) represent positive changes. ~ indicates approximately. > indicates more than. T°C, temperature in Celsius.
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5.3 Microbial biostimulation for heat stress
mitigation

The plant microbiome provides additional defense against

biotic stressors by enhancing tolerance through a mutualistic

relationship (Chauhan et al., 2023; Teiba et al., 2024). Though

direct evidence of microbial biostimulation in major crops remains

limited, certain bacterial strains support plant growth under heat

stress (Table 11). For instance, root-associated bacteria protect

tomatoes, while endophytic fungi promote resistance and normal

growth (Cameron et al., 2013; Pieterse et al., 2014; Narendra Babu

et al., 2015).

One notable example is Paecilomyces formosus, a fungal species

that enhances rice growth under normal and high temperatures,

likely through secondary metabolite production (Waqas et al.,

2015). It also modulates ABA and jasmonic acid (JA) levels,

similar to its effects in Capsicum annuum L. and Dichanthelium

lanuginosum (Redman et al., 2011; Khan et al., 2015; Waqas et al.,

2015). Fungi like Rhizophagus irregularis and Funneliformis

mosseae improve maize photosynthetic efficiency (chlorophyll

content, fluorescence, rate) while reducing MDA levels through

improved N/Mg uptake (Mathur et al., 2021). In tomatoes,

Septoglomus constrictum and Septoglomus deserticola enhance

morphology and reduce oxidative stress at 42 °C, though without

photosynthetic improvements (Duc et al., 2018). Serendipita indica

similarly benefits Arabidopsis morphology under heat stress (Chen

et al., 2022).

The plant microbiome provides additional defense against

biotic stressors by enhancing tolerance through a mutualistic

relationship (Chauhan et al., 2023; Teiba et al., 2024). Though

direct evidence of microbial biostimulation in major crops remains

limited, certain bacterial strains support plant growth under heat

stress (Table 11). For instance, root-associated bacteria protect

tomatoes, while endophytic fungi promote resistance and normal

growth (Cameron et al., 2013; Pieterse et al., 2014; Narendra Babu

et al., 2015).
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5.4 Mitigation against heat by regulating
miRNA

miRNAs (20–24 nt) are emerging tools for improving stress

resilience in crops by post-transcriptionally regulating target genes

(Chen, 2009; Voinnet, 2009; Asefpour Vakilian, 2020; Ding et al.,

2020; Chaudhary et al., 2021; Raza et al., 2021). Furthermore,

miRNAs have potential applications in genetic engineering, where

their manipulation can improve crop quality and create hybrids

with enhanced heat tolerance (Zheng et al., 2025; Zolkiewicz and

Gruszka, 2025). Our analysis has identified several miRNAs

associated with morphological and physiological changes under

heat stress. Moreover, targeted miRNA modifications can

contribute to the development of thermotolerant plant

hybrids (Table 12).

One key miRNA involved in heat stress response is miR-398,

which is upregulated under high-temperature conditions. Under

heat stress, miR-398 upregulation suppresses the expression of the

copper superoxide dismutase (CSD1/CSD2) while increasing heat

shock protein (HSP) expression, improving Arabidopsis

thermotolerance (Sunkar and Zhu, 2004; Sunkar et al., 2006;

Chen, 2009; Kaczkowski et al., 2009; Guan et al., 2013; Zhao

et al., 2016). miR-160 overexpression similarly enhances heat

tolerance in Arabidopsis by regulating HSPs and plant

development (Lin et al., 2018).

miRNAs also regulate flowering time under heat stress (Li et al.,

2022). The transition from the vegetative phase to flowering is

controlled by SQUAMOSA PROMOTER BINDING PROTEIN-

LIKE (SPL) and APETALA2 (AP2) genes (Stief et al., 2014; Gahlaut

et al., 2018; Ma et al., 2020). miR-156 and miR-172 regulate SPL

expression, with elevated miR-172 levels (mediated by miR-156)

under high-temperature stress leading to reduced SPL expression.

This downregulation of SPL subsequently activates FLOWERING

LOCUS T (FT), establishing a link between temperature sensing

and flowering time (Wu et al., 2009; Kim et al., 2012; Cui et al.,

2014; Stief et al., 2014). Additionally, miR-166 overexpression
TABLE 11 Microbial biostimulation to enhance thermotolerance in plant species.

Treating
organism

Plants species Changes T°C
Duration of heat
stress treatment

References

Fungi

Paecilomyces formosus Oryza sativa L. (Dongjin) Increased growth rate ↑ 30°C 10 days Waqas et al., 2015

Septoglomus constrictum
Solanum lycopeŕsicum
(var. MoneyMaker)

Increased growth rate ↑ 42°C 6h (10 days) Duc et al., 2018

Serendipita indica A. thaliana Col-0 Increased shoot length and weight ↑ 28°C 7–14 days Chen et al., 2022

Bacteria

Bacillus cereus
Solanum lycopeŕsicum
(Vir Yegwang)

Increased growth rate ↑ 37°C 15 days Khan et al., 2020

Bacillus safensis
Solanum lycopersicum
L (Riogrande)

Increased growth rate ↑ 42°C 5 hours per day Mukhtar et al., 2023

Bacillus cereus
Solanum lycopeŕsicum
(cv. Riogrande)

Increased growth rate ↑ 42°C
6 h/day till the
fruiting stage.

Mukhtar et al., 2020
Arrows’ heads up (↑) represent positive changes. ~ indicates approximately. T°C, temperature in Celsius.
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inhibits PHAVOLUTA and REVOLUTA, two genes responsible for

leaf development, as well as HOX9, a member of the HD-Zip family

(Barik et al., 2014). Similarly, miR-160a downregulates ARF17 and

ARF13, affecting the auxin signaling pathway, delaying

development, cell proliferation, and flowering (Barik et al., 2014;

Kruszka et al., 2014). This delay, together with miR-166’s disruption

of leaf development, enhances Arabidopsis thaliana’s tolerance to

high temperatures (Reinhart et al., 2002; Mallory et al., 2005; Barik

et al., 2014). By precisely regulating stress-response pathways,

miRNAs offer powerful biotechnological tools for developing

heat-tolerant crops through targeted gene manipulation (Batool

et al., 2025; Gao et al., 2025; Spychała et al., 2025; Zheng

et al., 2025).
6 Conclusion

Climate change and global population growth pose a severe

threat to agricultural sustainability, with rising temperatures

particularly diminishing crop yields. High-temperature stress has

a negative impact on plant growth and development. While

extensive research exists, much of it focuses on individual species

or isolated mechanisms, lacking broader comparative insights. This

review systematically compared heat stress responses and

mitigation strategies across four economically important crops -

barley, maize, rice, and tomato - alongside Arabidopsis thaliana.

Morphological analysis revealed that root parameters are more

sensitive indicators of thermal susceptibility than shoot
Frontiers in Plant Science 14
parameters, though germination rate changes primarily occur

under extreme heat. Physiologically, all studied species exhibited

consistent reductions in photosynthetic rates and PSII efficiency

(Fv/Fm), while stomatal conductance and transpiration rates varied

by species and stress duration. Biochemical analyses of ROS

accumulation and antioxidant activity presented complex, mixed

results - upregulation and downregulation, underscoring the need

for deeper investigation into oxidative stress pathways. Among

mitigation strategies, priming emerged as an effective one due to

its low cost and practical applicability. Other promising approaches

include chemical/nutritional treatments, microbial biostimulants,

and miRNA-based regulation. Notably, miRNAmanipulation offers

significant potential for developing thermotolerant crop varieties,

promising advancement in both scientific research and

agricultural applications.
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Overexpression of miR156 is capable of
increasing heat stress memory

Stief et al., 2014
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de AzevedoNeto, A. D., Prisco, J. T., Enéas-Filho, J., RolimMedeiros, J.-V., and Gomes-
Filho, E. (2005). Hydrogen peroxide pre-treatment induces salt-stress acclimation in
maize plants. J. Plant Physiol. 162, 1114–1122. doi: 10.1016/j.jplph.2005.01.007

Ding, H., He, J., Wu, Y., Wu, X., Ge, C., Wang, Y., et al. (2018). The tomato mitogen-
activated protein kinase slMPK1 is as a negative regulator of the high-temperature
stress response. Plant Physiol. 177, 633–651. doi: 10.1104/pp.18.00067

Ding, Y., Huang, L., Jiang, Q., and Zhu, C. (2020). MicroRNAs as important
regulators of heat stress responses in plants. J. Agric. Food Chem. 68, 11320–11326.
doi: 10.1021/acs.jafc.0c03597
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