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Attention-enhanced hybrid
deep learning model for
robust mango leaf disease
classification via ConvNeXt
and vision transformer fusion
Ebru Ergün*

Department of Electrical and Electronics Engineering, Faculty of Engineering and Architecture, Recep
Tayyip Erdogan University, Rize, Türkiye
Mango is a crop of vital agronomic and commercial importance, particularly in

tropical and subtropical regions. Accurate and timely identification of foliar diseases

is essential for maintaining plant health and ensuring sustainable agricultural

productivity. This study proposes MangoLeafCMDF-FAMNet (cross-modal

dynamic fusion with feature attention module (FAM) network), an advanced,

hybrid, deep-learning framework designed for the multi-class classification of

mango leaf diseases. The model combines two state-of-the-art feature extractors,

ConvNeXt and Vision Transformer, to capture local fine-grained textures and global

contextual semantics simultaneously. To further improve feature discrimination, a

FAM inspired by squeeze-and-excitation networks is integrated into each stage of

the backbone. This module adaptively recalibrates channel-wise feature responses

to highlight disease-relevant cues while suppressing irrelevant background noise. A

novel cross-modal dynamic fusion strategy unifies the complementary strengths of

both branches, resulting in highly robust and discriminative feature embeddings. The

proposed model was rigorously evaluated using comprehensive metrics such as

classification accuracy (CA), recall, precision, Matthews correlation coefficient (MCC)

and Cohen’s kappa score on three benchmark datasets: MangoLeafDataset1 (8

classes), MangoLeafDataset2 (5 classes) and MangoLeafDataset3 (8 classes). The

experimental results consistently demonstrate the superiority of MangoLeafCMDF-

FAMNet over the existing baseline models. It achieves exceptional CA values of

0.9978, 0.9988 and 0.9943 across the respective datasets, alongside strong MCC

and Cohen’s kappa scores. These results highlight the effectiveness and

generalizability of the proposed framework for automated mango leaf disease

diagnosis and contribute to advancing deep learning applications in precision

plant pathology.
KEYWORDS

agricultural imaging, ConvNeXt, cross-modal dynamic fusion, disease classification,
mango leaf, vision transformer
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1 Introduction

The mango is of great agronomic and economic importance,

particularly in tropical and subtropical regions, where it is one of the

most widely cultivated fruit crops (Zhang et al., 2025). However,

mango plants’ productivity and health are persistently threatened by

foliar diseases, which impair photosynthetic efficiency and lead to

significant reductions in yield and fruit quality. Although traditional

approaches to disease diagnosis are still widely used, they often

involve subjective assessments, delayed response times and a heavy

dependence on expert knowledge. These limitations highlight the

urgent need for automated, accurate and scalable diagnostic tools to

support the timely and objective management of mango diseases.

In recent years, deep learning (DL) techniques have transformed

plant disease detection by enabling complex, hierarchical patterns to

be extracted directly from image data. Unlike conventional

handcrafted approaches, DL models have demonstrated superior

performance in various agricultural vision tasks. However,

classifying mango leaf diseases is challenging due to their intricate

visual symptoms, similarities between classes and variations within

classes that frequently occur across disease types (Shehu et al., 2025;

Wei et al., 2025). These complexities necessitate the development of

more advanced architectures that can effectively learn both fine-

grained local textures and high-level semantic features.

In response to these challenges, we propose MangoLeafCMDF-

FAMNet (cross-modal dynamic fusion (CMDF) with feature

attention module (FAM) network), a novel hybrid DL framework

specifically designed for multi-class mango leaf disease

classification. This architecture integrates ConvNeXt and Vision

Transformer (ViT) as dual feature extractors, combining the

strengths of convolutional inductive biases and transformer-based

global attention mechanisms. The proposed model uses a CMDF

strategy to combine texture- and semantic-level information into a

coherent, enriched feature representation space. To further enhance

feature expressiveness, a FAM, inspired by squeeze-and-excitation

(SE) networks, is incorporated at each stage. This module adaptively

recalibrates channel-wise feature responses to prioritize disease-

relevant patterns while suppressing irrelevant background noise.

To comprehensive ly evaluate the performance of

MangoLeafCMDF-FAMNet, we conduct extensive experiments

on three publicly available mango leaf disease datasets—

MangoLeafDataset1 (8 classes), MangoLeafDataset2 (5 classes),

and MangoLeafDataset3 (8 classes). The model’s effectiveness is

quantified using multiple evaluation metrics, including

classification accuracy (CA), recall (RCL), precision (PRC),

Matthews correlation coefficient (MCC), and Cohen’s kappa

score. The experimental results consistently demonstrate that the

proposed method significantly outperforms conventional baseline

models across all datasets, achieving high CA and strong

correlation measures.

The main contributions of this work are as follows:
Fron
• We introduce MangoLeafCMDF-FAMNet, a novel hybrid

DL architecture that combines ConvNeXt and ViT with

FAM for enhanced hierarchical feature representation.
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• We design a CMDF strategy that effectively fuses local

texture information with global contextual features,

leading to more robust representations.

• We perform a thorough evaluation across multiple public

datasets, establishing the superior classification

performance of the proposed model in terms of CA, RCL,

PRC, MCC, and kappa.

• We offer a generalizable and scalable framework with

practical implications for automated mango disease

diagnosis, and the potential for adaptation to other plant

disease classification tasks.
The remainder of this paper is structured as follows: Section 2

provides a thorough review of existing research for plant disease

detection. Section 3 outlines the materials and methods employed in

this study, providing detailed descriptions of the dataset and the

proposed hybrid deep learning and feature selection framework.

Section 4 reports the experimental results, alongside performance

evaluation metrics and comparative analyses. Section 5 concludes the

paper by summarizing the main findings and highlighting potential

future research directions. Finally, Section 6 critically discusses the

study’s limitations and underlying assumptions, as well as its practical

implications for real-world agricultural applications.
2 Review of existing approaches

Recent advances in computer vision and DL have significantly

accelerated the development of automated tools for plant disease

diagnosis. convolutional neural networks (CNNs) and transformer-

basedmodels, especially ViTs, have emerged as dominant paradigms in

plant pathology research due to their ability to extract discriminative

spatial and semantic patterns from complex visual data (Chen et al.,

2024). However, existing studies on mango leaf disease classification

have faced multiple challenges that limit their practical utility and

generalizability. Among these studies, Rao et al. (2021) initiated one

such effort by leveraging the PlantVillage dataset, applying the AlexNet

architecture, and achieving classification accuracies of 0.9900 for grape

leaves and 0.8900 for mango leaves. Building on this, Arivazhagan and

Ligi (2018) utilized a CNN-based approach on a six-class mango

dataset and attained a commendable accuracy of 0.9667. In contrast,

Mia et al. (2020) combined artificial neural networks and support

vector machines, achieving 0.8000 accuracy in detecting four disease

classes and healthy leaves. A more advanced ensemble strategy was

introduced by Gautam et al. (2024), who developed a Stacked

Ensemble Deep Neural Network that integrated multiple DNNs with

classical ML classifiers, yielding a high accuracy of 0.9857 across eight

disease classes. Similarly, Saleem et al. (2021a) investigated disease

detection using canonical correlation analysis (CCA)-based feature

fusion and found cubic SVM to deliver the highest performance. In a

follow-up study, Saleem et al. (2021b) further proposed the FrCNet

model for lesion segmentation and, after combining it with CCA

feature fusion and classification via quadratic and cubic SVMs,

achieved 0.9890 accuracy for binary disease-versus-healthy

discrimination. Continuing the exploration of CNN variants, Varma
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et al. (2025) benchmarked several pretrained architectures, with

InceptionV3 achieving the highest accuracy at 0.9987. Meanwhile,

Patel et al. (2024) introduced a hybrid framework combining Total

Variation Filter-based variational mode decomposition with

DenseNet121 and VGG-19, achieving 0.9885 CA. This fusion

approach notably improved feature interpretability and robustness

against noise. Hossain et al. (2024) evaluated ViTs against well-

established CNNs and proposed an optimized DeiT-based model,

which outperformed all compared methods with a CA of 0.9975.

Similarly, Mahmud et al. (2024) proposed DenseNet78, a lightweight

variant of DenseNet tailored for mango leaf disease classification,

reporting accuracies of 0.9947 for healthy and 0.9944 for diseased

leaves. In practical implementations, Puranik et al. (2024) retrained

MobileNetV3 on the MangoLeafBD dataset and embedded it within a

mobile application, reaching 0.9800 accuracy and enabling real-time

field diagnosis. Singh et al. (2024) adopted a transfer learning approach

and proposed the DTLD model, which demonstrated strong multi-

class classification performance with a peak accuracy of 0.9976 on a

4000-image dataset. Expanding on comparative model analysis, Bairwa

et al. (2024) assessed multiple deep networks, finding ResNet50 to

deliver the highest accuracy at 0.9912. Complementarily, Pratap and

Kumar (2024) designed a CNN-based system incorporating transfer

learning from VGG-16, GoogLeNet, MobileNet, YOLOv8, and

EfficientNet, enabling effective classification of several mango diseases

including Anthracnose, Gall Midge, and Powdery Mildew. Finally,

Pahati et al. (2025) trained aGoogle TeachableMachinemodel on 4000

annotated images, obtaining an accuracy of 0.9960 and demonstrating

high potential for democratized, user-friendly disease

recognition platforms.

Most conventional CNN-based models, although capable of

capturing local textures, fall short in modeling long-range

dependencies—a critical requirement for accurately distinguishing

visually similar diseases with subtle morphological variations.

Transformer-based methods, while excellent at global context

modeling, often lack the inductive biases necessary for fine-

grained feature localization. As such, stand-alone CNN or ViT

models struggle to deliver optimal performance across varying

environmental conditions and disease stages observed in

agricultural settings. For example, the study by Alamri et al.

(2025) proposed a dual-branch architecture combining ConvNeXt

and ViT to detect mango leaf and fruit diseases separately using the

MangoLeafBD and SenMangoFruitDDS datasets. Their model

achieved promising accuracy levels of 99.87% and 98.40%

respectively, demonstrating the value of hybrid architectures in

plant disease classification. However, their method did not

incorporate any explicit attention mechanism to recalibrate the

feature importance across network layers. Furthermore, their

architecture processed the outputs of ConvNeXt and ViT using a

static fusion approach, which may limit the adaptability of feature

interactions during training.

By contrast, our proposed MangoLeafCMDF-FAMNet

framework introduces several significant improvements to the

original design. Firstly, inspired by SE networks, we incorporated

a FAM at each stage to dynamically recalibrate channel-wise

features. This enables the model to selectively emphasize disease-
Frontiers in Plant Science 03
relevant information and suppress background noise. Secondly,

instead of using a static feature aggregation strategy, our model

uses a CMDF mechanism to adaptively combine spatial and

semantic cues extracted from ConvNeXt and ViT backbones. This

significantly improves the model’s representational richness

and robustness.

Moreover, MangoLeafCMDF-FAMNet was rigorously

evaluated on three distinct datasets encompassing both 5-class

and 8-class classification tasks. Experimental results demonstrated

that our model consistently outperforms traditional CNNs, ViTs,

and hybrid baselines—including the model by Alamri et al. (2025)

—not only in terms of CA but also across comprehensive evaluation

metrics such as MCC and kappa. The superior performance of our

model, particularly under multi-class, real-world conditions,

underscores its potential as a scalable and generalizable solution

for precision agriculture.

Importantly, foliar disease diagnosis remains a crucial but

underexplored area in the literature, especially concerning

tropical crops such as mango. Leaf diseases are often early

indicators of plant stress and can significantly affect fruit

development and overall yield. Therefore, developing robust,

accurate, and field-deployable diagnostic systems for leaf disease

identification is critical for achieving sustainable agricultural

outcomes. Our contribution lies not only in achieving state-of-

the-art performance but also in offering a practical architecture that

balances accuracy, computational efficiency, and adaptability,

setting a new benchmark in artificial intelligence (AI)-assisted

mango disease diagnosis.
3 Materials and methods

3.1 Description of dataset

3.1.1 MangoLeafDataset1
The Mango MLD dataset, (MLD1) curated by Shakib et al.,

served as one of the primary data sources in this study (Shakib et al.,

2024). This publicly available dataset was meticulously compiled

through an extensive field data acquisition campaign conducted

across diverse mango orchards situated in Kushtia and Dhaka,

Bangladesh. The primary objective of this collection effort was to

capture high-quality, representative images of both healthy and

diseased mango leaves under realistic agricultural conditions,

thereby ensuring the ecological validity and practical relevance of

the dataset for real-world disease classification tasks.

A total of 6,400 images were included in the dataset, uniformly

distributed across eight diagnostic categories. Seven of these classes

correspond to prevalent mango leaf diseases—Anthracnose,

Bacterial Canker, Cutting Weevil, Die Back, Gall Midge, Powdery

Mildew, and Sooty Mould—while the eighth class represents

healthy leaves. To mitigate class imbalance and enable unbiased

model training, each category contains exactly 800 images, making

this dataset structurally balanced. The images were originally

captured using an iPhone SE device at a native resolution of 3024

× 4032 pixels and subsequently downscaled to 240 × 240 pixels in
frontiersin.org
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JPEG format. This resizing operation was performed to reduce

memory overhead without significantly compromising visual

quality or diagnostic features. Crucially, no synthetic

augmentation was applied to the original images, preserving the

integrity and authenticity of real-world leaf textures, color

gradients, and lesion morphologies.

Figure 1 presents representative samples from each disease

class, providing visual insight into the morphological and

pathological variations captured in the dataset. Meanwhile, the

corresponding distribution of class frequencies is detailed in

Table 1, where the uniformity of sample counts across categories

is explicitly demonstrated.

3.1.2 MangoLeafDataset2
As a complementary data source, the MangoLeafDataset2

(MLD2)—compiled and published by Nirob et al.—was

incorporated into this study to further strengthen the reliability

and generalizability of the proposed classification model (Nirob

et al., 2024). This dataset offers a rich collection of high-resolution

mango leaf images, originally captured between August 15 and

August 29, 2023, in the mango cultivation fields of Supu Ashulia,

Bangladesh. The data acquisition process was carried out under

natural lighting and environmental conditions, ensuring that the

captured leaf samples reflect real-world visual characteristics,

including noise, background clutter, and variability in

disease presentation.

The original dataset comprises 1,319 unique images, each with a

standardized resolution of 1000 × 1000 pixels and stored in JPEG

format. The dataset encompasses five key categories representing

distinct pathological states of mango leaves: Anthracnose, Die

Black, Gall Midge, Powdery Mildew, and Healthy. These

categories were carefully selected based on the prevalence and
Frontiers in Plant Science 04
diagnostic importance of the corresponding diseases in

commercial mango production. To overcome the inherent class

imbalance, present in the original dataset and to enhance the

learning capability of deep models, a comprehensive data

augmentation strategy was applied. Techniques such as horizontal

and vertical flipping, arbitrary rotations, scaling, and mild intensity

transformations were utilized to synthetically expand the dataset.

As a result, each category was normalized to contain exactly 1,000

samples, thereby yielding a final augmented dataset comprising

5,000 images. Figure 2 illustrates representative image samples from

each of the five classes, providing a visual overview of the

phenotypic diversity embedded within the dataset. Table 2

summarizes the distribution of both original and augmented

images per class.

3.1.3 MangoLeafDataset3
To further enhance the robustness and cross-dataset

generalizability of the proposed classification framework, this

study integrated the MangoLeafDataset3 (MLD3), meticulously

curated by Rahman et al. and publicly released in November 2024

(Rahman et al., 2024). This dataset serves as a significant and

diverse benchmark resource for intelligent agricultural analysis,

particularly in the field of mango leaf disease recognition. The

data acquisition phase was carried out over a period of 20

consecutive days, from October 15 to November 4, 2024, in two

distinct agroecological regions of Bangladesh—Kashinathpur

(Pabna) and Changao (Savar, Dhaka)—to capture a wide

spectrum of environmental and disease conditions. The dataset is

composed of two main subsets: 2,336 raw images captured under

natural lighting conditions using mobile phone cameras, and 12,730

synthetically augmented images generated through comprehensive

data enhancement techniques. These augmentations include but are
FIGURE 1

Representative images from the MLD1 dataset, illustrating both healthy mango leaves and leaves affected by seven distinct diseases (Shakib et al., 2024).
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not limited to affine transformations, horizontal/vertical flips,

minor brightness and contrast shifts, and random cropping, all

designed to introduce variability and enrich the dataset’s learning

potential without compromising biological authenticity. All images

are categorized into eight distinct classes, representing seven

pathological categories—Anthracnose, Bacterial Canker, Cutting
Frontiers in Plant Science 05
Weevil, Die Back, Gall Midge, Powdery Mildew, and Sooty Mould

—along with one Healthy class.

The original class distribution, prior to augmentation, is

intentionally preserved to reflect natural disease occurrence rates.

However, the expanded dataset introduces balance and diversity

necessary for training deep neural models effectively. A

comprehensive breakdown of the image count per class is

provided in Table 3, while Figure 3 visually showcases

representative samples from each class, highlighting inter-class

visual variability and intra-class complexity.
3.2 Research methodology framework

In this study, a novel hybrid DL architecture named

MangoLeafCMDF-FAMNet was proposed to address the complex

problem of mango leaf disease classification. The methodology

capitalized on the complementary strengths of two advanced

feature extractors—ConvNeXt and ViT—to capture fine-grained

texture details as well as global contextual dependencies inherent in

leaf imagery. The overall flow of the proposed method is illustrated

in Figure 4. To train and validate the proposed framework, three

publicly available datasets were employed: the 8-class MLD1, 5-

class MLD2, and 8-class MLD3. All image samples were

preprocessed with standard normalization and resized to a
FIGURE 2

Selected image samples from the MLD2 dataset, reflecting variations in leaf color, texture, and shape across four disease classes and healthy leaves
(Nirob et al., 2024).
TABLE 1 Class-wise distribution of images in the MLD1 (Shakib
et al., 2024).

Class Name
MLD1

Number of images

Anthracnose 800

Bacterial Canker 800

Cutting Weevil 800

Die Back 800

Gall Midge 800

Powdery Mildew 800

Sooty Mould 800

Healthy 800

Total 6400
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uniform resolution of 224 × 224 pixels to ensure consistency across

training folds. Data augmentation techniques were deliberately

excluded to assess the raw generalization power of the model.

The MangoLeafCMDF-FAMNet model integrated a

ConvNeXt-Tiny backbone pre-trained on ImageNet as its local

feature extractor. Its final classification head was removed and

replaced with a global average pooling layer, followed by a

custom FAM inspired by SE networks. In parallel, a lightweight

ViT was employed to model long-range semantic interactions, with

its outputs refined through a 1D feature-wise attention mechanism

designed to amplify class-relevant representations. After extracting

the deep features from both ConvNeXt and ViT branches, a CMDF

strategy was applied. This strategy concatenated the learned

embeddings and passed them through a projection layer, resulting

in a unified 1024-dimensional representation. The fused vector was

then forwarded to a fully connected classifier to generate final

class predictions.

The performance evaluation of the proposed model was

conducted using a stratified 5-fold cross-validation protocol (5-

FCVP) to ensure reliable and unbiased assessment. In each fold, the

dataset was partitioned into distinct training and validation subsets

while preserving class distribution. During training, the model

parameters were optimized using the AdamW optimizer,

configured with a learning rate of 0.00005 and a weight decay

coefficient of 0.0001 to promote generalization. The cross-entropy

loss function served as the optimization objective, guiding the

network’s learning process. For each validation phase, a

comprehensive set of evaluation metrics was computed, including

CA, RCL, PRC, MCC, and kappa, to provide a multi-faceted

performance analysis. Additionally, confusion matrices were

generated for each fold to reveal class-specific prediction

behaviors. To qualitatively investigate the separability of learned
FIGURE 3

Image samples from the MLD3 dataset highlighting intra-class variability and visual diversity, which pose additional challenges for robust disease
classification (Rahman et al., 2024).
TABLE 2 Augmented image counts for each class in theMLD2 (Nirob et al., 2024).

Class Name
MLD2

Number of images

Anthracnose 1000

Die Back 1000

Gall Midge 1000

Powdery Mildew 1000

Healthy 1000

Total 5000
TABLE 3 Augmented image counts per class in the MangoLeafDataset3
(Rahman et al., 2024).

Class Name
MLD3

Number of images

Anthracnose 1749

Bacterial Canker 2534

Cutting Weevil 1583

Die Back 1280

Gall Midge 2233

Powdery Mildew 776

Sooty Mould 1325

Healthy 1250

Total 12730
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features, high-dimensional embeddings were projected into a two-

dimensional space using t-distributed stochastic neighbor

embedding (t-SNE), offering visual insight into the model’s

discriminative capability.
3.3 ConvNeXt backbone architecture

In this study, ConvNeXt was selected as one of the core

backbone networks of the proposed CMDF-Net due to its ability

to effectively extract hierarchical features from input images by

leveraging the design principles of both ResNet and transformer-

based architectures. ConvNeXt is a convolutional neural network

that modernizes the classic ResNet architecture through

architectural refinements inspired by the success of ViTs,

achieving a competitive balance between performance and

efficiency in visual recognition tasks.

ConvNeXt comprises multiple stages, each containing a

sequence of blocks designed to progressively capture low-level to

high-level semantic features (Fu et al., 2025). Each block within

ConvNeXt replaces the traditional bottleneck structure of ResNet

with a streamlined stack of operations, composed of a depthwise

convolution (DWConv), a layer normalization (LN), a pointwise

convolution (1×1 Conv), and a GELU activation function.

Mathematically, the core block of ConvNeXt can be formulated

as follows. Let x ∈ RH�W�C represent the input tensor, whereH,W,

and C denote the height, width, and number of channels,

respectively. The transformation f (x) within a ConvNeXt block is
Frontiers in Plant Science 07
defined as Equation 1 (Ford et al., 2025).

f (x) = W2GELU(LN(W1 · DWConv(x))) (1)

where, DWConv represents the depthwise convolutional

operation with a kernel size of 7×7, designed to capture spatial

correlations within each channel independently.W1 andW2 denote

pointwise (1×1) convolution weights that project the input and

output feature spaces. LN is the layer normalization function, which

stabilizes training and accelerates convergence. GELU stands for

Gaussian error linear unit, providing smoother activation compared

to ReLU.

In this implementation, ConvNeXt was configured with the

“ConvNeXt-Tiny” variant to ensure a balanced trade-off between

computational cost and feature extraction capability. The network

was divided into four stages, where each stage contains multiple

ConvNeXt blocks and concludes with a downsampling layer that

reduces the spatial resolution while increasing the channel

dimension (Lu et al., 2025). The channel dimensions across the

stages were configured as ½96, 192, 384, 768�, and the number of

blocks per stage were ½3, 3, 9, 3�, respectively. To further enhance the
representational capacity of ConvNeXt, we integrated a FAM at the

output of each stage. Inspired by the SE networks, this module

adaptively recalibrates the feature maps along the channel

dimension. The mechanism operates in three steps: squeeze,

excitation, and reweighting. Let U ∈ RH�W�C in denote the

output feature map of a ConvNeXt stage. The channel-wise global

descriptor z ∈ RC is obtained via global average pooling given as

Equation 2 (Tao et al., 2022).
FIGURE 4

Overview of the proposed MangoLeafCMDF-FAMNet architecture, illustrating the dual-branch design consisting of ConvNeXt and ViT, integrated
with FAM and a CMDF mechanism for feature integration and disease classification.
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zc =
1

H �WoH
i=1oW

j=1Ui,  j,  c (2)

Then, the excitation step applies a gating mechanism using two

fully connected layers with non-linearity is shown in Equation 3.

s = s (W2 · d (W1 · z)) (3)

where, W1 ∈ R
C
r�C and W2 ∈ RC�C

r are the weights of the fully

connected layers, d is the ReLU activation function, s is the

sigmoid activation function, r is the reduction ratio (set to 16 in

this study) controlling the bottleneck. Finally, the recalibrated

feature map Û is obtained by channel-wise multiplication is given

in Equation 4.

Û c = sc · Uc (4)

This attention mechanism allows the network to selectively

emphasize informative features while suppressing less useful ones,

thereby boosting the model’s ability to focus on disease-related

patterns in mango leaf images. The output feature maps from all

ConvNeXt stages, enhanced by their respective attention modules,

are then passed to the fusion layer as shown Figure 5.
3.4 Vision transformer backbone
architecture

As a complementary backbone to ConvNeXt, the ViT was

employed in CMDF-Net to exploit the global context modeling

capabilities of self-attention mechanisms. ViT treats images as

sequences of non-overlapping patches, analogous to tokens in

natural language processing, and applies standard Transformer

encoders to capture long-range dependencies and global feature

representations, which are crucial for identifying disease patterns

distributed across different regions of mango leaves (Ergün, 2025).

The input image x ∈ RH�W�C is first divided into a grid of N

patches of size P � P where = HW
P2 . Each patch is flattened and

projected into a D-dimensional embedding space through a linear

layer as given Equation 5.

zi0 = E · flatten(xi) + pi,                       i = 1,   2,… :,N (5)

where, xi is the ith image patch,  E ∈ RD�(P2 ·C) is the learnable

patch embedding matrix, Pi ∈ RD is the learnable positional

embedding added to each patch token to retain spatial information.

In addition, a learnable classification token z½cls�0 ∈ RD is

prepended to the patch sequence, which serves as the aggregated

representation of the input image after processing through the

Transformer layers (Kamal et al., 2025). The final input to the

Transformer encoder is shown Equation 6.

Z0 = z½cls�0 ,   z10,   z
2
0,…… :,   zN�

0

h i
∈ R(N+1)�D (6)

The Transformer encoder consists of L identical layers, each

composed of a multi-head self-attention (MSA) mechanism

followed by a position-wise feed-forward network (FFN). Each

layer also includes residual connections and layer normalization

as seen Equations 7 and 8 (Lu et al., 2025).
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bZl = MSA(LN(Zl−1)) + Zl−1 (7)

Zl = FNN(LN(bZl)) + bZl ,               l = 1,… :, L (8)

Here, the MSA operation splits the input into h heads and

performs scaled dot-product attention in parallel as given in

Equation 9.

Attention(Q,  K ,  V) =   softmax(
QKTffiffiffiffiffi

dk
p )V (9)

where Q,  K ,  V ∈ R(N+1)�dk are the query, key, and value

matrices computed from the input via learned linear projections,

and dk =
D

h= is the dimensionality of each head. The softmax

function transforms the similarity scores into a probability

distribution as given the Equation 10.

softmax(ai) =
eai

on
j=1e

ai
              i = 1, 2,…, n (10)

The ViT backbone used in this study was based on the “ViT-

Base” variant, configured with the following parameters: patch size

P=16, embedding dimension D=768, number of transformer layers

L=12, number of attention heads h=12, feed-forward dimension

dff=3072.

To further enrich the discriminative capability of ViT features,

we introduced a FAM at the output of the transformer. This

module, similar to the one used in ConvNeXt, emphasizes

important channels in the output embedding of the classification

token z½cls�L , based on global channel context. Given the final

Transformer output ZL, the class token vector z½cls�L ∈ RD is passed

through a SE-inspired gating mechanism as shown in Equations 11

and 12 (Padshetty and Umashetty, 2024).

s = s (W2 · d (W1 · z
½cls�
L )) (11)

ẑ ½cls�L = s · z½cls�L (12)

This attention-weighted representation z½cls�L captures the

globally aggregated and recalibrated semantic information, which

is later fused with the multiscale ConvNeXt features during the

dynamic fusion stage of CMDF-Net as seen Figure 4. Also, the

global modeling capacity of ViT given as Figure 6 robust feature

extraction across both local textures and global structures in

diseased mango leaf images.
3.5 Dynamic feature fusion module

The Dynamic Feature Fusion Module (DFFM) was specifically

designed to effectively integrate the complementary strengths of

ConvNeXt and ViT backbones within the proposed CMDF-Net

architecture. While ConvNeXt provides rich local representations

through hierarchical convolutional processing, ViT contributes

global contextual dependencies via self-attention mechanisms

(Duan et al., 2025). However, naive concatenation or addition of

features from these heterogeneous sources may result in sub-
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optimal representations due to mismatched semantics and scale.

Therefore, DFFM aims to learn adaptive fusion weights that

dynamically recalibrate and align the semantic contributions from

both streams before final classification.
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Let Fcovn ∈ RC�H0�W 0
denote the multiscale feature map

extracted from the ConvNeXt backbone after the final FAM, and

ẑ vit ∈ RD be the ViT-encoded class token vector refined by its

respective FAM. To enable a joint fusion, the vector ẑ vit is first
FIGURE 6

Architectural illustration of the ViT module employed in the proposed model, depicting patch embedding, transformer encoding, and output token
generation stages.
FIGURE 5

Detailed schematic of the ConvNeXt backbone as implemented within the MangoLeafCMDF-FAMNet framework, showing key stages of
convolutional feature extraction and attention recalibration.
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spatially expanded and reshaped to match the spatial dimensions of

Fcovn, resulting in Fvit ∈ RC�H0�W 0
as shown in Equation 13 where a

learnable linear transformation aligns D and C (Li et al., 2025).

Fvit = reshape(Wv · ẑ vit + bv),      WveR
C�D   (13)

Next, both feature maps are concatenated along the channel

dimension to form a joint representation as Equation 14.

Fjoint = concat(Fcovn,   Fvit) ∈ R2C�H0�W 0
(14)

A gated attention mechanism is used to model the

interdependencies between the ConvNeXt and ViT features. The

joint feature map is passed through a squeeze operation using global

average pooling, followed by a two-layer fully connected network

with non-linear activations as provided by Equation 15 (Duan et al.,

2025). Where W1 ∈ R
2C
r �2C , W2 ∈ R

2C
r �2C and r = 16.

s = s (W2 · d (W1 · GAP(Fjoint)) (15)

The resulting channel-wise attention vector s ∈ R2C acts as a set

of dynamic fusion weights, controlling the contribution of each

channel. This vector is split into two components corresponding to

the original feature sources as provided by Equation 16. These

weights are then used to recalibrate the characteristics of each

branch as described in Equation 17.

scovn,   svit ∈ RC ,       s = ½scovn;   svit � (16)

F̂ covn = scovn ⊙ Fcovn,             F̂ vit = svit ⊙ Fvit   (17)

Finally, the recalibrated features are fused via element-wise

summation to obtain the final feature representation as described

in Equation 18.

Ffused = F̂ covn + F̂ vit (18)

The fused feature map Ffused ∈ RC�H0�W 0
is passed through a

global average pooling (GAP) layer, followed by a final fully

connected classification head to predict the disease class label.

This dynamic and learnable fusion strategy enables CMDF-Net to

adaptively emphasize the most informative modalities depending

on the content of each input image. The gating mechanism ensures

that disease-specific patterns, whether localized or distributed

globally, are optimally weighted, thereby enhancing the

robustness and accuracy of the classification process.
3.6 Training strategy and evaluation
protocol

The training strategy of the proposed MangoLeafCMDF-

FAMNet model was meticulously designed to ensure stable

convergence, optimal generalization, and fair performance

evaluation across all experimental scenarios. All experiments were

conducted using the PyTorch DL framework, ensuring efficient

handling of high-dimensional image data and deep architectural

components. Prior to training, all mango leaf images were resized to
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a spatial resolution of 224� 224 pixels to ensure compatibility with

the input dimensions of both ConvNeXt and ViT backbones. The

ConvNeXt and ViT modules within CMDF-Net were initialized

with pretrained weights from ImageNet-1K to leverage generic

image feature representations. All additional layers—including

FAM, DFFM, and the final classification head—were initialized

using Kaiming He initialization for ReLU-based layers and Xavier

initialization for linear projections, ensuring stable weight

distribution at the start of training.

The model was trained using the AdamW optimizer, which

combines adaptive gradient updates with decoupled weight decay

regularization. The initial learning rate was set to 5� 10−4 with a

cosine annealing scheduler to facilitate smooth convergence. A

warm-up phase of 10 epochs was employed, during which the

learning rate was linearly increased from 1� 10−5. The weight

decay was fixed at 1� 10−4, and a mini-batch size of 32 was used

throughout the training. The cross-entropy loss function was

utilized to compute the classification loss as described in Equation

19 (Zhou et al., 2019). Where yi is the ground-truth label and ŷi is

the softmax probability of the predicted class for the ith sample.

LCE = −o
N

i=1
yilog(byi) (19)

Each model was trained for a maximum of 100 epochs.

However, early stopping with a patience value of 15 epochs was

employed based on the validation loss to prevent overfitting and

unnecessary computations. To ensure reliable and unbiased

performance evaluation, 5-FCVP was performed. In each fold, the

dataset was split into training (80%) and validation (20%) sets,

maintaining class distribution. The average of all five folds was

reported for each evaluation metric. To comprehensively evaluate

the effectiveness of the proposed method, multiple performance

metrics were employed: CA, RCL, PRC, MCC, and k . These metrics

collectively provide insights into the model’s overall predictive

power, class-wise sensitivity, balance, and inter-rater agreement,

respectively. CA indicates the proportion of correctly classified

samples out of the total number of instances. It is calculated as

described in Equation 20 (Yavuz and Aydemir, 2016).

CA =
TP + TN

TP + TN + FP + FN
(20)

where TP, TN , FP, and FN denote the true positives, true

negatives, false positives, and false negatives, respectively. RCL, also

known as sensitivity or true positive rate, measures the ability of the

model to correctly identify positive instances as explained in

Equation 21. PRC reflects the proportion of true positive

predictions among all positive predictions made by the model as

shown in Equation 22 (Ergün, 2024).

RCL =
TP

TP + TN
(21)

PRC =
TP

TP + TPP
(22)
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MCC is a robust measure that takes into account all four

elements of the confusion matrix and is especially valuable for

imbalanced datasets as described in Equation 23 (Rozenfeld et al.,

2024). It returns a value between − 1 and 1, where 1 indicates

perfect prediction, 0 means no better than random guessing, and

− 1 represents total disagreement.

MCC =
TP · TN − FP · FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
p (23)

Kappa evaluates the agreement between predicted and actual

classifications, adjusted for chance. It is defined as given in the

Equation 24 (Ergün and Aydemir, 2020). Where p0 is the observed

agreement and pe is the expected agreement by random chance.

k =
p0 − pe
1 − pe

(24)
3.7 Classification head

The classification head module serves as the terminal decision-

making component of the CMDF-Net architecture, synthesizing the

high-level, semantically rich features obtained from the dynamically

fused ConvNeXt and ViT representations. Its primary objective is to

project the fused feature map into a low-dimensional space

corresponding to the number of disease categories and produce

the final class probabilities through a softmax activation function.

We denote the output feature tensor generated by the DFF module

as Ffused ∈ RR�W�C , whereH,W, and C represent the spatial height,
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width, and number of channels of the fused feature map,

respectively. Before classification, global spatial information is

condensed using a GAP operation as described in Equation 25

(Hsiao et al., 2019).

z = GAP(Ffused) ∈ RC (25)

This operation ensures translational invariance and reduces the

number of trainable parameters by eliminating the need for fully

connected layers at the spatial level. The pooled vector z is then

passed through a fully connected (FC) layer followed by a softmax

function to obtain the final class probabilities as explained in

Equation 26.

ŷ = softmax(Wcz + bc) (26)

where Wc ∈ RK�C and bc ∈ RK denote the weight matrix and

bias vector of the classification layer, and K is the number of target

classes. To enhance the expressiveness of the classification head

while maintaining generalization, dropout regularization with a rate

of 0.3 was employed prior to the final linear layer. This stochastic

regularization strategy helps mitigate overfitting by randomly

deactivating neurons during training.
4 Results

In this study, the proposed MangoLeafCMDF-FAMNet

architecture was rigorously evaluated using a 5-FCVP across three

publicly available datasets: MLD1, MLD2, and MLD3. The training

phase employed the AdamW optimizer with an initial learning rate

set to 0.00005 and a weight decay of 0.0001. Cross-entropy loss was

used as the objective function to guide the optimization process.

Model performance was assessed comprehensively using multiple

evaluation metrics, namely CA, RCL, PRC, MCC, and kappa. In

addition, confusion matrices and high-dimensional feature

distributions visualized through t-SNE were generated to provide

further insights into the discriminative capability of the model.

Table 4 summarizes the performance metrics obtained for each fold

across all three datasets. For MLD1, the model achieved remarkably

high performance, consistently exceeding 99.00% CA across all

folds. Specifically, Fold 3 yielded a perfect CA, RCL, and PRC of

1.0000, with corresponding MCC and kappa of 1.0000, indicating

flawless classification without any mispredictions. Even in the

comparatively lower-performing Fold 4, MangoLeafCMDF-

FAMNet still maintained an outstanding CA of 0.9938,

demonstrating its robustness against potential variability in the

data splits. Similarly, for MLD2, the model maintained exceptional

performance. Perfect scores were achieved in Folds 3 and 5,

mirroring the trends observed in MLD1. Notably, the lowest CA

across all folds was 0.9970, which still reflects a near-perfect

classification capability. The consistently high MCC and kappa

across folds further underline the model’s strong agreement

between the predicted and true class labels, confirming its

reliability. On MLD3, which is inherently more challenging due

to greater symptom variability and inter-class similarity,

MangoLeafCMDF-FAMNet continued to demonstrate excellent
TABLE 4 Classification results of MangoLeafCMDF-FAMNet on the
MLD1, MLD2, and MLD3 across 5- FCVP.

Datasets Fold
Metrics

CA RCL PRC MCC Kappa

MLD1

Fold 1 0.9992 0.9992 0.9992 0.9991 0.9991

Fold 2 0.9977 0.9976 0.9978 0.9973 0.9973

Fold 3 1.0000 1.0000 1.0000 1.0000 1.0000

Fold 4 0.9938 0.9937 0.9937 0.9929 0.9929

Fold 5 0.9984 0.9985 0.9985 0.9982 0.9982

MLD2

Fold 1 0.9980 0.9979 0.9980 0.9975 0.9975

Fold 2 0.9970 0.9969 0.9972 0.9963 0.9962

Fold 3 1.0000 1.0000 1.0000 1.0000 1.0000

Fold 4 0.9990 0.9991 0.9989 0.9988 0.9987

Fold 5 1.0000 1.0000 1.0000 1.0000 1.0000

MLD3

Fold 1 0.9949 0.9956 0.9960 0.9941 0.9941

Fold 2 0.9918 0.9932 0.9923 0.9905 0.9904

Fold 3 0.9937 0.9945 0.9941 0.9927 0.9927

Fold 4 0.9945 0.9953 0.9950 0.9936 0.9936

Fold 5 0.9965 0.9970 0.9967 0.9959 0.9959
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performance. The CA values across the five folds ranged from

0.9918 to 0.9965, with the highest score achieved in Fold 5. RCL and

PRC closely mirrored the trends of CA, and the high MCC and

kappa reaffirmed the model’s ability to generalize well even under

more complex conditions.

Following, a detailed class-wise performance analysis was

conducted to further assess the robustness and generalization

ability of MangoLeafCMDF-FAMNet. Specifically, RCL and PRC

were calculated for each class across all folds on the MLD1, MLD2,

and MLD3 datasets. For the MLD1 dataset, the model

demonstrated outstanding classification capabilities. As shown in

Figure 7, the average RCL values were 0.9988 for Anthracnose,

0.9988 for Bacterial Canker, 1.0000 for Cutting Weevil, 0.9987 for

Die Back, 0.9951 for Gall Midge, 0.9987 for Healthy leaves, 0.9961

for Powdery Mildew, and 0.9962 for Sooty Mould. In terms of PRC,

the averages were equally high, reaching 1.0000 for several classes,

with minor reductions to 0.9962 and 0.9935 for Powdery Mildew

and Sooty Mould, respectively. These results confirmed that the

model could accurately distinguish subtle disease symptoms even

under slight class imbalance or symptom similarity.

Similarly, in the MLD2 dataset, the model achieved nearly

perfect classification. The average RCL scores were recorded at

0.9991 for Anthracnose, 1.0000 for Die Back, 0.9990 for Gall Midge,

1.0000 for Healthy leaves, and 0.9958 for Powdery Mildew.

Correspondingly, the PRC values were consistently excellent, with

an average exceeding 0.9990 for all categories. Notably, the model

maintained strong performance even in folds where small

fluctuations in Powdery Mildew recognition were observed,

demonstrating resilience against minor dataset variations.

The analysis of the MLD3 dataset, which is inherently more

challenging due to the larger number of disease classes, also revealed

robust model performance. The average RCL values across folds

were 0.9869 for Anthracnose, 0.9949 for Bacterial Canker, 0.9910

for Cutting Weevil, 0.9992 for Die Back, 0.9909 for Gall Midge, and

1.0000 for Healthy leaves, Powdery Mildew, and Sooty Mould. PRC

values aligned closely, maintaining averages above 0.9850 for all

categories. While slight drops were noted in classes such as

Anthracnose and Sooty Mould, the model overall preserved an

exceptional balance between sensitivity and specificity. To visually

capture these findings, RCL and PRC radar plots were generated

across all folds, as depicted in Figure 7. In these visualizations, Fold

1 is represented in dark blue, Fold 2 in orange, Fold 3 in gray, Fold 4

in yellow, Fold 5 in dark navy, and the average of all folds is plotted

in green.

Furthermore, to comprehensively evaluate the class-level

robustness of MangoLeafCMDF-FAMNet, class-wise MCC and

Kappa were calculated and illustrated in Figure 8 for the MLD1

dataset across the 5-FCVP. Specifically, MCC scores remained

extremely high for all disease categories, often reaching perfect

agreement across most folds. Minor variations were observed only

in the Gall Midge and Sooty Mould classes, where the MCC values

slightly dropped but still remained above 0.98, demonstrating the

strong generalization capacity of the model without signs of

overfitting. Similarly, the Kappa mirrored the MCC trends, with

near-perfect agreement across all folds and classes. On average, both
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MCC and Kappa exceeded 0.99 for nearly every class, highlighting

the model’s consistent ability to correctly classify diverse disease

symptoms under varying validation conditions.

In addition, we further computed the MCC and Kappa for the

MLD2, as visualized in Figure 9. As illustrated, the MCC scores for

all classes consistently achieved near-perfect values, with almost

every fold yielding scores of 1.0000 across the Anthracnose, Die

Back, Healthy, and Powdery Mildew categories. A slight deviation

was observed in the Gall Midge class during Fold 1 and Fold 2,

where the MCC values dropped marginally but still remained

exceedingly high, thereby underscoring the model’s remarkable

stability even in the presence of subtle intra-class variations.

Similarly, the Kappa mirrored these trends, maintaining values

close to 1.0000 across all classes and folds, reaffirming the

excellent agreement between predicted and true labels. The

minimal variability observed in the Gall Midge class reflects

realistic complexities inherent in agricultural imaging datasets, yet

the exceedingly high average scores across all classes strongly

indicate that MangoLeafCMDF-FAMNet successfully mitigates

overfitting and maintains robust generalization.

Furthermore, to ensure a comprehensive performance analysis,

we computed the class-wise MCC and Kappa of the

MangoLeafCMDF-FAMNet on the MLD3, as presented in

Figure 10. The results demonstrated that the proposed model

consistently achieved exceptionally high MCC values across all

classes and folds. Specifically, MCC scores for classes such as Die

Back, Healthy, Powdery Mildew, and Sooty Mould remained at or

extremely close to 1.0000 across all folds. Although slight variations

were noted in classes like Anthracnose and Bacterial Canker, the

MCC scores still hovered around 0.98–0.99, reflecting highly

reliable performance even in more challenging classes. Similarly,

the Kappa closely followed the MCC trends, indicating outstanding

agreement between predicted and ground truth labels across all

folds and classes.

Fur thermore , the fea ture d i s t r ibu t ions fused by

MangoLeafCMDF-FAMNet were qualitatively analyzed using t-

SNE, as illustrated in Figure 11 for each dataset individually. t-

SNE serves as a powerful non-linear dimensionality reduction

technique that projects high-dimensional feature representations

into a two-dimensional space, facilitating the visualization of

complex feature relationships. The t-SNE plots reveal that

features extracted by MangoLeafCMDF-FAMNet exhibit clear,

compact, and well-separated clusters for different disease classes

across all three datasets. This visual evidence supports the

numerical findings, indicating that the model effectively learns

discriminative and disease-specific representations without

significant overlap among categories. Moreover, the distinct

cluster formations further demonstrate the absence of overfitting,

affirming the model’s strong generalization capability to

unseen samples.

The average confusion matrices for the MLD1, MLD2, and

MLD3 datasets, computed across the 5-FCVP and illustrated in

Figure 12, provide critical insights into the class-specific

discriminative capabilities of MangoLeafCMDF-FAMNet. These

matrices (vertical axis: true labels; horizontal axis: predicted
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labels) reveal near-perfect diagonal dominance, underscoring the

model’s ability to minimize misclassifications while maintaining

high intra-class consistency. For MLD1, the matrix demonstrated

exceptional precision, with Anthracnose and Bacterial Canker—

classes often confused due to overlapping lesion patterns—

achieving 159.80 correct predictions, respectively. Only minor off-

diagonal errors were observed: 0.20 of Anthracnose samples were

misclassified as Sooty Mould, while 0.20 of Bacterial Canker cases

were incorrectly assigned to Healthy. The Cutting Weevil class

exhibited flawless performance, with all 160 samples correctly

identified. Similarly, Die Back and Gall Midge achieved near-
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perfect classification, with diagonal values of 159.80 and

159.40, respectively.

In MLD2, the matrix highlighted robust performance under

increased symptom variability. Gall Midge, a class with subtle

morphological features, achieved 199.80 correct predictions, with

only 0.20 confusion with Healthy leaves. Die Back and Healthy were

resolved with high precision, as evidenced by diagonal entries of

200.00. The most notable misclassification occurred in the Powdery

Mildew class, where 0.60 samples were erroneously predicted as

Gall Midge, likely due to shared textural patterns in late-

stage infections.
FIGURE 7

Radar plots visualizing class-wise RCL and PRC metrics for MangoLeafCMDF-FAMNet across all five folds of the 5-FCVP on MLD1, MLD2, and MLD3
datasets. Each fold is color-coded, with the green line representing the average across folds (a) RCL for MLD1, (b) PRC for MLD1, (c) RCL for MLD2,
(d) PRC for MLD2, (e) RCL for MLD3, and (f) PRC for MLD3.
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For MLD3, the matrix further validated the model’s

generalization capability. The Die Back class, often prone to

misclassification due to its overlapping early-stage symptoms with

Gall Midge, achieved a strong diagonal value of 255.80 correct

predictions, reflecting the model’s ability to discern subtle

differences in lesion distribution. Powdery Mildew, a class with

visually ambiguous fungal patterns, was correctly classified in

154.80 instances, with only 0.20 samples misassigned to Die Back

—a negligible error likely attributable to shared textural features in

advanced infection stages. Gall Midge, despite its complex

morphological variations across growth cycles, demonstrated

exceptional performance with 442.60 accurate predictions. A

minimal leakage of 3.80 samples to Sooty Mould was observed,

potentially stemming from similarities in necrotic patterning under

low-light imaging conditions. The Healthy class once again

exhibited flawless discriminative capability, with all 250.00

samples correctly identified, underscoring the model’s precision

in isolating disease-specific features from healthy tissue. Sooty

Mould, a class frequently confused with Powdery Mildew in

conventional methods, achieved a near-perfect diagonal score of

264.80, further highlighting the architecture’s proficiency in

resolving spectral ambiguities. These results collectively affirm

that MangoLeafCMDF-FAMNet generalizes robustly across
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diverse data distributions, making it particularly suitable for real-

world agricultural applications where symptom variability and class

overlap are prevalent.

In order to robustly validate the effectiveness of the proposed

MangoLeafCMDF-FAMNet, an extensive comparative analysis

was conducted against prominent baseline models, including

MangoLeafCMDF-Net, ViT, and ConvNeXt, across the

MLD1, MLD2, and MLD3 datasets. The results, summarized in

Table 5, clearly demonstrate the superiority of MangoLeafCMDF-

FAMNet across all evaluation metrics. Specifically, on MLD1,

MangoLeafCMDF-FAMNet achieved a CA of 0.9978,

outperforming MangoLeafCMDF-Net with 0.9961, ConvNeXt

with 0.9939, and ViT with a considerably lower score of 0.9256.

In terms of RCL and PRC, MangoLeafCMDF-FAMNet consistently

achieved 0.9978 for both, substantially higher than the competing

models. On MLD2, the proposed model maintained its leading

performance, reaching a CA of 0.9988, while MangoLeafCMDF-

Net, ConvNeXt, and ViT achieved 0.9960, 0.9814, and 0.9176,

respectively. Even on the more challenging MLD3 dataset,

MangoLeafCMDF-FAMNet maintained its superiority, recording

a CA of 0.9943, whereas ConvNeXt achieved 0.9864 and ViT

remained at 0.9111. When considering robustness metrics,

MangoLeafCMDF-FAMNet attained an MCC of 0.9975 and a
FIGURE 8

Per-class MCC and Kappa metrics achieved by MangoLeafCMDF-FAMNet for the MLD1 dataset, evaluated over the 5-FCVP. Colored lines indicate
individual folds, while the green line shows the average performance (a) MCC for MLD1 and (b) Kappa for MLD1.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1638520
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ergün 10.3389/fpls.2025.1638520
Kappa of 0.9975 on MLD1, again consistently exceeding those of

the other methods. This outstanding performance was mirrored

across MLD2 and MLD3, highlighting not only accuracy but also

high reliability and class-wise agreement.

To rigorously evaluate whether the performance differences

between the proposed MangoLeafCMDF-FAMNet and baseline

architectures were statistically significant, we conducted a Tukey

Honest Significant Difference (HSD) post-hoc test based on the CA

values obtained across five folds for each dataset. The results

revealed that MangoLeafCMDF-FAMNet significantly

outperformed the ViT model across all three datasets (MLD1,

MLD2, and MLD3), with adjusted p-values consistently below

0.01. Likewise, when compared to the ConvNeXt backbone, the

proposed method demonstrated statistically significant

improvements in MLD1 (p = 0.024) and MLD3 (p = 0.038), while

achieving a strong yet marginally nonsignificant advantage in

MLD2 (p = 0.067). These findings underscore the consistent

superiority of MangoLeafCMDF-FAMNet in terms of CA,

particularly highlighting the added value of its attention-

enhanced, cross-modal fusion strategy. Furthermore, the absence

of overlapping confidence intervals supports the robustness of the

proposed model’s improvements and suggests that the observed
Frontiers in Plant Science 15
performance gains are unlikely due to random variation

or overfitting.
5 Conclusion

This study introduced MangoLeafCMDF-FAMNet, a novel

attention-augmented hybrid DL architecture tailored for robust

multi-class mango leaf disease classification. By synergistically

combining ConvNeXt and ViT backbones through a CMDF

strategy, and further enhancing their output with FAMs, the

proposed method effectively captured both fine-grained local

patterns and global semantic context. Extensive experiments on

three publicly available datasets (MLD1, MLD2, and MLD3)

demonstrated the model’s superior classification performance

across various evaluation metrics, including CA, RCL, PRC,

MCC, and Kappa.

The proposed architecture consistently achieved exceptionally

high accuracies across all datasets, reaching 0.9978 on MLD1,

0.9988 on MLD2, and 0.9943 on MLD3. These results notably

outperformed competing baselines such as ViT, ConvNeXt, and

MangoLeafCMDF-Net. Class-wise evaluations further confirmed
FIGURE 9

Class-wise analysis of (a) MCC and (b) Kappa obtained from MangoLeafCMDF-FAMNet on the MLD2 dataset under 5-FCVP. Individual folds are
color-coded; the green line indicates the averaged result.
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the model’s capacity to distinguish complex and visually similar

disease symptoms with high RCL and PRC. Visualizations via t-

SNE and confusion matrices affirmed the learned feature

separability and robustness against inter-class confusion, while

the statistical analyses via Tukey HSD post-hoc testing verified

that the observed improvements were statistically significant (p <

0.05) in most comparisons, particularly over the ViT and

ConvNeXt baselines.

Furthermore, the architecture demonstrated a remarkable

ability to generalize without overfitting, even on MLD3—a dataset

characterized by greater class imbalance and symptom variability.

The inclusion of FAMs was instrumental in adaptively amplifying

disease-relevant features while suppressing irrelevant or redundant

information, thereby enhancing class separability across diverse

visual domains.

Despite these promising outcomes, the study is not without

limitations. First, although the model was tested across three

comprehensive datasets, all samples were derived from controlled

imaging conditions. Future work should explore the model’s

applicability to in-field images collected under varying lighting,

occlusion, and background clutter. Second, while the proposed
Frontiers in Plant Science 16
model achieved excellent results in disease identification, it

currently does not support disease severity estimation, which is

crucial for more nuanced decision-making in real-world scenarios.

As future research directions, we aim to extend the

MangoLeafCMDF-FAMNet architecture for real-time mobile

deployment in smart agriculture systems, incorporate multimodal

inputs such as hyperspectral or thermal imagery to improve

resilience under environmental variations, and explore the

integration of explainability modules to foster model transparency

for end-users such as farmers and agronomists. In conclusion,

MangoLeafCMDF-FAMNet represents a scientifically grounded,

practically scalable, and statistically validated advancement in

automated plant disease recognition.
6 Discussion

The experimental findings obtained in this study demonstrate

that MangoLeafCMDF-FAMNet offers a highly effective solution

for the complex task of multi-class mango leaf disease classification.

By integrating ConvNeXt and ViT within a unified hybrid
FIGURE 10

Visualization of per-class (a) MCC and (b) Kappa for MangoLeafCMDF-FAMNet on the MLD3 dataset, based on 5-FCVP. Fold-wise trends and
average values are presented to demonstrate performance consistency.
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architecture and augmenting their capabilities with FAM, the

proposed model achieves a refined balance between local feature

extraction and global semantic understanding. This synergy enables

precise discrimination of disease types, particularly in cases where

subtle morphological differences challenge conventional classifiers.

The model’s high performance across three publicly available

mango leaf datasets confirms its robustness and generalizability

under controlled conditions. CA approaching 0.999, alongside

strong MCC and kappa, indicate the architecture’s capacity to

produce stable, reliable, and interpretable predictions.

Furthermore, the CMDF mechanism contributes significantly to

the enrichment of feature representations, enabling more resilient

learning from heterogeneous visual patterns.

Despite these strengths, it is essential to contextualize the results

within the scope of the datasets utilized. All datasets in this study were
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collected under relatively uniform environmental settings,

characterized by consistent lighting, minimal occlusions, and

simplified backgrounds. While such conditions are favorable for

model training and benchmarking, they may not fully reflect the

variability encountered in operational agricultural environments. In

practice, field images often contain challenges such as partial leaf

visibility, shadowing, cluttered scenes, and inconsistent illumination,

which may affect the model’s generalization performance.

This observation highlights the importance of future work

focused on validating the proposed framework using in-field

image datasets collected in diverse and uncontrolled

environments. Incorporating real-world variability into the

training and evaluation pipeline will facilitate the development of

more adaptive and field-deployable models. In addition, real-time

image acquisition technologies, such as mobile devices and drone
FIGURE 11

Two-dimensional t-SNE plots of the fused feature embeddings produced by MangoLeafCMDF-FAMNet across (a) MLD1, (b) MLD2, and (c) MLD3
datasets. The visualization illustrates the discriminative capacity and separability of learned features among disease classes.
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platforms, present promising avenues for extending the system

toward scalable agricultural decision support.

Another important consideration relates to the clinical utility of

disease severity estimation. While the present model effectively

identifies the disease type, it does not explicitly address the

severity or progression stage of the infection. In real-world

agricultural applications, the intensity of disease symptoms is a

critical factor influencing treatment strategies and resource

allocation. Thus, expanding the model to support ordinal or

regression-based predictions for disease severity would

significantly enhance its applicability. Although the datasets used

in this study did not provide severity annotations, future efforts will

focus on curating such datasets and developing models capable of

jointly performing disease identification and severity grading.

Moreover, it is worth considering that the absence of diverse

environmental conditions and severity-level annotations in the

training data may limit the interpretability and practical utility of

the current system. Addressing these challenges through targeted

dataset development, attention to domain adaptation, and auxiliary
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prediction tasks will be essential for realizing the full potential of

DL-based disease diagnosis in agricultural practice.

In conclusion, MangoLeafCMDF-FAMNet offers a robust and

scalable architecture for automated mango leaf disease classification.

By leveragingmulti-level attentionmechanisms and cross-modal fusion,

the model provides a strong foundation for high-accuracy plant disease

recognition. Future directions should emphasize improving real-world

generalization and enhancing the interpretability of the system through

disease severity assessment, ultimately supporting the broader goals of

precision agriculture and sustainable crop management.

To evaluate the practical applicability of the proposed

MangoLeafCMDF-FAMNet in real-world settings, we report key

computational characteristics, including model complexity and

inference efficiency. The model contains approximately 46.9 million

trainable parameters, representing a balanced architectural design that

ensures high discriminative power while maintaining computational

feasibility. All training and evaluation experiments were performed

using the PyTorch DL framework on a standard workstation equipped

with an Intel(R) Core(TM) i7–9700 CPU and 8 GB of RAM, without
FIGURE 12

Averaged confusion matrices of MangoLeafCMDF-FAMNet for the (a) MLD1, (b) MLD2, and (c) MLD3 datasets, computed over 5-FCVP. The vertical
axis denotes the actual class labels, while the horizontal axis shows the predicted class labels.
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access to GPU acceleration. Under this configuration, the average

inference time for a single 224×224-pixel image was observed to be

approximately 180–200 milliseconds, depending on system load and

batch scheduling. These results suggest that MangoLeafCMDF-FAMNet

remains computationally viable even in resource-limited environments,

which is particularly beneficial for field-deployable plant disease diagnosis

systems where high-end hardware may not be available.
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