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Agriculture stands as a foundational element of life, closely linked to the progress

and development of society. Both humans and animals depend on agriculture for

a wide range of essential services, such as producing oxygen and food, along

with vital raw materials for clothing, medicine, and other necessities. Given

agriculture’s vital role in supporting individual well-being and driving global

progress, protecting and ensuring the long-term sustainability of agriculture is

essential. This is crucial for securing resources and maintaining environmental

balance for future generations. In this context, in our review we have examined

the various factors that can interfere with the normal physiological and

developmental functions of plants and crops. These factors, referred to

scientifically as stressors or stress conditions, include a wide range of both

biotic and abiotic challenges. In this work we have systematically addressed all

the major categories of stress that plants may encounter throughout their

lifecycle. Additionally, because plants tend to exhibit recognizable physiological

or biochemical responses to stress, we have cataloged the associated stress

indicators. These indicators were identified through various assessment

techniques, including both destructive and non-destructive approaches. A

significant advancement highlighted in our review is the integration of Machine

Learning (ML) algorithms with non-destructive methodologies, which has

substantially enhanced the accuracy, scalability, and real-time capability of

plant stress detection. These ML-enhanced systems leverage high-dimensional

data acquired through remote sensingmodalities, such as hyperspectral imaging,

thermal imaging, and chlorophyll fluorescence. These ultimately help in enabling

the early identification of biotic and abiotic stress signatures. Through advanced

pattern recognition, feature extraction, and predictive modeling, ML facilitates

proactive anomaly detection and stress forecasting, thereby mitigating yield
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losses and supporting data-driven precision agriculture. This convergence

represents a significant step toward intelligent, automated crop monitoring

systems. Finally, we conclude the article with a concise discussion of the

potential positive roles that certain stress conditions may play in enhancing

plant resilience and productivity.
KEYWORDS

crop stress types, stress analysis, destructive analysis techniques, non-destructive
analysis techniques, machine learning analysis
Introduction

With time, the human population has continued to grow, along

with the number of farm animals such as chickens, cows, camels, and

others. According to the data from the United Nations (UN), the

current human population is approximately 8.2 billion, while the

exact number of farm animals remains uncertain and can only be

estimated (Worldometer, 2024). To meet fundamental needs such as

nutrition, shelter, clothing, medicine, energy, oxygen production,

water cycle regulation, livestock feed, and raw materials for

industry, plants and crops play a central role. They serve as the

primary source of essential resources that are crucial for sustaining

life and supporting the survival of all living beings (Marchev et al.,

2021; Brown et al., 2022; Jørgensen et al., 2022). However, plants and

crops are persistently exposed to a wide array of external and internal

stressors. These stress-inducing factors impact their physiological

activities, growth, development, and overall survival. Stress is widely

described as any adverse occurrence or scenario that has a negative

impact on a plant’s metabolism.

Stress factors also known as stressors, arise from a combination

of human-induced activities such as industrialization, deforestation,

pollution, and unsustainable farming practices, along with those

originating from natural processes such as droughts, floods, pests,

and diseases. These collectively impose significant pressure on

agricultural systems. For instance, the impacts of global warming

(Lesk et al., 2021; Zandalinas et al., 2021; Singh et al., 2022) have led

to noticeable alterations in rainfall patterns across different regions

of the world, causing either an increase or decrease in precipitation

levels. These shifts influence other climatic variables that are

associated with plant and crop stress. This includes fluctuations

in temperature patterns, variations in humidity levels, and changes

in wind strength and direction (Grossman, 2023). Warmer and

humid conditions create a favorable environment for pathogens to

reproduce with quick successions, which can cause stress in plants

and crops. In this condition, plants must adapt to these shifting

environmental conditions through physiological processes,

ultimately leading to decreased overall yield. Furthermore, the

intricate interplay between multiple abiotic and biotic stressors

often results in tradeoffs; enhancing tolerance to one stressor may

inadvertently increase a plant’s vulnerability to another stress
02
(Kopecká et al., 2023). Due to the exposure to such circumstances

that are unfamiliar and related to stress factors, these will be

considered a hazard for the adopted genotypes. Additionally, the

unfortunate reduction in available fertile land, along with the

evolution of pests and pathogens that have become more resistant

to pesticides and herbicides, further exacerbates the challenges faced

by modern agriculture. These specific reasons have made the study

of how crops and plants respond to these evolving stress factors very

important in the recent past (Kashyap and Kumar, 2021). To

counteract the aforementioned reasons, a careful discernment of

the responses by plants to stress is now inevitable. This knowledge is

essential for developing such crop varieties that will be capable of

withstanding rapidly changing climatic conditions. However, with

time, plants and crops have also evolved morphologically,

physiologically, biochemically, and in terms of molecular

operational adaptation levels. This has made them capable of

handling these stressors by sensing them at an appropriate time

and taking the correct measures against them (Chakraborti et al.,

2022; Zahedi et al., 2025). Plants and crops have evolved very

intricate communication networks within their bodies that are

based on hormone signaling, the use of metabolites and stress

protein responsiveness. All these evolutionary skill sets that are

developed by crops and plants enable them to withstand or adapt to

upcoming unknown stressful conditions either from humans or

nature itself (Ashraf et al., 2018; Mansour and Hassan, 2022).

In the past, assessing plant stress primarily involved destructive

methods, which required harvesting plant tissues to analyze their

physiological and biochemical attributes. Techniques such as

chlorophyll extraction, measuring leaf water potential, and

evaluation of enzyme activities or hormone levels in the laboratory

were commonly employed (Galieni et al., 2021).While these methods

provided precise results, they were often labor-intensive, time-

consuming, and unsuitable for large-scale agricultural monitoring.

With advancements in sensing technologies, non-destructive

methods have become increasingly favored. Approaches such as

hyperspectral imaging, thermal infrared sensing, and fluorescence

detection now enable researchers to monitor stress in real time

without harming the plants (Ang and Lew, 2022).

Moreover, remote sensing technologies, including drones,

Unmanned Aerial Vehicles (UAVs), satellites, and ground-based
frontiersin.org
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sensor networks allow for the collection of vast amounts of data

across extensive agricultural regions, offering continuous, high-

resolution insights into plant health (Dong et al., 2024). The

application of Machine Learning (ML) has further enhanced the

capabilities of non-destructive techniques by enabling

the automated detection, classification, and prediction of plant

stress (Gill et al., 2022). By training ML models on datasets

consisting of spectral signatures, thermal patterns, or image-based

features, these systems can accurately identify different stress

conditions such as drought stress, nutrient deficiencies, and

disease infections, and even forecast stress development before

visible symptoms manifest (Elvanidi and Katsoulas, 2022a; Rico-

Chávez et al., 2022). Unlike previous reviews, this work emphasizes

the synergy between ML algorithms and remote sensing techniques

in enabling real-time, scalable plant stress assessment.

The remainder of this article is organized as follows: section 2

presents a comprehensive analysis of the biotic and abiotic stresses.

A discussion on the stress indicators that are caused by the stress

factors is provided in section 3. In section 4 we have included a brief

discussion of destructive and non-destructive stress analysis

techniques. The readers will find a discussion on the use of ML

algorithms in section 5. These algorithms are integrated with non-

destructive stress analysis methods to enhance precision and

forecast future occurrences. In section 6 we have discussed the
Frontiers in Plant Science 03
benefits of stress to the plants and crops. Figure 1 offers a clear and

comprehensive flow diagram outlining the search strategy

employed for this article.
Types of crop stress

Crop/Plant stress is defined as any external condition that may

adversely affect a plant’s growth and productivity. These stressors

are generally divided into two main types: abiotic, resulting from

environmental or physical causes, and biotic, resulting from living

organisms. This section offers an in-depth exploration of the main

categories and subcategories of plant stress. To enhance the readers’

comprehension, Figure 2 features a detailed flow diagram

illustrating the classification of these stress factors.
Abiotic stress

Abiotic stress on crops and plants is defined as the effects of the

conditions that are centric to the environment excluding those

caused by living organisms. Very common types of this stress type

include the effects due to extreme changes in temperature. These

can trigger drought, which in turn increases the salinity of the soil in
FIGURE 1

Flowchart Of Our Article And Adopted Research Methodology.
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some specific cases. Many more types of abiotic stress will be

discussed in the next subsection, where readers will find brief

discussions on each type.

Drought stress
Drought is a natural phenomenon that occurs when water is not

available. This water can be in the form of rain, running rivers,

dammed waters, or groundwater. Whenever drought hits a region, we

can see that it detrimentally affects plant growth, which in turn has an

adverse effect on yield. Drought-affected areas are essentially disturbed

in homeostasis, which interferes with crucial physiological and

biochemical functions. Key impacts of stress on crops and plants

due to drought include diminished cell turgor, stomatal closure, and

suppressed photosynthetic activities due to restricted CO2 uptake.
Frontiers in Plant Science 04
Drought stops the uptake of the nutrients and produces a hormonal

imbalance, which is the reason for increased levels of Abscisic Acid

(ABA) (Reinelt et al., 2023; Tian et al., 2025). Drought also has the

tendency to increase Reactive Oxygen Species (ROS), which causes

oxidative damage. Various researchers have found that all of the

aforementioned phenomena caused by drought (whether recent or

ongoing) will disrupt biomass production, hinder reproductive

processes, and cause substantial yield declines. However, it has been

found that, over time, plants have also evolved to counteract the effects

of drought, including through morphological alterations such as

increased root-to-shoot ratio, osmotic regulation through the

buildup of compatible solutes, such as proline and glycine betaine

(Ozturk et al., 2021; Chachar et al., 2025) and the activation of

drought-responsive genetic pathways that enhance tolerance.
FIGURE 2

Flow diagram illustrating the various types of stress, or stressors, experienced by crops and plants. These stressors are categorized as abiotic or
biotic.
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Flooding/waterlogging stress
Waterlogging and flooding are critical environmental stressors

that interfere with vital physiological and metabolic activities in

plants. When soils become saturated with water, air is expelled from

soil pores, creating oxygen-deficient conditions (hypoxia or anoxia)

that severely impair aerobic respiration in the root zone (Zahra

et al., 2021). This lack of oxygen compromises mitochondrial

Adenosine Triphosphate Production (ATP), thereby disrupting

energy-dependent processes such as nutrient and ion transport.

Prolonged anaerobic conditions may result in stunted root

development (hypoplasia), the formation of air-filled cavities in

roots (aerenchyma), and, in severe scenarios, root tissue death

(necrosis) (Teoh et al., 2022). Furthermore, researchers have

mentioned that saturation also alters the soil’s redox balance,

which influences the solubility of essential nutrients. This, in turn,

typically causes deficits in the nitrogen, phosphorus, and potassium

absorption, while at the very same time increasing the consolidation

of potentially toxic elements such as manganese and iron. Toxic

effects due to ethanol, methane and lactic acid can also be seen in

such scenarios as these are byproducts of the flooded soils. The

buildup of ethylene causes various aging-related symptoms that are

readily seen in the leaves of crops and plants. Initially, yellowing of

the leaves is one symptom; however, shedding and shoot elongation

can also be observed (Gu et al., 2021). However, with the

advancements in findings on this subject over time, it has also

been concluded that species tolerance, growth stage, flood duration,

and soil characteristics also play a critical role.

Salinity stress
Salinity stress is a critical abiotic factor that significantly affects a

plant’s growth, development, and productivity by interfering with

key physiological, biochemical, and molecular functions (Sahito

et al., 2024). Elevated levels of soluble salts, particularly sodium

chloride (NaCl) decrease the soil’s water potential in the

rhizosphere. This leads to osmotic stress, which impedes root

water uptake even when soil moisture is present. This osmotic

stress disrupts cellular turgor, limits cell elongation, and ultimately

restricts overall plant development. Concurrently, ionic stress

occurs when excess sodium (Na+) and chloride (Cl−) ions

accumulate in plant tissues, disrupting enzymatic processes,

destabilizing cell membranes, and impairing metabolic pathways

(Shaikh et al., 2022; Yuan et al., 2024). Various researchers have

mentioned that an increased concentration of sodium in the soil has

the tendency to disrupt the digestion of important nutrients. These

nutrients include potassium (K+), calcium (Ca2+), and magnesium

(Mg2+). This imbalance of nutrients in crops and plants can result

in deficiencies. However if we take a closer look at the cellular level,

we will find out that an increase in salinity also tends to activate

oxidative stress ROS, which results in lipid membrane degradation,

protein malfunction, and genetic material damage. Some obvious

signs of an increase in salinity include chlorosis, necrosis, premature

leaf drop, and reduced overall biomass. However, the literature tells

us that the severity of the aforementioned stress is also dependent

on the tolerance of a species to the stressed environment, its growth

stage, the type of salt accumulated in the soil, its concentration per
Frontiers in Plant Science 05
square meter, and the duration of exposure. Overall, it is observed

that salinity-induced stress on crops and plants has more significant

effects in arid regions, sometimes becoming a major obstacle to the

food security of people dependent on indigenous farming

techniques (Ehtaiwesh, 2022).

Temperature stress
Temperature extremes encompassing heat, cold, and frost are

significant stressors that detrimentally affect the physiological,

biochemical, and molecular functions of plants, ultimately

limiting their growth, development, and productivity. Heat stress

occurs when ambient temperatures exceed the optimal range for a

specific plant species, leading to impaired photosynthesis through

destabilization of the photosystem. Heat stress compromises

membrane fluidity, elevates respiration rates, and disrupts protein

folding mechanisms, which collectively reduce carbon assimilation

and disturb metabolic homeostasis (Saddhe et al., 2021). To

counteract thermal damage, plants activate protective responses

such as producing Heat Shock Proteins (HSPs), which aid in

stabilizing and refolding damaged proteins. In contrast, cold and

frost stress occur when temperatures drop below a plant’s tolerance

limit, causing membrane rigidity, disruption of the cytoskeleton,

and formation of extracellular ice. These lead to cellular

dehydration and mechanical injury. Frost damage worsens when

ice crystals form intracellularly, rupturing cells and causing

permanent tissue damage. Cold stress has been observed to

abolish and slow down the metabolism of the vegetation, affecting

very critical stages of crops and plants, such as germination,

flowering, and fruit development. Various researchers have shown

that both increase and decrease in temperature activate oxidative

stress. This is done through the accumulation of ROS, which in turn

leads to damaging the crops and plants at the cellular level. Over

time, however, some plant species have developed the capacity to

lessen these effects by incorporating cryoprotectants, such as

antifreeze proteins and osmolytes. However the exact effect of the

severity of fluctuating temperature-based stress on vegetation

whether high or low, is mainly determined by the growth stage,

duration, and intensity of exposure. This can sometimes severely

impair crop productivity and resilience (Ding and Yang, 2022).

Light stress
Moderate light stress, which includes low light levels (reduced

photon flux), excessive light (high irradiance), and ultraviolet radiation,

represents a stressor that disrupts a plant’s photosynthesis. In low-light

scenarios, the limited supply of Photosynthetically Active Radiation

(PAR) hampers chlorophyll’s ability to absorb photons, thereby

diminishing electron transport, lowering ATP and Nicotinamide

Adenine Dinucleotide Phosphate (NADPH) production, and

constraining carbon fixation via the Calvin cycle. These effects lead

to reduced plant growth and biomass (Roeber et al., 2021). Conversely,

high light exposure causes excessive excitation of chlorophyll, leading

to photoinhibition. This energy surplus promotes the generation of

ROS, which cause oxidative damage to thylakoid membranes, proteins,

and nucleic acids. It is observed that Ultraviolet B (UV-B) radiation

exacerbates stress in plant cells. This occurs due to Deoxyribonucleic
frontiersin.org
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Acid (DNA) damage, protein cross-linking, lipid peroxidation, and

disruption of hormone signaling pathways. However, with the passage

of time plants have developed a protective mechanism to counteract

this effect. This includes Non-Photochemical Quenching (NPQ),

activation of the xanthophyll cycle, and increased activity of

antioxidant enzymes such as Superoxide Dismutase (SOD), Catalase

(CAT), and Ascorbate Peroxidase (APX), along with the accumulation

of Ultra Violet (UV)-screening secondary metabolites such as

flavonoids (Yang et al., 2019). However it has been observed that the

effects of stress due to light exposure vary greatly depending on the

presence of a specific photoreceptor, developmental stage and

exposure duration.

Nutrient stress
Nutrient imbalances, arising from either deficiencies or

toxicities, are significant stress factors that interfere with essential

physiological activities, suppress plant growth, and lower

agricultural productivity. The inadequate availability of vital

macronutrients (e.g. nitrogen, phosphorus and potassium) or

micronutrients (e.g. iron, zinc and boron) can disrupt primary

metabolic pathways such as photosynthesis, respiration, and

protein synthesis (Abbas et al., 2021). Deficiency symptoms

commonly include chlorosis, necrosis, reduced meristem activity,

and impaired reproductive development. Conversely, nutrient

toxicity occurs when element concentrations exceed optimal

thresholds, causing ionic imbalances, membrane disintegration,

and oxidative damage due to the overproduction of ROS.

Excesses of toxic elements such as manganese, aluminum, or

sodium tend to block or disrupt the enzymatic functionality,

assimilation of nutrients and osmotic regulation. Therefore,

nutrient deficiency stress ultimately lessens cellular homeostasis,

alters hormonal signaling, and heightens susceptibility to pests and

environmental stress (Kumari et al., 2022). These issues are often

intensified by suboptimal soil conditions, such as nutrient-poor

soils, incorrect pH levels, salinity, or overfertilization. Effective

nutrient management through soil analysis, customized

fertilization plans, and comprehensive fertility practices is

essential for maintaining nutrient balance and supporting

sustainable crop production. In Table 1, we have summarized the

effects caused by both the deficiencies and toxicities arising from the

lack of various essential nutrients in crops and plants.

Soil compaction stress
Soil compaction is a stress that impairs plant physiological

processes and reduces crop yields by altering the physical integrity

of the soil. It leads to increased bulk density and decreased porosity,

which restricts root expansion, slows down seedling emergence, and

obstructs the movement and absorption of water, air, and essential

nutrients. Reduced oxygen availability results in hypoxic stress,

which can disrupt the respiratory system in roots. This, in turn, has

a direct weakening effect on microbial activity, which is essential for

effective nutrient cycling (Shaheb et al., 2021). Additionally,

compacted soils exhibit limited water infiltration and drainage,

which promotes surface runoff, exacerbates erosion, and increases

crop susceptibility to moisture extremes such as drought and
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waterlogging. In compacted soil conditions, it is common to

observe the formation of a dense subsoil layer, due to which roots

can lose their ability to penetrate and reach the moisture and

nutrient reserves that are deep within the soil (Jamali et al., 2021).

The primary causes of compaction include anthropogenic activities

such as the use of heavy machinery, frequent tillage, and

overgrazing. To address the negative effects of soil compaction,

strategies such as implementing controlled traffic farming, adopting

reduced tillage practices, incorporating cover crops, and utilizing

deep-rooted plant species can improve soil structure and promote

greater ecosystem resilience.

Heavy metal toxicity stress
Heavy metal toxicity is a critical stressor that negatively impacts

the physiological and molecular functioning of plants and crops.

Harmful metals such as cadmium (Cd), lead (Pb), arsenic (As), and

mercury (Hg) frequently enter the soil through human-driven

activities, including industrial waste release, mining operations,

and the excessive application of agricultural chemicals. These

metals are notable for their environmental persistence and

pronounced ability to bioaccumulate in plant tissues (Ghuge

et al., 2023). Once taken up by roots, heavy metals interfere with

cellular homeostasis by disrupting nutrient transport mechanisms,

altering enzyme activities, and compromising membrane stability.

At the intracellular level, heavy metal stress provokes the excessive

generation of ROS, resulting in oxidative damage that targets lipids,

proteins, and nucleic acids. These disruptions negatively affect vital

physiological processes such as photosynthesis, mitochondrial

respiration, and hormonal signaling, especially pathways

regulated by ABA and ethylene. Additionally, heavy metal

exposure influences the expression of the genes related to metal

sequestration, antioxidative responses, and detoxification systems,

including the synthesis of phytochelatins and metallothioneins (Ali

and Gill, 2022). Collectively, these effects lead to inhibited growth,

developmental anomalies, and reduced agricultural productivity,

while posing serious risks to food safety and ecological health.

pH stress
Soil pH imbalance is a stressor that negatively influences plant

physiological functions and diminishes crop yields. When the pH

strays from the optimal range of 5.5 to 7.5, typical for the majority

of crops, nutrient solubility and uptake are impaired, leading to

inefficient ion transport and disturbances in vital metabolic

pathways. However the proliferation of cells and growth of crop

and plant roots is severely hampered in acidic soils (pH < 5.5), due

to the presence of aluminum (Al³+) and manganese (Mn2+). On the

other hand, alkaline conditions (pH > 7.5) limit the availability of

essential micronutrients such as iron (Fe2+), zinc (Zn2+), and copper

(Cu2+), often resulting in visible symptoms of nutrient stress, such

as interveinal chlorosis and reduced photosynthetic performance

(Tsai and Schmidt, 2021). Additionally, soil acidity has been

observed to affect microbial activities that are beneficial to the

plants by disturbing their movement in the rhizosphere. This

ultimately hinders the plant’s ability to better and more precise

nitrogen fixation and organic matter decomposition. The
frontiersin.org
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effectiveness of agrochemicals also decreases under such conditions.

Therefore researchers have used techniques to adjust the pH of soil

using agricultural lime (CaCO3) or elemental sulfur (S), which have

been found to be vital for restoring soil health, nutrient dynamics,

and crop tolerance to pH-related stress (Gao et al., 2025).

Wind stress
Aerodynamic stress resulting from both excessive and limited

wind exposure can significantly disrupt a plant’s architecture.

Strong winds impose mechanical stress, leading to structural

damage such as stem lodging, leaf fragmentation, and heightened

water loss due to accelerated transpiration via stomatal and

cuticular surfaces. These effects are exacerbated under drought

conditions when elevated evapotranspiration surpasses a plant’s

water uptake capacity, triggering cellular dehydration and oxidative

stress. Inconsistent wind patterns can also compromise floral

structure and hinder anemophilous pollination, reducing

reproductive efficiency and crop yield (Das and Biswas, 2022).

Prolonged wind exposure may induce thigmomorphogenic

responses, including reduced internode length and altered

distribution of biomass. Conversely, minimal wind activity

especially in enclosed agricultural environments such as

greenhouses limits convective air movement, thereby impairing

thermal regulation and gas exchange. This, in turn, promotes
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microenvironments with high humidity and depleted CO2 levels,

and such conditions encourage fungal pathogen outbreaks and

suppress photosynthetic efficiency. For the aforementioned

reasons, effective wind management, such as the use of

shelterbelts or engineered ventilation systems is essential to

maintaining optimal growing conditions that can alleviate wind-

related stress (Müller et al., 2023).

Airborne pollution stress
Airborne pollution is a stressor that disrupts plant physiological

homeostasis, interferes with metabolic functions, and undermines

overall crop productivity. Major atmospheric pollutants include

tropospheric ozone (O3), sulfur dioxide (SO2), nitrogen oxides

(NOx), and particulate matter 2.5 (PM2.5), which are

predominantly taken up via stomatal pathways, initiating

extensive biochemical disturbances in plant tissues. Ozone

exposure enhances the generation of ROS, which compromise

cellular structures by damaging lipid membranes, denaturing

proteins, and fragmenting nucleic acids, thereby impairing

photosynthetic capacity and accelerating leaf senescence

(Jimenez-Montenegro et al., 2021). SO2 and NOx undergo

apoplastic transformations through oxidation and hydration

reactions, leading to intracellular acidification and suppression of

vital enzymatic processes. The accumulation of particulates on leaf
TABLE 1 Effects of nutrient deficiency and toxicity in plants.

S. no Nutrient Deficiency symptoms Toxicity symptoms References

1 Nitrogen (N) Pale yellowing of older leaves, stunted
growth, early leaf drop

Dark green foliage, leaf tip burn,
delayed flowering

(Wani et al., 2022; Abbas et al., 2021)

2 Phosphorus (P) Dark green or purplish leaves, stunted
growth, poor root development

Leaf necrosis, interference with
micronutrient uptake

(Abbas et al., 2021; Fathi and Afra, 2023)

3 Potassium (K) Yellowing and browning of leaf edges,
weak stems, poor fruit quality

Leaf burn, reduced magnesium and
calcium uptake

(Li et al., 2022; Huang et al., 2022)

4 Calcium (Ca) Blossom end rot in fruits, distorted young
leaves, poor root growth

Leaf tip burn, interference with
magnesium and potassium uptake

(De Bang et al., 2021; da Silva et al., 2021)

5 Magnesium (Mg) Interveinal chlorosis in older leaves, leaf
curling, premature leaf drop

Rare; can cause calcium deficiency (Ishfaq et al., 2022; Chaudhry et al., 2021)

6 Sulfur (S) Yellowing of young leaves, stunted growth,
delayed maturity

Leaf necrosis, reduced uptake of
other nutrients

(Zenda et al., 2021) (Dawar et al., 2023)

7 Iron (Fe) Interveinal chlorosis in young leaves,
stunted growth

Bronze coloration of leaves, reduced
phosphorus uptake

(Merry et al., 2022; Zuluaga et al., 2023)

8 Manganese (Mn) Interveinal chlorosis with brown spots,
poor photosynthesis

Black spotting, brown necrotic areas,
inhibited root growth

(Rai et al., 2021; Dey et al., 2023)

9 Zinc (Zn) Stunted growth, shortened internodes,
small leaves, chlorosis

Leaf chlorosis, inhibits root development (Khan et al., 2022; Hamzah Saleem
et al., 2022)

10 Copper (Cu) Leaf curling, chlorosis, dieback of stems
and twigs

Leaf chlorosis, reduced seed germination (Moreira et al., 2022; Abbas et al., 2021)

11 Boron (B) Death of growing points, brittle leaves,
poor fruit/seed set

Leaf burn, thickened and brittle stems (Bolaños et al., 2023; Botelho et al., 2022)

12 Molybdenum (Mo) Yellowing of older leaves, leaf edge
necrosis, poor nitrogen fixation

Rare; can induce copper deficiency (Roychoudhury and Chakraborty, 2022;
Banerjee and Nath, 2022)

13 Chlorine (Cl) Wilting, chlorosis, necrosis of leaf tips Leaf burn, reduced root growth,
nutrient imbalances

(Abbas et al., 2021; Lilay et al., 2024)
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surfaces obstructs light absorption, disrupts stomatal regulation,

and interferes with cuticular water loss. Persistent exposure to these

pollutants destabilizes the redox equilibrium, downregulates carbon

assimilation, and impairs source-to-sink translocation, ultimately

reducing biomass and yield (Bui et al., 2022). Additionally, long-

term pollution exposure weakens Systemic Acquired Resistance

(SAR), increasing vulnerability to pathogens and environmental

stress. Effective pollutant mitigation is essential for preserving the

stability and resilience of agroecosystems.

Radiation stress
Radiation-induced stress adversely affects plant physiological

functions, growth, and productivity. Types of ionizing radiation

such as gamma rays, X-rays, and UV light can cause significant

cellular damage and interfere with essential biochemical processes.

Exposure to high-energy radiation often results in DNA strand

breaks and mutations that impair mitotic activity, leading to stunted

growth and diminished reproductive capacity. UV-B radiation, in

particular, has been observed to intensify the production of ROS,

which in turn causes oxidative damage. This damage includes

membrane lipid peroxidation, protein degradation, and

chloroplast dysfunction (Jan et al., 2022). These effects reduce

photosynthetic efficiency and disturb overall metabolic stability.

Radiation also affects membrane integrity and disturbs hormonal

signaling pathways, further complicating plant development and

morphological patterns. Sensitive plant species may exhibit

symptoms such as chlorosis, necrosis, or irregular growth forms.

Findings from different research groups suggest that although low

radiation levels can sometimes activate stress adaptation

mechanisms. However, prolonged or intense radiation exposure

that surpasses the inherent protective capacity of plants can lead to

significant physiological damage. To counteract these adverse

effects, strategic interventions such as the use of UV-blocking

films and the development of radiation-resistant crop varieties

through breeding are crucial for enhancing crop resilience under

radiation-induced stress (Katiyar et al., 2022).

Mechanical stress
The mechanical stress arising from the use of agricultural

machinery and its related activities has the capacity to sometimes

negatively impact plant structural integrity, physiological function,

and soil quality. Ultimately, these factors contribute to

compromising crop yield. It is a well-researched fact that the

continual use of heavy equipment related to agricultural activities,

such as tractors, plows, and harvesters, can result in the significant

compaction of loose soil, reducing the microporosity that in turn

reduces water infiltration and hinders proper oxygen availability to

roots (Kouhen et al., 2023). These alterations hinder root

respiration, restrict elongation, and impair the uptake of essential

water and nutrients. Moreover, direct mechanical interference with

plant organs during field operations often inflicts physical damage,

including stem bending, leaf abrasion, and detachment of

reproductive structures. The occurrence of these injuries reduces

the effective photosynthetic surface and, in turn, disrupts assimilate

allocation, ultimately risking the plant’s ability to produce a good
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yield. In addition, mechanical trauma can activate stress response

pathways, notably through increased ethylene synthesis and ROS

accumulation, which can trigger premature aging and abnormal

growth responses (Cho and Nam, 2024). To alleviate these effects,

practices such as Controlled Traffic Farming (CTF), low-impact

machinery, and precision mechanization are vital for preserving soil

structure and mitigating mechanical stress.

Radio frequency stress
With the invention and frequent use of 5G and 6G

communication technologies in almost all areas of life to achieve

the Internet of Things (IoT) and the Industrial Internet of Things

(IIoT). Where Radio-frequency (RF) and Electromagnetic (EM)

waves are used as sources of communication. These communication

sources are within the non-ionizing spectrum of 30 kHz to 300

GHz. However, these non-ionizing ranges are now increasingly

acknowledged by the scientific community as a critical stressor that

influences both plant physiological homeostasis and molecular

regulation. Ongoing exposure to RF sources including mobile

networks, wireless communication infrastructure, and telemetry

systems, has been correlated with subtle yet detrimental effects on

plant biology (Kaur et al., 2021). These effects encompass alterations

in membrane properties, including changes in fluidity, ion channel

modulation, and disruptions to membrane potential gradients.

Additionally, it is observed that the use of RF hinders the

functions of crops and plant cells and their viability. This is

because RF can activate oxidative stress, which is driven by the

excessive generation of ROS. ROS is responsible for cell damage,

lipid peroxidation, protein destabilization, and DNA fragmentation.

According to findings from different research groups, reductions in

seed germination rates, photosystem impairment, and decreased

biomass accumulation have been highlighted. Hormonal signaling

pathways, particularly those involving ABA and auxins, may also be

dysregulated. Phenotypically, plants may exhibit reduced leaf area,

shortened internodes, and altered chlorophyll content (Halgamuge,

2017; Tran et al., 2023).
Biotic stress

Biotic stress in crops and plants is caused by harmful

interactions with living organisms such as bacteria, fungi, viruses,

insects, nematodes, and weeds. These pests and pathogens hinder

plant growth, resulting in lower yields and compromised crop

quality. Gaining insights into biotic stress is crucial for

formulating effective pest and disease control measures. As global

food security becomes increasingly critical, advancing research on

resistance traits and integrated management approaches is

increasingly vital to agriculture. In the coming subsection readers

will find a detailed discussion of the types of biotic stresses.

Pathogen stress
Pathogen stress arising from fungi, bacteria, viruses, and

nematodes represents a major biotic constraint that disrupts plant

physiological processes, compromises cellular stability, and leads to
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significant yield losses. Fungal species such as Fusarium spp,

Botrytis cinerea, and Phytophthora infestans infiltrate plant

tissues by enzymatically degrading protective barriers such as the

cuticle and cell wall, causing vascular occlusion, tissue necrosis, and

impaired photosynthetic efficiency (Gorshkov and Tsers, 2022).

Bacterial pathogens, including Xanthomonas and Pseudomonas

spp, gain access through natural openings in plants or through

physical damage, releasing effectors and cell wall-degrading

enzymes that compromise membrane integrity and trigger

hypersensitive responses, manifesting as chlorosis, wilting, and

cell lysis. Viral pathogens, often transmitted by phloem-feeding

insects, hijack host translational mechanisms to proliferate, leading

to widespread symptoms such as mosaic patterns, stunted

development, and organ malformations. Nematodes such as

Meloidogyne spp, induce root galls that disrupt water and

nutrient uptake (Desaint et al., 2021). These biotic agents often

act in unison, exacerbating plant stress. Effective mitigation requires

an integrated approach combining molecular diagnostics, resistant

genotypes, biological control, and site-specific agronomic strategies.

Insect- and arthropod-induced stress
Insects and arthropods represent biotic stresses that disrupt

plant physiological equilibrium, damage cellular components, and

markedly decrease agricultural productivity. Key herbivorous

groups, including Hemiptera (e.g. , aphids, whitefl ies),

Thysanoptera (thrips), Lepidopteran larvae (caterpillars), and

Acari (mites) employ diverse feeding mechanisms such as foliar

consumption, phloem and xylem sap withdrawal via stylet

insertion, and tissue injury associated with oviposition (Guedes

et al., 2022). Chewing insects compromise foliar architecture and

impair vascular function, thereby reducing photosynthetic

efficiency and structural stability. In contrast, piercing-sucking

species breach the epidermal and vascular layers, disrupting

nutrient and water transport and often serving as efficient vectors

for viral, bacterial, and phytoplasmal infections. Arthropod saliva

frequently contains bioactive effectors that interfere with plant

hormonal signaling pathways, particularly Jasmonic Acid (JA),

Salicylic Acid (SA), and ethylene. This results in suppressed

defense mechanisms (Jafir et al., 2023). Herbivory further induces

oxidative stress through the accumulation of ROS, causing lipid

peroxidation, protein degradation, and loss of membrane integrity.

Symptoms include chlorosis, necrosis, impaired growth, and yield

decline. Robust Integrated Pest Management (IPM) strategies

involving resistant cultivars, biological control agents, and

targeted agrochemical interventions are essential to mitigate these

effects and ensure crop resilience.

Weed competition stress
The crops and plants that we grow have to compete with a

variety of vegetation that is considered parasitic in nature. It can be

easily observed on a daily basis that these parasitic plants have

evolved with the passage of time in such a way. Now they are much

better adapted to various stressors and have an exceptional ability to

create vigorous biomass and reproduce copiously. Thus, the plants

and crops that we cultivate to fulfill our food requirements and
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many other needs are under constant pressure to obtain essential

resources, including PAR, soil moisture, and vital nutrients.

This competitive imbalance disrupts photosynthetic carbon

assimilation, limits nutrient acquisition, and constrains root

development (Ronay et al., 2021). Furthermore, allelopathic weed

species release chemical compounds into the rhizosphere

that interfere with plant signaling, inhibit seedling establishment,

and restrict root elongation through toxic effects. Dense

weed infestations also modify the microenvironment by

increasing relative humidity and altering canopy structure,

thereby enhancing the risk of disease outbreaks and arthropod

pest infestations. Collectively, these stressors can hinder the

photosynthetic processes, delay developmental stages, and

ultimately lead to significantly reduced crop yields (Horvath

et al., 2023). Addressing these impacts requires Integrated Weed

Management (IWM), which includes the strategic use of herbicides,

crop diversification, selection of competitive cultivars, and site-

specific agronomic interventions to sustain agroecosystem

functionality and optimize resource efficiency.

Parasitic plant stress
Parasitic plants such as Striga and Cuscuta utilize highly

specialized biotrophic mechanisms that impose a substantial

physiological and metabolic burden on their host plants. Striga

species infiltrate the host root cortex and form haustorial interfaces

with xylem vessels that enable the extraction of water, essential

minerals, and photoassimilates. This parasitic interaction disrupts

transpiration dynamics and ionic equilibrium, and interferes with

the translocation of carbon metabolites within the plant system

(Zagorchev et al., 2021). Striga infestation leads to hormonal

dysregulation, particularly in ABA signaling and strigolactone

synthesis. This is accompanied by a decline in photosynthetic

performance due to chlorophyll degradation and downregulation

of Ribulose-1,5 bisphosphate carboxylase/oxygenase (Rubisco)

activity. Cuscuta species, which lack functional roots and

chlorophyll, attach to aboveground organs that tap into both the

xylem and the phloem, disrupting source-to-sink relationships and

altering hormonal networks, especially those involving auxins and

cytokinins. Both parasitic genera provoke oxidative stress, which is

characterized by increased ROS, membrane lipid peroxidation, and

loss of cellular stability (Albanova et al., 2023). Control strategies

include integrated management approaches involving resistance

genes, pre-emergence herbicidal treatments, and modulation of

rhizospheric microbial communities.

Animal-induced stress
Stress arising from interactions with animals including rodents,

birds, livestock, and wild herbivores constitutes a major biotic

constraint on the sustainability of agroecosystems and crop yield

potential. Rodents cause significant damage both below and above

ground by consuming seeds and vegetative organs, leading to reduced

germination and impaired early plant growth (Kuka et al., 2022).

Granivorous birds commonly feed on reproductive structures,

resulting in grain loss and mechanical injury to inflorescences,

thereby disrupting assimilate partitioning and impairing source-to-
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sink dynamics. Unregulated livestock access also causes extensive

physical damage through trampling, leaf removal, and root exposure,

which adversely affects photosynthetic capacity, turgor pressure

regulation, and plant recovery potential. Wild animals and various

primates inflict additional stress by stripping foliage, abrading bark,

and feeding on fruits, intensifying physiological disruption (LaMalfa

et al., 2021). These injuries increase ROS levels and interfere with

hormone signaling, resulting in increased vulnerability to pathogen

infections. Effective management requires integrated strategies

involving exclusion structures, deterrents, and ecological landscape

design.

Human-induced stress
Anthropogenic stress arising from unsustainable agricultural

practices such as overexploitation of resources, improper handling

of crops, monocultural farming, and suboptimal landscape

configuration severely hampers plants’ physiological processes and

threatens the sustainability of agroecosystems. Overharvesting

interrupts developmental progression by removing vital vegetative

and reproductive tissues, thereby limiting meristem function and

regeneration. Mishandling during sowing, transplantation, or

harvesting inflicts physical trauma, disrupts vascular continuity,

and increases vulnerability to pathogenic infiltration (Demirdogen

et al., 2023). Monoculture systems, with minimal genetic variability

and repetitive cropping, lead to rapid soil nutrient depletion,

destabilization of rhizosphere microbial communities, and a

heightened risk of pest and pathogen epidemics. Additionally,

poorly designed landscapes, characterized by inadequate spacing,

inefficient irrigation, and a lack of crop rotation, intensify interspecific

competition for essential resources such as PAR, water, and nutrients

(Hernández-Ochoa et al., 2022). Collectively, these stressors impair

hormonal signaling pathways, reduce photosynthetic capacity, and
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disrupt source-to-sink dynamics, leading to decreased biomass

accumulation and diminished yield. Implementing adaptive and

ecologically sound management strategies is critical to

counteracting these compounded stresses and is also helpful in

enhancing resilience.
Stress indicators

Stress indicators in plants and crops are identifiable features that

show alterations in physiological, biochemical, molecular or visual

traits. They assist in detecting stress caused by changes in several

different variables such as water, nutrients, temperature, or diseases,

allowing for prompt actions in a timely manner. Recognizing these

signals is vital for improving crop health, yield, and adaptability. In

this section we will briefly discuss the types of stress indicators.

Figure 3 provides their categorization and subcategorization.
Visual indicators

Recognizable visual indicators serve as essential phenotypic

indicators for assessing plant and crop stress that is triggered by

abiotic or biotic factors. Where (i) wilting often reflects reduced

water uptake, commonly resulting from drought, root injury, or

obstruction in vascular transport. (ii) Leaf curling or rolling

typically acts as a moisture conservation mechanism in response

to heat or drought stress, although it may also be a reaction to

chemical exposure. (iii) Chlorosis, which is visible as leaf yellowing

due to chlorophyll breakdown, usually indicates deficiencies in vital

micronutrients such as iron, magnesium, or nitrogen, compromised

photosynthesis, or poor root zone aeration (Moustaka and
FIGURE 3

Categorization and subcategorization of stress indicators in crops and plants.
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Moustakas, 2023). (iv) Necrosis, which is the formation of dead

tissue, frequently results from pathogenic infections, toxic chemical

contact, or extreme environmental conditions. (v) Leaf scorch or tip

burn is generally linked to elevated salt levels or nutrient

deficiencies, especially of potassium or calcium, and may also be

due to osmotic stress. (vi) Persistent stress may manifest as stunted

growth, which is often tied to hormonal disruptions, nutrient

scarcity, or chronic disease pressure. (vii) Premature leaf

senescence or abscission is a survival response, often mediated by

stress-related hormones such as ABA or ethylene. (viii) Lesions or

necrotic spots are a typical visual sign of pathogen intrusion, with

unique patterns aiding in pathogen identification (Berger et al.,

2022). (ix) General discoloration may signal chemical

contamination or systemic disease, while (x) decreased flowering

or fruiting reflects impaired reproductive function due to

unfavorable environmental or physiological conditions. These

traits are valuable for timely diagnosis and precise management.
Physiological indicators

Physiological indicators offer dependable and early indications of

stress in plants and crops, often manifesting before any external

symptoms become apparent. (i) A primary reaction to drought or

elevated temperatures is a notable decrease in stomatal conductance,

which typically results from a decreased turgor pressure in the guard

cells. This decrease in pressure ultimately limits transpirational

cooling and also curtails CO2 diffusion into the mesophyll, which

in turn negatively impacts gas exchange efficiency (Schönbeck et al.,

2023). (ii) Consequently, the net rate of photosynthesis declines due

to both stomatal limitations and internal factors such as

photoinhibition and Rubisco enzyme suppression. (iii) Low

Relative Water Content (RWC), a key indicator of tissue hydration,

significantly drops during water stress, disrupting cellular function

and metabolic integrity. (iv) A rise in leaf temperature, observable via

thermal imaging, signals diminished evaporative cooling caused by

stomatal closure and indicates heat accumulation in foliage. (v)

Alterations in chlorophyll fluorescence particularly decreases in the

maximum quantum yield of photosystem that reflect impaired

photochemical performance and electron transport chain instability

within thylakoid membranes (Soltabayeva et al., 2021). (vi) Shifts in

chlorophyll content, as measured by Soil Plant Analysis Development

(SPAD) indices or spectrophotometric analysis, denote pigment

degradation and reduced efficiency in light energy absorption. (vii)

Furthermore, a decline in turgor pressure inhibits cell expansion and

structural support, which directly influences growth and tissue

resilience. Monitoring these metrics facilitates the accurate, real-

time evaluation of plant stress responses and informs targeted

mitigation strategies.
Biochemical indicators

Biochemical markers are highly accurate and responsive tools

for the early identification of stress in plants, often manifesting
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before any discernible physiological or structural alterations may

occur. (i) A central adaptive response to abiotic stress involves the

increased biosynthesis and accumulation of compatible osmolytes

such as proline and glycine betaine, along with other low-

molecular-weight protective compounds. These molecules

contribute to maintaining osmotic stability, safeguarding proteins

and cellular integrity, and detoxifying ROS under adverse

conditions such as drought, salinity, and heat stress (Iqbal et al.,

2021). (ii) The buildup of Malondialdehyde (MDA), a lipid

peroxidation product derived from polyunsaturated fatty acids,

serves as a reliable indicator of oxidative membrane injury. (iii)

Stress conditions also modulate the activity of major antioxidant

enzymes, including SOD, CAT, and Various Peroxidases (POD,

APX), reflecting an activated defense network aimed at regulating

ROS levels and sustaining redox balance. (iv) Additionally,

fluctuations in soluble sugar and protein concentrations highlight

reprogrammed metabolic activity that supports osmoprotection,

energy distribution, and cellular restoration. (v) Disruptions in ion

homeostasis particularly in Na+, K+, and Ca2+ gradients further

characterize ionic and osmotic stress, influencing membrane

dynamics, enzyme functions, and intracellular signaling (Ben

et al., 2023). Altogether, these biochemical alterations provide

precise, quantifiable insights into plant stress physiology and are

critical for advanced phenotyping, stress diagnostics, and precision

agriculture interventions.
Molecular/genetic indicators

Molecular and genetic indicators provide a highly specific

and flexible means for the early identification of plant responses to

various stresses, operating across transcriptional, post-transcriptional

and signaling networks. (i) A fundamental aspect of the plant’s

molecular response involves the selective expression of key stress-

related genes, including Dehydration Responsive Element Binding

proteins (DREBs), HSPs, and Response-to-Dehydration 29A

(RD29A) (Datir and Regan, 2022). These genes are central

components of sophisticated regulatory circuits that govern stress

detection and adaptation. DREB proteins regulate gene expression in

response to drought and salinity by binding to Dehydration-

Responsive Element/C-Repeat (DRE/CRT) motifs within promoter

regions, while HSPs function as molecular chaperones that preserve

protein integrity under heat and oxidative stress. RD29A is a well-

established genetic marker for water deficit and osmotic stress that

responds to ABA-mediated and independent pathways. (ii) In

response to abiotic stress, there is also an upregulation of gene

coding for antioxidant enzymes such as SOD, CAT, and APX,

which collectively detoxify ROS and maintain redox homeostasis.

(iii) Concurrently, fluctuations in signaling molecules such as ABA

and ethylene initiate stress-related signaling that regulates gene

expression and physiological responses (Gowayed and Abd El-

Moneim, 2021). Monitoring these molecular signatures enables

precise diagnostics and supports advanced molecular breeding and

genetic engineering efforts to enhance stress tolerance in crops. In

Table 2, we present a summarized overview of the various categories
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of stress indicators to facilitate a better understanding for readers. The

purpose of this table is to consolidate the relevant information

regarding each type of indicator whether visual, physiological,

biochemical, or molecular/genetic, into a single, organized format.

By doing so, readers can conveniently access this collective knowledge

along with concise explanations, allowing for quicker interpretation

and improved clarity on the aforementioned concepts discussed in

this section.
Stress assessment methodologies

Crop stress evaluation is performed using both destructive and

non-destructive approaches to assess the physiological,

biochemical, and structural changes that occur in plants under

biotic or abiotic stress. Traditional destructive methodologies, once

widely used by researchers and practitioners, require the collection

of crops and plant samples for detailed laboratory analysis. In

comparison to non-destructive methods, including thermal

imaging, the use of chlorophyll sensors, and spectral tools, it

allows for monitoring without damaging the health or yield of the

plant. This section presents an in-depth discussion of these

destructive and non-destructive approaches. To enhance the

readers’ comprehension in a clearer understanding of the content,

we have included a flow diagram in Figure 4. This is designed in a

structured manner so that all the various stress assessment

methodologies discussed in the same section are presented in

categories. The intent behind incorporating this visual

representation is to assist readers in grasping the relationships

and distinctions among the different approaches more effectively,

by offering a summary of the content at a glance.
Destructive methods

Destructive techniques for evaluating plant stress include the

collection and laboratory analysis of plant tissues using methods

such as biochemical testing and histological examinations. While

these methods yield precise internal information, they necessitate

the removal of plant parts or entire plants, resulting in the sampled

tissue or plant dying post-analysis.
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Leaf water potential (pressure chamber method)
Leaf water potential (Y_leaf) quantifies the total potential

energy of water within leaf tissues and is a key determinant of

water movement through the plant’s hydraulic continuum. The

Pressure Chamber Method, a widely recognized destructive

approach, provides accurate measurements of Y_leaf in both field

and experimental settings. The method involves excising a mature,

physiologically active leaf or shoot, ideally during midday when

water stress is typically at its peak and securing it in an airtight

pressure chamber, with the severed end extending through a tightly

sealed gasket (Rodriguez-Dominguez et al., 2022). Compressed

nitrogen is gradually introduced to increase the chamber’s

pressure, effectively countering the negative pressure (tension) in

the xylem. When the sap emerges at the cut surface, the internal

tension is balanced by the external pressure, which is recorded in

megapascals (MPa) and that reading corresponds to the leaf’s water

potential. More negative values of Y_leaf indicate higher levels of

water stress and reduced water availability to the plant. This method

yields high-resolution quantitative data that are critical for

optimizing irrigation schedules, assessing drought resilience, and

modeling plant physiological responses to environmental stress.

The formula to calculate leaf water potential is Y_Leaf = Ys + Yp

where Ys is the solute potential and Yp is the pressure potential

(Ding et al., 2021). A simplified process flow is illustrated in

Figure 5a, while a basic setup of the equipment to perform the

aforementioned task is shown in Figure 5b.

Relative water content
RWC is an important physiological metric for assessing the

water status of plant tissues under various environmental

conditions, particularly drought. RWC reliably reflects the extent

of water retention within plant cells and indicates the plant’s ability

to maintain turgor pressure, which is crucial for sustaining

metabolic activities and supporting cell expansion during stress

(Rashid et al., 2022). The assessment of RWC involves three main

stages: (i) the Sampling Phase, in which mature, healthy leaves are

harvested from a consistent nodal position across plants to ensure

uniformity. Immediately after collection, the Fresh Weight (FW) is

recorded to capture the leaf’s current water content. (ii) the

rehydration phase, during which the samples are immersed in

deionized water and kept in darkness at room temperature
TABLE 2 A List of stress indicators with their concise explanation.

S. no Categories Stress indicators Description/Examples References

1 Visual Leaf discoloration, wilting, necrosis,
stunted growth, chlorosis, leaf curling

Observable symptoms caused by drought,
nutrient deficiency, pest attacks, or disease

(Moustakas et al., 2022;
Stutsel et al., 2021)

2 Physiological Stomatal conductance, photosynthetic rate
abnormality, transpiration
rate abnormality

Reflects internal plant functioning, changes
in gas exchange or water retention
during stress

(Kimm et al., 2021; Wen et al., 2023)

3 Biochemical Proline content, MDA, ROS, antioxidant
enzymes SOD, CAT, POD

Indicators of oxidative stress and
biochemical defense mechanisms

(Iqbal et al., 2021; Abdelaal et al., 2022)

4 Molecular/Genetic Gene expression (e.g., HSPs, stress-
responsive transcription factors), DNA
methylation patterns

Reveals the stress response at the genetic
level, including the activation of stress-
regulated genes or epigenetic changes

(Gowayed and Abd El-Moneim, 2021;
Ghonaim et al., 2023)
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(approximately 22°C to 25°C) for 4 to 6 hours, allowing the leaves to

fully rehydrate and reach maximum turgor. After rehydration,

surface moisture is gently removed, and the Turgid Weight (TW)

is measured. (iii) the drying phase, during which the leaves are dried

in an oven at 70°C for 24 to 48 hours to achieve a constant weight,

known as the Dry Weight (DW), which represents their solid

biomass (Ilyas et al., 2021). The formula to calculate the RWC is

RWC (%) = [(FW − DW)/(TW − DW)] × 100. This calculation

provides an accurate measure of tissue water deficit. High RWC

values are associated with better water retention and stress

tolerance, whereas low values indicate dehydration and increased

vulnerability. RWC is widely used in ecological and physiological

research and plays a vital role in breeding programs focused on

improving stress resistance.

Quantification of proline and other osmolytes
Quantifying proline and other compatible osmolytes is a pivotal

technique used for analyzing plant physiological responses to stress
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conditions such as drought, high salinity, and temperature

fluctuations. These adverse conditions disrupt cellular

homeostasis, triggering the upregulation and accumulation of

low-molecular-weight osmolytes such as proline, glycine betaine,

and soluble sugars. That plays an essential role in osmotic

adjustment, and membrane and protein stabilization, with the

mitigation of oxidative stress through ROS scavenging (Spormann

et al., 2023). The standard procedure for proline determination

involves homogenizing fresh leaf tissue in 3% sulfosalicylic acid,

followed by centrifugation to obtain a clear supernatant. This

extract is then reacted with an acid ninhydrin solution (prepared

using 1.25 g ninhydrin in a mixture of glacial acetic acid and

phosphoric acid) and incubated at 100°C for 60 minutes to facilitate

chromophore formation. Once cooled, the mixture is extracted with

toluene, and the absorbance of the resulting colored complex is

measured using a UV spectrophotometer. The concentration of

proline can then be observed in comparison to the calibration curve

of L-proline standards (Zdunek-Zastocka et al., 2021). However,
FIGURE 4

A flow diagram elaborating the categorization and subcategorization of stress assessment destructive and non-destructive methodologies.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1638675
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Muhammad et al. 10.3389/fpls.2025.1638675
researchers have also mentioned that other types of related

osmolytes, that are equally important, can be analyzed by using

distinct, specific colorimetric assays, which consist of the

phenol sulfuric acid method for sugar evaluation, and also

incorporate more progressive state-of-the-art techniques

into existing approaches, such as High Performance Liquid

Chromatography (HPLC). We can conclude that the described

analytical approach is crucial for understanding stress tolerance

mechanisms and is also helpful in identifying stress-resilient

genotypes in crop improvement programs.

Malondialdehyde and lipid peroxidation assay
The MDA and Lipid Peroxidation (LPO) assay is a vital

biochemical method for determining the extent of oxidative

damage to plant cell membranes caused by stress, especially

under conditions such as drought, salinity, and extreme

temperatures. LPO is a key marker of oxidative stress, triggered

by ROS attacking polyunsaturated fatty acids in membrane

structures. This leads to the formation of MDA, a reactive

aldehyde and widely accepted biomarker of oxidative damage

(Shahid et al., 2022). MDA quantification is most commonly

carried out using the Thiobarbituric Acid Reactive Substances

(TBARS) assay. In this protocol, the users will homogenize the

tissues from a fresh plant; the part of the plant that can be used is

the leaves. In this process the leaves are homogenized in 0.1% to 1%

trichloroacetic acid (TCA). This homogenization helps in the

precipitation of proteins, which makes extracting soluble

metabolites possible. After centrifugation, the supernatant is

mixed with thiobarbituric acid (TBA) and dissolved in 20% TCA.

The reaction mixture is incubated at 95°C for 30 to 60 minutes,
Frontiers in Plant Science 14
which helps in promoting the formation of a pink-colored MDA-

TBA complex. After cooling, absorbance is measured at 532 nm

using a spectrophotometer, with a correction at 600 nm to account

for background interference (Wang et al., 2022). MDA content is

then determined with the help of either a standard curve or by using

a molar extinction coefficient. This assay is essential for

investigating lipid peroxidation and screening plant genotypes for

oxidative stress resilience.

Enzyme activity assays
Antioxidant enzyme activity assays, specifically targeting SOD,

CAT, and POD, are essential biochemical methods for

characterizing plant responses to oxidative stress triggered by

stress conditions such as drought, salinity, and temperature

extremes. These enzymes play a key role in the enzymatic

antioxidant defense mechanism by neutralizing ROS generated

during stress-induced metabolic dysfunction (Kavian et al., 2022).

Typically, in this process, plant tissues, most commonly leaves, are

homogenized in an ice-cold extraction medium, such as potassium

phosphate buffer (pH 7.0), supplemented with protective additives

such as Ethylenediaminetetraacetic Acid (EDTA) and 1%

Polyvinylpyrrolidone (PVP) to inhibit phenolic interference and

preserve enzymatic integrity. The homogenate is then centrifuged at

12,000 to 15,000 × g for 15 to 20 minutes at 4°C to collect a clear

enzyme-containing supernatant. SOD activity is measured by its

ability to inhibit the photoreduction of nitroblue tetrazolium

(NBT), with absorbance monitored at 560 nm. CAT activity is

evaluated by tracking the reduction in absorbance at 240 nm as

hydrogen peroxide is decomposed enzymatically. POD activity is

quantified by observing the oxidation of guaiacol in the presence of
FIGURE 5

(a) A basic flow diagram of the leaf water potential process through a pressure chamber method and (b). A very basic apparatus setup to understand
the process (Awad-Allah, 2020).
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hydrogen peroxide, and measuring it at 470 nm (Osei et al., 2022).

These spectrophotometric evaluations offer precise indicators of a

plant’s oxidative defense status and are indispensable in stress

physiology and genotype selection programs.

Chlorophyll and pigment extraction
It has been observed that whenever a plant or a crop is affected

by a factor that has the ability to induce stress in vegetation, such as

drought, salinity, intense light exposure, and extreme temperatures,

it may be necessary to extract the chlorophyll and pigments for

analysis to evaluate the efficiency of the photosynthetic process in

plants. This allows for determining whether the plant is performing

optimally and whether a good yield can still be obtained or if some

kind of countermeasures are required to put the crop or the plant

back on track to achieve a sufficient yield. Plants under

environmental stress have disrupted pigment biosynthesis and

accelerated chlorophyll degradation. This hinders the ability of

the plant to use the captured light and perform the process of

photosynthesis efficiently. Quantitative analysis of chlorophyll a,

chlorophyll b, and auxiliary pigments such as carotenoids provides

a dependable indicator of photosynthetic competence and stress-

induced deterioration (Berhe et al., 2024). The standard method

involves grinding freshly collected leaf tissues in an appropriate

organic solvent, which is commonly 80% acetone, absolute ethanol,

or Dimethyl Sulfoxide (DMSO). This process is done under dim

light to avoid pigment degradation. The extract is then centrifuged

at 10,000 to 15,000 × g for 10 to 15 minutes to yield a pigment-rich

supernatant, which is used for spectrophotometric assessment. The

users will then take absorbance readings at specific wavelengths of

663 nm for chlorophyll a, 645 nm for chlorophyll b, and 470 nm for

carotenoids. Then, the pigment concentrations can be determined

by using standardized equations, such as those developed by Arnon

or Lichtenthaler. Once the calculations are obtained, the results are

analyzed and expressed in relation to the fresh weight of the plant

tissue (Saini et al., 2022).A reduction in pigment levels signifies

oxidative damage, disruption of chloroplast function, and metabolic

imbalance, underscoring the value of this assay in stress diagnostics

and crop improvement programs.

Protein or RNA extraction
Protein and Ribonucleic Acid (RNA) extraction are

fundamental molecular techniques that are very crucial for

characterizing the functional responses of plants to stressors at

the transcriptomic and proteomic levels. RNA is commonly

extracted using phenol-chloroform-based methods such as the

Total RNA Isolation Reagent (TRIzol) or commercial silica-based

spin column kits. To ensure high-quality RNA that may be suitable

for downstream applications, Deoxyribonuclease I (DNase I)

treatment is applied to remove any contaminating genomic DNA.

Quantitative Real-Time Polymerase Chain Reaction (qPCR) is

utilized to evaluate the expression levels of critical stress-

responsive genes in plants. These include genes that encode

antioxidant enzymes such as SOD and CAT, HSPs, and

transcription factors such as DREB and WRKY (named after the

SPF1 protein cloned from sweet potato). All of these play vital roles
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in defending against environmental stresses such as drought,

salinity, cold, and pathogen invasion (Khurshid et al., 2021). To

get a better view of gene expression, RNA sequencing offers high-

throughput analysis that has the capability of detecting genome-

wide transcriptomic changes, which in turn makes it possible to

reveal the regulatory networks associated with stress adaptation.

Recovery of stress-inducible proteins is only possible under

denaturing or native conditions. These proteins are subsequently

characterized using electrophoretic techniques such as Sodium

Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE),

immunodetection via western blotting, or more sophisticated

proteomic approaches including Liquid Chromatography Tandem

Mass Spectrometry (LC-MS/MS) (Wang et al., 2024). As discussed,

these analyses can expose crucial information about the post-

translational modification, enzyme activity modulation, and signal

transduction pathways that are triggered by environmental stimuli.

The accuracy and reliability of both RNA- and protein-based

investigations depend on rigorously optimized extraction

protocols that preserve biomolecule integrity, inhibit enzymatic

degradation, and avoid contamination. Thus, it can be concluded

that, taken together, transcriptomic and proteomic methodologies

can provide a comprehensive molecular framework. This

framework can be used for the understanding of plant stress

responses, which can in turn play a pivotal role in guiding the

development of genetically enhanced, stress-tolerant crop varieties.

Ion content analysis
Ion content analysis, notably the precise measurement of Na+

and K+ levels, is an essential physiological technique for assessing

how plants respond to and adapt to saline stress conditions. This is

because an immense amount of salinity in the soil will normally

result in higher Na+ content in plant tissues. This, in turn, damages

the normal ionic balance of a crop/plant, and prohibits K+ uptake. If

these abnormalities occur due to severe salinity, they will hinder key

cellular functions including enzymatic activity, protein synthesis,

and membrane potential regulation (Kumar et al., 2021). For

analysis, plant tissues such as leaves, stems, or roots are carefully

collected and thoroughly washed to remove surface salts, oven-

dried to achieve constant weight, and finely pulverized. The

powdered material undergoes acid digestion using concentrated

nitric acid or a nitric-perchloric acid mixture under controlled

conditions to extract ionic constituents. These digests are then

appropriately diluted and analyzed using techniques such as flame

photometry, Atomic Absorption Spectrophotometry (AAS), or

Inductively Coupled Plasma Optical Emission Spectrometry (ICP-

OES) for precise ion quantification (Singhal and Singh, 2024). Based

on the preceding discussion on salinity, it can be concluded that the

Na+/K+ ratio in the examined soil serves as a reliable physiological

marker for assessing salinity tolerance. A lower Na+/K+ ratio

indicates effective ion selectivity, efficient osmotic regulation, and

the preservation of cellular ion balance under saline conditions.

Histochemical staining
Histochemical staining is a highly specialized cytochemical

technique that can be utilized for the in situ detection of stress-
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induced biochemical alterations in plant tissues. This technique

provides detailed resolution at both the cellular and subcellular

levels. It employs chromogenic or fluorogenic reagents to identify

molecular markers related to oxidative injury, enzyme activity, or

cell viability under stress conditions. Diaminobenzidine (DAB) is

used to detect Hydrogen Peroxide (H2O2) by producing a localized

brown precipitate, whereas NBT reacts with superoxide anions to

form a blue formazan deposit. Both serve as spatial indicators of

ROS presence (Yadav et al., 2021). As part of this method the users

first select the appropriate plant or crop samples necessary to

perform the aforementioned histochemical staining process such

as leaves and roots. These parts are carefully detached and

infiltrated under an artificially created vacuum in the presence of

a selected staining reagent. Once this step is completed, the

extracted and processed plant part will be incubated with the

staining reagent in the absence of light at a precisely controlled

temperature to ensure that efficient reaction kinetics are achieved.

Following staining, the tissues are cleared using ethanol or acetic

acid, with glycerol solution used to eliminate the chlorophyll and

improve visualization (De Palma and Fett-Neto, 2024). The stained

sections are then analyzed using light or fluorescence microscopy to

enable a semi-quantitative evaluation of oxidative stress patterns

and spatial mapping of plant defense responses.

Dry weight/biomass measurement
Estimating dry weight or biomass is a critical physiological

technique employed to evaluate plant growth responses and assess

the extent of stress-induced effects under both abiotic and biotic

challenges. To perform these measurements, a specific process is

used that includes obtaining plant parts such as leaves, stems, roots,

and, in some site-specific cases, the entire plant. Once these samples

are collected, they are carefully cleaned to prevent any kind of

external debris from contaminating them. Then, the samples are

gently bottled to ensure that residual moisture on their surface can

be properly eliminated (Qu et al., 2021). These samples are then

oven-dried at a regulated temperature, generally between 65°C and

80°C, for 48 to 72 hours or until a constant weight is achieved,

ensuring complete dehydration. After drying, the samples are

accurately weighed using a sensitive analytical balance to

determine the dry biomass, which reflects the plant’s total organic

matter excluding water content. Crops or plants may exhibit signs

of impaired photosynthetic activity, altered metabolic pathways,

and restricted cellular proliferation (Chandrasekaran, 2022). Once a

farmer or lab analyst detects any impairment, dry weight analysis

can provide a reliable and integrative metric for evaluating stress

tolerance and genotypic variation in plant physiological and

agronomic studies.
Non-destructive methods

Non-destructive approaches offer a fast and reliable evaluation

of plant and crop stress in real time while preserving the integrity of

the samples. Methods such as chlorophyll fluorescence imaging,
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thermal imaging, hyperspectral analysis, and canopy reflectance

measurement allow for the ongoing observation of physiological

and biochemical variations, aiding in the early detection of stress

and enhancing precision farming and crop management practices.

Chlorophyll fluorescence imaging
Chlorophyll fluorescence imaging is a precise, non-destructive

method used to evaluate photosynthetic performance and detect

early stress indicators in plants at a high spatial resolution. This

technique is based on the idea that a small amount of light absorbed

by Photosystem II (PSII) is re-emitted as fluorescence. Variations in

this signal reflect the plant’s physiological state regarding

photosynthesis (Moustaka and Moustakas, 2023). Under optimal

conditions, the absorbed energy is largely utilized for

photochemical processes. However, exposure to environmental

stresses such as drought, salinity, temperature extremes, or

nutrient deficiencies reduces the efficiency of electron transport in

PSII, leading to increased fluorescence output. Utilizing the Pulse

Amplitude Modulated (PAM) fluorometry combined with

advanced imaging systems, researchers can measure parameters

such as maximum quantum yield (Fv/Fm), effective quantum yield

(FPSII), and NPQ, which reflect declines in PSII efficiency and

indicate photoinhibition under stressed conditions. This approach

has the capability to enable high-throughput, real-time phenotyping

along with precise spatial mapping of photosynthetic stress

responses. This ultimately makes it an essential tool for accessing

plant physiology and stress diagnostics, bringing the users closer to

achieving precision agriculture (Park et al., 2024). A formal

blueprint of the explained process is provided in Figure 6, so that

readers can better understand the schematic and implement it

further if needed.

Imaging techniques
Imaging technologies, including Red Green and Blue (RGB)

cameras, multispectral imaging, and thermal imaging

(thermography), play a crucial role in identifying stress in crops

and plants. Integrating these imaging systems with drones and

satellites within the scope of Wireless Sensor Networks (WSNs)

effectively achieves this objective, enabling comprehensive stress

detection in agricultural environments. RGB imaging captures

visual patterns and color variations in foliage, which often reflect

nutrient deficiencies or the presence of a disease. Multispectral

systems gather data across different spectral bands, enabling the

assessment of plant health through indices such as the Normalized

Difference Vegetation Index (NDVI). Thermal imaging, whether

deployed via satellite or drone, tracks variations in canopy

temperature, offering insights into heat stress or impaired

transpiration resulting from drought conditions. Additionally,

Light Detection and Ranging (LiDAR) provides a three-

dimensional view of the canopy structure, enhancing stress

assessment capabilities. Collectively, these non-invasive tools

support real-time observation, early diagnosis of stress symptoms,

and precision agriculture strategies, thereby improving crop health

management and boosting productivity across varying
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environmental conditions. In the subsection of this part of the

review, readers will find technical details of these non-destructive

imaging stress assessment methods. Figure 7 provides a basic layout

that is aimed at stress detection using non-destructive techniques

such as LiDAR, hyperspectral imaging, and thermography to

complement the discussion in sections 4.2.2.1, 4.2.2.2 and 4.2.2.3.
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Thermal imaging (infrared thermography)

Thermal imaging, also known as infrared thermography, is a

technique that is utilized to monitor physiological stress in plants by

identifying spatial temperature differences across the canopy. It

operates on the principle that all surfaces emit infrared radiation

according to their temperature, with stress-related changes in plant
FIGURE 6

A schematic diagram showing the fundamental setup of a chlorophyll fluorescence imaging system in a closed monitoring environment (Park et al.,
2024).
FIGURE 7

A basic schematic diagram showing the stress detection approaches using non-destructive techniques such as lidar, hyperspectral imaging, and
thermography (Mielcarek et al., 2018; Ojoatre, 2016).
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transpiration leading to variations in thermal emissions (Hernanda

et al., 2024). Under abiotic stress conditions such as drought,

salinity, or pathogen invasion, stomatal closure reduces

transpiration, resulting in elevated leaf temperatures. Thermal

sensors that can capture high-resolution images are used to detect

thermal anomalies in the field or in the canopy of tall plants in

dense vegetation. Through this detection process, the users can

produce thermographic images that may offer temperature data at

the pixel level. This method enables the detection of stress

indicators before any visible symptoms develop, serving as a

proactive tool for managing crop health. Additionally, thermal

imaging is well suited for integration with UAVs and satellite

platforms, supporting high-throughput phenotyping and large-

scale agricultural surveillance (Pineda et al., 2020). The

technology’s contactless nature ensures that plant integrity

remains intact, making it particularly valuable for ongoing studies

of stress responses under fluctuating environmental conditions.

Spectral reflectance/hyperspectral imaging

Spectral reflectance and hyperspectral imaging are advanced,

non-invasive remote sensing methodologies engineered for the

detailed, high-resolution detection of both biotic and abiotic

stressors in agricultural systems. These techniques leverage the

unique spectral reflectance patterns of vegetation across an

extensive wavelength continuum, from the visible to the Near

Infrared (NIR), and Shortwave Infrared (SWIR) regions (Ogawa

et al., 2024). Whenever a crop is subjected to stressors such as

drought, nutrient deficiency, salinity, or disease, various researchers

have pointed out that critical physiological parameters such as

chlorophyll content, leaf moisture status, and cellular organization

undergo measurable changes. These are ultimately reflected in

altered spectral signatures due to these stressors. Hyperspectral

sensors acquire highly resolved spectral data across hundreds of

contiguous, narrow wavelength bands, facilitating the precise

detection of subtle shifts in reflectance. Using this rich spectral

information, users of this technology – i.e., the farmers - can

measure vegetation indices such as the NDVI, Red Edge

Inflection Point (REIP), and Photochemical Reflectance Index

(PRI). Once these vegetation indices-based data are collected, we

can computationally derive and analyze the stress indicator to

which the vegetation indices refer (Roy et al., 2023). These

advanced technologies are now allowing us to detect stress early,

often before there are any visible symptoms and empower us to

move a step forward to achieve precision agriculture.

Plant height and growth monitoring

Assessment of plant height and growth using LiDAR

technology provides a high-throughput, non-invasive approach to

detecting structural modifications in crops resulting from abiotic

and biotic stress in agricultural environments. LiDAR operates by

emitting laser beams that strike plant surfaces and capture the

reflected signals, generating dense 3D point clouds that offer precise

characterization of canopy structure, vertical growth dynamics, and

spatial variability at fine temporal and spatial resolutions (Hütt

et al., 2023). Various research groups have observed that under
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stress conditions such as drought, salinity, nutrient deficiency, or

pathogen exposure, plant growth is typically constrained, leading to

reductions in elongation, biomass accumulation, and alterations in

canopy configuration. The aforementioned morphological changes

due to recent or ongoing stress can be measured with LiDAR

technology, which can derive features that include plant height

profiles, volumetric growth metrics, and canopy surface

reconstructions. We have found that LiDAR systems can provide

benefits in agricultural stress conditions; therefore, integrating these

beneficial outputs with ML models can help users in the early

identification of growth-related stress before visible symptoms

appear (Rivera et al., 2023). Ultimately, it can be concluded that,

as a robust and scalable technology, LiDAR can enhance the

monitoring of temporal growth trends, enabling advanced

phenotyping, precision agriculture, and stress response modeling.

Spectroscopy

Non-destructive stress detection using spectroscopic techniques

is a reliable, high-resolution approach for identifying physiological

changes in crops and plants without altering their physical form.

Operating within spectral domains such as the visible, NIR, and

hyperspectral bands, these methods analyze the interaction between

incident light and plant tissues to measure their reflectance and

absorption profiles. These spectral outputs offer valuable

information on key biochemical and structural features, such as

chlorophyll content, carotenoid presence, leaf hydration levels, and

cellular architecture (Zahir et al., 2022). Abiotic and biotic stressors

such as water scarcity, salinity, nutrient imbalance, and pathogen

attacks cause distinct shifts in spectral signatures that can be

detected before visual symptoms appear. To interpret these high-

dimensional datasets effectively, advanced computational tools,

including ML algorithms and multivariate statistical models, are

employed to improve classification accuracy. The deployment of

these systems via UAVs and ground-based platforms enables

efficient, scalable, and spatially precise monitoring, making this

technology a vital component of real-time crop stress diagnostics

and data-driven precision agriculture (Cozzolino and Roberts,

2016). It is particularly important for research students to

recognize that, while spectroscopy and hyperspectral imaging

both examine the interaction of light with matter, they are

inherently different in scope and application. Spectroscopy is a

broad scientific discipline that encompasses various methods of

analyzing light to identify and characterize materials based on their

spectral properties. Hyperspectral imaging, on the other hand, is a

more focused technique within the field that merges spectral

analysis with imaging technologies, enabling the concurrent

capture of both spectral and spatial information across an

observed target or scene.

Gas exchange measurements
Gas exchange analysis is a vital physiological technique for

accurately assessing plant responses to abiotic stress. It measures

real-time gas fluxes associated with photosynthesis and

transpiration. This approach employs advanced Infrared Gas

Analyzers (IRGAs) paired with controlled cuvette systems to
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monitor essential parameters, including net CO2 assimilation,

stomatal conductance, transpiration rate, and intercellular CO2

concentration. Under environmental stressors such as drought,

salinity, extreme temperatures, or nutrient limitations, plants

undergo shifts in stomatal regulation and metabolic activities,

resulting in noticeable declines in carbon assimilation and

alterations in transpiration dynamics (Pflüger et al., 2024). From

the literature, we have observed that the aforementioned stresses

can reduce a plant’s ability to signal a reduction in gas exchange

efficiency and this specific property can be detected much earlier

than any visible symptom appears. Therefore, it can be concluded

that the non-destructive gas exchange profiling can have a crucial

role in evaluating PSII function and determining water use

efficiency. This approach offers users (farmers or field analysts)

valuable insight into plant stress responses and helps them make

informed decisions regarding genotype screening, agronomic

strategy development, and environmental stress modeling within

precision agriculture frameworks (Abdelhakim et al., 2021).

Chlorophyll content estimation
Chlorophyll content measurement is a widely adopted, non-

destructive technique for assessing the physiological state of plants,

especially when under stress. One of the most commonly utilized

instruments for this purpose is the SPAD meter, which determines

relative chlorophyll levels by measuring the differential

transmission of red (650 nm) and NIR (940 nm) light through

the leaf. As chlorophyll pigments absorb red light efficiently while

allowing NIR light to pass through, the SPAD device generates an

index value indicative of chlorophyll concentration (Mielcarek

et al., 2018). When plants experience abiotic or biotic stress such

as drought, salinity, nutrient deficiency, or pathogen attack,

chlorophyll biosynthesis is often suppressed, leading to reduced

SPAD values that can signal stress before any visible symptoms

appear. This rapid, on-site diagnostic tool supports precision

agriculture by enabling real-time tracking of photosynthetic

efficiency and the early identification of physiological disruptions

(Ojoatre, 2016). Its ease of use, portability, and capacity for high-

throughput data collection make it essential for large-scale

phenotyping, agronomic evaluations, and plant stress studies.

Electrical impedance tomography
Electrical Impedance Tomography (EIT) is an advanced and

non-invasive imaging technique that farmers can utilize to assess

the physiological stress of crops and plants. This method examines

the internal distribution of electrical conductivity within plant

tissues. The aforementioned process entails the precise

arrangement of electrodes around plant structures, most

commonly stems or leaves, through which low-amplitude

alternating currents are systematically applied. A trained

individual captures the resulting voltage measurements obtained

from multiple electrode pairings at the periphery. The readings

obtained are processed using inverse computational techniques, and

the reason to do so is to reconstruct a high-resolution image capable

of capturing spatial impedance variations (Corona-Lopez et al.,

2019). Different research groups have focused on the fact that stress
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conditions, including drought, nutrient deficiencies, and pathogen

attacks, alter physiological parameters such as water content,

membrane stability, and ion movement, all of which are reflected

in the impedance data. Thus, the EIT methodology is ideally suited

for the continuous assessment of plant stress over extended periods.

Additionally, some have noted that when this technology is

integrated with WSNs, EIT enables scalable, on-site diagnostics

across extensive agricultural systems, advancing precision

agriculture by supporting the early detection and timely

management of latent stress responses in crops (Basak and

Wahid, 2022).
Use of machine learning techniques
for stress assessment and prediction

The implementation of Artificial Intelligence (AI), ML, and

Deep Learning (DL) techniques in agricultural monitoring has

greatly enhanced the accuracy and effectiveness of detecting both

biotic and abiotic stressors in crops through real-time, non-

destructive means. Conventional approaches rely largely on

manual scouting and visual assessments, which are often

constrained by limited spatial reach, interpretative bias, and

delayed response times. In contrast, ML-based solutions utilize

sophisticated computational algorithms and pattern recognition

methods to analyze high-dimensional, heterogeneous data

collected through advanced remote sensing platforms, such as

RGB imaging, multispectral and hyperspectral sensors, thermal

cameras, and LiDAR systems. Table 3 outlines data types that are

readily accessible and can be personally collected with minimal

effort, through either destructive or non-destructive methods. These

data types can be effectively utilized in ML algorithms to extract

valuable insights for assessing stress in crops and plants, in addition

to future stress prediction.

The preceding discussion shows that both destructive and non-

destructive stress assessment methods can generate comprehensive

datasets. These datasets can offer insights into plant health

indicators and canopy-level physiological changes across multiple

spectral bands, resolutions, and temporal scales. Once users collect

these datasets, they can potentially detect stress conditions,

including drought, nutrient deficiencies, pest attacks, and disease

outbreaks. Supervised ML algorithms such as Support Vector

Machines (SVMs), Random Forest (RF), Gradient Boosting

Decision Trees (GBDT), and k-Nearest Neighbor (k-NN) are

widely used by researchers around the world in several institutes

for classification and regression tasks related to precision

agriculture. These classification and regression methodologies can

facilitate accurate mapping of the acquired data on different degrees

of crop stress (Zubler and Yoon, 2020). Simultaneously,

unsupervised ML techniques such as k-Means Clustering and Self

Organizing Map (SOM) are employed to detect anomalies and

reveal underlying structures within unlabeled datasets. To enhance

predictive accuracy and computational efficiency, feature

engineering methods including Principal Component Analysis

(PCA), wavelet transforms, and texture-based feature extraction
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are used to condense high-dimensional data and emphasize key

spectral or temporal traits. Additionally, ensemble modeling

techniques and hybrid meta-learning frameworks are adopted to

strengthen model robustness and ensure reliable performance

across varying agro-ecological conditions (Karthickmanoj

et al., 2021).

DL techniques, with a focus on Convolutional Neural Networks

(CNNs), provide a highly effective framework for the automated

end-to-end extraction of features from image datasets, enabling

layered analysis of spatial and spectral attributes linked to plant

physiological conditions. Advanced CNN models such as the

Residual Network (ResNet) and Inception have consistently

delivered superior performance compared to other models in

identifying crop stress, segmenting plant structures, and detecting

disease lesions. Additionally, Recurrent Neural Networks (RNNs)

and Long Short-Term Memory (LSTM) architectures are widely

used for forecasting time series trends based on environmental

sensor inputs and phenological data, supporting the creation of

predictive models and early stress detection systems. Furthermore,
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increasingly adopted to capture complex spatiotemporal

relationships in large-scale agricultural datasets, thereby

enhancing the accuracy and contextual relevance of model

predictions. Additionally, the integration of AI and DL

technologies with WSNs, UAVs, and cloud-based platforms

enables the efficient and scalable acquisition, processing, and

monitoring of real-time data (Gao et al., 2020). To further

optimize performance and safeguard data privacy, edge

computing and federated learning frameworks are being

increasingly adopted, allowing for decentralized inference with

reduced latency and enhanced data security. Reinforcement

Learning (RL) is also being investigated for closed-loop

optimization in precision agriculture, empowering autonomous

systems to dynamically adjust their actions in response to

evolving crop stress conditions. In Figure 8 we presented a flow

diagram designed to assist readers in easily identifying the most

widely and commonly used ML algorithms for stress analysis in

crops and plants, along with their respective subcategories.
TABLE 3 Machine learning data types for crop and plant stress assessment.

S. no Data type Description Suggested ML method

1 Chlorophyll Content Indicates photosynthetic capacity, often measured via SPAD meters
or sensors.

Random Forest or SVMs, for classification of stress levels
based on chlorophyll variations.

2 Leaf Water Potential Quantifies plant water status under varying field
moisture conditions.

Gradient Boosting, which captures non-linear relationships in
physiological water stress.

3 Malondialdehyde
(MDA)

Lipid peroxidation marker indicating cell damage due to
abiotic stress.

Decision Trees as an interpretable model of oxidative
stress severity.

4 Proline Content Osmoprotectant compound accumulation indicates drought or
salinity stress.

Support Vector Machines, suitable for identifying osmotic
stress patterns.

5 Air/Soil Temperature Stress modeling based on field temperatures over time. Linear Regression is suitable for modeling temperature
stress relationships.

6 Growth Stage
and Development

Helps contextualize when stress occurs during development. Naive Bayes is a simple classifier based on phenological
stage likelihoods

7 Irrigation/Fertilization
Logs

Input data to relate management practices to stress outcomes. Decision Trees relate input patterns to stress occurrence.

8 Yield Records Reflects the cumulative impact of stress across the growing season. Multiple Linear Regression predicts yield reduction

9 Genotypic Data Genetic markers associated with stress tolerance traits. XGBoost handles sparse, high-dimensional genomic
data effectively.

10 Metabolomics Profile Changes in metabolites such as sugars and amino acids reflect
stress metabolism.

Random Forest is a dimensionality reduction method with
robust classification.

11 Hyperspectral Images High spectral resolution data, useful for detecting subtle
physiological and biochemical changes.

CNNs or LSTMs handle high-dimensional spectral features.

12 LiDAR Provides 3D canopy structure for stress-related morphological
changes (height, density).

CNNs or RF model plant structural changes under stress.

13 Multispectral Images Captures specific spectral bands for indices such as NDVI to assess
a plant’s health.

SVMs classify stress levels based on spectral indices.

14 RGB Images Standard RGB images, used to detect visible stress symptoms such
as discoloration and wilting.

CNNs, effective in detecting visual stress symptoms.

15 Thermal Images Measures canopy temperature variations indicating water stress and
transpiration shifts.

CNNs or Regression Trees capture canopy
temperature anomalies.
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Supervised learning approaches

Supervised Learning (SL) methods, commonly employed by

various researchers across the world can be broadly divided into two

main categories (i) classification models and (ii) regression models.

This section offers a concise overview of these categories, focusing

on their roles in identifying, analyzing, and forecasting stress and

related conditions in crops and plants.

Classification models
Over time supervised ML techniques, especially classification

models, have become a core component of agricultural data

analysis. Their effectiveness has been demonstrated by researchers

and practitioners worldwide, consistently delivering valuable and

beneficial outcomes. These models primarily offer critical solutions

that can distinguish whether a crop or a plant is healthy or

experiencing some form of stress that is hindering its growth.

These models rely on labeled datasets, where class labels such as

“stressed” or “healthy” are predefined, enabling the algorithm to

learn discriminative patterns and establish predictive relationships

between input features and output classes. The growing accessibility

of high-resolution data from remote sensing platforms including

multispectral, hyperspectral, and thermal imaging along with field

physiological measurements, has significantly enhanced the

accuracy, robustness, and scalability of these classification systems

across diverse agricultural scenarios (Navrozidis et al., 2022).
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• Support Vector Machines (SVMs) are a frequently utilized

classification method that is highly effective for processing

high-dimensional data and modeling intricate, non-linear

patterns through kernel-based approaches. In plant

phenotyping, SVMs have demonstrated robust performance
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in differentiating between biotic and abiotic stress by

determining optimal hyperplanes that separate stressed and

healthy plant instances based on inputs such as spectral

reflectance, canopy temperature, and chlorophyll

fluorescence. The underlying principle of margin

maximization enhances the model’s generalization ability,

making SVMs particularly suitable for the early detection of

plant stress across diverse and dynamic environmental

conditions (Islam et al., 2024).

• Random Forest (RF), a robust ensemble classification

technique, constructs numerous decision trees during the

training phase and determines the outcome by taking a

majority vote from all tree outputs. It is particularly adept at

modeling intricate, non-linear variable interactions,

demonstrating high resilience to overfitting, and

maintaining accuracy even when working with noisy or

incomplete datasets. In the realm of agriculture, RF has

been successfully utilized for detecting plant stress in

diagnosing diseases using inputs such as leaf images and

UAV-based spectral data, enabling reliable classification of

issues such as nutrient deficiencies, leaf blight, and powdery

mildew. Additionally, RF offers intrinsic measures of feature

importance, helping to pinpoint the most influential

spectral bands or physiological traits that drive accurate

stress classification (Yang et al., 2021) (Gupta et al., 2023).

• Decision Trees (DTs), less complex than ensemble

approaches, are valued for their clear structure and

interpretability, which makes them ideal for use in

agricultural decision support systems. They operate by

systematically splitting the feature space using metrics

such as entropy or the Gini index, resulting in a set of

decision rules that classify stress conditions based on
FIGURE 8

A flow chart of ML algorithms and their subcategories used for stress analysis in crops and plants.
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threshold values from sensor-derived features such as

NDVI, PRI, or canopy temperature. While DTs are prone

to overfitting, particularly with small datasets, their

generalization performance can be significantly improved

through techniques such as pruning and cross-validation

(de Oliveira et al., 2023) (Yadav and Swarnkar, 2024).

• k-Nearest Neighbor (k-NN) determines the class of a new

data point by identifying the k most similar instances within

the training set and assigning the majority label among

them, with similarity often calculated using distance

measures, such as Euclidean Distance. While k-NN can be

computationally demanding for large datasets, it remains

highly effective for localized classification tasks. In

agricultural contexts, it has been applied to visually

classify stress conditions from leaf imagery and to

delineate disease-affected zones in precision farming. Its

nonparametric nature offers a key advantage, particularly in

situations where the underlying data distribution is

unknown or highly complex (Guo et al., 2021; Zahid

et al., 2022).
Supervised classification methods such as SVMs, RF, DTs, and

k-NN have collectively established a fundamental analytical

foundation for the data-driven evaluation of plant and crop

stress. Their integration with sensor technologies, UAV-based

data acquisition, and cloud-enabled agricultural platforms

supports the accurate, scalable, and real-time detection of stress

in crops. This facilitates informed, proactive decision making, and

efficient resource utilization, which promotes the progression of

precision agriculture toward more sustainable and resilient food

production systems. Table 4 presents several real-world

applications of ML models across a variety of crop types, aimed

at achieving effective stress assessment.

Regression models
Supervised ML regression models provide a technically

advanced and scalable framework for quantifying stress severity
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in crops and plants, playing a pivotal role in precision agriculture.

These models are trained on labeled datasets in which continuous

output variables representing measurable indicators of stress

severity, such as the extent of chlorosis, leaf water potential, and

deviations in canopy temperature, are linked with a wide array of

input features. These features are extracted from diverse data

sources, including multispectral and hyperspectral imagery

captured by UAVs, thermal imaging systems, soil moisture

probes, and weather-related parameters (Asaari et al., 2022). The

primary objective of supervised regression is to construct a

functional mapping that can effectively capture and predict the

severity of biotic or abiotic stress impacting plant health by

representing a high-dimensional vector comprising environmental

and physiological variables. Among the various regression

algorithms used for this application, Simple Linear Regression

(SLR), Random Forest Regression (RFR), Gradient Boosting

Machines (GBMs), and Extreme Gradient Boosting (XGBoost)

are particularly noteworthy, each offering unique modeling

structures, learning strategies, and levels of predictive performance.
• Simple Linear Regression (SLR) is the most fundamental

parametric regression technique, based on the premise of a

linear association between the dependent variable,

representing stress severity, and a group of independent

input features. It determines the model coefficients bi using
the linear formulation y = b0 + Sbixi + er, where e epsilon
represents the stochastic error component that accounts for

residual variability. Although this method offers strong

interpretability and low computational complexity, its

predictive performance is often limited in complex

agricultural environments, as it fails to model the

nonlinear relationships and higher-order interactions

inherent in plant physiological dynamics (Behmann

et al., 2015).

• Random Forest Regression (RFR) is a nonparametric

ensemble technique that constructs numerous independent

decision trees through bootstrap aggregating to enhance
TABLE 4 Real world implementations of ML models In crop and plant stress assessment.

S. no Crop/Plant Stress
type

ML technique and data Real-world implementation
and impact

Reference

1 Greenhouse-
grown tomatoes

Fertigation/
heat stress

Gradient Boosting using leaf temperature,
PRI, and climate sensors

The multi-sensor platform detects stress
remotely in operational greenhouse settings

(Elvanidi and
Katsoulas, 2022a)

2 Walnut orchard Water stress Random Forest regression based on UAV
multispectral imagery

Achieved 85% classification accuracy at the
plant level

(Wang and Jin, 2023)

3 Potato fields Drought
stress

Retina-UNet model based on aerial RGB
+NIR images

Achieved a 0.74 dice score for distinguishing
stressed vs. healthy potatoes

(Butte et al., 2021)

4 Agarwood
(trees)

Pests
and diseases

lightweight CNN based on leaf images Achieved approximately 0.97 F1 score for
various stress classes

(Shafik et al., 2025)

5 Cranberry bog Sun
exposure/
heat stress

CNN for segmentation and an irradiance
model from drone and sky imagery

Temperature prediction aids in
irrigation scheduling

(Akiva et al., 2022)

6 Coffee leaves Disease
severity

CNN multi-task classification +
severity estimation

Early detection and quantification of disease (Esgario et al., 2020)
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predictive performance and minimize variance. Each tree is

trained on a bootstrapped sample of the data that utilizes a

randomly selected subset of features at each decision split.

The overall prediction is computed by averaging the outputs

of all the trees in the ensemble. This framework allows the

model to effectively learn complex nonlinear dependencies

among variables such as vegetation indices (e.g., NDVI, PRI),

thermal stress metrics (e.g., Crop Water Stress Index

(CWSI)), and topographic attributes, while inherently

controlling for overfitting. Moreover, RFR provides feature

importance scores that are valuable for identifying key stress-

related factors and for ranking input variables by relevance

(Yang et al., 2021). Nonetheless, the method may encounter

scalability challenges when applied to high-dimensional

remote sensing data, as the computational and memory

requirements for training and storing a large number of

deep trees can be substantial (Hasanuzzaman et al., 2020).

• Gradient Boosting Machines (GBMs) are iterative ensemble

models in which each base learner, usually a shallow

decision tree, is trained in sequence to reduce the negative

gradient of a selected loss function, most often the mean

squared error. This additive learning strategy progressively

refines the model by correcting the residual errors from

previous iterations. GBMs excel at modeling the complex,

nonlinear associations between the temporal or spectral

input features of the plant stress responses. Nevertheless,

they can be prone to overfitting, particularly when

regularization is inadequate or when deep trees are used.

Achieving robust generalization typically requires careful

tuning of key hyperparameters, such as the learning rate,

maximum tree depth, and number of boosting iterations

(Elvanidi and Katsoulas, 2022b).

• Extreme Gradient Boosting (XGBoost) is a high-

performance, optimized evolution of GBMs, tailored to

deliver enhanced scalability, increased computational

speed, and stronger regularization. It employs a second-

order Taylor Series expansion to improve gradient

optimization accuracy and incorporates penalties to
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effectively manage model complexity and reduce the

likelihood of overfitting. XGBoost also supports efficient

handling of sparse data and enables parallel tree

construction, making it particularly well-suited for large,

high-dimensional agricultural datasets (Huber et al., 2022).

Its high predictive accuracy, combined with its

compatibility with advanced interpretability techniques

such as Shapley Additive Explanations (SHAP) values and

gain-based feature importance, makes it a preferred

algorithm for modeling and predicting plant stress

severity across varying environmental conditions.
These supervised regression models collectively provide a solid

foundation for predictive analytics in agricultural stress monitoring.

When combined with UAV-based imaging systems, ground-level

sensor networks, and cloud-edge computing infrastructure, they

enable precise spatial and temporal predictions of crop stress

severity. This capability supports key precision agriculture

strategies, including site-specific irrigation, efficient pesticide

application, and the early detection of plant health issues. The

choice of an appropriate algorithm is typically influenced by the

balance between model transparency, computational efficiency, and

the complexity of feature-target relationships. Within modern

agronomic decision support systems, these regression approaches

serve as the core of scalable, data-driven solutions aimed at

promoting sustainable crop production and optimizing yields

under varying environmental and biological stress conditions.

Table 5 presents a comparative analysis of the previously

discussed supervised ML algorithms, along with their reported

performance metrics as documented in various research studies.
Unsupervised learning approaches

Unsupervised learning approaches have also demonstrated

significant utility in precision agriculture by identifying natural

clusters of stressed and healthy plants without requiring labeled

datasets. In contrast to supervised learning, which necessitates
TABLE 5 Comparative analysis of supervised ml algorithms used for stress analysis and prediction in crops and plants.

S. no Metric SVMs RF DTs k-NN SLR RFR GBMs XGBoost

1 Accuracy (%) 88–93 90–95 82–88 85–91 76–82 90–94 92–96 93–97

2 Precision (%) 87–92 89–94 80–86 83–89 74–80 89–93 91–95 92–96

3 Recall (%) 85–91 90–96 78–84 82–90 72–78 90–95 92–97 93–98

4 F1-Score (%) 86–92 89–95 79–85 83–89 73–79 89–94 91–96 93–97

5 Training Time Medium Fast Very Fast Slow Very Fast Fast Medium Medium

6 Inference Time Fast Fast Very Fast Medium Fast Fast Medium Medium

7 Model Complexity High Medium Low Low Very Low Medium High High

8 Noise Robustness Medium High Low Medium Low High High Very High

9 Scalability Medium High Medium Low Low High High Very High

10 Interpretability Low Medium High Low High Medium Low Medium
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predefined labels for training, unsupervised approaches extract

hidden structures from unlabeled data, making them particularly

valuable in agricultural scenarios where manual labeling is labor-

intensive and difficult to scale (Zubler and Yoon, 2020; Lu et al.,

2023). These clustering techniques categorize plant data based on

inherent similarities across features such as spectral reflectance,

thermal output, chlorophyll levels, morphological characteristics,

and physiological indicators, typically gathered through UAV

imagery, ground-based sensors, or remote sensing technologies.

Clustering techniques
Clustering techniques play a vital role in agriculture by

detecting crop and plant stress through the identification of

natural groupings within unlabeled data. These unsupervised

learning methods evaluate patterns of features such as spectral

reflectance, thermal data, and vegetation indices to differentiate

stressed plants from healthy ones. Algorithms such as k-means,

hierarchical clustering, and Density Based Spatial Clustering of

Applications with Noise (DBSCAN) effectively group plant

populations based on physiological characteristics, enabling the

timely detection of stress factors such as nutrient shortages, water

stress, and disease. Offering spatially detailed insights without

requiring labeled inputs, clustering aids in implementing precise

interventions and strengthens decision-making processes to

enhance crop health and overall agricultural productivity.
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• K-Means Clustering is widely used due to its ability to

divide a dataset into k distinct clusters by minimizing

variation within each group. It operates through an

iterative process that assigns data points to the nearest

centroid and continuously refines the cluster centers,

effectively highlighting well-defined zones that may

correspond to healthy, moderately stressed, or severely

stressed vegetation. Its straightforward implementation

and ability to scale efficiently make it well-suited for

processing high-resolution agricultural datasets. However,

a notable drawback is the need to specify the number of

clusters k in advance, which can be challenging in dynamic

and variable stressed field conditions (Dickinson et al.,

2018; Javidan et al., 2023).

• Hierarchical Clustering is a well-established method that

does not necessitate predefining the number of clusters. It

builds a hierarchical tree structure by either gradually

merging individual data points or successively splitting a

single overarching cluster, based on calculated distance

metrics. This technique offers a flexible and intuitive

framework for capturing the progression of plant stress

across a field, particularly in scenarios where stress levels

fluctuate over time or vary across spatial regions (Pantazi

et al., 2017) (Frank et al., 2021).

• Density Based Spatial Clustering of Applications with Noise

(DBSCAN) is a powerful solution for examining intricate,

non-linearly separable stress distributions in noisy

agricultural datasets. It forms clusters by locating densely

packed data points, while designating low-density areas,
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which typically correspond to highly stressed or anomalous

crop regions as outliers. Its ability to detect clusters of

irregular shapes and filter out noise makes it particularly

effective in diverse agricultural environments, where stress

patterns deviate from standard spatial structures (Liu et al.,

2020; Zhao et al., 2024).
Dimensionality reduction techniques
The performance of unsupervised clustering algorithms can be

significantly enhanced through the use of dimensionality reduction

techniques such as PCA and t-Distributed Stochastic Neighbor

Embedding (t-SNE) (Zhu et al., 2021; Dutağaci, 2023). These

approaches simplify complex, high-dimensional sensor data such

as multispectral or hyperspectral imagery, leading to improved

clustering precision and more intuitive visual interpretation. In

agricultural practice, the clustered outputs can be mapped

geospatially to identify spatial stress patterns within fields,

enabling precision interventions such as site-specific irrigation,

targeted pesticide application, or soil treatment. Additionally, by

integrating these clustering methods with edge computing

platforms, real-time analysis can be performed directly on UAVs

or sensor nodes, delivering immediate, field-level insights and

decision support. As agricultural data continues to expand in

both scale and complexity, unsupervised clustering provides a

flexible, scalable, and label-free solution for extracting meaningful

insights from raw sensor inputs, thereby supporting sustainable and

data-informed farming strategies tailored to the dynamic variability

of crop conditions. Table 6 presents a comparative analysis of the

previously discussed unsupervised ML algorithms, along with their

reported performance metrics as documented in various

research studies.
Deep learning methods

DLmethods are swiftly emerging as a revolutionary approach in

the field of agriculture, particularly for detecting and analyzing

stress in crops and plants. By leveraging vast datasets generated

from advanced imaging systems and environmental sensors, these

models can effectively recognize, categorize, and anticipate various

stress conditions resulting from environmental, biological, or

chemical factors. They enable automated evaluation of plant

health by examining key visual features such as leaf color,

structure, and surface texture, allowing for the early detection of

issues such as drought, pest attacks, and nutrient deficiencies. The

following subsection presents a concise overview of the most

commonly employed DL techniques for analyzing stress in crops

and plants.
• Convolutional Neural Networks (CNNs) are widely utilized

in spatial assessments of plant stress due to their strong

capability to learn layered feature representations from

visual data. When applied to RGB, multispectral, or

hyperspectral imagery, CNNs can autonomously extract
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spatial features associated with plant structure, color, and

texture. These are key indicators for detecting stress

symptoms such as chlorosis, wilting, and necrotic damage.

To enhance the accuracy of tasks such as semantic

segmentation, object detection, and stress classification,

advanced CNN frameworks such as U-Net, ResNet, and

Efficient Neural Network (ENet) are frequently employed

in agricultural imaging. For instance, a CNN trained on

NDVI-derived imagery can accurately map drought-

impacted areas with fine spatial resolution (Chandel et al.,

2021). Additionally, CNN architectures are often

augmented with components such as attention

mechanisms or spatial pyramid pooling layers to improve

their contextual understanding and adaptability to varying

spatial scales (An et al., 2019).

• Recurrent Neural Networks (RNNs), particularly LSTM

models, excel at capturing temporal variations within

sequential agricultural datasets regarding the stress on

crops and plants. These models are well equipped to

manage complex, time-dependent, and non-linear data,

making them particularly suitable for evaluating long-

term datasets such as phenological timelines, time series

vegetation indices (e.g., NDVI, Extended Visual

Information (EVI)), and environmental metrics such as

humidity and temperature (Ali et al., 2024). LSTMs leverage

internal memory units to retain important temporal

information across extended timeframes, which is critical

for anticipating stress conditions before they escalate. For

example, LSTM networks can predict upcoming water

stress by analyzing historical patterns in soil moisture and

climatic conditions. Furthermore, integrated CNNs based

on LSTM architectures are gaining popularity for

spatiotemporal analysis. In this context, CNNs extract

spatial features from image data, while LSTMs model the

evolution of stress indicators across time (Bounoua

et al., 2024).
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Originally introduced for natural language processing,

transformer-based models have recently been adopted for

agricultural stress analysis due to their effectiveness in capturing

long-range dependencies and contextual cues via self-attention

mechanisms. Vision Transformer (ViT) and hybrid CNN

transformer architectures demonstrate strong performance in

identifying broad spatial patterns within plant imagery, making

them particularly valuable for detecting widespread or subtle stress

manifestations across large agricultural areas (Thokala and

Doraikannan, 2023). Unlike CNNs, which focus on localized

receptive fields, transformers evaluate all image segments

simultaneously, enabling the detailed modeling of spatially

complex and heterogeneous stress conditions. Furthermore,

transformers excel at fusing multimodal data sources including

visual, spectral, thermal, and climatic inputs. This is especially

advantageous for diagnosing compound stress events, such as the

co-occurrence of drought and nutrient deficiency, where

understanding intricate feature interdependencies is critical for an

accurate assessment (Koike et al., 2024). Table 7 presents a

comparative analysis of the previously discussed DL algorithms,

along with their reported performance metrics as documented in

various research studies.
Hybrid and ensemble learning approaches

Hybrid and ensemble learning methods have proven to be

highly effective in advancing stress detection in crops and plants.

These methods bolster model resilience, enhancing prediction

accuracy and improving generalization, particularly in agricultural

settings where data may be noisy, incomplete, or influenced by

fluctuating environmental conditions. The literature indicates that

these techniques can improve the performance of various models

used by different researchers for different agriculture-dependent

applications. These methods include CNNs, which can eliminate

important, less frequent spatial features from image-based data.
TABLE 6 List Of Unsupervised ML techniques used commonly to analyze and predict stress in crops and plants.

S. no Metric
k-means
clustering

Hierarchical
clustering

DBSCAN PCA t-SNE

1 Accuracy (%) 70–80 75–85 70–90 78–88 80–90

2 Precision (%) 68–78 72–82 75–88 76–86 78–89

3 Recall (%) 65–75 70–80 78–90 77–87 80–92

4 F1-Score (%) 66–76 71–81 76–89 76–87 79–90

5 Training Time Fast Slow Medium Fast Slow

6 Inference Time Fast Fast Very Fast Medium Medium Medium

7 Model Complexity Low Low Low High Very High

8 Noise Robustness Low Medium High Medium Medium

9 Scalability High Low Medium High Low

10 Interpretability Moderate High Moderate High Low
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Once these features are extracted, then they can be merged with

conventional classifiers such as RF to process data with a high level

of dimensionality. We have found that in the integrated framework,

CNNs can independently learn layered representations of stress-

related features from RGB or multispectral images. Once learned,

this information is utilized by RF classifiers for precise and

interpretable decision-making. This synergistic model architecture

enables multiscale feature representation, leading to improved

classification outcomes in complex field conditions involving

symptoms such as chlorosis, disease spots, and drought-related

morphological alterations (Azrai et al., 2024). Moving forward, we

examined ensemble learning strategies and found that they can

improve the analytical framework. This is achieved by averaging the

predictions of many different base models, which ultimately helps

minimize variance, correct bias and enhance the ability of the model

to address noisy or inconsistent data. This inconsistency in the data

can be attributed to human error, negligence, or malfunctioning

data-collecting sensors. Bagging techniques such as those employed

in RF algorithms leverage bootstrap resampling to generate varied

training subsets and aggregate their predictions, which increases

model reliability and decreases variability. On the other hand,

boosting methods such as Adaptive Boosting (AdaBoost), GBMs,

and XGBoost build models sequentially, adjusting the focus toward

misclassified samples in each iteration. This adaptive learning

process improves the model’s sensitivity to subtle or complex

stress indicators in crops and plants. Stacking, a sophisticated

ensemble approach that integrates diverse base learners such as

SVMs, DTs, and Neural Networks (NNs) by training a meta-model

that learns the optimal combination of their outputs, resulting in

superior generalization across diverse and intricate datasets. These

ensemble frameworks are especially useful in the context of

agricultural stress assessment because data variability and non-

linear relationships are common. Overall, hybrid and ensemble

learning methods provide scalable, flexible, and highly accurate

computational solutions for precise stress identification and

classification in precision agriculture, supporting informed
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decision making and efficient resource management (Batool

et al., 2022).

Table 8 presents a comparative overview that consolidates key

insights regarding the advantages and disadvantages of destructive,

non-destructive, and ML-based methods. This table is designed to

offer readers a concise and accessible summary.
Comparative results

As shown in Figure 9 the results provide a detailed assessment of

various supervisedML algorithms chosen by different researchers from

different institutions around the world for the evaluation of stress-

based signs in crops and plants. The list of methodologies includes

SVMs, RF, DTs, k-NN, SLR, RFR, GBMs, and XGBoost. While

evaluating data regarding various stress types, users incorporated key

performance indicators such as accuracy, precision, recall, and F1-

score, which ultimately helped them enable a comprehensive, multi-

metric comparison of each model’s classification effectiveness within

complex agroecological environments.

XGBoost and GBMs demonstrated exceptional predictive

capabilities, consistently achieving mean accuracies and F1 scores

exceeding 92%. Their strong performance stems from advanced

gradient boosting mechanisms which iteratively minimize

prediction errors by refining residuals throughout the training

process. Moreover, these models excel at capturing complex non-

linear relationships and hierarchical feature structures, making

them particularly well-suited for analyzing high-dimensional

sensor data and hyperspectral images. RF and RFR also delivered

strong performance and excellent generalization by employing

ensemble learning and bootstrap aggregation techniques. These

methods effectively address prevalent issues in agricultural

stressor datasets, such as overfitting, noise, and class imbalance,

thereby enhancing model reliability and stability. SVMs performed

well in high-dimensional feature spaces. However, its effectiveness

depends heavily on appropriate kernel selection and meticulous
TABLE 7 List of deep learning techniques commonly used to analyze and predict stress in crops and plants.

S. no Metric CNNs RNNs LSTM
Transformer-
based models

1 Accuracy (%) 88–94 85–91 87–93 92–98

2 Precision (%) 87–93 84–89 86–92 91–97

3 Recall (%) 86–92 83–88 85–91 90–96

4 F1-Score (%) 86.5–93 83.5–89 85.5–92.5 91–96.5

5 Training Time Medium Medium High Very High

6 Inference Time Fast Medium Medium Fast (if optimized)

7 Model Complexity Moderate Moderate High Very High

8 Noise Robustness Moderate Moderate High Very High

9 Scalability High Moderate Moderate High

10 Interpretability Excellent (image-based) Moderate Moderate
High with

attention mechanisms
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parameter tuning. In contrast, k-NN faced challenges with

scalability and is highly sensitive to irrelevant or noisy features.

DTs were found to be advantageous for their fast training and ease

of interpretation; however, they often struggled with high variance,

leading to suboptimal performance. SLRs were limited by their

assumption of linearity, which is inadequate for modeling the

complex non-linear interactions typically observed in stress-

related data for crops and plants.

Figure 10 shows a bar graph that offers a comparative analysis of

commonly applied unsupervised ML methods. These include k-

Means Clustering, Hierarchical Clustering, DBSCAN, PCA, and t-

SNE. These analyses are based on four core performance metrics:

Accuracy, Precision, Recall, and F1-Score. These performance

values represent averaged estimates obtained from detecting and

classifying stress in crop- and plant-based datasets.
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The graph indicates that t-SNE and PCA, when paired with

clustering algorithms, delivered the strongest overall performance

across the four key metrics. Notably, t-SNE showed impressive

results, with an accuracy of nearly 85%, a recall of approximately

86%, and an F1-score close to 84.5%, demonstrating its remarkable

capability to preserve local relationships and uncover subtle stress

patterns in complex, high-dimensional crop and plant datasets,

such as hyperspectral imagery. Similarly, PCA yielded solid

performance, achieving an average accuracy of approximately

83% along with stable precision and recall values, emphasizing its

utility in reducing dimensionality and effectively organizing feature

space prior to clustering. DBSCAN showed competitive

performance, with a particularly strong recall of 84% and an F1-

score of 82.5%, highlighting its capability to effectively detect

irregularly shaped stress patterns and manage noise, both of
TABLE 8 Comparison of destructive, non-destructive, and ML-based methods in crop and plant stress analysis.

S. no Method type Advantages Limitations

1 Destructive Methods • Direct measurement of internal biochemical and physiological
parameters.

• High accuracy in controlled conditions.
• Useful for calibration and validation of remote methods.

• Invasive: results in the damage or death of sampled
plants.

• Labor-intensive and time-consuming.
• Limited scalability for large fields.

2 Non-
Destructive Methods

• Preserves plant integrity for continuous monitoring.
• Enables high-frequency data collection.
• Integrates with sensors and UAVs for real-time assessment.

• May have limited depth of internal physiological insight.
• Requires calibration against destructive methods.
• Equipment can be expensive.

3 ML-Based Methods • Enables large-scale, automated stress detection.
• Learns complex patterns from diverse data sets.
• Suitable for predictive modeling.

• Requires large, labeled datasets for training.
• May lack interpretability.
• Performance is sensitive to data quality and

domain variations.
FIGURE 9

Comparative analysis of commonly employed supervised ml techniques for stress assessment in crops and plants.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1638675
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Muhammad et al. 10.3389/fpls.2025.1638675
which are common in real-world agricultural data. In contrast,

Hierarchical Clustering delivered steady, moderate performance

across all evaluation metrics, making it well-suited for datasets

with clear structural organization and gradual stress variations. On

the other hand, k-Means, while highly efficient and scalable,

registered relatively lower scores especially in terms of recall and

F1-score. This is primarily due to its reliance on initial centroid

selection and its limitation to spherical cluster assumptions.

The bar graph in Figure 11 illustrates a comparative analysis of

the selected DL algorithms that are CNNs, RNNs, LSTM networks,

and Transformer-based models, within the scope of crop and plant

stress identification and early stress forecasting. The assessment is

based on four key performance indicators: Accuracy, Precision,

Recall, and F1-Score, which together provide a comprehensive

measure of each model’s classification, effectiveness and

generalization ability.

Transformer-based models produced the strongest overall

results, with average performance metrics falling between 93%

and 95%. Utilizing self-attention mechanisms and parallel

processing capabilities, these models showed that they were

highly effective at capturing long-range interactions and

contextual dependencies within diverse, multimodal agricultural

stress-based datasets. Their elevated accuracy and recall values

reflect a strong ability to detect stress indicators, particularly in

cases involving diverse data sources, such as hyperspectral imaging,

sequential sensor data, and environmental information. CNNs

consistently performed well across all evaluation metrics,

demonstrating strong capability to extract spatial features from

image-based datasets. Their convolutional layer architecture excels

at identifying localized patterns, making them particularly effective
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for detecting visual stress symptoms such as chlorosis, necrosis, and

pest-related damage. LSTM networks outperformed standard

RNNs by preserving long-term dependencies, resulting in more

accurate and consistent predictions for sequential and time-

dependent data. Their architecture incorporates gated memory

units that effectively address the vanishing gradient issue, making

them especially suitable for modeling the temporal progression of

plant stress conditions. Conversely, the conventional RNNs showed

relatively weaker performance, particularly in terms of recall and

F1-score, due to their limited memory capabilities and vulnerability

to gradient degradation, which limited their ability to learn from

longer input sequences.

However a major technical challenge in implementing ML in

agriculture is the limited availability of high-resolution, accurately

annotated datasets, which are critical for developing robust and high-

performance models. Supervised learning techniques especially

advanced DL models such as CNNs, ViT, and GNNs require

extensive, diverse datasets to ensure reliable generalization across

different crop varieties and varied agro-ecological environments.

However, acquiring such data is often obstructed by temporal and

spatial inconsistencies, sensor calibration discrepancies, and the lack

of standardized annotation frameworks. These obstacles result in

insufficient data quality and quantity, limiting the scalability and

adaptability of ML models in real-world field conditions. Moreover,

the computational intensity of state-of-the-art ML architectures poses

a further constraint, particularly when targeting deployment in edge

computing systems with limited resources. DL models often demand

significant computational infrastructure, including Graphics

Processing Unit (GPU) acceleration and high memory capacity,

during both the training and inference phases. These hardware
FIGURE 10

Comparative analysis of commonly employed unsupervised ML techniques for stress assessment in crops and plants.
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requirements make real-time implementation in agricultural settings

difficult, especially in environments with limited energy and

processing capabilities. To address this, it is essential to investigate

model optimization strategies such as lightweight network design,

pruning, quantization, and knowledge distillation. These strategies all

aim to improve computational efficiency without significantly

affecting model accuracy. Scalability also presents algorithmic

challenges, particularly across diverse agro-ecosystems, which are

characterized by variations in crop physiology, stress conditions, and

field management practices. These factors contribute to domain shift,

reducing the effectiveness of models trained under controlled

conditions when applied in the field. To overcome this, advanced

techniques such as domain adaptation, transfer learning, and

federated learning offer promising solutions to improve model

robustness and adaptability in heterogeneous agricultural

environments.
Benefits of stress to plants and crops:
a brief discussion

A plant that has never encountered stress would be as ill-equipped

as a person who has never faced adversity. The growth and

development of all living organisms, including plants and animals,

are profoundly shaped by continual exposure to stress throughout

evolutionary processes, ontogenetic stages, and individual life cycles.

However, research on plant stress has largely focused on alleviating its

harmful consequences, with minimal attention given to the

scientifically sound approaches of acknowledging and leveraging the

positive effects of stress on plants and crops.
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In agricultural science, plant stress is typically linked to reduced

productivity and physiological strain. However, when plants are

subjected to moderate or controlled stress stemming from abiotic

sources such as drought, salinity, temperature fluctuations, and

nutrient limitations, or biotic challenges such as pests and

pathogens, this can provoke adaptive morphological, physiological,

and molecular changes that bolster plant vigor and resilience. In fact,

a well-established response to such stresses is the enhanced synthesis

of secondary metabolites (Godoy et al., 2021). These compounds,

such as phenolics, flavonoids, alkaloids, and terpenoids, play essential

roles in defending against environmental threats and can also

mitigate oxidative damage. From an agronomic standpoint, it is

obvious that the accumulation of these metabolites significantly

improves crop quality traits, including flavor profile, antioxidant

potential, and therapeutic value. For example, research done on

viticulture has demonstrated that water stress is responsible for

elevating anthocyanin levels in grape skins, which helps in

contributing to superior sensory characteristics and chemical

composition in wine (Arias et al., 2022).

In addition, plants exposed to early or repeated stress events

often develop a form of stress resilience, known as stress priming or

stress memory. This adaptive response is characterized by

epigenetic alterations and gene expression reprogramming, both

of which enable faster and more effective reactions to subsequent

stress challenges. Key physiological adjustments include enhanced

root development, refined stomatal regulation, and improved

osmotic control: these support better water use efficiency and

greater drought tolerance. Complementary morphological changes

such as a reduced leaf area index, increased accumulation of

cuticular wax, and modified leaf orientation also play a crucial
FIGURE 11

Comparative analysis of commonly employed deep learning algorithms for stress assessment in crops and plants.
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role in reducing transpirational water loss and mitigating

photoinhibition under conditions of intense sunlight or elevated

temperatures (Gowtham et al., 2022). In the rhizosphere, abiotic

stress can reshape the profile of root exudates, encouraging

beneficial associations between plants and soil microorganisms.

For example, under nutrient-poor conditions, roots release

signaling compounds that attract arbuscular mycorrhizal fungi

and nitrogen-fixing bacteria, thereby enhancing nutrient uptake

and reducing dependence on chemical fertilizers. In saline soils,

stress-tolerant endophytes and rhizobacteria help maintain ion

balance and regulate antioxidant enzyme activity, thereby

boosting the plant’s salt tolerance. These symbiotic relationships

highlight the essential role of plant microbiome interactions in

facilitating stress resilience and promoting sustainable agricultural

practices (Solomon et al., 2023).

Additionally, deliberately managed stress applications have

been used to fine-tune source-to-sink interactions, directing

assimilates toward enhancing reproductive development. In fruit

crops, for instance, Regulated Deficit Irrigation (RDI) has

demonstrated success in elevating sugar content, increasing dry

matter levels, and extending postharvest longevity without

negatively affecting overall yield. These stress-induced shifts in

metabolic allocation hold significant potential for enhancing the

commercial quality and storage durability of perishable produce

(Yang et al., 2022) (Chen et al., 2023). Finally, the transgenerational

impacts of stress arising from genetic, epigenetic, and physiological

changes can lead to improved seed vigor, consistent germination,

and greater stress tolerance in the next generation. These inherited

adaptive traits are being increasingly utilized in breeding initiatives

aimed at developing climate-resilient crop varieties (Louis et al.,

2023; Nguyen et al., 2022).
Conclusion

In this comprehensive review we have tried to emphasize the

complexity and significance of detecting abiotic and biotic stressors in

crops, along with advancements in technologies specifically designed

for their assessment. As time passes, the agricultural sector faces

mounting pressures from climate change, environmental degradation,

and human-driven influences. Therefore, the demand for swift and

accurate stress detection has become critical. When crops and plants

experience stress, they exhibit various stress indicators that can be

categorized as visual, physiological, biochemical, or molecular in

nature. Although conventional destructive methods have yielded

reliable information over time, they are gradually being replaced by

cutting-edge non-destructive techniques and remote sensing tools that

offer continuous, large-scale monitoring without harming plant

structures. The integration of ML into these platforms is a major

breakthrough, as it enables automated, high-throughput detection,

classification, and predictive modeling of stress responses. These

advancements facilitate better decision-making, optimize resource

use, and contribute to the evolution of precision agriculture, while

also supporting the development of stress-resilient crop varieties.
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Looking ahead, sustained interdisciplinary collaboration and

technological innovation will be pivotal in addressing future

agricultural challenges and securing the global food supply.

Our effort through this review offers critical insights for scientists,

agronomists, and policymakers seeking to boost crop yields through

advanced stress assessment and responsive management practices.

Future research efforts should focus on the synergistic integration

of diverse remote sensing inputs including hyperspectral, thermal,

LiDAR, and chlorophyll fluorescence data acquired from UAVs and

satellite-based platforms with advanced deep learning frameworks such

as Vision Transformers and Graph Neural Networks to enable precise,

high-resolution spatiotemporal mapping of crop stress dynamics.

Equally important is the advancement of interpretable AI through

the adoption of explainable ML approaches, e.g., SHAP and Local

Interpretable Model agnostic Explanations (LIME), which are essential

for transparent, data-driven decision making. In parallel, incorporating

multi-omics datasets spanning genomic, transcriptomic, and

proteomic layers into phenomics-centric pipelines can accelerate the

identification and validation of stress-resilient genotypes. To ensure

methodological consistency and broad applicability, the establishment

of unified stress quantification standards and interoperable data

ontologies is vital for enhancing reproducibility, scalability, and

cross-environmental robustness in precision phenotyping frameworks.
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What can boron deficiency symptoms tell us about its function and regulation? Plants
12, 777. doi: 10.3390/plants12040777

Botelho, R. V., Müller, M. M. L., Umburanas, R. C., Laconski, J. M. O., and Terra, M.
M. (2022). “Boron in fruit crops: plant physiology, deficiency, toxicity, and sources for
fertilization,” in Boron in Plants and Agriculture (525B Street, Suite 1900, San Diego,
CA 92101-4495, USA: Elsevier), 29–50.
frontiersin.org

https://doi.org/10.3390/agriculture12122084
https://doi.org/10.1016/j.plaphy.2021.02.015
https://doi.org/10.1016/j.compag.2022.107444
https://doi.org/10.3390/plants12071447
https://doi.org/10.3389/fpls.2022.1016257
https://doi.org/10.1038/s41598-024-74127-8
https://doi.org/10.3390/sym11020256
https://doi.org/10.3389/fpls.2022.884454
https://doi.org/10.3389/fpls.2022.835425
https://doi.org/10.3389/fpls.2022.835425
https://doi.org/10.1016/j.compag.2022.106806
https://doi.org/10.1016/B978-0-12-812689-9.00008-X
https://doi.org/10.1016/B978-0-12-812689-9.00008-X
https://doi.org/10.4236/ojss.2020.1012030
https://doi.org/10.3389/fsufs.2024.1334421
https://doi.org/10.1080/01904167.2021.2020831
https://doi.org/10.3390/rs14133214
https://doi.org/10.3390/plants11151925
https://doi.org/10.1007/s11119-014-9372-7
https://doi.org/10.1016/j.ecolind.2023.110784
https://doi.org/10.1016/j.ecolind.2023.110784
https://doi.org/10.1016/j.rse.2022.113198
https://doi.org/10.3390/plants13121589
https://doi.org/10.3390/plants12040777
https://doi.org/10.3389/fpls.2025.1638675
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Muhammad et al. 10.3389/fpls.2025.1638675
Bounoua, I., Saidi, Y., Yaagoubi, R., and Bouziani, M. (2024). Deep learning
approaches for water stress forecasting in arboriculture using time series of remote
sensing images: Comparative study between convlstm and cnn-lstm models.
Technologies 12, 77. doi: 10.3390/technologies12060077

Brown, P. H., Zhao, F.-J., and Dobermann, A. (2022). What is a plant nutrient?
Changing definitions to advance science and innovation in plant nutrition. Plant Soil
476, 11–23. doi: 10.1007/s11104-021-05171-w

Bui, H.-T., Odsuren, U., Kim, S.-Y., and Park, B.-J. (2022). Particulate matter
accumulation and leaf traits of ten woody species growing with different air
pollution conditions in Cheongju City, South Korea. Atmosphere 13, 1351.
doi: 10.3390/atmos13091351

Butte, S., Vakanski, A., Duellman, K., Wang, H., and Mirkouei, A. (2021). Potato
crop stress identification in aerial images using deep learning-based object detection.
Agron. J. 113, 3991–4002. doi: 10.1002/agj2.20841

Chachar, S., Ahmed, N., and Hu, X. (2025). Future-proofing ornamental plants:
Cutting-edge strategies for drought resistance and sustainability. Physiologia
Plantarum 177, e70255. doi: 10.1111/ppl.70255

Chakraborti, S., Bera, K., Sadhukhan, S., and Dutta, P. (2022). Bio-priming of seeds:
Plant stress management and its underlying cellular, biochemical and molecular
mechanisms. Plant Stress 3, 100052. doi: 10.1016/j.stress.2021.100052

Chandel, N. S., Chakraborty, S. K., Rajwade, Y. A., Dubey, K., Tiwari, M. K., and Jat,
D. (2021). Identifying crop water stress using deep learning models. Neural Computing
Appl. 33, 5353–5367. doi: 10.1007/s00521-020-05325-4

Chandrasekaran, M. (2022). Arbuscular mycorrhizal fungi mediated enhanced
biomass, root morphological traits and nutrient uptake under drought stress: a meta-
analysis. J. Fungi 8, 660. doi: 10.3390/jof8070660

Chaudhry, A. H., Nayab, S., Hussain, S. B., Ali, M., and Pan, Z. (2021). Current
understandings on magnesium deficiency and future outlooks for sustainable
agriculture. Int. J. Mol. Sci. 22, 1819. doi: 10.3390/ijms22041819

Chen, Y., Zhang, J.-H., Chen, M.-X., Zhu, F.-Y., and Song, T. (2023). Optimizing
water conservation and utilization with a regulated deficit irrigation strategy in woody
crops: A review. Agric. Water Manage. 289, 108523. doi: 10.1016/j.agwat.2023.108523

Cho, Y., and Nam, J.-S. (2024). Soil mechanical systems and related farming
machinery. Agriculture. 14 (9), 1661. doi: 10.3390/agriculture14091661

Corona-Lopez, D. D., Sommer, S., Rolfe, S. A., Podd, F., and Grieve, B. D. (2019).
Electrical impedance tomography as a tool for phenotyping plant roots. Plant Methods
15, 1–15. doi: 10.1186/s13007-019-0438-4

Cozzolino, D., and Roberts, J. (2016). Applications and developments on the use of
vibrational spectroscopy imaging for the analysis, monitoring and characterisation of
crops and plants. Molecules 21, 755. doi: 10.3390/molecules21060755

Das, R., and Biswas, S. (2022). “Influence of abiotic stresses on seed production and
quality,” in Seed Biology Updates (Great Portland Street, London, W1W 5PF, UNITED
KINGDOM: IntechOpen).

da Silva, D. L., de Mello Prado, R., Tenesaca, L. F. L., da Silva, J. L. F., and Mattiuz, B.-
H. (2021). Silicon attenuates calcium deficiency by increasing ascorbic acid content,
growth and quality of cabbage leaves. Sci. Rep. 11, 1770. doi: 10.1038/s41598-020-
80934-6

Datir, S., and Regan, S. (2022). Advances in physiological, transcriptomic, proteomic,
metabolomic, and molecular genetic approaches for enhancing mango fruit quality. J.
Agric. Food Chem. 71, 20–34. doi: 10.1021/acs.jafc.2c05958

Dawar, R., Karan, S., Bhardwaj, S., Meena, D. K., Padhan, S. R., Reddy, K. S., et al.
(2023). Role of sulphur fertilization in legume crops: A comprehensive review. Int. J.
Plant Sci. 35, 718–727. doi: 10.9734/ijpss/2023/v35i214033

De Bang, T. C., Husted, S., Laursen, K. H., Persson, D. P., and Schjoerring, J. K.
(2021). The molecular–physiological functions of mineral macronutrients and their
consequences for deficiency symptoms in plants. New Phytol. 229, 2446–2469.
doi: 10.1111/nph.17074

Demirdogen, A., Guldal, H. T., and Sanli, H. (2023). Monoculture, crop rotation
policy, and fire. Ecol. Economics 203, 107611. doi: 10.1016/j.ecolecon.2022.107611

de Oliveira, B. R., Zuffo, A. M., Steiner, F., Aguilera, J. G., and Gonzales, H. H. S.
(2023). Classification of soybean genotypes during the seedling stage in controlled
drought and salt stress environments using the decision tree algorithm. J. Agron. Crop
Sci. 209, 724–733. doi: 10.1111/jac.12654

De Palma, N., and Fett-Neto, A. G. (2024). A semi-quantitative histochemical
method for assessment of biochemical responses to osmotic stress in Coffea arabica
leaf disks. Protoplasma 261, 1093–1100. doi: 10.1007/s00709-024-01941-2

Desaint, H., Aoun, N., Deslandes, L., Vailleau, F., Roux, F., and Berthomé, R. (2021).
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AI Artificial Intelligence
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ATP Adenosine Triphosphate Production
CAT Catalase
CNNs Convolutional Neural Networks
CTF Controlled Traffic Farming
CWSI Crop Water Stress Index
CWSI Crop Water Stress Index
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DBSCAN Density-Based Spatial Clustering Of Applications With Noise
DL Deep Learning
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DNase I Deoxyribonuclease I
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DREB Dehydration-Responsive Element-Binding Proteins
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ENet Efficient Neural Network
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EM Electromagnetic
EVI Extended Visual Information
FW Fresh Weight
GBDT Gradient Boosting Decision Trees
GBM Gradient Boosting Machines
GPU Graphical Processing Unit
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HSPs Heat Shock Proteins
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IWM Integrated Weed Management
JA Jasmonic Acid
k-NN K-Nearest Neighbor
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LiDAR Light Detection And Ranging
LIME Local Interpretable Model-agnostic Explanations
LPO Lipid Peroxidation
LSTM Long Short-Term Memory
MDA Malondialdehyde
ML Machine Learning
NADPH Nicotinamide Adenine Dinucleotide Phosphate
NBT Nitroblue Tetrazolium
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NDVI Normalized Difference Vegetation Index
NIR Near Infrared
NN Neural Networks
NO Nitrogen Oxides
NPQ Non-Photochemical Quenching
NPQ Non-Photochemical Quenching
PAM Pulse Amplitude Modulated
PAR Photosynthetically Active Radiation
PCA Principal Component Analysis
Ph Potential Of Hydrogen
POD APX, Peroxidases
PRI Photochemical Reflectance Index
PSII Photosystem II
PVP Polyvinylpyrrolidone
qPCR Quantitative Real-Time Polymerase Chain Reaction
RD29A Response-To-Dehydration 29a
RDI Regulated Deficit Irrigation
REIP Red Edge Inflection Point
ResNet Residual Network
RF Radiofrequency
RF Random Forest
RFR Random Forest Regression
RGB Red Green And Blue
RL Reinforcement Learning
RNA Ribonucleic Acid
RNNs Recurrent Neural Networks
ROS Reactive Oxygen Species
RWC Relative Water Content
SA Salicylic Acid
SAR Systemic Acquired Resistance
SDS-PAGE Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis
SHAP Shapley Additive Explanations
SL Supervised Learning
SLR Simple Linear Regression
SO₂ Sulfur Dioxide
SOD Superoxide Dismutase
SOM Self-Organizing Map
SPAD Soil Plant Analysis Development
SVMs Support Vector Machines
SWIR Shortwave Infrared
TBA Thiobarbituric Acid
TBARS Thiobarbituric Acid Reactive Substances
TCA Trichloroacetic Acid
TRIzol Total RNA Isolation Reagent
t-SNE T-Distributed Stochastic Neighbor Embedding
TW Turgid Weight
UAVs Unmanned Aerial Vehicles
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WSNs Wireless Sensor Networks
XGBoost Extreme Gradient Boosting
IIoT Industrial Internet Of Things
IoT Internet Of Things
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