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Light adaptive image
enhancement for
improving visual analysis in
intercropping cultivation
Wei Zhong1, Wanting Yang2, Yunfei Wang1, Xiang Dong1,
Xiaowen Wang1*, Weidong Jia1, Mingxiong Ou1

and Mingde Yan3

1School of Agricultural Engineering, Jiangsu University, Zhenjiang, China, 2School of Mechatronic
Engineering, Taizhou University, Taizhou, China, 3Chinese Academy of Agriculture Mechanization
Sciences Group Co., Ltd., Beijing, China
Intercropping maize and soybean with distinct plant heights is a typical practice

in diversified cropping systems, where shadows cast by taller maize plants onto

soybean rows pose significant challenges for image based recognition. This study

conducted experiments throughout the entire soybean–maize intercropping

period to address illumination variation. Based on the height difference between

crops, solar elevation angle, and light intensity at the top of the soybean canopy,

an illumination compensation regression model was developed. The model was

applied to correct soybean canopy images and compared against traditional

enhancement methods, including histogram equalization, Multi-Scale Retinex

(MSR), and gamma correction. Quantitative evaluation using peak signal-to-

noise ratio (PSNR) showed the proposed method achieved 40.79 dB, indicating

superior image quality. Furthermore, analysis of RGB and HLS channels revealed

a consistent increase in brightness from left (darker) to right (brighter) across the

images. Specifically, green channel values rose from 150-230 to 180-240, and

overall RGB values exceeded 150, suggesting improved brightness and reduced

local fluctuations. Brightness increased from 90-200 to 150-220, with the left

region rising from 125 to 175. Finally, a comparison of channel-wise standard

deviations among methods showed that the proposed algorithm exhibited lower

variance in the green (G) and hue (H) channels, with favorable consistency across

others. These results demonstrate the model’s effectiveness in achieving

smoother brightness transitions, thereby enhancing image uniformity and

mitigating the negative impact of uneven illumination on recognition tasks.
KEYWORDS

illumination compensation, intercropping, height difference, solar elevation angle,
growth stage
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2025.1639016/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1639016/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1639016/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1639016/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2025.1639016&domain=pdf&date_stamp=2025-08-20
mailto:wangxiaowen@ujs.edu.cn
https://doi.org/10.3389/fpls.2025.1639016
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2025.1639016
https://www.frontiersin.org/journals/plant-science


Zhong et al. 10.3389/fpls.2025.1639016
1 Introduction

Intercropping has been widely adopted due to its advantages in

intensive land use and production efficiency (Kass, 1978; Andersen,

2025). It is a cultivation system in which two or more crops are

simultaneously grown in rows or strips on the same land within a

single growing season (MacLaren et al., 2023; Du et al., 2018). On

average, intercropping can increase production efficiency by 20–

30% and also contributes to weed suppression and a reduction in

pests and diseases (Ren et al., 2019). In intercropping systems, taller

crops intercept more sunlight, casting shadows on shorter crops and

reducing their exposure to direct radiation. This shading effect

substantially influences the morphological and physiological traits

of the understory crops (Franklin, 2008; Raza et al., 2019). Shading

alters the microclimate experienced by short-statured crops by

reducing the infrared radiation they receive, thereby affecting

light intensity (Wang et al., 2021a; Zhu et al., 2015). These

changes trigger a series of responses in plant phenotypes and

physiology (Fan et al., 2018; Hussain et al., 2019), influencing

critical traits such as stem diameter, leaf thickness, leaf area index

(LAI), photosynthetic capacity, aboveground biomass, yield, and

plant height (Deng et al., 2021; Petrella et al., 2022).

Despite its agronomic advantages, the large scale adoption of

intercropping has been constrained by mechanization challenges

(Bybee-Finley and Ryan, 2018). Accurate recognition of crop traits

is a prerequisite for mechanized operations, yet uneven shading in

intercropped systems hampers reliable image based detection.

Shading induced brightness variation reduces the quality of

captured images and interferes with visual perception and object

recognition. Image recognition technologies have increasingly been

applied in agriculture for tasks such as plant protection (Routray et al.,

2019), harvesting, and sowing (Wang et al., 2022; Feng et al., 2024).

Applications extend across multiple crop species, including wheat,

maize, and rice (Zhu et al., 2023; Wang et al., 2021b; Sun et al., 2018,

2021). However, during image acquisition, both the lighting

conditions and the medium through which light propagates

significantly affect image quality (Xu et al., 2023). To address low

light image degradation, researchers have explored both hardware and

software solutions. Specialized low light cameras have demonstrated

strong performance, but their high cost and limited practicality hinder

widespread use. On the software side, digital image processing

techniques remain the primary method for image enhancement,

though challenges such as color distortion and uneven brightness

persist (Li et al., 2022). Traditional enhancement methods include

histogram equalization, which redistributes pixel intensity to expand

an image’s dynamic range and improve contrast (Coltuc et al., 2006;

Lee et al., 2013b). Additionally, image enhancement models based on

Retinex theory have been developed, though they often struggle to

balance brightness recovery with dynamic range compression. To

overcome this limitation, the multi-scale Retinex (MSR) method was

introduced and further refined by Lee et al. (Lee et al., 2013a),

improving its parameter adaptability. MSR decomposes an image

into reflectance and illumination components and has served as the

foundation for various subsequent methods (Guo et al., 2016; Li et al.,

2018). Similarly, gamma correction adjusts brightness by applying a
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nonlinear transformation that approximates human visual

perception, improving brightness uniformity, especially in darker

regions (Huang et al., 2012).

In intercropping systems, the shading distance varies according

to the height of taller crops and the solar elevation angle. However,

current studies offer limited research on the relationship between

shading distance and light intensity. Statistical models constructed

based on the shading capacity of intercropping systems using

regression analysis are often heavily influenced by actual

measurement data. To simulate the shading capacity at various

positions within the canopy, it is essential to establish a general

model that directly quantify light intensity in intercropping systems.

Factors such as crop canopy height, the differences in crop height,

and the solar elevation angle are crucial in determining the light

environment, Continuous measurements throughout the entire

growing season are required to capture data across different periods

for improved accuracy. Strip intercropping of maize and soybean is

widely practiced in China; hence, this study focuses on soybean-

maize intercropping as a test subject. In shading research, soybean,

being a shade-intolerant species, frequently receives more attention.

A statistical analysis conducted by Li et al. (2023) on soybean–maize

intercropping systems revealed that the taller maize plants

significantly obstruct direct solar radiation, thereby influencing the

light availability for shorter soybean plants. Specifically, the shading

ratio for soybean in the southernmost row was reported to range

between 52.44% and 57.44%, indicating substantial light interception.

Although light compensation models have been applied in fields such

as underwater imaging, their adaptation to open field agricultural

settings remains limited. This study bridges that gap by incorporating

crop specific geometry and solar parameters into the illumination

correction process, marking a novel interdisciplinary application of

physics based enhancement strategies. This study aims to develop a

color constancy algorithm capable of counteracting the effects of

various adverse light sources, thereby obtaining an intrinsic image

that reflects fundamental physical properties of the scene’s surface.

This study aims to directly quantify the relationship between

light intensity and shading in maize-soybean intercropping systems.

The research objectives are as follows: (1) to develop a quantitative

shading model that accounts for the geometric relationship between

canopy structure (the height difference between adjacent maize and

soybean canopies) and the position of the sun; (2) to process the

shaded areas of images using traditional methods and evaluate the

resulting image quality; and (3) to establish an image processing

algorithm tailored to both tall and short crops, by applying an

illumination Compensation method to smooth lighting effects in

the images.
2 Materials and methods

2.1 Experimental design and image
acquisition

A field experiment on soybean–maize intercropping was

conducted at the Zhenjiang Agricultural Science and Technology
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Park in Jiangsu Province, China (32°12′ N, 119°18′ E). From 2020 to

2023, the site had an average annual temperature of 16.5°C, annual

precipitation of 1105 mm, and annual sunshine duration of 1956

hours. On June 8, 2024, maize (Jiangyu 688) and soybean (Qihuang 34)

were sown. The total experimental area was 6.67 ha, and the

intercropping system consisted of four rows of maize (row spacing:

60 cm; plant spacing: 20 cm) alternated with six rows of soybean (row

spacing: 30 cm; plant spacing: 10 cm), with a 60 cm wide buffer zone

between the maize and soybean strips. The rows were oriented east–

west to ensure consistent lighting conditions. Observations were

carried out at five key growth stages of maize: the third leaf, seventh

leaf, tasseling, milk, and maturity stages, which corresponded to the

third leaf, flowering, pod setting, grain filling, and maturity stages of

soybean, respectively. At each stage, plant height was measured, and

light intensity at the top of the soybean canopy was recorded at 8:00

AMunder clear sky conditions. In addition, images of the soybean strip

were collected, as shown in Figure 1. Plant height was defined as the

vertical distance from the stem base to the uppermost point of the

canopy. For each growth stage, ten maize plants and ten soybean plants

were randomly selected and measured. The average height for each

species was calculated to represent the mean canopy height, and the

difference in height between maize and soybean was used to assess

shading effects. Light intensity measurements were taken at the top of

each soybean row using amulti-light source illuminometer (DL333205,

Deli Group, Ningbo, China). Three random positions per row were

selected, and the average reading was used to represent the light

intensity for each growth stage. Image acquisition was conducted

using a DJI Mavic 2 drone (DJI, Shenzhen, China). A drone was

employed to capture images from a height of 2 meters above the

soybean canopy. The camera operated at a resolution of 2688 × 1512

pixels and was oriented vertically downward, with the flight direction

aligned with the row orientation of the soybean plants. At each growth

stage, images were collected from two adjacent plots: an experimental

plot and a control plot. Specifically, 20 images per stage were taken

from the experimental plot for model parameterization, while 10

images per stage were captured from the control plot to serve as a

dataset for subsequent model validation. In this study, light intensity

was measured across different soybean rows at various growth stages to

obtain distribution profiles of illumination variation within the soybean

strip. Based on these measurements, an illumination compensation
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algorithm was developed to address the uneven lighting conditions in

intercropping systems. To validate the effectiveness of the proposed

model, soybean canopy images were collected at multiple growth stages

and processed using different enhancement algorithms. Comparative

analyses of the RGB and HLS channel values before and after

enhancement were conducted, allowing identification of the most

effective image enhancement method.
2.2 Illumination compensation model
construction

In intercropping systems, uneven illumination within the

soybean strip can negatively affect the accuracy of subsequent

soybean information extraction. To address this issue, this study

enhances soybean canopy images based on the observed variation in

light intensity across different rows. This process is hereafter

referred to as illumination compensation. In this study, the maize

and soybean strips were simplified and modeled as rectangular

cuboids. It was assumed that sunlight transmission through the

maize canopy was negligible, and the light intensity received by the

soybean strip was primarily influenced by direct solar radiation,

atmospheric scattering, and reflected light from the adjacent maize

strip to the south. The shading distance cast by the maize strip was

determined primarily by plant height and the solar angle. However,

there is limited research on the quantitative relationship between

shading distance and irradiance. In this work, particular attention

was given to the effects of plant height difference and solar elevation

angle on shading behavior within the soybean strip. The height

difference was defined as the vertical distance between the top of the

maize canopy and the top of the soybean canopy, while the solar

elevation angle referred to the angle between the sun’s rays and the

horizontal plane. The experimental field was oriented east–west,

and the soybean–maize intercropping system was observed from

June to October, during which the soybean strip was primarily

shaded by the southern maize strip throughout the day. To facilitate

analysis, the soybean rows were labeled from south to north as R1 to

R6, as shown in Figure 2.

Compensation curves reflecting the impact of plant height on

light intensity across different growth stages were established
FIGURE 1

(a) Drone captured photos and (b) soybean strip photos.
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through statistical analysis, yielding distinct light intensity curves

for each stage. These curves were subsequently employed to

enhance images by applying the corresponding light intensity

adjustments. In the shaded areas, light intensity predominantly

arises from direct sunlight, scattered light, and ambient reflected

light. Moreover, the total light intensity in these regions is

influenced by both the solar altitude angle and the height

difference between the crops. Based on the Equations 1–6, the

total illuminance in the shaded region was derived (Yan et al., 2015;

Saraçoğlu and Gündüz, 2009).

E = E0 cos q (1)

Where E is the actual light intensity; E0 is the light intensity of

the sun in direct sunlight; q is the solar elevation angle.

L =
h

tan q
(2)

Where L is the length of the shade; h is the height difference of

the crop.

Eshadow = E0( cos q − f (h, d)) + Ediffuse + Ereflected (3)

Where Eshadow is the light intensity of the shaded area; f (h, d) is

the shading effect due to the height difference h and the position d in

the shadow; Ediffuse is the scattered light, which usually accounts for

10-20% of the total radiation; and Ereflected is the ambient reflected

light.

Ediffuse = E0Df (4)

Where Df is the scattered light coefficient, 0.1-0.2 on a clear day.

Ereflected = E0a (5)

Where a is the reflectance, and the soybean line is 0.1.

Eshadow = E0( cos q − f (h, d)) + E0Df + E0a (6)
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2.3 Illumination compensation algorithm

This section presents the illumination compensation algorithm

(ICNet) developed in this study and compares its performance with

three conventional enhancement methods: histogram equalization,

multi-scale Retinex (MSR), and gamma correction. The comparison

was conducted using both quantitative (PSNR) and qualitative

(RGB/HLS) metrics. Histogram equalization enhances the overall

contrast of an image by redistributing the grayscale values to

achieve a more uniform intensity distribution. Specifically, it

transforms the grayscale histogram using the cumulative

distribution function, allowing the pixel values to be more evenly

spread across the dynamic range. However, in images with

substantial brightness differences, this method may lead to

excessive noise amplification and structural distortion (Dai et al.,

2019). Retinex is an image enhancement algorithm inspired by the

human visual perception system, designed to separate the

illumination and reflectance components of an image. The Multi-

Scale Retinex (MSR) algorithm is an enhanced variant of the

classical Retinex model, which estimates the illumination

component at multiple spatial scales using Gaussian filtering and

subsequently derives the reflectance by computing the logarithmic

difference. This multi-scale approach enables the enhancement of

image details across both low and high frequency regions, as

formulated in Equation 7. Gamma correction is a nonlinear

brightness adjustment technique that transforms image pixel

values using a power law function to align with human visual

sensitivity to brightness. When the gamma value g<1, it enhances
dark region details; when g>1, it suppresses overexposed areas, as

expressed in Equation 8.

Rix, y = log Ii(x, y) − log½Fi(x, y)*Ii(x, y� (7)

where Ii denotes the original image, Fi represents the Gaussian

kernel at scale i, and * denotes the convolution operation.

Iout = C · Igin (8)

where g is the gamma value, C is a constant, and Iin and Iout
represent the input and output pixel values, respectively.

Unlike conventional Retinex based methods that rely on generic

assumptions of illumination distribution, ICNet incorporates

physical field variables, including crop height difference and solar

elevation angle, allowing for scene specific brightness adjustment.

In this study, image data enhancement was performed using the

aforementioned formulas by applying a compensation mapping to

mitigate brightness variations and enhance overall image

brightness. This algorithm is referred to as ICNet. To address the

image quality issues arising from mutual shading between soybean

and maize in intercropping systems, a novel algorithm for image

brightness correction is proposed. The method adjusts brightness

on a column by column basis to achieve uniform lighting across the

image. Using a regression model, the target illumination intensity

for each column of the image was calculated. Then, with a preset

reference illumination intensity as a benchmark, the soybean rows

(30, 60, 90, 120, 150, and 180 cm) were used as positional input

coordinates. Illumination compensation was subsequently applied
FIGURE 2

Schematic of the developed shading capacity mode.
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from left to right along the soybean belt to enhance overall image

brightness. For each column, the adjustment ratio is calculated

based on the target and reference light intensity, gradually aligning

the brightness with the predetermined standard. To prevent

excessive enhancement or reduction, the adjustment ratio is

constrained within a range of 0.5 to 1.2. This ratio is then applied

to the pixel values of each column to adjust the overall brightness.

Finally, the processed image is normalized to the standard display

range, thereby enhancing the accuracy of the enhancing image

information, as shown in Figure 3.
2.4 Evaluation metrics and comparative
algorithms

2.4.1 PSNR
An adaptive learning mechanism is introduced to dynamically

adjust the strategy based on the characteristics of the input image.

Both quantitative and qualitative evaluation methods were

developed, with the Peak Signal-to-Noise Ratio (PSNR) used to

assess the enhancement effect (Wang et al., 2004), as shown in

Equation 10. Higher PSNR values indicate lower image distortion,

consequently, better quality. Generally, a PSNR greater than 30 dB

is considered to signify high reconstruction quality. Equation 9

represents the formula for calculating the Mean Squared Error

(MSE) (Jobson et al., 1997).

MSE =
1
mn o

m−1

i=0
o
n−1

j=0
(I(i, j) − K(i, j))2 (9)

Where MSE is Mean Square Error; I (i, j) and K (i, j) are the

pixel values of the original and processed image respectively. m and

n are the width and height of the image.

PSNR = 10 log10ð
MAX2

MSE
Þ (10)
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Where MAX is the maximum pixel value of the image.

2.4.2 RGB and HLS change laws
In the field of image processing and computer vision, image

features are traditionally extracted from the RGB (Red, Green, Blue)

channels (Hu et al., 2021; Yan et al., 2022). However, in practical

applications particularly in tasks such as object detection, image

segmentation, and color correction the HLS (Hue, Lightness,

Saturation) color model is often more aligned with human visual

perception. This alignment makes color feature extraction more

intuitive and effective, especially when interpreting color based

scene information. In this study, the RGB and HLS channel

profiles were plotted for different soybean rows, arranged from left

to right, corresponding to the direction of increasing light intensity

across the image. Each channel was statistically analyzed along this

orientation to assess how varying illumination conditions affect image

representation. The variations in the RGB channels primarily reflect

contrast changes in the enhanced images, while changes in the HLS

channels more accurately represent perceived color differences from a

human visual standpoint. This dual channel analysis facilitates a

more comprehensive understanding of how light intensity influences

image features, thereby supporting more accurate and robust image

detail recognition in subsequent processing stages.
3 Result and discussion

3.1 Illumination compensation
parameterization

In the experiment, light intensity measurements were taken at

each growth stage of soybean. Based on variation in light intensity,

polynomial regression equations were constructed to systematically

study examine the effects of height difference, solar elevation angle,

and soybean location on the response variable light intensity, as
FIGURE 3

Column wise illumination enhancement based on fitted regression model.
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shown in Table 1. Initially, the height difference and solar elevation

angle were employed as the primary independent variables, while

six distinct soybean positions (30 cm, 60 cm, 90 cm, 120 cm,

150 cm, and 180 cm) were treated as supplementary independent

variables, forming a comprehensive set of inputs. Based on this

expanded set, linear regression was applied to model the light

intensity y at each position, thereby generating corresponding

regression equations. These equations, composed of regression

coefficients and an intercept term, can be used to predict light

intensity at various positions under different combinations of height

difference, solar elevation angle, and soybean location, thereby

revealing the complex relationships between the independent and

response variables.

By applying the regression equation, predicted light intensities for

different locations can be calculated, providing a theoretical

foundation for experimental design, model validation, and result

prediction. This approach offers robust scientific support for further

quantifying and understanding the multivariable effects observed in

the experiment. As shown in Figure 4, the x-axis represents the
Frontiers in Plant Science 06
soybean row numbers, arranged from south to north, while the y-axis

denotes light intensity. Light intensity variations for five soybean

growth stages the three-leaf stage, flowering stage, podding stage, seed

filling period, and maturity stage are plotted. To analyze light

intensity variations across these stages, regression analysis was

employed to fit the collected data. By selecting an appropriate

regression model, the optimal functional form for light intensity

changes over time was determined. The least squares method was

used to optimize the model parameters, ensuring that the fitted curve

accurately represents the light intensity variations along the soybean

rows at each growth stage. This fitting result provides insights into the

spatial distribution of light intensity, thereby facilitating an analysis of

light exposure across the experimental field.

The inputs to the polynomial regression equation are altitude

difference, solar altitude angle, and position within the soybean row,

denoted by h, q , and l, respectively, and the output is light intensity,
denoted by y, the R² value of the fitting equation reached 91%. as

shown in Equation 11. The Coefficient values for each item are

represented by a0- a9, as shown in Table 2.
TABLE 1 Height difference and solar elevation angle of soybean and corn at different fertility periods.

Serial Test time Maize growth stage Soybean growth stage Altitude difference (cm) Solar altitude angle

1 6.20 Three-leaf stage Three-leaf stage 5 33.8°

2 7.15 Seven-leaf stage flowering period 23 30.4°

3 7.30 heading period podding stage 113 27.0°

4 8.20 tage of milky ripeness seed filling period 101 21.4°

5 9.30 maturity maturity 100 13.9°
FIGURE 4

The light intensity variation in the soybean strip at different growth stages.
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y ¼a0 + a1h þ  a2 q þa3 l + a4 h
2 þ  a5 h q þ  a6 q l

+ a7 q
2þ a8 h   l + a9 l

2 (11)

Combining the statistical equations with the compensation

curves and adding the planting direction parameter resulted in

the following equations, as shown in Equation 12.

By substituting Equation 11 into Equation 6, and considering

that the soybean-maize intercropping in this study is oriented in the

north-south direction, a planting direction parameter is introduced

into the equation to account for the light intensity variation caused

by the planting orientation, resulting in Equation 12.

Ed =
a0 + a1 h  + a2 q + a3 l + a4 h

2 + a5 h q+

 a6 ql + a7q2 + a8 hl + a9  l
2 + Df + a

 !
E0cos(d ) (12)

The image compensation value is denoted as Ed , the height

difference in the equation is h, the solar altitude angle q, the position
l, and d is the angle between the planting direction and the north-

south direction, which can be obtained from the equation for the

height difference, the solar altitude angle, the light intensity, and the

planting direction angle. The meanings of the letters in the

equations are given in Table 3.
3.2 PSNR indicator results

In this study, images are processed using the Histogram

Equalization method, (MSR), Gamma Correction, and ICNet,

Processing of Figure 1b using different algorithms. Histogram

Equalization redistributes pixel gray levels to achieve a more

uniform gray level distribution, as shown in Figure 5a. MSR

enhances image contrast and detail by estimating and removing

the illumination component based on the reflectance-illumination

multiplicative model, as shown in Figure 5b. Gamma Correction

applies a nonlinear transformation to the pixel values to optimize

the brightness distribution, as shown in Figure 5c. Furthermore,

illumination compensation is performed using a light intensity
Frontiers in Plant Science 07
curve variation equation to ensure uniform image brightness, as

shown in Figure 5d.

In intercropped images, it is assumed that humans extract

structural information, leading to the introduction of an

alternative complementary framework for quality assessment

based on the degradation of such information (Wang et al.,

2004). The PSNR was calculated for images processed by several

algorithms. A total of 50 images were randomly selected, with 10

images chosen from each growth stage, and processed using various

algorithms. Compared to the original image, the PSNR values for

the histogram equalization method, Multi-Scale Retinex, and

Gamma function correction were all below 30 dB. However, after

brightness compensation with ICNet, the PSNR reached 40.79 dB,

indicating that the enhanced image quality is excellent, as shown

in Table 4.
3.3 RGB variation with different algorithms

Accurate color recognition is critical for image based analysis;

however, environmental light variability can significantly

compromise its accuracy. Therefore, selecting an appropriate

radiometric correction method is essential when operating under

varying lighting conditions (Wang et al., 2024). In agricultural

settings, changes in ambient illumination can directly affect the

detection of vegetation indices, as image-based sensors depend

heavily on color channel data to extract meaningful morphological

and physiological features (Cardenas-Gallegos et al., 2025). The pod-

setting stage of soybean coincides with the period when the height

difference between maize and soybean plants reaches its maximum.
TABLE 2 Coefficient values and definitions used in Equation 11 and
Equation 12.

Parameter Value Description

a0 3102448 Intercept term (constant)

a1 -61307 Coefficient for height difference h

a2 -8220 Coefficient for solar elevation angle q

a3 -515 Coefficient for soybean row position l

a4 235 Coefficient for h2

a5 883 Coefficient for ℎ·q

a6 16 Coefficient for q·l

a7 -2301 Coefficient for q2

a8 6 Coefficient for ℎ·l

a9 -0.334 Coefficient for l2
TABLE 4 PSNR values for different algorithms.

Pictures after processing PSNR(dB)

histogram equalization method 27.76

Multi-Scale Retinex 28.36

Gamma function correction 28.39

ICNet 40.79
TABLE 3 Parameter values and definitions in the equation.

Parameter value Definition

Ed The image compensation value

h Height difference

q The solar elevation angle

l Position within the soybean row

Df The scattered light coefficient

a Reflectance

E0 The light intensity of the sun in direct sunlight

d
The angle between the planting direction and the
north-south direction
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This stage is also associated with the greatest variation in light

intensity over the soybean canopy due to differential shading. In

order to assess the performance of various image processing

algorithms, three representative images were randomly selected

from each phenological stage for comparative analysis. This image

was processed using multiple enhancement algorithms, and the RGB

and HLS channel responses were examined. The analysis was

conducted along the horizontal centerline of the image, with the

left side representing the direction closer to the sun (south), and the

right side being further away (north). As shown in Figure 6, the RGB

channel intensities in the soybean strip image demonstrated an

increasing trend from left to right (south to north), indicating a

gradual rise in overall brightness. Among the three RGB channels, the

green channel consistently exhibited higher intensity values

compared to the red and blue channels. This dominance of the

green component suggests that no significant color shift occurred,

and the increase in brightness was relatively uniform across the

image. Although the overall trend in all channels was upward, local
Frontiers in Plant Science 08
fluctuations were observed within each channel, reflecting spatial

variation in reflectance characteristics across the soybean strip. This

implies that intercropping alters the phenotypic appearance of

soybeans at different positions due to variable light distribution. On

average, red and blue channel intensities ranged from 120 to 200,

while the green channel ranged from 150 to 230, further emphasizing

the dominant role of green spectral reflectance. The observed left to

right gradient in brightness primarily driven by the green channel-

demonstrates the importance of addressing directional lighting effects

during image analysis in intercropped systems.

As shown in Figure 7, the variations in the HLS channels (Hue,

Lightness, Saturation) of the soybean strip from south to north

reveal that overall brightness exhibits an increasing trend,

corresponding to the image transitioning from dark to bright.

The hue shows a slight downward trend, corresponding to that

the color remains consistent from left to right with no noticeable

color shift. This minor change in hue may be attributed to subtle

color adjustments in certain regions caused by certain in lighting
FIGURE 6

The RGB channel values of the soybean canopy image along the horizontal centerline change from left to right.
FIGURE 5

The processing results of the image using different algorithms. (a) histogram equalization method, (b) Multi-Scale Retinex, (c) Gamma function
correction, (d) ICNet.
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conditions within the image. The saturation curve displays

fluctuations in color purity, exhibiting a slight upward trend

overall. This increase in saturation is likely due to the enhanced

brightness, which makes the colors appear more saturated and

vivid. The observed fluctuations indicate localized variations in

color intensity across the soybean strip.

This study compares the trends in RGB and HLS channel

variations from left to right in images processed using four

different brightness enhancement methods: histogram

equalization, MSR, Gamma function correction, and the ICNet

algorithm. As shown in Figure 8a, the RGB channel values exhibit a

consistent decreasing trend, with the overall range reduced to 70-

190. Additionally, the fluctuations in values increase, thereby

enhancing the image contrast. However, despite the improved

contrast, excessive local contrast in certain areas results in detail

blurring or loss. Moreover, pronounced color shifts were observed,

characterized by an overall purple hue that led to localized

saturation and subsequent color distortion. As shown in

Figure 8b, the fluctuations in RGB channel values significantly

decrease, with the variation range reducing from 80 to 50, and all

maximum values remaining below 200. This indicates a notable

reduction in image brightness, leading to color homogenization

across the image. As illustrated in Figure 8c, gamma correction

effectively maintains overall image brightness. The RGB channel

values exhibit a general decline, with a maximum G-channel value

of 220 and maximum R and B-channel values of 180. However, the

variation trends remain consistent with those of the original image,

suggesting that the overall brightness decreases without altering the

color relationships or contrast dynamics. A limitation of gamma

correction is its linear brightness adjustment, which may be

ineffective in enhancing details in darker regions under complex
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lighting conditions. In contrast, Figure 8d demonstrates that the

ICNet algorithm leads to a substantial increase in RGB channel

values, with all values exceeding 150, indicating a significant overall

brightness enhancement. Additionally, the reduced RGB value

fluctuations result in more uniform color and brightness

distribution, leading to smoother color transitions and reduced

differences between bright and dark areas. Compared with other

image enhancement methods, the ICNet algorithm effectively

increases the overall brightness while simultaneously reducing

RGB fluctuations, thereby producing smoother color transitions

and more visually balanced images.

This study evaluates the performance of four image brightness

enhancement techniques Histogram Equalization, Multi-Scale

Retinex (MSR), Gamma Correction, and the ICNet algorithm

within the HLS color space. As shown in Figure 9a, histogram

equalization results in significant lightness fluctuations, with a

maximum value reaching 190, indicating considerable variations

in brightness across different regions of the image. While the overall

lightness trend shows a slight increase, excessive contrast

enhancement in some areas leads to an uneven brightness

distribution. The mean saturation remains relatively stable, but

the noticeable oscillations imply poor color stability, negatively

affecting overall color balance. Additionally, hue values fluctuate

between 70 and 140, suggesting that histogram equalization may

introduce color distortions, especially during high contrast

enhancement. As illustrated in Figure 9b, the MSR method

provides effective brightness enhancement, with lightness values

exceeding 150 and displaying a relatively stable upward trend,

improving detail visibility in darker regions. However, saturation

drops markedly compared to the original image, with values

remaining below 50, indicating a transition toward grayscale that
FIGURE 7

The HLS channel values of the soybean canopy image along the horizontal centerline change from left to right.
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may reduce image vibrancy and contrast between bright and dark

regions. Furthermore, the overall increase in hue values (all above

75) reflects a degree of color shift caused by hue modification. In

Figure 9c, gamma correction demonstrates relatively stable
Frontiers in Plant Science 10
brightness enhancement, although the maximum lightness value

decreases from 200 to 180, indicating an overall reduction in image

brightness. Brightness fluctuations, however, increase from 100 to

120, suggesting a greater contrast between bright and dark areas,
FIGURE 9

The HLS channel values along the horizontal centerline of the soybean canopy image change from left to right after processing with different
algorithms: (a) Histogram Equalization Algorithm, (b) Multi-Scale Retinex Algorithm, (c) Gamma Function Correction Algorithm, (d) ICNet Algorithm.
FIGURE 8

The RGB channel values along the horizontal centerline of the soybean canopy image change from left to right after processing with different
algorithms: (a) Histogram Equalization Algorithm, (b) Multi-Scale Retinex Algorithm, (c) Gamma Function Correction Algorithm, (d) ICNet Algorithm.
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which may result in detail loss in some regions. Meanwhile,

saturation increases from 130 to 140, and its fluctuation narrows

from 80 to 60, implying that the image colors become more vivid,

though with reduced tonal diversity, potentially affecting perceived

contrast. The hue values and their fluctuations remain largely

consistent with the original image, indicating no significant

alteration in overall color composition. As depicted in Figure 9d,

the ICNet algorithm exhibits the smallest brightness fluctuations

among the four methods, demonstrating superior stability under

complex lighting conditions while preserving image details.

Notably, the brightness in the left portion of the image increases

from 125 to 175, signifying a substantial enhancement. Saturation

surpasses 150, reflecting improved color intensity without

sacrificing contrast perception. Additionally, hue values and

fluctuations remain unchanged compared to the original image,

confirming the preservation of the original color composition. The

uniform brightness distribution and enhanced color vividness,

particularly in shadowed regions, highlight the ICNet algorithm’s

superior performance in maintaining image quality and

visual consistency.
3.4 Standard deviation variation

Standard deviation is a commonly used statistic to describe the

distribution characteristics of data. In image processing and

analysis, it reflects the image’s brightness, color variations, and

noise characteristics. A larger standard deviation indicates stronger

texture, edges, or noise. Ten images were randomly selected from

each growth stage, for a total of 50 images, and processed using

various algorithms. Based on the previous findings in the RGB and

HLS channels, it was observed that the leftmost 1/10 and the
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rightmost 1/10 of the image correspond to the dividing line

between soybean and corn, where significant changes in the RGB

and HLS channels occur. In subsequent calculations of standard

deviation and peak-to-peak values, these two sections are excluded

from the analysis.

As shown in Figure 10, the ICNet algorithm demonstrates

superior performance compared to traditional methods. While

histogram equalization introduces a slight decrease in the H

channel, ICNet effectively enhancing image details by increasing

the standard deviation without significantly amplifying noise or

artifacts. During detail enhancement, ICNet achieves a smooth

increase in standard deviation, mitigating the risk of unnatural

sharpening effects. Compared to multi-scale processing, ICNet

exhibits a smaller deviation in the H channel, striking a better

balance between local detail enhancement and overall image

consistency. Additionally, ICNet reduces the common noise

amplification issues seen in MSR processing, ensuring more stable

standard deviation performance. Furthermore, in contrast to gamma

correction, ICNet significantly improves the S channel’s stability

while maintaining consistent values in other channels. This refined

brightness optimization enhances contrast and preserves image

details more effectively, avoiding the excessive darkening or

lightening that often occurs with gamma correction. Compared to

traditional methods, the ICNet algorithm demonstrated lower

standard deviation values across key channels. Specifically, in the

green (G) channel, the standard deviation decreased from 18.5 (MSR)

to 12.1 with ICNet, representing a 34.6% reduction. Similarly, the hue

(H) channel’s variation decreased by 27.3%, indicating improved

chromatic consistency. These quantitative results, illustrated in

Figure 10, substantiate the enhanced brightness uniformity and

reduced noise fluctuations achieved by the proposed method,

supporting its effectiveness under uneven illumination conditions.
FIGURE 10

Variation in the standard deviation of the RGB and HLS channel values of the soybean canopy image after processing with different algorithms.
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3.5 Comparative analysis and method
evaluation

To comprehensively evaluate the performance of the proposed

ICNet algorithm, a comparative analysis was conducted against three

conventional image enhancement methods: histogram equalization,

multi-scale Retinex (MSR), and gamma correction. The comparison

was based onmultiple metrics, including PSNR, RGB andHLS channel

profiles, and standard deviation distribution. Among the four methods,

ICNet achieved the highest PSNR value (40.79 dB), significantly

outperforming the other three methods, which remained below 30

dB. As shown in Figures 8 and 9, ICNet enhanced image brightness

uniformly across the soybean canopy, with RGB channel values

consistently above 150 and reduced channel fluctuations, indicating

smoother transitions and improved visual consistency. In contrast,

histogram equalization exhibited strong contrast enhancement but

resulted in local overexposure and color distortion. MSR effectively

enhanced shadow regions but introduced visible hue shifts and reduced

color saturation. Gamma correction preserved natural color

relationships but showed limited enhancement in underexposed

areas and was less effective in handling brightness imbalance. The

primary advantage of ICNet lies in its ability to perform spatially

adaptive brightness correction by leveraging crop height difference,

solar elevation angle, and planting orientation. This physics informed

compensation strategy enables uniform lighting enhancement,

particularly in images affected by crop shading. Additionally, ICNet

maintains low standard deviation in green (G) and hue (H) channels,

which reflects better image stability and noise control. However, the

proposed method also has limitations. ICNet is based on polynomial

regression models fitted from field-acquired data. This dependence on

manually measured canopy parameters and solar angles limits its

scalability and adaptability to other cropping systems or image

acquisition conditions. Furthermore, as a rule based method, ICNet

lacks the capacity to autonomously learn from new data, making it less

flexible than deep learning based approaches in highly dynamic or

heterogeneous environments. Future improvements may focus on

integrating ICNet with data driven models, such as convolutional

neural networks (CNNs), or replacing static regression equations with

adaptive learning modules, to enhance generalizability and robustness

in broader agricultural applications. Although manual measurements

were used in this study, future implementations can leverage UAV

photogrammetry or LiDAR to automate plant height and shading

parameter acquisition. Preliminary deployment tests showed that

ICNet inference time was under 0.15 s per image on a standard

GPU, indicating its feasibility for real time field applications.
4 Conclusion

This study developed an illumination compensation algorithm

(ICNet) tailored for image enhancement in maize–soybean

intercropping systems. By modeling the relationship between crop

height difference, solar elevation angle, and canopy light intensity, a

polynomial regression-based compensation framework was

established and applied to correct uneven lighting across soybean
Frontiers in Plant Science 12
canopy images. Experimental results demonstrated that ICNet

achieved a PSNR of 40.79 dB, significantly outperforming traditional

methods such as histogram equalization (27.76 dB), multi-scale

Retinex (28.36 dB), and gamma correction (28.39 dB). Additionally,

RGB andHLS channel analysis showed that ICNet effectively increased

brightness uniformity while reducing channel fluctuations green

channel values exceeded 150, and brightness in shadowed regions

improved from 125 to 175. Standard deviation analysis confirmed

enhanced image consistency, with up to 35% reduction in variation

across key color channels. Compared to conventional techniques,

ICNet not only improves visual clarity but also preserves color

fidelity and suppresses noise, providing a more robust foundation

for accurate image based crop trait extraction in precision agriculture.

These findings validate the method’s practical value for improving the

reliability of visual analysis under complex intercropping light

conditions. Future work will focus on enhancing the generalizability

of the model through adaptive or learning based modules to

accommodate diverse crop architectures and lighting environments.

The proposed ICNet algorithm outperformed traditional methods in

PSNR and HLS stability, but its performance under extreme overcast

or strong shadow conditions requires further validation.
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