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Introduction: Nitrogen plays a pivotal role in determining cotton yield and fiber

quality. Nevertheless, because high-dimensional remote-sensing data are

inherently complex and redundant, accurately estimating cotton plant nitrogen

concentration (PNC) from unmanned aerial vehicle (UAV) imagery remains

problematic, which in turn constrains both model precision and transferability.

Methods: Accordingly, this study introduces a hierarchical feature-selection

scheme combining Elastic Net and Boruta–SHAP to eliminate redundant

remote-sensing variables and evaluates six machine-learning algorithms to

pinpoint the optimal method for estimating cotton nitrogen status.

Results: Our findings reveal that five critical features (Mean_B, Mean_R,

NDRE_GOSAVI, NDVI, GRVI) markedly enhanced model performance. Among

the tested algorithms, random forest achieved superior performance (R² = 0.97–

0.98; RMSE = 0.05–0.08), exceeding all alternatives. Both in-field observations

and model outputs demonstrate that cotton PNC consistently decreases

throughout development, but optimal conditions of 450 mm irrigation and

300 kg N ha⁻¹ sustain relatively elevated nitrogen levels.

Discussion: Collectively, the study provides robust guidance for precision

nitrogen management in cotton production within arid regions.
KEYWORDS
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1 Introduction

Precision agricultural management is increasingly supported by the rapid advancement

of information technology. The livelihoods of hundreds of millions of farmers worldwide

are sustained by cotton, one of the world’s most important natural fiber crops (Hou et al.,

2024). Nitrogen is regarded as a critical nutrient that determines cotton yield, fiber quality,

and plant health. Consequently, accurate, real-time monitoring of the crop’s nitrogen status
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is essential for optimizing fertilization strategies, improving

resource-use efficiency, and advancing sustainable agriculture (Li

D. et al., 2024).

Accountingfor over 85 percent of China’s cotton output, Xinjiang

stands as the nation’s premier cotton production base and plays a

critical role in the global supply chain. Although the area benefits from

plentiful light and heat, its extreme hydrothermal regime,

characterized by just 150 to 200 millimeters of yearly rainfall and

evaporation rates soaring to 2000 to 3000 millimeters, alters nitrogen

transformation and loss relative to other production zones, thereby

complicating precise nitrogen management (Zhou et al., 2023). Plastic

film mulched drip irrigation can enhance water and fertilizer

efficiencies, yet the intricate nitrogen migration and transformation

dynamics within the beneath-film microenvironment mean that

empirical fertilization practices are no longer sufficient for highly

efficient large scale cultivation. At the same time, destructive sampling

coupled with labor intensive laboratory analysis cannot deliver

continuous real time data across space and time for field

production. In recent years, unmanned aerial vehicle (UAV) remote

sensing has been adopted as a powerful tool for crop nitrogen

monitoring because of its efficiency, convenience, and non-

destructive nature (Jia et al., 2025; Pei et al., 2023). Unmanned

aerial vehicles equipped with multispectral cameras can capture

abundant spectral and textural information. Previous studies have

demonstrated that integrating spectral vegetation indices and texture

features into machine-learning models enables accurate estimation of

cotton plant nitrogen concentration (PNC) (Zhuang et al., 2024),

Moreover, nitrogen-diagnosis accuracy at all potato growth stages has

been significantly improved by an optimized texture index derived

from UAV hyperspectral imagery (Fan et al., 2023). The considerable

potential of integrating multi-source remote-sensing data with

machine-learning algorithms for crop nitrogen estimation has been

demonstrated by these studies.

However, the effectiveness and accuracy of current UAV-based

approaches for cotton nitrogen assessment are still limited by

several challenges. First, continuous nitrogen tracking is hindered

by the tendency of vegetation indices to saturate during late growth

stages. Second, although texture features have been introduced to

complement spectral information, their potential has not yet been

fully exploited (Wang et al., 2025). In addition, high collinearity and

redundancy among multidimensional remote-sensing variables

substantially reduce the predictive accuracy and generalizability of

nitrogen-estimation models. Therefore, efficiently identifying key

variables to build stable, high-performance models remains an

urgent research priority.

In recent years, Elastic Net and Boruta–SHAP have gained

widespread attention in the field of agricultural remote sensing due

to their ability to effectively handle high-dimensional, collinear, and

non-linear data. Elastic Net combines the advantages of L1 and L2

regularization, reducing redundancy among correlated variables

while maintaining model interpretability. Previous studies have

shown that using Elastic Net to predict crop nitrogen status and

soil moisture content outperforms traditional methods in terms of

stability and prediction accuracy (Cao et al., 2021; Yang et al., 2025).

Boruta–SHAP combines importance measures with Shapley
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additive explanations, effectively capturing non-linear variable

interactions. Recent agricultural applications have demonstrated

that Boruta–SHAP excels in identifying key variables for maize

nitrogen estimation and precision agriculture classification tasks,

offering both high predictive performance and interpretability (Lu

et al., 2025). Given that multi-level feature selection strategies

balance statistical sparsity with model interpretability, they are

particularly crucial for accurately estimating cotton nitrogen

content. This study employs Elastic Net and Boruta–SHAP for

feature selection. The integrated approach removes redundant

features while retaining key variables involved in non-linear

interactions, thus improving the robustness and interpretability of

cotton nitrogen-estimation models.

This study aims to systematically compare the performance of

six machine-learning algorithms—Bayesian-optimized Random

Forest (RF), Gradient Boosting Decision Trees (GBDT), Extreme

Gradient Boosting (XGB), Support Vector Regression (SVR),

Kernel Ridge Regression (KRR), and Gaussian Process Regression

(GPR)—in cotton nitrogen estimation, based on the optimized

feature space obtained through Elastic Net and Boruta–SHAP

feature selection, and to select the model with both the highest

accuracy and the best generalizability. Ground-observed data will be

combined to analyze the spatiotemporal distribution of cotton plant

nitrogen and validate the model’s reliability, with the goal of

providing efficient and interpretable technical support for

precision fertilization decisions in cotton cultivation.
2 Materials and methods

2.1 Overview of the study area

The study site lies in the Shihezi Reclamation Area of the

Eighth Division, Xinjiang Production and Construction Corps

(44°18′ N, 86° 03′ E; Figure 1). It experiences a typical arid to

semi-arid continental climate, is topographically flat with a gentle

south-east–to-north-west gradient, and sits at a mean elevation of

450 m. Annual sunshine duration reaches 2526–2874 h, whereas

mean annual air temperature ranges between 6.5°C and 8.2°C. Soil

at the site contains 11.9 g kg-¹ organic matter, 0.69 g kg-¹ total N,

37 mg kg-¹ available P, and 224 mg kg-¹ available K.
2.2 Experimental design

Based on a production survey of several farmer-managed cotton

fields in the study area, on-farm irrigation volumes range from 350

to 550 mm and nitrogen inputs from 220 to 450 kg ha-¹ (Luo et al.,

2024; Wan et al., 2024). These treatment levels were selected to

provide adequate experimental contrast across the full range of

practical farming conditions in the region. Accordingly, we

implemented a two-factor water–nitrogen factorial experiment

with three nitrogen rates—N1 (225 kg ha-¹), N2 (300 kg ha-¹) and

N3 (375 kg ha-¹)—and three irrigation quotas—W1 (375 mm), W2

(450 mm) and W3 (525 mm)—plus a local-practice control (CK),
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yielding ten treatments in total, each replicated three times.

Fertigation was applied nine times throughout the growing

season; the detailed schedules are presented in Table 1, and

irrigation-to-fertilizer ratios in Table 2. Uniform basal doses of

phosphorus (540 kg ha-¹) and potassium (450 kg ha-¹) were

supplied across all treatments. The field trial commenced with

sowing on 21 April 2024 and concluded with harvest and yield

assessment on 3 October 2024, thus covering the entire local cotton

growing season. Each plot followed a “one mulch, three drip lines,

six rows” configuration with a mulch width of 2.05 m, an intra-row

spacing of 10 cm, alternating row spacings of 10 cm + 66 cm, and a

planting density of 2641–000 plants ha-¹; border rows were

established around the experiment. This design aligns with local

water-fertilizer management practices, establishes clear contrasts in

crop vigor among treatments, and provides a diverse, robust

phenotypic dataset for developing a cotton canopy nitrogen-

content estimation model.
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2.3 Data acquisition and processing

2.3.1 Determination of plant nitrogen content
Cotton samples were collected from an experimental field in the

Shihezi Reclamation Area of the Eighth Division, Xinjiang

Production and Construction Corps, China (44°18′ N, 86°03′ E).
The widely cultivated cultivar ‘Jinken 156’ was used. Within each

treatment plot, three representative plants were selected from the

central mulched rows, ensuring uniform growth and development.

Sampling was conducted at four key phenological stages: bud stage

(28 June), flowering stage (20 July), boll-setting stage (18 August)

and boll-opening stage (4 September). Each plant was separated

into stem, leaf and boll fractions. The tissues were enzyme-

inactivated at 105°C for 30 min and then oven-dried at 85°C to

constant weight; the dry mass of each organ was subsequently

recorded. Dried samples were ground, and total nitrogen was

determined using the Kjeldahl procedure. Following H22SO4–
FIGURE 1

Study area and plot treatments. (A) Location of the Xinjiang Uygur Autonomous Region in China, (B) Location of Shihezi City within Xinjiang.
(C) Experimental field layout showing water and nitrogen treatment plots (W1N1–W3N3) and the control (CK). The red border indicates the study area.
TABLE 1 Water and nitrogen treatment settings.

Water treatment
Nitrogen treatment

N1225 kg ha-¹ N2300 kg ha-¹ N3375 kg ha-¹

Irrigation level W1(375 mm) W1N1 W1N2 W1N3

Irrigation level W2(450 mm) W2N1 W2N2 W2N3

Irrigation level W3(525 mm) W3N1 W3N2 W3N3
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H2O2 digestion, total N in each organ was quantified using a

Kjeldahl analyzer, and the shoot N concentration was calculated

(Kimberly and Roberts, 1905).

2.3.2 Acquisition of remote-sensing imagery
A DJI Phantom 4 UAV equipped with a multispectral sensor

was deployed to synchronously capture cotton-canopy imagery in

five spectral bands centered at 450 nm (B), 560 nm (G), 650 nm (R),

730 nm (RE) and 840 nm (NIR). Flights were conducted under

clear, cloud-free conditions between 13:00 and 14:00 h at an altitude

of 30 m, with 75 % forward and 75 % side overlap. Subtle

fluctuations in lighting and weather during UAV flights can

introduce radiometric inconsistencies in multispectral imagery;

therefore, radiometric correction is required. In this study,

radiometric calibration and image mosaicking were carried out

with the professional software Pix4Dmapper. Raw images were

captured at one-second intervals throughout each flight, imported

into Pix4Dmapper, calibrated to surface reflectance with a

radiometric calibration panel, and compiled into an orthomosaic

of the study area. The software’s index calculator was then used to

derive individual band layers for blue, green, red, near-infrared

(NIR), and red-edge wavelengths.
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2.4 Feature extraction

2.4.1 Vegetation-index derivation
Spectral and textural datasets were extracted from pre-processed

UAV imagery. Spectral variables comprised reflectance in five bands—

B, G, R, RE and NIR—together with derivative indices computed from

their combinations. Because ratio-based vegetation indices normalize

band reflectance and thus minimize illumination and background

effects, twelve such spectral indices were adopted following earlier

studies (Burns et al., 2022; He et al., 2016; Xu et al., 2023), Their

formulae and references are listed in Table 3.

2.4.2 Texture-feature extraction
Texture metrics characterize the spatial distribution and variability

of pixel values, thereby capturing surface properties and canopy spatial

structure. Eight Grey-Level Co-occurrence Matrix (GLCM)statistics—

mean, variance (Var), dissimilarity (Dis), entropy (Ent), homogeneity

(Hom), correlation (Cor), contrast (Con) and second-moment (Sm)—

were computed for each of the five bands, producing 40 texture

variables. The calculation formulas of each texture feature are given

in the reference (Zhou et al., 2021). Texture variables were extracted in

Environment for Visualizing Images (ENVI) 5.3 using the grey-level
TABLE 3 Vegetation index calculation formulas.

Vegetation index Calculation formula Reference

GRVI GRVI=(Rgreen-Rred)/(Rgreen+Rred) (Chen et al., 2019)

GOSAVI GOSAVI=(Rnir-Rgreen)/(Rnir+Rgreen+0.16) (Gilabert et al., 2002)

NDVI NDVI=(Rnir-Rred)/(Rnir+Rred) (Pei et al., 2023)

OSAVI OSAVI=(1 + 0.16)*[(Rnir-Rred)/(Rnir+Rred+0.16)] (Li T, et al., 2024)

RVI RVI=Rnir/Rred (Pokhrel et al., 2023)

MSR MSR=((Rnir/Rred)-1)/(((Rnir/Rred)+1)
0.5) (Fan et al., 2024)

SAVI SAVI=(1 + 0.5)*[(Rnir-Rred)/(Rnir+Rred+0.5)] (Cao et al., 2013)

DVI DVI=Rnir-Rred (Naito et al., 2017)

NDRE NDRE=(Rnir-Rrededge)/(Rnir+Rrededge) (Gu et al., 2024)

REOSAVI
REOSAVI=(1 + 0.16)*(Rnir-Rrededge)/(Rnir

+Rrededge+0.16)
(Cao et al., 2013)

RETVI RETVI=0.5*(120*Rnir-Rred)-200*(Rrededge-Rred) (Cao et al., 2013)

NDRE_GOSAVI NDRE_GOSAVI=NDRE/GOSAVI (Cao et al., 2013)
TABLE 2 Fertilization and irrigation ratios (%) for cotton under water and fertilizer integration.

Index
Fertilization and irrigation dates (MM-DD)

6-12 6-22 6-30 7-09 7-19 7-29 8-6 8-16 8-26

N fertilizer 10 15 15 15 10 10 10 10 5

PK fertilizer 5 10 10 10 15 15 15 15 5

Irrigation ratio 10 10 12 12 12 12 12 10 10
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co-occurrence matrix (GLCM) algorithm, a second-order

statistical approach.
2.5 Feature selection and model
development

2.5.1 Elastic Net−based feature selection
Elastic Net is a regularized linear regression technique that

combines the characteristics of the least absolute shrinkage and

selection operator (LASSO, the L1 penalty) and ridge regression

(the L2 penalty). By including both an L1 penalty (which induces

sparsity) and an L2 penalty (which induces shrinkage), Elastic Net

simultaneously performs feature selection and coefficient estimation

within a single modeling step. It retains the ability of Lasso to zero-

out certain feature coefficients (effectively removing those features

from the model) while also leveraging the stabilizing effect of Ridge

on coefficient sizes, especially for correlated features. The Elastic

Net objective function adds the L1 and L2 penalty terms to the

ordinary least squares loss. For predictor matrix and response

vector, the Elastic Net finds coefficient vector b by minimizing a

penalized sum of squared errors, as shown in Equation 1:

minb
1
2

Y − Xb
�� ��2

2+ar bk k1+
a(1 − r)

2
bk k22 (1)

In this equation, Y denotes the output vector, X is the input

feature matrix, b is the vector of feature weights, and a and r are

regularization parameters. The parameter r controls the relative

contribution of L1 and L2 regularization. When r = 0, only L2

regularization is applied, while when r = 1, only L1 regularization is

used. The SHAP regularization terms, with the weighted

combination of L1 and L2 penalties determined by r.

2.5.2 Boruta–SHAP-based feature selection
Boruta-SHAP is a wrapper-based feature-selection algorithm. The

workflow comprises four stages. First, shadow features are generated by

randomly permuting each original predictor, thereby removing any

real association between those variables and the response. Second, an

Extreme Gradient Boosting (XGBoost) model is trained to compute

feature-importance scores, and the largest importance value among all

shadow features is taken as the reference threshold. Third, any original

feature whose importance falls significantly below this threshold is

labeled “unimportant” and eliminated from the candidate set. Fourth,

all shadow features are discarded and the procedure is iterated until

every predictor has been decisively classified (Sebastián and González-

Guillén, 2024). In this study, XGBoost serves as the importance

evaluator within the Boruta-SHAP framework, allowing us to

identify the most informative variables for estimating cotton nitrogen

content in arid regions.

2.5.3 Development of the inversion model
To accurately predict the cotton PNC of cotton under subsurface

drip irrigation in arid regions, this study employs six machine learning

models with strong nonlinear fitting capabilities: three tree based

ensemble models (RF, GBDT, XGB) and three kernel based models
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(SVR, KRR, GPR).RF integrates predictions by constructing numerous

independent decision trees, effectively mitigating overfitting and

enhancing model stability (Belgiu and Drăgut,̧ 2016). GBDT

iteratively refines decision tree models by learning from residuals at

each stage, progressively reducing errors and enhancing predictive

performance (Zhang and Jung, 2020). XGB applies a boosting strategy

similar to GBDT but incorporates more stringent regularization terms

and a weighted optimization process to further enhance prediction

accuracy (Yusoff et al., 2025). SVR constructs a maximum margin

regression hyperplane in a high-dimensional space, reducing sensitivity

to outliers and enhancing the model’s generalization capability (Guo

et al., 2021). KRR leverages kernel mapping and ridge regression’s

regularization characteristics to effectively mitigate overfitting and

achieve superior generalization performance (Campos-Taberner

et al., 2016). GPR applies a Gaussian prior in function space and

updates the posterior distribution using observational data, effectively

quantifying prediction uncertainty while excelling in capturing

complex data patterns (Zhu et al., 2023).

The choice of hyperparameter optimization strategy was carefully

tailored to each algorithm’s characteristics and computational

demands. Bayesian optimization was applied only to RF and XGB

because recent agricultural remote sensing studies show that these

ensemble learners, with many interdependent hyperparameters and a

search landscape without a single convex optimum, benefit most from

advanced search strategies. All remaining algorithms were tuned by an

exhaustive grid search combined with five-fold cross validation, a

decision supported by theoretical analyses and empirical tests. GBDT

already uses sequential boosting and shrinkage that provide inherent

regularization, which limits the added value of Bayesian optimization.

The convex parameter spaces of SVR and KRR can be explored

efficiently with systematic grid search. For GPR, training time rises

roughly with the cube of the sample size, yet our trials indicated only

marginal accuracy gains from a more complex search, so the

conventional grid search approach was adopted. All models were

implemented in Python 3.7, with training and validation performed

using cross-validation.

2.5.4 Model performance evaluation
This study employs the coefficient of determination (R²), root

mean square error (RMSE), and mean absolute error (MAE) as the

primary metrics to assess model accuracy (Liu et al., 2021). The

coefficient of determination (R²) quantifies the model’s explanatory

power over data variability, with values closer to 1 indicating a better fit.

Root mean square error (RMSE) measures the deviation between

predicted and actual values, with smaller values indicating higher

prediction accuracy. Mean absolute error (MAE) quantifies the

average absolute prediction error, offering an intuitive measure of

model performance; smaller values reflect higher prediction accuracy

and reduced bias from actual values. The formulas for calculating these

evaluation metrics are given below (Equations 2–4), and a

comprehensive analysis of these metrics allows for a thorough

evaluation of the prediction performance and stability of various

models, ensuring the reliability and validity of the findings. All

evaluation metrics in this study were implemented within the Python

3.7 environment.
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R2 = 1 −o
n
i=1(yi − ŷ i)

2

on
i=1(yi − �y)2

(2)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1(yi − ŷ i)

2

r
(3)

MAE =
1
no

n
i=1 yi − ŷ ij j (4)
2.5.5 Rationale for cotton sample selection
The Eighth Division of the Xinjiang Production and Construction

Corps is characterized by a typical arid to semi-arid climate, where

cotton is extensively cultivated under plastic-mulched drip irrigation.

The cotton cultivar ‘Jinken 156’ selected for this study is widely grown

and well-adapted to local agro-climatic conditions. By implementing

varying irrigation and nitrogen treatments, this research aims to

accurately estimate nitrogen nutrition status in cotton grown under

drip irrigation conditions in arid regions, thus providing scientific

guidance for precise fertilization and irrigation management practices.

All cotton samples used in this research were independently

cultivated and managed by the College of Hydraulic and Civil

Engineering of Xinjiang Agricultural University and the Xinjiang

Academy of Agricultural and Reclamation Sciences. No third-party

purchases were involved; therefore, there are no associated receipts

or purchase documents.
3 Results and analysis

3.1 Temporal trend of nitrogen content in
plastic-mulched, drip-irrigated cotton

The trend of nitrogen content (PNC) in drip-irrigated cotton

under plastic mulch in arid regions is illustrated in Figure 2 and
Frontiers in Plant Science 06
Table 4. As the growing season progresses, PNC clearly decreases,

with the highest nitrogen content observed at the bud stage (2.84%–

3.22%) and the lowest at boll-opening (1.57%–1.83%). This suggests

that cotton absorbs and accumulates nitrogen more effectively in

early growth stages, with this ability weakening in later stages.

Regarding data variability, the coefficient of variation (CV) at boll-

setting is the highest at 4.76%, reflecting significant variation in

nitrogen concentration between individuals at this stage. The CV at

boll-opening is lower at 3.58%, suggesting that nitrogen content

becomes more consistent among individuals during maturation.

Additionally, the small sample standard deviation and variance

suggest a low degree of dispersion in PNC, meaning that PNC is

uniformly distributed across the sample. Field measurements of

PNC delineate the temporal dynamics of nitrogen uptake in cotton

cultivated under typical water- and fertilizer-management regimes

in arid regions, while providing indispensable ground-truth data for

calibrating and validating remote-sensing retrieval models. Given

the marked stage-dependent variability and pronounced inter-

individual heterogeneity of PNC, remote-sensing features should

be exploited to estimate nitrogen status at each phenological stage,

thereby laying a robust foundation for subsequent spatial

monitoring and analysis.
3.2 Results of Elastic Net-based feature
selection

To preliminarily identify spectral–textural predictors sensitive

to cotton PNC in drip-irrigated cotton under plastic mulch in arid

regions, 12 vegetation indices and 40 texture features were

incorporated into an Elastic Net model with five-fold cross-

validation. The optimal hyper-parameter combination (a = 0.12,

l1_ratio = 0.10) indicates that 90% of the regularization weight is

assigned to the L2 term, favoring enhanced model stability while

retaining partial feature-selection capability. As summarized in
FIGURE 2

Distribution of cotton plant nitrogen concentration by growth stage. Distribution of plant nitrogen content across four cotton growth stages using
violin and box plots.
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Table 5, the procedure ultimately retained 21 influential variables

that exert a significant effect on PNC. The Elastic Net model

attained an RMSE of 0.11 and an R² of 0.95 on the training data,

indicating an excellent fit; its performance on the test set was even

stronger (RMSE = 0.09, R² = 0.95), confirming the model’s robust

generalization capability. The coefficient‐path plot (Figure 3) shows

that, as the regularization strength (a) increases, most coefficients

gradually shrink toward zero, demonstrating that the penalization

effectively suppresses redundant variables. The feature‐importance

diagram (Figure 4) further visualizes each variable’s contribution to

PNC, highlighting Sm_Nir and Var_Nir as the most influential

predictors, while GRVI and NDRE_GOSAVI display pronounced

negative associations. In this figure, the color hue indicates the

direction of the regression coefficients—red bars represent positive

correlations, and blue bars denote negative correlations—while the

color intensity reflects the absolute magnitude of each coefficient,

with darker shades indicating greater importance. These

quantitative relationships establish a solid foundation for

subsequent feature intersection analyses.
3.3 Boruta–SHAP-based feature selection

Twelve pre-extracted vegetation indices and forty texture features

were supplied to the Boruta–SHAP model as input variables. The

algorithm calculated Z-scores for the 52 candidate predictors, ranked
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their importance for estimating cotton PNC in drip-irrigated, plastic-

mulched cotton grown in arid regions, and selected the informative

variables. In the output, shadowMin, shadowMean, and shadowMax

denote the minimum, mean, and maximum Z-scores of the shadow

features, respectively. According to XGBoost impurity-based

importance (Figure 5), the Boruta–SHAP procedure identified nine

features—NDRE_GOSAVI, Mean_B, Var_R, Mean_R, NDVI,

OSAVI, GRVI, Dis_G, and Con_B—as decisive contributors to

PNC prediction. The variables Con_Rededge and Sm_B, whose Z-

scores approached shadowMax, were retained as “tentative” features

for further scrutiny. To enhance interpretability, Figure 5 distinguishes

importance classes by color: green denotes “important” features, red

indicates “unimportant,” yellowmarks “tentative,” and blue represents

shadow features that provide the reference baseline. This selection

strategy reliably isolates informative remote-sensing variables while

attenuating noise during subsequent model construction.
3.4 Integrated feature selection combining
Elastic Net and Boruta–SHAP

To further enhance the accuracy and stability of variable selection,

this study adopts the intersection of feature variables identified by both

Elastic Net and Boruta–SHAP. This approach effectively eliminates

redundant and noisy features, ensuring that the selected variables

remain significant across different selection mechanisms, thus

improving the reliability of feature selection and the robustness of

the model. The final 5 selected feature variables, as shown in Figure 6,

are Mean_B, Mean_R, NDRE_GOSAVI, NDVI, and GRVI, which

comprise the final set of sensitive predictors used for PNC prediction in

drip-irrigated cotton under plastic mulch in arid regions.
3.5 Performance evaluation of the
integrated-feature inversion model

Based on the results of the multi-tier feature selection, the

identified sensitive features were used as input variables, and cotton

PNC was set as the response variable. Six machine learning models

—RF, GBDT, XGB, SVR, KRR, and GPR—were developed and

evaluated using R², RMSE, and MAE to assess the fitting accuracy

and generalization performance on both training and test datasets

(Table 6). To systematically analyze differences in model

applicability across algorithm categories, the models were

grouped into decision tree–based and kernel–based types for

comparative evaluation. The results are presented in Figures 7, 8.
TABLE 5 Variables selected by Elastic Net and their regression coefficients.

Feature
variable

Regression
coefficient

Feature
variable

Regression
coefficient

NDVI -0.0027 Cor_B -0.0016

NDRE_GOSAVI -0.035 Mean_G 0.0647

RETVI 0.0252 Sm_G -0.0071

Mean_B 0.0622 Cor_G -0.0117

Sm_B -0.0061 Mean_R 0.0571

Sm_Nir 0.0888 Dis_R 0.005

Ent_B 0.0015 Hom_R -0.0018

Sm_R -0.0025 Ent_R 0.0161

Mean_Rededge 0.0284 Var_Rededge 0.0698

GRVI -0.0492 Cor_Rededge 0.0187

Var_Nir 0.0674
TABLE 4 Nitrogen content statistics of cotton plants at different growth stages.

Growth stage Sample size Minimum Maximum Standard deviation Variance Coefficient of variation

Bud 30 2.84 3.22 0.11 0.01 3.23

Flowering 30 2.04 2.39 0.07 0.06 3.56

Boll-Setting 30 1.79 2.14 0.09 0.08 4.76

Boll-opening 30 1.57 1.83 0.06 0.03 3.58
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Among the tree-based ensemble models, RF exhibited the best

overall performance. It achieved R² values of 0.98 and 0.97 for the

training and test sets, respectively, with RMSE values of 0.06 and 0.08

and MAE values of 0.04 and 0.06, demonstrating excellent fitting

accuracy and generalization capability. This superiority can be

attributed to RF’s ensemble learning strategy and random feature-

sampling mechanism, which effectively reduce overfitting. In contrast,
Frontiers in Plant Science 08
XGB and GBDT showed lower prediction accuracy. XGB yielded R²

values of 0.85 and 0.84, with RMSE values of 0.19 and 0.18, indicating

moderate stability but limited accuracy. GBDT performed even worse,

with R² values of 0.81 and 0.80 and RMSE values of 0.22 and 0.20,

suggesting limited adaptability to the current dataset and a need for

further parameter tuning. Within the kernel-based models (SVR, KRR,

GPR), GPR demonstrated the strongest performance. It achieved R²
FIGURE 4

Feature-importance visualization. Feature importance visualization from the Elastic Net model, showing the regression coefficients of selected
variables.
FIGURE 3

Coefficient path plot. Coefficient trajectories of selected features under different alpha values in the Elastic Net model. The red dashed line indicates
the optimal regularization parameter.
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values of 0.97 (training) and 0.92 (test) with correspondingly low

RMSE and MAE, ranking second only to RF and confirming its

capacity to capture nonlinear relationships while providing

uncertainty estimates. KRR performed well on the training set (R² =

0.91) but dropped to 0.84 on the test set, with RMSE and MAE

increasing to 0.18 and 0.15, indicating a tendency toward overfitting.

SVR recorded the lowest accuracy among all six models, with R² values

of 0.78 and 0.75 and the highest RMSE and MAE (0.23 and 0.20),

reflecting limited suitability for the present data conditions, possibly

due to its sensitivity to high-dimensional and noisy inputs.

Based on the performance differences among models in the

PNC prediction task, tree ensemble models generally outperform

kernel methods. In particular, the RF model achieves high fitting

accuracy and shows strong generalization ability, underscoring its

stability and applicability in complex nonlinear modeling scenarios.

Although GPR performs slightly worse, its capacity for uncertainty

estimation provides substantial added value in application oriented

contexts. By contrast, SVR displays poor stability and accuracy in

prediction, indicating that it is unsuitable for this dataset.

A comprehensive comparison analysis identified the RF model

as the optimal PNC estimation model for cotton. Figure 9 shows the
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spatiotemporal distribution of estimated PNC across four growth

stages based on this model. The analysis reveals a general decline in

cotton PNC across growth stages, with values ranging from 1.93%

to 3.42% at the bud stage, 1.31% to 2.39% at flowering, 1.17% to

2.21% at boll-setting, and 0.98% to 1.78% at boll-opening. Under

identical nitrogen application rates, the highest cotton PNC is

observed at the W2 irrigation level (1.67%–3.22%), while PNC at

W1 and W3 decrease to 1.57%–3.11% and 1.69%–2.94%,

respectively. This suggests that increased irrigation enhances

cotton’s nitrogen absorption. However, as plant biomass

increases, nitrogen dilution becomes evident, leading to a decrease

in nitrogen concentration in cotton plants Under the same

irrigation conditions, PNC differs across nitrogen application

gradients. N1 (1.24%–2.97%) and N3 (1.31%–3.11%) show lower

values than N2 (1.33%–3.28%), indicating that increasing nitrogen

application significantly boosts cotton nitrogen content.

Furthermore, an optimal nitrogen level promotes nitrogen uptake

and accumulation in cotton, whereas excessive nitrogen may inhibit

absorption and utilization. This result aligns with the previous

analysis of measured data, confirming that the model provides

accurate predictions of cotton PNC.
FIGURE 5

Scoring results presented. Feature importance scores obtained from the Boruta–SHAP method, presented as Z-score distributions across all
variables.
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4 Discussion

4.1 Effect of feature selection on PNC
estimation accuracy

In this study, five key features (NDVI, GRVI, NDRE_GOSAVI,

Mean_R, and Mean_B) were identified through a multi-stage selection

pipeline that combined Elastic Net and Boruta SHAP, and these

features were found to be strongly associated with crop nitrogen
Frontiers in Plant Science 10
status. Previous studies have shown that vegetation indices such as

NDVI, GRVI, and NDRE_GOSAVI effectively reflect leaf nitrogen

content and plant growth status. At the vegetation index level,

consistent correlations between multiple vegetation indices and

cotton leaf nitrogen content were reported by Yin et al (Yin et al.,

2022). In addition, GRVI and GNDVI were shown by Maresma et al.

in a maize experiment to discriminate significantly among nitrogen

treatments, illustrating the high diagnostic power of green red

normalized indices for nitrogen monitoring (Maresma et al., 2016).
TABLE 6 Predictive performance of various machine-learning models for PNC.

Models
Training set Test set

R2 RMSE% MAE% R2 RMSE% MAE%

RF 0.98 0.06 0.04 0.97 0.08 0.06

GBDT 0.81 0.22 0.18 0.80 0.20 0.16

XGB 0.85 0.19 0.16 0.84 0.18 0.15

SVR 0.78 0.23 0.20 0.75 0.23 0.20

KRR 0.91 0.15 0.11 0.84 0.18 0.15

GPR 0.97 0.08 0.06 0.92 0.13 0.10
FIGURE 6

Integrated feature selection based on boruta and elastic net. Integrated feature selection results based on Boruta and Elastic Net. Variables shared by
both methods (purple) represent the final set of key predictors for nitrogen estimation.
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FIGURE 7

Scatter relationship between measured and predicted values across models. (A) Support Vector Regression (SVR), (B) Gradient Boosting Decision
Tree (GBDT), (C) Bayesian Optimized Random Forest (RF), (D) Extreme Gradient Boosting (XGB), (E) Gaussian Process Regression (GPR), and
(F) Kernel Ridge Regression (KRR).
FIGURE 8

Visual representation of model evaluation indices. (A) Coefficient of determination (R²), (B) Root mean square error (RMSE), and (C) Mean absolute
error (MAE).
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At the texture level, contributions of the standard deviation of texture

features derived from gray level co-occurrence matrices and of color

features extracted from UAV RGB images to nitrogen content

prediction in cotton were demonstrated by Kou et al (Kou et al.,

2022). These results further support the scientific rigor and effectiveness

of the integrated feature selection strategy employed in the present

study. At the feature-selection stage, feature sparsity and variable

screening are achieved by simultaneously applying L1 and L2

regularization within Elastic Net, effectively reducing multicollinearity

among remote-sensing features. Compared with earlier studies that

relied solely on LASSO or ridge regression, this approach retains

important correlated variables more effectively (Chen et al., 2025).

Twenty-one key variables were selected by the Elastic Net method.

Their predictive power showed strong generalization, with R² values of

0.95 for the training set and 0.95 for the test set, confirming the
Frontiers in Plant Science 12
effectiveness of this approach for remote sensing feature selection. In

contrast, Boruta-SHAP creates shadow features and combines them

with an XGBoost model to evaluate feature importance, thereby

accurately identifying variables that significantly influence PNC

within the high dimensional feature space (Abdelwahed et al., 2022).

Within the present study, nine significant and two tentative features

were selected by Boruta SHAP. Their intersection with the Elastic Net

output yielded a core set of five variables—Mean_B, Mean_R,

NDRE_GOSAVI, NDVI, and GRVI. These variables encompass

both spectral indices and texture metrics, enabling a more

comprehensive representation of canopy nitrogen variation.

Accordingly, the integrated selection strategy that combines Elastic

Net with Boruta SHAP facilitates the extraction of robust,

representative nitrogen-sensitive features and enhances the accuracy

and reliability of the cotton nitrogen estimation model.
FIGURE 9

Spatiotemporal inversion map of PNC during different growth stages of cotton. (A) Bud stage, (B) Flowering stage, (C) Boll-setting stage, and
(D) Boll-opening stage.
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4.2 Effect of machine-learning models on
PNC estimation

Based on the comparative results of six machine learning

algorithms, the Bayesian optimized Random Forest (RF) performed

best in estimating cotton PNC, achieving high accuracies of R² = 0.98/

0.97 and RMSE = 0.06/0.08 on the training and test sets, respectively.

Notably, the superiority of RF is evident not only over the

unoptimized baseline models but also over Extreme Gradient

Boosting (XGB), which was tuned with the same Bayesian

optimization strategy. Although both belong to the ensemble tree

family, RF still exceeds XGB on the test set by 0.13 in R² (DR² = 0.13).

This gap indicates that RF’s advantage arises primarily from its

structural properties, namely its use of random feature subspaces

and ensemble averaging to handle high dimensional and collinear

features, rather than from hyperparameter tuning alone.

Similar research showed that Lu et al. found in maize nitrogen

estimation using agricultural remote sensing that RF (R² = 0.93)

outperformed XGB (R² = 0.87) (Lu et al., 2025). Khodjaev et al.

further noted that, in multi-environment wheat-yield prediction

tasks, Random Forest exhibited greater robustness to feature

redundancy (Khodjaev et al., 2025). In conjunction with the

hierarchical feature-selection strategy adopted in the present

study, these findings suggest that RF and Bayesian optimization

work synergistically, conferring unique advantages in handling the

high-dimensional data generated by UAV remote sensing. Several

recent investigations spanning two successive seasons or multiple

geographic sites have consistently verified that RF models achieve

high precision (R² ≈ 0.85 – 0.95) for cotton nitrogen estimation,

indicating robust generalizability over time and space (Li M, et al.,

2024). Gaussian Process Regression (GPR) ranked second, with R²

= 0.97/0.92, and its strengths lie in its probabilistic framework and

built-in uncertainty quantification. However, its high

computational cost, coupled with only marginal accuracy gains

over the grid-search-tuned variant employed in this study, restricts

its practical applicability. By contrast, RF preserves high accuracy

while offering excellent computational efficiency, a combination

that is critical for scalable precision-agriculture applications.

Support Vector Regression (SVR) performed the worst; this

observation concurs with Zhang et al. in a wheat-nitrogen study,

underscoring SVR’s limitations in coping with feature collinearity

and spectral noise (Zhang et al., 2024). The performance disparities

among these models further indicate that model selection should

jointly consider optimization strategies and the algorithm’s intrinsic

compatibility with data characteristics; for UAV-based remote-

sensing datasets, tree-based ensemble models such as RF

demonstrate clear advantages over kernel methods in dealing with

multicollinearity and complex nonlinear structures.
4.3 Effect of plastic-mulched drip context
on PNC accuracy

In plastic-mulched, drip-irrigated cotton systems in arid

regions, the mulch markedly enhances reflectance in the 450–700
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nm visible band, thereby weakening the ability of conventional

vegetation indices to characterize canopy nitrogen status (Cheng

et al., 2024). To mitigate this interference, the present study

developed a multi-level feature-selection framework that jointly

identifies spectral and textural features resistant to mulch effects,

thereby markedly enhancing model robustness under complex

spectral backgrounds. The results indicate that mulch reflectance

is strongest at the early growth stage, during which the accuracy of

traditional indices declines most sharply. The NDRE avoids the

mulch reflectance peak by shifting its sensitive band to 705 to 750

nm. GOSAVI, in contrast, employs a soil adjustment factor to

dynamically correct bright or moist backgrounds, and—when

coupled with NDRE—further smooths the reflectance steps

introduced by the mulch (Cao et al., 2016). Therefore, meticulous

radiometric calibration together with the selection of interference

resistant indices is essential for reliable nitrogen monitoring in arid

regions. Beyond spectral information, textural features also play an

indispensable role. Local gray level difference operations can offset

overall brightness elevation within limited neighborhoods, thereby

attenuating the brightening effect of the mulch. The mulch appears

as regular stripes or patches, whereas the cotton canopy exhibits

more random and isotropic textures; metrics such as contrast and

mean can therefore effectively separate the two structures and

reduce spectrally mixed pixels. Furthermore, texture features can

sensitively capture subtle differences in canopy structure and

nitrogen spatial distribution under arid conditions, thereby

further improving the accuracy of nitrogen concentration

estimation (Zhang et al., 2024).

Compared with humid or semi-humid ecosystems, the intense

radiation, high evapotranspiration, and plastic-mulched drip

irrigation characteristic of arid regions substantially increase the

complexity of nitrogen monitoring. These environmental factors

significantly modify canopy reflectance spectra and cotton

nitrogen-uptake dynamics, leading to more severe collinearity and

redundancy when features are extracted from multisource remote-

sensing data. To address these challenges, the present study

combines the strengths of the Elastic Net and Boruta SHAP

algorithms to simultaneously mitigate high-dimensional

collinearity, feature redundancy, and model interpretability issues.

Water scarcity is the principal constraint on agriculture in arid

zones, dictating that cotton is commonly managed via coordinated

water-and-fertilizer regimes. Accordingly, we designed distinct

water–nitrogen coupling treatments and, through multilevel

feature selection and machine-learning modeling, evaluated how

changes in water and nitrogen supply affect cotton nitrogen status

under arid conditions. This method accommodates the compound

spectral-texture interference characteristic of plastic-mulched drip

systems in arid lands and addresses the common neglect of arid-

specific environmental factors in previous studies. Compared with

approaches developed for other ecological zones, our study

highlights the technical challenges posed by the combined effects

of plastic mulching and arid environments and provides a

corresponding systematic solution. By explicitly identifying and

purposefully resolving these unique technical bottlenecks, this study

substantially improves the practicality and predictive accuracy of
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UAV-based nitrogen-monitoring models in plastic-mulched drip-

irrigated cotton fields of arid regions.
4.4 Study limitations
Fron
1. The experimental data are derived exclusively from plastic-

mulched, drip-irrigated cotton fields in arid Xinjiang,

where uniform geo-climatic conditions may constrain the

model’s ability to generalize to ecologically heterogeneous

regions such as the cotton-growing areas of the Yellow

River Basin. Future research should collect samples across

multiple ecological zones and apply transfer-learning

frameworks to improve cross-regional adaptability.

Moreover, the small sample size is particularly

problematic for kernel-based models, hindering the full

exploitation of their inherent advantages.

2. The current study focuses on estimating nitrogen content

across the entire growth period but, owing to insufficient

temporal resolution with 22–29 day sampling intervals, fails

to capture short-term nitrogen dynamics following

fertigation events. In addition, the current method has

been validated only for a single crop (cotton). Future

studies should incorporate more frequent sampling

protocols and include a wider array of crop species to

provide a more comprehensive evaluation of the method’s

general applicability.
5 Conclusions

This study, on the basis of UAV remote-sensing imagery,

combines a feature-selection approach to filter spectral

information and, using the evaluated random forest, builds an

estimation model for cotton PNC of drip-irrigated, plastic-

mulched cotton, and mainly obtains the following conclusions:
1. Five key feature var iables (Mean_B, Mean_R,

NDRE_GOSAVI, NDVI, GRVI) were optimally selected

from the variables, which can significantly improve cotton

PNC prediction accuracy.

2. By comparing the predictive performance of six machine-

learning models, it was found that RF achieved R² of 0.98

and 0.97 on the training and test sets, respectively, with

RMSE of 0.05 and 0.08, outperforming other models in

prediction accuracy and being relatively stable for

estimating PNC of plastic-mulched drip-irrigated cotton.

3. Field measurements and inversion results at four key growth

stages showed a general declining trend in PNC throughout

the cotton growth cycle, indicating pronounced stage-

dependent nitrogen uptake dynamics. Water–nitrogen
tiers in Plant Science 14
interaction analysis further demonstrated that the W2N2

treatment (450 mm seasonal irrigation combined with

300 kg N ha-¹) sustained the highest PNC (1.83% to

3.22%) across all growth stages, whereas either insufficient

or excessive water or nitrogen reduced uptake efficiency. For

arid, plastic-mulched, drip-irrigated cotton, we recommend

a seasonal irrigation quota of 425 mm to 475 mm and a

nitrogen input of 250 kg N ha-¹ to 320 kg N ha-¹, with

cultivar-, soil- and nutrient-specific adjustments to balance

yield targets with nitrogen-use efficiency.
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generalized soil-adjusted vegetation index. Remote Sens. Environ.82, 303–310.
doi: 10.1016/S0034-4257(02)00048-2

Gu, H., Mills, C., Ritchie, G. L., and Guo, W.(2024). Water stress assessment of
cotton cultivars using unmanned aerial system images. Remote Sens.16, 2609.
doi: 10.3390/rs16142609

Guo, L., Fang, W., Zhao, Q., and Wang, X.(2021). The hybrid PROPHET-SVR
approach for forecasting product time series demand with seasonality. Comput. Ind.
Eng.161, 107598. doi: 10.1016/j.cie.2021.107598
He, L., Song, X., Feng, W., Guo, B., Zhang, Y., Wang, Y., et al. (2016). Improved
remote sensing of leaf nitrogen concentration in winter wheat using multi-angular
hyperspectral data. Remote Sens. Environ.174, 122–133. doi: 10.1016/j.rse.2015.12.007

Hou, X., Fan, J., Zhang, F., Hu, W., and Xiang, Y.(2024). Optimization of water and
nitrogen management to improve seed cotton yield, water productivity and economic
benefit of mulched drip-irrigated cotton in southern Xinjiang, China. Field Crops
Res.308, 109301. doi: 10.1016/j.fcr.2024.109301

Jia, Y., Li, Y., He, J., Biswas, A., Siddique, K. H. M., Hou, Z., et al. (2025). Enhancing
precision nitrogen management for cotton cultivation in arid environments using
remote sensing techniques. Field Crops Res.321, 109689. doi: 10.1016/j.fcr.2024.109689

Khodjaev, S., Bobojonov, I., Kuhn, L., and Glauben, T.(2025). Optimizing machine
learning models for wheat yield estimation using a comprehensive UAV dataset.Model.
Earth Syst. Environ.11, 15. doi: 10.1007/s40808-024-02188-9

Kimberly, A. E., and Roberts, M. G.(1905). A method for the direct determination of
organic nitrogen by the Kjeldahl process. Public Health Pap. Rep.31, 109–122.
doi: 10.1093/infdis/3.Supplement_2.S109

Kou, J., Duan, L., Yin, C., Ma, L., Chen, X., Gao, P., et al. (2022). Predicting leaf
nitrogen content in cotton with UAV RGB images. Sustainability14, 9259. doi: 10.3390/
su14159259

Li, M., Liu, Y., Lu, X., Jiang, J., Ma, X., Wen, M., et al. (2024). Integrating unmanned
aerial vehicle-derived vegetation and texture indices for the estimation of leaf nitrogen
concentration in drip-irrigated cotton under reduced nitrogen treatment and different
plant densities. Agronomy14, 120. doi: 10.3390/agronomy14010120

Li, T., Wang, H., Cui, J., Wang, W., Li, W., Jiang, M., et al. (2024). Improving the
accuracy of cotton seedling emergence rate estimation by fusing UAV-based
multispectral vegetation indices. Front. Plant Sci.15. doi: 10.3389/fpls.2024.1333089

Li, D., Yang, S., Du, Z., Xu, X., Zhang, P., Yu, K., et al. (2024). Application of
unmanned aerial vehicle optical remote sensing in crop nitrogen diagnosis: A
systematic literature review. Comput. Electron. Agric.227, 109565. doi: 10.1016/
j.compag.2024.109565

Liu, S., Jin, X., Nie, C., Wang, S., Yu, X., Cheng, M., et al. (2021). Estimating leaf area
index using unmanned aerial vehicle data: shallow vs. deep machine learning
algorithms. Plant Physiol.187, 1551–1576. doi: 10.1093/plphys/kiab322

Lu, F., Sun, H., Tao, L., and Wang, P.(2025). Data integration based on UAV
multispectra and proximal hyperspectra sensing for maize canopy nitrogen estimation.
Remote Sens.17, 1411. doi: 10.3390/rs17081411

Luo, Y., Yin, H., Ma, Y., Wang, J., Che, Q., Zhang, M., et al. (2024). Optimizing
nitrogen fertilizer for improved root growth, nitrogen utilization, and yield of cotton
under mulched drip irrigation in southern xinjiang, China. Sci. Rep.14, 23223.
doi: 10.1038/s41598-024-73350-7
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Sebastián, C., and González-Guillén, C. E.(2024). A feature selection method based
on Shapley values robust for concept shift in regression. Neural Comput. Appl.36,
14575–14597. doi: 10.1007/s00521-024-09745-4

Wan, Y., Li, W., Wang, J., Wu, B., and Su, F.(2024). Effects of different drip irrigation
rates on root distribution characteristics and yield of cotton under mulch-free
cultivation in southern Xinjiang. Water16, 1148. doi: 10.3390/w16081148

Wang, F., Zhang, J., Li, W., Liu, Y., Qin, W., Ma, L., et al. (2025). Characterization of
N variations in different organs of winter wheat and mapping NUE using low altitude
UAV-based remote sensing. Precis. Agric.26, 40. doi: 10.1007/s11119-025-10234-4

Xu, S., Xu, X., Zhu, Q., Meng, Y., Yang, G., Feng, H., et al. (2023). Monitoring leaf
nitrogen content in rice based on information fusion of multi-sensor imagery from
UAV. Precis. Agric.24, 2327–2349. doi: 10.1007/s11119-023-10042-8

Yang, Z., Xia, W., Chu, H., Su, W., Wang, R., and Wang, H.(2025). A comprehensive
review of deep learning applications in cotton industry: From field monitoring to smart
processing. Plants14, 1481. doi: 10.3390/plants14101481

Yin, C., Lv, X., Zhang, L., Ma, L., Wang, H., Zhang, L., et al. (2022). Hyperspectral
UAV images at different altitudes for monitoring the leaf nitrogen content in cotton
crops. Remote Sens.14, 2576. doi: 10.3390/rs14112576
Frontiers in Plant Science 16
Yusoff, M., Mahmud, Y., and P.a.R. and Sallehud-Din, M. T. M.(2025). The
improvement of SMOTE-ENN-XGBoost through yeo johnson strategy on dissolved
gas analysis dataset. Energy Rep.13, 6281–6290. doi: 10.1016/j.egyr.2025.05.013

Zhang, S., Duan, J., Qi, X., Gao, Y., He, L., Liu, L., et al. (2024). Combining spectrum,
thermal, and texture features using machine learning algorithms for wheat nitrogen
nutrient index estimation and model transferability analysis. Comput. Electron.
Agric.222, 109022. doi: 10.1016/j.compag.2024.109022

Zhang, Z., and Jung, C.(2020). GBDT-MO: Gradient-boosted decision trees for
multiple outputs. IEEE Trans. Neural Netw. Learn. Syst.32, 3156–3167. doi: 10.1109/
TNNLS.2020.3009776

Zhou, G., Chen, Y., and Yao, J.(2023). Variations in precipitation and temperature in
xinjiang (northwest China) and their connection to atmospheric circulation. Front.
Environ. Sci.10. doi: 10.3389/fenvs.2022.1082713

Zhou, Y., Lao, C., Yang, Y., Zhang, Z., Chen, H., Chen, Y., et al. (2021). Diagnosis
of winter-wheat water stress based on UAV-borne multispectral image texture and
vegetation indices. Agric. Water Manage.256, 107076. doi: 10.1016/j.agwat.
2021.107076

Zhu, J., Lu, J., Li, W., Wang, Y., Jiang, J., Cheng, T., et al. (2023). Estimation of canopy
water content for wheat through combining radiative transfer model and machine
learning. Field Crops Res.302, 109077. doi: 10.1016/j.fcr.2023.109077

Zhuang, Z. H., Tsai, H. P., Chen, C. I., and Yang, M. D.(2024). Subtropical region tea
tree LAI estimation integrating vegetation indices and texture features derived from
UAV multispectral images. Smart Agric. Technol.9, 100650. doi: 10.1016/
j.atech.2024.100650
frontiersin.org

https://doi.org/10.1016/j.jia.2023.02.027
https://doi.org/10.3389/fpls.2023.1248152
https://doi.org/10.1007/s00521-024-09745-4
https://doi.org/10.3390/w16081148
https://doi.org/10.1007/s11119-025-10234-4
https://doi.org/10.1007/s11119-023-10042-8
https://doi.org/10.3390/plants14101481
https://doi.org/10.3390/rs14112576
https://doi.org/10.1016/j.egyr.2025.05.013
https://doi.org/10.1016/j.compag.2024.109022
https://doi.org/10.1109/TNNLS.2020.3009776
https://doi.org/10.1109/TNNLS.2020.3009776
https://doi.org/10.3389/fenvs.2022.1082713
https://doi.org/10.1016/j.agwat.2021.107076
https://doi.org/10.1016/j.agwat.2021.107076
https://doi.org/10.1016/j.fcr.2023.109077
https://doi.org/10.1016/j.atech.2024.100650
https://doi.org/10.1016/j.atech.2024.100650
https://doi.org/10.3389/fpls.2025.1639101
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	UAV-based multitier feature selection improves nitrogen content estimation in arid-region cotton
	1 Introduction
	2 Materials and methods
	2.1 Overview of the study area
	2.2 Experimental design
	2.3 Data acquisition and processing
	2.3.1 Determination of plant nitrogen content
	2.3.2 Acquisition of remote-sensing imagery

	2.4 Feature extraction
	2.4.1 Vegetation-index derivation
	2.4.2 Texture-feature extraction

	2.5 Feature selection and model development
	2.5.1 Elastic Net&minus;based feature selection
	2.5.2 Boruta–SHAP-based feature selection
	2.5.3 Development of the inversion model
	2.5.4 Model performance evaluation
	2.5.5 Rationale for cotton sample selection


	3 Results and analysis
	3.1 Temporal trend of nitrogen content in plastic-mulched, drip-irrigated cotton
	3.2 Results of Elastic Net-based feature selection
	3.3 Boruta–SHAP-based feature selection
	3.4 Integrated feature selection combining Elastic Net and Boruta–SHAP
	3.5 Performance evaluation of the integrated-feature inversion model

	4 Discussion
	4.1 Effect of feature selection on PNC estimation accuracy
	4.2 Effect of machine-learning models on PNC estimation
	4.3 Effect of plastic-mulched drip context on PNC accuracy
	4.4 Study limitations

	5 Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


