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CNATNet: a convolution-
attention hybrid network
for safflower classification
Pengwei Ma †, Nan Lian †, Leilei Dong, Yunchen Luo, Zheng Sun,
Yuanjiao Zhu, Zefang Chen and Jie Zhou*

College of Information Science and Technology, Shihezi University, Shihezi, China
Safflower (Carthamus tinctorius L.) is an important medicinal and economic crop,

where efficient and accurate filament grading is essential for quality control in

agricultural and pharmaceutical applications. However, current methods rely on

manual inspection, which is time-consuming and difficult to scale. A coarse-to-

fine grading framework is established, consisting of cluster-level classification for

rapid assessment and filament-level fine-grained classification. To implement

this framework, a lightweight hybrid network, CNATNet, is designed by

integrating convolutional operations and attention mechanisms. The classical

C2f feature extraction module is optimized into two components: C2S2, a

lightweight convolutional variant with cascaded split connections, and AnC2f,

an n-order local attention mechanism. A depthwise separable convolution-

based head (DWClassify) is further employed to accelerate inference while

maintaining accuracy. Experiments on a high-resolution safflower filament

dataset indicate that CNATNet achieves 98.6% accuracy at the cluster level and

95.6% at the filament level, with an average latency of 1.9 ms per image.

Compared with representative baselines such as YOLOv11m and RT-DETRv2s,

CNATNet consistently yields higher accuracy with reduced latency. Moreover,

deployment on the Jetson Orin Nano demonstrates real-time performance at 63

FPS under 15 W, confirming its feasibility for embedded agricultural grading in

resource-constrained environments. These results suggest that CNATNet

provides a task-specific lightweight solution balancing accuracy and efficiency,

with strong potential for practical safflower quality classification.
KEYWORDS

safflower classification, deep learning, CNN-attention hybrid, C2S2, AnC2f, DWClassify
1 Introduction

Efficient classification of safflower filaments is a key challenge in modern agricultural

quality control, given their significant economic and medicinal value. Safflower (Carthamus

tinctorius L.) is widely recognized for its pharmacological effects, including promoting

blood circulation, anti-inflammation, and antioxidation (Pu et al., 2019). Benefiting from

favorable climatic conditions, Xinjiang Province accounts for more than 75% of China’s
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safflower production, producing filaments with high active

compound content, bright color, and intact structure (Lin et al.,

2020). In practical production scenarios, filament color, texture, and

integrity are critical indicators for assessing safflower quality.

However, large-scale filament grading still relies on manual visual

inspection, which suffers from high labor intensity, subjectivity, and

limited scalability, failing to meet the demands of standardized and

efficient production.

To address these limitations, researchers have explored various

analytical techniques for safflower-specific applications. For

instance, hyperspectral imaging combined with machine learning

models has been successfully applied to monitor drought stress in

safflower, enabling precise classification of plant health states (Salek

et al., 2024). Similarly, computer-aided decision-making systems

based on spectral reflectance data have been developed to optimize

irrigation strategies and assess safflower quality, demonstrating the

feasibility of intelligent agricultural management (Karadağ, 2022).

In terms of product safety and quality control, machine learning-

assisted surface-enhanced Raman spectroscopy (SERS) sensors have

been employed for rapid detection of illegal dye additives in

safflower products, facilitating highly sensitive and on-site

hazardous substance analysis (Lin et al., 2024). Furthermore, a

practical “indistinct” evaluation method, integrating bioactivity

assays with visual character analysis, has been proposed to

establish efficient and low-cost quality grading standards for

safflower (Zhou et al., 2023). While these safflower-related studies

have achieved notable progress, complementary research on saffron

(Crocus sativus L.) provides valuable technical references. Methods

such as E-nose combined with gas chromatography-mass

spectrometry (GC-MS) (Sun et al., 2022) and UHPLC-HRMS/

MS-based metabolomics (Ryparova Kvirencova et al., 2023) have

shown effectiveness in detecting adulteration and ensuring product

authenticity. However, these approaches often rely on sophisticated

instrumentation and complex workflows, which limit their

applicability for real-time, large-scale safflower classification tasks.

In recent years, vision-based deep learning has shown strong

potential in automated plant phenotype analysis and quality

evaluation. Deep neural networks have been successfully applied to

tasks such as safflower germplasm classification, demonstrating high

accuracy under field conditions (Van et al., 2025). For fine-grained

tasks like filament-level analysis, CNN models designed for

unstructured environments have also shown promising results

(Chen et al., 2024a). However, the visual complexity of safflower

filaments—including subtle textures, shape variability, and frequent

overlaps—poses challenges for real-time and precise classification.

These factors often lead to a trade-off between accuracy and inference

speed, limiting the practical deployment of current models in large-

scale agricultural systems. To improve feature extraction and reduce

model complexity, several studies have proposed lightweight

modifications to core network modules. For example, Wang and

Liu (2024) introduced a GhostConv-based variant of the C2f module,

which significantly reduced parameter counts while maintaining

detection accuracy. In another study, Wang et al. (2025) proposed a

pyramid-style C2f structure to enhance multi-scale feature learning

and improve computational efficiency. Meanwhile, efforts have also
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focused on integrating attention mechanisms into feature fusion

designs. Miao et al. (2025) developed a dynamic convolution and

spatial attention architecture to better capture both local and global

semantics. In the field of crop quality grading, Zhao et al. (2024)

presented an attention-enhanced classification framework that

substantially improved prediction accuracy in complex agricultural

scenarios. In addition, lightweight detection heads have been proposed

to reduce computation costs during inference, particularly for use in

embedded or resource-constrained agricultural environments (Qing

et al., 2024; Wang et al., 2025). Despite these advancements, existing

approaches remain focused on general object detection and often fail

to address the fine-grained structural characteristics of safflower

filaments. Attention modules tend to emphasize global context

while overlooking local morphological cues such as edge continuity

and curvature. Furthermore, decoupled classification heads may

introduce information loss, reducing model reliability in detail-

sensitive tasks. These limitations underscore the need for a model

that is both lightweight and capable of fine-structure modeling,

specifically tailored for real-time filament-level classification in

agricultural applications.

Beyond CNN- and attention-based lightweight designs, recent

alternative paradigms have emerged. For hyperspectral scenarios,

SpectralMamba (Yao et al., 2024) adopts a state-space-model

backbone that combines gated spatial–spectral interaction with

efficient sequential modeling to balance accuracy and efficiency.

Complementarily, SPECIAL (Pang et al., 2025) presents a CLIP-

based zero-shot pipeline that interpolates HSI into RGB bands to

obtain pseudo-labels and then refines them via noisy-label learning.

While our study targets RGB-based safflower filament grading

under a supervised setting, these principles—efficient state–space

feature interaction and label-efficient supervision—outline

promising directions for future lightweight classification systems

in spectral or multi-modal agricultural applications.

To address these challenges, this study proposes CNATNet, a

lightweight convolution-attention hybrid model designed for

efficient and accurate safflower filament classification. CNATNet

integrates multi-branch feature extraction, attention-enhanced

feature fusion, and lightweight prediction modules to ensure high

classification accuracy while meeting practical requirements for low

latency and limited computational resources. Specifically,

CNATNet is tailored to the morphological characteristics of

safflower filaments, adopting a coarse-to-fine recognition strategy

that progressively refines feature representations from cluster-level

patterns to filament-level details. The model architecture builds

upon established lightweight designs, including MobileNetV2

(Sandler et al., 2018), MobileNetV3 (Howard et al., 2019), and

GhostViT (Cao et al., 2024), achieving an effective balance between

recognition performance and computational efficiency. On this

basis, CNATNet introduces the following key contributions:
1. C2S2 convolution module: To enhance feature extraction

efficiency, a novel C2S2 module is designed by partitioning

feature channels into multiple lightweight parallel

branches, enabling efficient convolution operations. The

cascaded connection structure further strengthens the
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https://doi.org/10.3389/fpls.2025.1639269
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ma et al. 10.3389/fpls.2025.1639269

Fron
module’s capacity to capture filament directionality,

preserve curvature continuity, and maintain edge

integrity. This lightweight design allows the network to

effectively represent fine-grained morphological features

critical for accurate filament classification under complex

visual conditions.

2. AnC2f attention module: To better cope with the fine-

grained texture and overlapping structures of safflower, an

attention mechanism is incorporated. AnC2f enhances the

model’s sensitivity to key spatial regions and multi-scale

cues by gradually stacking lightweight attention modules in

the residual fusion path. This design improves the

network’s ability to capture subtle structural changes,

enabling more accurate distinction between high-quality

and ordinary-grade filaments.

3. DWClassify lightweight classification head: By decoupling

spatial and channel features through depthwise separable

convolut ion, DWClassi fy substantia l ly reduces

computational complexity without sacrificing prediction

accuracy. This ensures that the model can achieve real-

time inference not only on high-performance GPUs but

also on resource-constrained embedded platforms,

reinforcing its lightweight nature.

4. Deployment on Jetson Orin Nano: The optimized

CNATNet model was deployed on the Jetson Orin Nano,

a high-performance yet power-efficient embedded

platform. Real-time inference was achieved for safflower

filament and cluster classification at 63 FPS under 15 W,

mainta in ing high accuracy under constra ined

computational budgets. These results confirm that

CNATNet is not only accurate but also lightweight and

deployment-ready, providing a practical and scalable

solution for intelligent plant quality assessment in

modern agriculture.
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2 Materials and methods

2.1 Data collection

Xinjiang is the largest safflower-producing region in China, with

its favorable climate and soil conditions contributing to filaments

that are superior in color, texture, and bioactive compound content

compared to those from other regions. The experimental sites for

this study were located in the main safflower production areas of

Changji Hui Autonomous Prefecture, including Changji City,

Manas County, and Hutubi County. The collected samples from

these areas were characterized by vivid coloration, fine and intact

filament structure, and high medicinal and economic value.

Traditionally, safflower classification relies on quantifying active

constituents such as safflower yellow pigment. However, these

methods are time-consuming and involve complex chemical

operations, making them unsuitable for real-time classification or

automated sorting systems. To meet the demands of automation,

this study adopts a visual classification standard based on the

appearance of safflower filaments. By combining field observations

and expert feedback from local growers, the filaments were

categorized into two major quality classes: premium-grade

filaments suitable for medicinal applications, and regular-grade

filaments intended for auxiliary uses. Premium-grade filaments are

defined by their bright color, compact structure, and high fiber

integrity, making them ideal for clinical or health-related purposes.

In contrast, regular-grade filaments exhibit dimmer coloration,

inconsistent thickness, and lower fiber quality, and are better

suited for daily health care, soaking, or pigment extraction. This

classification standard is practical for both manual annotation and

automated model training and effectively captures intrinsic quality

differences. Figure 1 presents representative examples of premium-

grade and regular-grade single safflower filaments, illustrating their

visual distinctions in color, texture, and structural integrity.
FIGURE 1

Visual comparison of safflower filaments across different quality grades. (A) High-quality Carthamus tinctorius (L.) filament. (B) Common-quality
Carthamus tinctorius (L.) filament.
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From June to August 2024, safflower filament images were

acquired across multiple plantation sites in Changji Prefecture

using a mobile imaging setup equipped with an iPhone 14 Pro

Max. All samples were selected from post-harvest and naturally air-

dried filaments to ensure consistency with real-world processing

conditions. To enhance dataset diversity and improve the

robustness of model generalization, images were acquired under

diverse environmental conditions. Specifically, the dataset was

constructed by capturing images across various camera angles,

illumination levels, and background complexities. The acquisition

scenarios included:

(i) outdoor environments under natural daylight; (ii) indoor

settings with diffuse artificial lighting; (iii) backgrounds exhibiting

different levels of clutter and occlusion.

A total of 5,800 images were acquired at a resolution of

3840×2160 pixels and saved in PNG format to ensure lossless

preservation. The dataset comprises both scattered single

filaments and densely stacked floral clusters. Image acquisition

was performed at various distances, ranging from close-up views

(<0.15 m) to medium-to-long ranges (>0.15 m), thereby enhancing

the robustness and generalization capability of the proposed

classification model.
2.2 Dataset creation and annotation

To ensure annotation accuracy prior to model training, all

original safflower filament images were labeled using the Roboflow

platform. Each image was annotated with a single instance

representing either a premium-grade or regular-grade filament. The

two categories were respectively labeled as “CT Premium” and “CT

Normal”. Each image contains only one target object, either an

isolated filament or a dense filament cluster, assigned with the

appropriate class label. Considering the influence of environmental

variation—such as fluctuating lighting and complex backgrounds—

this study adopts a binary classification strategy based on single-

instance images. The model directly learns quality classification from

global visual features of individual filaments. This strategy enables the

model to focus on overall filament appearance, thereby improving

classification accuracy and robustness under challenging real-world

conditions. To visually illustrate the environmental variations

considered in the proposed classification strategy, representative

filament samples captured under different lighting conditions are

shown in Figure 2. For each quality grade, the left panel presents

filaments photographed under natural daylight, while the right panel

corresponds to images captured with diffuse artificial lighting.

Additionally, the lower row displays individual filaments extracted

from the bulk samples, serving as single-instance inputs

for classification.

The safflower filament dataset used in this study was constructed

through systematic image acquisition under diverse environmental

conditions. To ensure a comprehensive representation of real-world

scenarios, images were captured across multiple variables, including

filament quantity (single or multiple filaments), shooting distance
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(close-up or distant view), illumination condition (natural or

supplementary lighting), camera angle, and background

complexity. Owing to natural variations in field cultivation and

post-harvest processing, the collected dataset exhibits differences in

filament quality, structure, and visual appearance. A total of 5,800

high-resolution images (3840×2160 pixels) were acquired, covering

both premium-grade and common-grade safflower filaments. The

detailed class distribution is summarized in Table 1.

To support downstream model training and evaluation, the full

dataset was randomly partitioned into training, validation, and

testing subsets at a ratio of 7:2:1. The class distribution was

maintained consistently across all subsets to ensure balanced data

quality and enable fair performance comparisons. The collected

images cover diverse acquisition conditions, including variations in

shooting angles, shot distances, and environmental complexities, to

enhance model robustness and generalization, as illustrated in

Figure 3. To mitigate overfitting and reduce sensitivity to class

distribution bias, multiple data augmentation techniques were

applied during training. Specifically, random rotation, horizontal

flipping, brightness adjustment, and affine transformations were

employed to simulate variations in angle, lighting, and background

complexity. These augmentations not only enrich the diversity of

training samples but also enhance the model’s generalization

capability under challenging conditions. Representative examples

of these augmentation strategies are illustrated in Figure 4.
2.3 Model architecture

2.3.1 CNATNet framework overview
CNATNet is a hybrid network that integrates convolutional

neural networks with attention mechanisms. It consists of two main

components: a backbone for multi-scale feature extraction and

fusion, and a classification head for safflower filament quality

prediction. As illustrated in Figure 5, the architecture integrates

both convolutional and attention-based modules across feature

extraction and classification stages. Specifically, the backbone

incorporates convolution-centric C2S2 modules and attention-

enhanced AnC2f modules, forming a synergistic structure that

leverages the strengths of both paradigms. The C2S2 module

focuses on efficient representation learning with reduced

computational cost (Chen et al., 2024b; Liu et al., 2024), while the

AnC2f module enhances spatial attention and multi-scale

perception through stacked attention blocks (Li et al., 2021; Lv

et al., 2022). For final prediction, CNATNet employs a lightweight

DWClassify head based on depthwise separable convolutions to

minimize parameter count and optimize inference speed (Dwika

Hefni Al-Fahsi et al., 2024; Gao et al., 2021).

2.3.2 C2S2: cascaded split-and-concatenate
structure

C2S2 is a lightweight convolutional feature extractor designed

for early-stage processing within CNATNet. It starts with a

standard convolution to extract base-level features, followed by a
frontiersin.org
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channel-wise split into two parallel branches. Each branch processes

features through stacked GhostBottleneck or Bottleneck layers to

enhance representational capacity while reducing parameter

overhead (Huang and Wang, 2025; Yu and Zhou, 2023). The

internal architecture of C2S2 is illustrated in Figure 6, which

details the feature flow, dual-branch operations, and lightweight

convolutional structure.

After local refinement in each branch, a bottleneck layer

compresses channel dimensions to extract key features, which are

then concatenated across branches to form the unified output.

Mathematically, the feature fusion process of C2S2 can be

expressed as (Equation 1):

FC2S2 = Concat(f1(X1), f2(X2)) (1)
Frontiers in Plant Science 05
where X1 and X2 represent the channel-wise partitions of the

input feature map X, which are independently processed by the

branch-specific transformation functions f1(·) and f2(·), respectively.

The outputs of these branches are concatenated along the channel

dimension by the Concat(·) operation, resulting in the unified

feature representation FC2S2.

The parameter complexity of C2S2 is quantified in Equation 2:

PC2S2 =o
2

i=1
(Csplit � K � K � Csplit) + Cmerge � Cout (2)

where Csplit denotes the number of channels assigned to each

branch after splitting, K represents the convolution kernel size,

Cmerge refers to the number of channels in the fusion (bottleneck)

layer, and Cout is the output channel number of the C2S2 module.
FIGURE 2

Visual comparison of safflower filaments under different quality grades and lighting conditions. (A) High-quality sample. (B) Common-quality sample.
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The first summation term calculates the cumulative parameter

count of the dual-branch convolutions, each operating within its

respective channel partition, while the final term accounts for the

parameters introduced by the merging operation that recombines

the branch-specific features.
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By leveraging its parallel structure, C2S2 achieves a balanced

trade-off among computational efficiency, feature diversity, and

structural consistency, making it particularly well-suited for

processing safflower filament images with directional textures and

densely packed patterns (Lau et al., 2024; Zhu et al., 2024). This
TABLE 1 Class distribution of the safflower dataset under various acquisition conditions.

Scenario Category Premium Normal Total

Filament quantity
Single filaments 1650 1350 3000

Multiple filaments 1450 1350 2800

Shooting distance
Close-up view 1750 1550 3300

Distant view 1350 1150 2500

Lighting condition
Natural lighting 1900 1600 3500

Supplementary lighting 1200 1100 2300

Camera angle
Frontal view 1600 1400 3000

Multi-angle view 1500 1300 2800

Background complexity

Clean background 1800 1500 3300

Cluttered background 900 800 1700

Occluded background 800 700 1500
FIGURE 3

Visual examples of safflower captured under different acquisition conditions.
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design ensures robust feature extraction while maintaining low

computational overhead, which is critical for practical deployment

in resource-constrained environments.
2.3.3 AnC2f: attention-enhanced cross-stage
fusion

AnC2f is an attention-driven fusion module inspired by the C2f

architecture from YOLOv8 and the original CSPNet structure

(Varghese and M, 2024; Wang et al., 2019). It enhances cross-

stage learning by injecting multiple stacked Attention Blocks

(ABlocks) into the fusion process. The structural details of the

AnC2f module are depicted in Figure 7. As shown, AnC2f retains

the dual-path feature flow of C2f, where the input features are split

into two branches: a shortcut branch for direct feature propagation,

and a main branch for progressive feature refinement.

In the main processing branch, stacked Attention Blocks

(ABlocks) are applied to modulate the input features through

spatially adaptive weighting. This modulation process is

formulated as (Equation 3):
Frontiers in Plant Science 07
FAnC2f = s (Conv(Fin))⊙ Fin (3)

where Fin denotes the input feature map, Conv(·) represents a

1 × 1 convolutional layer that generates attention weights, s(·) is the
Sigmoid activation function ensuring the attention weights are

bounded between 0 and 1, and ⊙ denotes element-wise

multiplication, enabling spatial modulation of Fin.

To preserve the original information flow, AnC2f incorporates a

shortcut branch that directly propagates the input features without

attention modulation. The outputs of the main and shortcut

branches are then fused through element-wise addition, as

defined in (Equation 4):

FAnC2fOut = Fshortcut + FAnC2f (4)

where Fshortcut refers to the identity feature path, facilitating

information retention and gradient propagation, while FAnC2f
represents the attention-refined features from the main branch. This

residual fusion mechanism ensures that the enhanced attention

features are complemented by the original unaltered information,

leading to richer and more robust representations.
FIGURE 4

Representative examples of augmented safflower filament images. (A) Original image, (B) random rotation, (C) Horizontal flipping, (D) Brightness
adjustment.
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By seamlessly integrating attention-driven enhancement with

lightweight computational design, AnC2f effectively improves

multiscale feature learning, contributing to the overall

performance of CNATNet while maintaining high efficiency.

AnC2f divides input features into parallel paths, applying

convolutional and attention operations independently before

recombining them via residual connections. Attention blocks are

stacked in parallel to progressively improve the model’s sensitivity

to important spatial regions and morphological patterns (Ding

et al., 2021; Yin et al., 2024). This enables the network to more
Frontiers in Plant Science 08
effectively capture fine-grained structural details characteristic of

safflower filaments.

2.3.4 DWClassify: lightweight classification head
DWClassify functions as the final classification head in

CNATNet, aiming to deliver accurate predictions with minimal

computational overhead. To this end, DWClassify adopts a

depthwise separable convolutional structure, which effectively

decouples spatial and channel-wise feature extraction. This design

choice significantly reduces both the parameter count and
FIGURE 5

CNATNet structure diagram.
FIGURE 6

Internal architecture of the C2S2 module.
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computational complexity compared to conventional convolutional

layers (Dwika Hefni Al-Fahsi et al., 2024; Wang et al., 2023a).

The parameter complexity of DWClassify is quantified as

(Equation 5):

PDW = Cin � K � K + Cin � Cout (5)

where Cin and Cout denote the input and output channel

dimensions, respectively, and K represents the kernel size of the

depthwise convolution. Specifically, the first term Cin × K × K

corresponds to the parameters of the depthwise convolution, which

performs spatial filtering independently on each input channel. The

second term Cin × Cout accounts for the pointwise convolution

parameters, responsible for inter-channel feature aggregation via 1

× 1 convolutions.

In addition to parameter reduction, DWClassify exhibits high

computational efficiency. The floating-point operations (FLOPs)

required for inference are estimated by (Equation 6):

FLOPsDW = H �W � (Cin � K � K + Cin � Cout) (6)

whereH andW denote the spatial dimensions of the input feature

map. The multiplication with H × W accounts for the per-pixel

computation cost across the entire feature map. Similar to the

parameter calculation, the first term reflects the spatial filtering cost

of the depthwise convolution, while the second term represents the

channel-wise aggregation cost incurred by the pointwise convolution.

The architectural details of DWClassify are illustrated in Figure 8. By

decoupling spatial and channel-wise operations, DWClassify achieves an

optimal balance between model compactness and predictive accuracy.
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This lightweight design not only enhances inference speed but also

ensures seamless deployment in resource-constrained environments

such as embedded devices and mobile platforms.
3 Results and analysis

3.1 Experimental setup and evaluation
metrics

3.1.1 Experimental environment and parameters
All experiments were conducted on a workstation equipped

with an NVIDIA RTX 3070 Ti GPU. The model was implemented

using the PyTorch 1.12 framework under a Windows environment.

For optimization, the Adam optimizer was employed with a

learning rate of 0.001. The training process utilized a batch size of

32 and was conducted for a total of 300 epochs. The specific

configuration details are summarized in Table 2.

3.1.2 Evaluation metrics
To comprehensively evaluate the performance of the proposed

CNATNet model, this study adopts four core metrics: floating point

operations (FLOPs), number of parameters (Params), accuracy

(ACC), and latency. These metrics jointly assess the

computational efficiency, model complexity, prediction precision,

and real-time inference capability of the network.

FLOPs measure the computational complexity required for a

single forward pass, indicating the model’s resource consumption.
FIGURE 7

Structural comparison among CSPNet (A), C2f (B), and the proposed AnC2f (C).
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The total FLOPs are computed based on the number of operations

performed per spatial location and aggregated over all feature maps,

as formulated in Equation 7:

FLOPs =o
L

l=1

Hl �Wl � C(l)
in � K � K � C(l)

out (7)

where L denotes the total number of convolutional layers, Hl

and Wl represent the spatial dimensions of the l-th layer’s feature

map, C(l)
in and C(l)

out are the input and output channel numbers, and K

is the kernel size.

Params refer to the total count of learnable parameters within

the model, directly reflecting its memory footprint. The calculation

is expressed in Equation 8:

Params =o
L

l=1

C(l)
in � K � K � C(l)

out + C(l)
out (8)

where the first term accounts for convolutional weights and the

second term represents biases.

Accuracy (ACC) measures the ratio of correctly classified

samples to the total number of samples in the test set, providing

an intuitive evaluation of the model’s classification capability. The

formula is shown in Equation 9:

ACC =
TP + TN

TP + TN + FP + FN
(9)

where TP, TN, FP, and FN denote true positives, true negatives,

false positives, and false negatives, respectively.

Latency quantifies the average time taken to process a single

input image during inference. This metric reflects the practical

deployment capability of the model, particularly in real-time

scenarios. The latency is defined in Equation 10:
Frontiers in Plant Science 10
Latency =
Ttotal

Nsamples
(10)

where Ttotal represents the total inference time across all test

samples, and Nsamples is the number of test samples.
3.2 Experimental results and analysis

To comprehensively evaluate the proposed model’s effectiveness

in real-world safflower sorting scenarios, we divided the

classification task into two distinct levels: cluster classification and

monomer classification. The cluster-level task simulates

coarsegrained recognition of densely packed safflower clusters,

where the model must make a global judgment based on group-

level visual cues. This setup reflects typical conditions in automated

harvesting or packaging lines, where safflower bundles are

processed in bulk. In contrast, the monomer-level task focuses on

fine-grained classification of individual filaments, emphasizing

subtle morphological differences such as color, curvature, and

integrity. This setting aligns with higher-precision quality control

scenarios, such as pharmaceutical sorting or premium product

filtering. By evaluating both levels independently, we aim to

demonstrate the robustness and generalizability of CNATNet

across varied granularities of visual complexity.

3.2.1 Cluster classification results
To evaluate the effectiveness of different models in identifying

the overall quality of densely packed safflower clusters, we

formulated a cluster-level classification task. In this setting, the

input images consist of multiple overlapping filaments, simulating

the typical appearance of harvested safflower in agricultural

processing lines. A comprehensive comparison was conducted

across a wide set of models, including CNATNet, YOLOv5s,

YOLOX (Ge et al., 2021), DAMO-YOLO (Xu et al., 2022b), PP-

YOLOE (Xu et al., 2022a), YOLOv6 (Li et al., 2022), YOLOv7

(Wang et al., 2023b), YOLOv8n/s/m, YOLOv10n/s/m (Wang et al.,

2024), YOLOv11n/s/m, RT-DETRv2s (Lv et al., 2024), and RF-

DETR-B. The complete quantitative results are summarized in

Table 3. The visual detection results of CNATNet for cluster

classification are shown in Figure 9.

As shown in the table, CNATNet achieved the highest

classification accuracy (98.6%) while maintaining low latency (1.9

ms) and moderate model size (9.8 M parameters, 4.6 B FLOPs),

highlighting its superior balance between performance and
FIGURE 8

Architecture of the DWClassify module.
TABLE 2 Experimental environment configuration.

Component Configuration

GPU NVIDIA RTX 3070 Ti

Framework PyTorch 1.12

Optimizer Adam

Learning Rate 0.001

Batch Size 32

Epochs 300
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TABLE 3 Quantitative results of the cluster classification experiment.

Model FLOPs (B) Params (M) Accuracy (%) Latency (ms)

CNATNet 4.6 9.8 98.6 1.9

YOLOv5s 1.7 2.4 85.2 1.5

YOLOXs – – 91.4 1.5

DAMO-YOLO-1 – – 84.4 1.3

PP-YOLOE+s – – 85.6 1.5

YOLOv6-3.0n – – 85.4 1.2

YOLOv7l – – 93.5 4.2

YOLOv8n 0.5 2.7 85.0 1.1

YOLOv8s 1.7 6.4 88.0 1.5

YOLOv8m 5.3 17.0 91.3 3.3

YOLOv10n 0.5 1.6 89.4 1.2

YOLOv10s 1.7 5.8 91.6 1.6

YOLOv10m 5.1 11.7 93.5 2.9

YOLO11n 0.5 1.6 89.4 1.1

YOLOv11s 1.6 5.5 92.2 1.4

YOLO11m 5.1 10.4 93.9 2.1

RT-DETRv2s – 20.0 86.4 2.3

RF-DETR-B – 19.7 95.8 2.2
F
rontiers in Plant Science
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FIGURE 9

Cluster-level classification visualization with CNATNet.
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computational efficiency. In contrast, lightweight variants such as

YOLOv8n and YOLOv10n offered faster inference but at the expense

of accuracy, while larger-scale models such as YOLOv7l and

YOLOv11m provided competitive accuracy but with considerably

higher latency. Transformer-based approaches (RT-DETRv2s and RF-

DETR-B) demonstrated stronger representational capacity, with RF-

DETR-B achieving the second-highest accuracy (95.8%) but requiring

higher model complexity.

It should be noted that for several comparative models,

including YOLOX, DAMO-YOLO, PP-YOLOE, YOLOv6,

YOLOv7, RT-DETRv2, and RF-DETR, FLOPs and parameter

counts were not reported in their original publications or

repositories, and are thus marked as “–” in Table 3. Since

accuracy and latency are available for all methods, the

comparative evaluation remains fair and informative.

3.2.2 Monomer classification results
To further evaluate the models on fine-grained morphological

recognition, a filament-level classification task was formulated. In

this setting, each input image contained a single isolated safflower

filament, requiring the models to identify subtle visual cues such as

color, curvature, and integrity. A comprehensive comparison was

performed across CNATNet, YOLOv5s, YOLOX (Ge et al., 2021),

DAMO-YOLO (Xu et al., 2022b), PP-YOLOE (Xu et al., 2022a),

YOLOv6 (Li et al., 2022), YOLOv7 (Wang et al., 2023b), YOLOv8n/
Frontiers in Plant Science 12
s/m, YOLOv10n/s/m (Wang et al., 2024), YOLOv11n/s/m, RT-

DETRv2s (Lv et al., 2024), and RF-DETR-B, all trained and tested

under identical conditions. The complete quantitative results are

reported in Table 4. The visual detection results of CNATNet for

monomer classification are shown in Figure 10.

As shown in the table, CNATNet achieved the highest accuracy

(95.6%) with a low inference latency (1.9 ms) and moderate model

complexity (9.8 M parameters, 4.6 B FLOPs), confirming its ability

to balance efficiency and precision in fine-grained filament

recognition. In contrast, lightweight models such as YOLOv8n

and YOLOv10n delivered faster inference but suffered noticeable

accuracy drops, whereas larger models like YOLOv7l and

YOLOv10m achieved higher accuracy at the cost of increased

latency. Transformer-based architectures exhibited strong

representational power, with RF-DETR-B reaching the second-

highest accuracy (92.1%) but with substantially larger model size

and computational requirements.

It should be emphasized that for several comparative models,

including YOLOX, DAMO-YOLO, PP-YOLOE, YOLOv6,

YOLOv7, RTDETRv2, and RF-DETR, FLOPs and parameter

counts were not reported in their original papers or official

repositories. These values are therefore omitted (“–”) in Table 4.

Nevertheless, since both accuracy and latency are consistently

available, the comparative evaluation remains comprehensive

and fair.
TABLE 4 Quantitative results of the filament classification experiment.

Model FLOPs (B) Params (M) Accuracy (%) Latency (ms)

CNATNet 4.6 9.8 95.6 1.9

YOLOv5s 1.7 2.4 82.6 1.5

YOLOXs – – 88.7 1.5

DAMO-YOLO-1 – – 81.5 1.3

PP-YOLOE+s – – 82.9 1.5

YOLOv6-3.0n – – 83.0 1.2

YOLOv7l – – 91.0 4.2

YOLOv8n 0.5 2.7 82.3 1.1

YOLOv8s 1.7 6.4 85.4 1.5

YOLOv8m 5.3 17.0 88.6 3.3

YOLOv10n 0.5 1.6 86.5 1.2

YOLOv10s 1.7 5.8 89.2 1.6

YOLOv10m 5.1 11.7 91.0 2.9

YOLO11n 0.5 1.6 85.8 1.1

YOLOv11s 1.6 5.5 88.3 1.4

YOLO11m 5.1 10.4 86.4 2.1

RT-DETRv2s – 20.0 83.8 2.3

RF-DETR-B – 19.7 92.1 2.2
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3.3 Ablation study on structural
components

An ablation study was conducted to investigate the individual

and joint contributions of the C2S2, AnC2f, and DWClassify
Frontiers in Plant Science 13
modules to the overall performance of CNATNet, the results are

shown in Table 5. The baseline model (M1) was constructed by

removing all three proposed modules, employing a conventional

convolutional residual block as the backbone, a simplified C2f neck

without attention mechanisms, and a dense convolutional layer
FIGURE 10

Filament-level classification visualization with CNATNet.
TABLE 5 Ablation study on structural components of CNATNet.

Model C2S2 AnC2f DWClassify FLOPs (B) Params (M) Acc (%) Latency (ms)

M1 (Baseline) – – – 1.7 6.4 86.2 1.4

M2 (+C2S2) ✓ – – 1.4 6.1 86.5 1.1

M3 (+AnC2f) – ✓ – 5.1 10.5 95.4 2.3

M4 (+DWClassify) – – ✓ 1.5 6.0 86.1 1.0

M6 (+C2S2+AnC2f) ✓ ✓ – 4.9 10.1 95.5 2.5

M7 (+C2S2+DWClassify) ✓ – ✓ 1.2 5.8 86.1 0.8

M8 (+AnC2f+DWClassify) – ✓ ✓ 5.0 10.1 95.1 2.4

M9 (CNATNet) ✓ ✓ ✓ 4.6 9.8 95.6 1.9
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stack as the classification head. This configuration resulted in 6.4M

parameters, 1.7B FLOPs, and 1.4,ms latency, achieving a

classification accuracy of 86.2%.

Model M2 introduced the lightweight C2S2 backbone, which

reduced FLOPs from 1.7B to 1.4B and parameters from 6.4M to

6.1M, with latency reduced to 1.1,ms. Accuracy slightly increased to

86.5%, showing improved efficiency but limited gains in

representational power.

Model M3 integrated the AnC2f attention-enhanced fusion

module. This markedly improved accuracy to 95.4%, demonstrating

its effectiveness in capturing multiscale structural information.

However, the added attention increased parameters to 10.5M,

FLOPs to 5.1B, and latency to 2.3,ms.

Model M4 replaced the dense classifier with the proposed

DWClassify head. This lightweight adjustment reduced parameters

to 6.0M and FLOPs to 1.5B, achieving the lowest latency of 1.0,ms.

Accuracy was comparable to the baseline (86.1%), highlighting

DWClassify’s role in efficiency rather than accuracy enhancement.

When combining modules, Model M6 (C2S2+AnC2f) achieved

95.5% accuracy with 10.1M parameters and 4.9B FLOPs, showing

that C2S2 complements AnC2f by reducing part of its

computational burden. Model M7 (C2S2+DWClassify) provided

the most efficient setting, with only 5.8M parameters, 1.2B FLOPs,

and 0.8,ms latency, though accuracy remained at 86.1%. Model M8

(AnC2f+DWClassify) yielded 95.1% accuracy with 10.1M

parameters, 5.0B FLOPs, and 2.4,ms latency, achieving a balance

between accuracy and efficiency compared to using AnC2f alone.

Finally, the complete CNATNet (M9), which integrates all three

modules, demonstrated the best trade-off between accuracy and

efficiency. It achieved 95.6% accuracy with 9.8M parameters, 4.6B

FLOPs, and 1.9,ms latency. Compared with M3 (highest accuracy

but heavy) and M7 (highest efficiency but low accuracy), CNATNet
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effectively balances both aspects, confirming the synergistic

contribution of C2S2, AnC2f, and DWClassify.

Overall, the ablation results confirm that each proposed module

contributes uniquely: C2S2 improves backbone efficiency, AnC2f

significantly enhances feature fusion and accuracy, and DWClassify

ensures lightweight classification. Their joint integration enables

CNATNet to achieve superior performance while maintaining low

computational overhead, meeting the requirements of automated

safflower filament classification tasks.
3.4 Embedded deployment and system
implementation on Jetson Orin Nano

With the increasing computational capabilities of modern

embedded AI hardware, edge devices have become viable

platforms for deploying deep learning models in real-world

agricultural applications. To evaluate the practicality of the

proposed model in resource-constrained scenarios, we deployed

our lightweight classification network, CNATNet, on the Jetson

Orin Nano platform. This deployment demonstrates the model’s

suitability for real-time, on-device safflower filament grading

without reliance on high-end GPU servers. The Jetson Orin

Nano, based on the ARM architecture and optimized for AI

inference tasks, provides a compelling balance between energy

efficiency and computational performance. A visual overview of

the deployed system is presented in Figure 11, while detailed

hardware specifications are summarized in Table 6.

3.4.1 Model deployment
To support intelligent plant recognition in embedded

agricultural scenarios, this study adopts a coarse-to-fine
FIGURE 11

Jetson Orin Nano physical image.
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classification framework. Specifically, a cluster-level (coarse)

classification is first performed to quickly filter and group

safflower samples, followed by a fine-grained filament-level

recognition to achieve precise grading. The proposed CNATNet

model, which integrates lightweight convolutional and attention
Frontiers in Plant Science 15
mechanisms, was initially trained and optimized on a high-

performance local workstation. The final optimized version was

then deployed to the Jetson Orin Nano platform for real-time on-

device inference. This deployment not only verifies the model’s

efficiency and robustness under low-power constraints, but also

highlights the advantage of its lightweight design, which enables

stable inference on embedded hardware at 63.29 FPS with only 15

W power consumption. These results demonstrate the potential of

CNATNet in enabling intelligent, embedded plant classification for

modern agricultural systems.

3.4.2 Test results and analysis
In order to evaluate the real-time performance of the

CNATNet-based safflower classification system on the Jetson

Orin Nano platform, a live camera-based testing method is

employed, enabling real-time recognition of safflower clusters and

filaments under practical deployment conditions. The overall

process is illustrated in Figure 12, where the camera captures

input images, which are then processed by the deployed model

for on-device inference. The classification results are displayed in

real time, demonstrating the effectiveness of the system in practical

scenarios. Specifically, subfigure (A) presents the actual on-device

deployment setup, including the Jetson Orin Nano, camera, and

display screen, while subfigure (B) shows the corresponding real-

time prediction results with the classified safflower grade,

confirming that the lightweight CNATNet model achieves both

accuracy and efficiency in embedded agricultural environments.
4 Conclusion

In this study, a lightweight hybrid network, CNATNet, was

proposed for safflower filament classification. The architecture

integrates multi-branch convolutional feature extraction,

attention-enhanced fusion, and a lightweight classification head,

achieving a balance between accuracy and computational efficiency.

Experimental evaluations showed that CNATNet achieved

95.6% classification accuracy, with markedly reduced parameters,

floatingpoint operations, and inference latency. These results

confirm that the proposed lightweight design meets the practical

requirements of real-time deployment in resource-constrained

agricultural environments. Furthermore, deployment on the

Jetson Orin Nano platform demonstrated stable real-time

performance at low power, validating its suitability for embedded

agricultural grading tasks. The lightweight design principles

adopted in CNATNet provide a feasible solution for fine-grained

quality assessment, with potential applications extending beyond

safflower classification to other agricultural and industrial scenarios.

Nevertheless, challenges remain under complex environmental

conditions such as variable illumination, occlusion, and background

interference, which may affect robustness. Future work will focus on

improving generalization through adaptive illumination
TABLE 6 Key specifications of Jetson Orin Nano (8GB).

Name Jetson Orin Nano (8GB)

CPU 6-core ARM Cortex-A78AE @ 1.7GHz

GPU 32-core NVIDIA Ampere, 67 TOPS AI compute

Memory 8GB LPDDR5, 102.4GB/s

Storage 128GB external NVMe SSD

Network 1 × Gigabit Ethernet

USB 4 × USB 3.2 Gen2
FIGURE 12

Visual demonstration of real-time safflower classification using
CNATNet deployed on Jetson Orin Nano. (A) On-device inference
setup. (B) Prediction result: PREMIUM grade.
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normalization, domain-specific data augmentation, and lightweight

multimodal fusion strategies.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author.
Author contributions

PM: Writing – original draft, Writing – review & editing,

Conceptualization, Investigation, Methodology. NL: Data curation,

Methodology, Software, Writing – original draft, Writing – review &

editing. LD: Data curation, Validation, Writing – review & editing.

YL: Data curation, Visualization, Writing – review & editing. ZS:

Data curation, Resources, Writing – review & editing. YZ: Formal

analysis, Visualization, Writing – review & editing. ZC: Resources,

Writing – review & editing. JZ: Funding acquisition, Project

administration, Supervision, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. This work was funded by

the New Generation Artificial Intelligence Major Project of National

Key RD Program of China (Grant number: 2022ZD0115803).
Frontiers in Plant Science 16
Acknowledgments

The authors thank all those who helped in the course of

this research.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
Cao, H., Qu, Z., Chen, G., Li, X., Thiele, L., and Knoll, A. C. (2024). Ghostvit:
Expediting vision transformers via cheap operations. IEEE Trans. Artif. Intell. 5, 2517–
2525. doi: 10.1109/TAI.2023.3326795

Chen, B., Ding, F., Ma, B., Wang, L., and Ning, S. (2024a). A method for real-time
recognition of safflower filaments in unstructured environments using the yolo-safi
model. Sensors (Basel Switzerland) 24, 4410. doi: 10.3390/s24134410

Chen, W., Yang, G., Zhang, B., Li, J., Wang, Y., and Shi, H. (2024b). Lightweight and
fast visual detection method for 3c assembly. Displays 82, 102631. doi: 10.1016/
j.displa.2023.102631

Ding, L., Tang, H., and Bruzzone, L. (2021). Lanet: Local attention embedding to
improve the semantic segmentation of remote sensing images. IEEE Trans. Geosci.
Remote Sens. 59, 426–435. doi: 10.1109/TGRS.2020.2994150

Dwika Hefni Al-Fahsi, R., Naghim Fauzaini Prawirosoenoto, A., Adi Nugroho, H.,
and Ardiyanto, I. (2024). Givted-net: Ghostnet-mobile involution vit encoder-decoder
network for lightweight medical image segmentation. IEEE Access 12, 81281–81292.
doi: 10.1109/ACCESS.2024.3411870

Gao, H., Yang, Y., Li, C., Gao, L., and Zhang, B. (2021). Multiscale residual network
with mixed depthwise convolution for hyperspectral image classification. IEEE Trans.
Geosci. Remote Sens. 59, 3396–3408. doi: 10.1109/TGRS.2020.3008286

Ge, Z., Liu, S., Wang, F., Li, Z., and Sun, J. (2021). Yolox: Exceeding yolo series in
2021. arXiv preprint arXiv:2107.08430. doi: 10.48550/arXiv.2107.08430

Howard, A. G., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., et al. (2019).
“Searching for mobilenetv3,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), Seoul, Korea (South). Piscataway, NJ, USA: IEEE 1314–1324.
Huang, Y., andWang, F. (2025). D-tldetector: Advancing traffic light detection with a
lightweight deep learning model. IEEE Trans. Intelligent Transportation Syst. 26, 3917–
3933. doi: 10.1109/TITS.2024.3522195
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