& frontiers | Frontiers in

@ Check for updates

OPEN ACCESS

EDITED BY
Zhenghong Yu,

Guangdong Polytechnic of Science and
Technology, China

REVIEWED BY

Jing Yao,

Chinese Academy of Sciences (CAS), China
Tianyu Liu,

Hunan Agricultural University, China

*CORRESPONDENCE
Jie Zhou
jiezhou@shzu.edu.cn

"These authors have contributed equally to
this work

RECEIVED 01 June 2025
ACCEPTED 27 August 2025
PUBLISHED 30 September 2025

CITATION

Ma P, Lian N, Dong L, Luo Y, Sun Z,
Zhu'Y, Chen Z and Zhou J (2025)
CNATNet: a convolution-attention hybrid
network for safflower classification.
Front. Plant Sci. 16:1639269.

doi: 10.3389/fpls.2025.1639269

COPYRIGHT

© 2025 Ma, Lian, Dong, Luo, Sun, Zhu, Chen
and Zhou. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Plant Science

TvPE Original Research
PUBLISHED 30 September 2025
D01 10.3389/fpls.2025.1639269

CNATNet: a convolution-
attention hybrid network
for safflower classification

Pengwei Ma', Nan Lian', Leilei Dong, Yunchen Luo, Zheng Sun,
Yuanjiao Zhu, Zefang Chen and Jie Zhou*

College of Information Science and Technology, Shihezi University, Shihezi, China

Safflower (Carthamus tinctorius L.) is an important medicinal and economic crop,
where efficient and accurate filament grading is essential for quality control in
agricultural and pharmaceutical applications. However, current methods rely on
manual inspection, which is time-consuming and difficult to scale. A coarse-to-
fine grading framework is established, consisting of cluster-level classification for
rapid assessment and filament-level fine-grained classification. To implement
this framework, a lightweight hybrid network, CNATNet, is designed by
integrating convolutional operations and attention mechanisms. The classical
C2f feature extraction module is optimized into two components: C2S2, a
lightweight convolutional variant with cascaded split connections, and AnC2f,
an n-order local attention mechanism. A depthwise separable convolution-
based head (DWClassify) is further employed to accelerate inference while
maintaining accuracy. Experiments on a high-resolution safflower filament
dataset indicate that CNATNet achieves 98.6% accuracy at the cluster level and
95.6% at the filament level, with an average latency of 1.9 ms per image.
Compared with representative baselines such as YOLOv1lm and RT-DETRvZs,
CNATNet consistently yields higher accuracy with reduced latency. Moreover,
deployment on the Jetson Orin Nano demonstrates real-time performance at 63
FPS under 15 W, confirming its feasibility for embedded agricultural grading in
resource-constrained environments. These results suggest that CNATNet
provides a task-specific lightweight solution balancing accuracy and efficiency,
with strong potential for practical safflower quality classification.

KEYWORDS
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1 Introduction

Efficient classification of safflower filaments is a key challenge in modern agricultural
quality control, given their significant economic and medicinal value. Safflower (Carthamus
tinctorius L.) is widely recognized for its pharmacological effects, including promoting
blood circulation, anti-inflammation, and antioxidation (Pu et al., 2019). Benefiting from
favorable climatic conditions, Xinjiang Province accounts for more than 75% of China’s
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safflower production, producing filaments with high active
compound content, bright color, and intact structure (Lin et al,
2020). In practical production scenarios, filament color, texture, and
integrity are critical indicators for assessing safflower quality.
However, large-scale filament grading still relies on manual visual
inspection, which suffers from high labor intensity, subjectivity, and
limited scalability, failing to meet the demands of standardized and
efficient production.

To address these limitations, researchers have explored various
analytical techniques for safflower-specific applications. For
instance, hyperspectral imaging combined with machine learning
models has been successfully applied to monitor drought stress in
safflower, enabling precise classification of plant health states (Salek
et al., 2024). Similarly, computer-aided decision-making systems
based on spectral reflectance data have been developed to optimize
irrigation strategies and assess safflower quality, demonstrating the
feasibility of intelligent agricultural management (Karadag, 2022).
In terms of product safety and quality control, machine learning-
assisted surface-enhanced Raman spectroscopy (SERS) sensors have
been employed for rapid detection of illegal dye additives in
safflower products, facilitating highly sensitive and on-site
hazardous substance analysis (Lin et al., 2024). Furthermore, a
practical “indistinct” evaluation method, integrating bioactivity
assays with visual character analysis, has been proposed to
establish efficient and low-cost quality grading standards for
safflower (Zhou et al., 2023). While these safflower-related studies
have achieved notable progress, complementary research on saffron
(Crocus sativus L.) provides valuable technical references. Methods
such as E-nose combined with gas chromatography-mass
spectrometry (GC-MS) (Sun et al, 2022) and UHPLC-HRMS/
MS-based metabolomics (Ryparova Kvirencova et al., 2023) have
shown effectiveness in detecting adulteration and ensuring product
authenticity. However, these approaches often rely on sophisticated
instrumentation and complex workflows, which limit their
applicability for real-time, large-scale safflower classification tasks.

In recent years, vision-based deep learning has shown strong
potential in automated plant phenotype analysis and quality
evaluation. Deep neural networks have been successfully applied to
tasks such as safflower germplasm classification, demonstrating high
accuracy under field conditions (Van et al, 2025). For fine-grained
tasks like filament-level analysis, CNN models designed for
unstructured environments have also shown promising results
(Chen et al, 2024a). However, the visual complexity of safflower
filaments—including subtle textures, shape variability, and frequent
overlaps—poses challenges for real-time and precise classification.
These factors often lead to a trade-off between accuracy and inference
speed, limiting the practical deployment of current models in large-
scale agricultural systems. To improve feature extraction and reduce
model complexity, several studies have proposed lightweight
modifications to core network modules. For example, Wang and
Liu (2024) introduced a GhostConv-based variant of the C2f module,
which significantly reduced parameter counts while maintaining
detection accuracy. In another study, Wang et al. (2025) proposed a
pyramid-style C2f structure to enhance multi-scale feature learning
and improve computational efficiency. Meanwhile, efforts have also
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focused on integrating attention mechanisms into feature fusion
designs. Miao et al. (2025) developed a dynamic convolution and
spatial attention architecture to better capture both local and global
semantics. In the field of crop quality grading, Zhao et al. (2024)
presented an attention-enhanced classification framework that
substantially improved prediction accuracy in complex agricultural
scenarios. In addition, lightweight detection heads have been proposed
to reduce computation costs during inference, particularly for use in
embedded or resource-constrained agricultural environments (Qing
et al, 2024; Wang et al,, 2025). Despite these advancements, existing
approaches remain focused on general object detection and often fail
to address the fine-grained structural characteristics of safflower
filaments. Attention modules tend to emphasize global context
while overlooking local morphological cues such as edge continuity
and curvature. Furthermore, decoupled classification heads may
introduce information loss, reducing model reliability in detail-
sensitive tasks. These limitations underscore the need for a model
that is both lightweight and capable of fine-structure modeling,
specifically tailored for real-time filament-level classification in
agricultural applications.

Beyond CNN- and attention-based lightweight designs, recent
alternative paradigms have emerged. For hyperspectral scenarios,
SpectralMamba (Yao et al, 2024) adopts a state-space-model
backbone that combines gated spatial-spectral interaction with
efficient sequential modeling to balance accuracy and efficiency.
Complementarily, SPECIAL (Pang et al., 2025) presents a CLIP-
based zero-shot pipeline that interpolates HSI into RGB bands to
obtain pseudo-labels and then refines them via noisy-label learning.
While our study targets RGB-based safflower filament grading
under a supervised setting, these principles—efficient state-space
feature interaction and label-efficient supervision—outline
promising directions for future lightweight classification systems
in spectral or multi-modal agricultural applications.

To address these challenges, this study proposes CNATNet, a
lightweight convolution-attention hybrid model designed for
efficient and accurate safflower filament classification. CNATNet
integrates multi-branch feature extraction, attention-enhanced
feature fusion, and lightweight prediction modules to ensure high
classification accuracy while meeting practical requirements for low
latency and limited computational resources. Specifically,
CNATNet is tailored to the morphological characteristics of
safflower filaments, adopting a coarse-to-fine recognition strategy
that progressively refines feature representations from cluster-level
patterns to filament-level details. The model architecture builds
upon established lightweight designs, including MobileNetV2
(Sandler et al., 2018), MobileNetV3 (Howard et al., 2019), and
GhostViT (Cao et al., 2024), achieving an effective balance between
recognition performance and computational efficiency. On this
basis, CNATNet introduces the following key contributions:

1. C2S2 convolution module: To enhance feature extraction
efficiency, a novel C252 module is designed by partitioning
feature channels into multiple lightweight parallel
branches, enabling efficient convolution operations. The
cascaded connection structure further strengthens the
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module’s capacity to capture filament directionality,
preserve curvature continuity, and maintain edge
integrity. This lightweight design allows the network to
effectively represent fine-grained morphological features
critical for accurate filament classification under complex
visual conditions.

. AnC2f attention module: To better cope with the fine-
grained texture and overlapping structures of safflower, an
attention mechanism is incorporated. AnC2f enhances the
model’s sensitivity to key spatial regions and multi-scale
cues by gradually stacking lightweight attention modules in
the residual fusion path. This design improves the
network’s ability to capture subtle structural changes,
enabling more accurate distinction between high-quality
and ordinary-grade filaments.

. DWClassify lightweight classification head: By decoupling
spatial and channel features through depthwise separable
convolution, DWClassify substantially reduces
computational complexity without sacrificing prediction
accuracy. This ensures that the model can achieve real-
time inference not only on high-performance GPUs but
also on resource-constrained embedded platforms,
reinforcing its lightweight nature.

. Deployment on Jetson Orin Nano: The optimized
CNATNet model was deployed on the Jetson Orin Nano,
a high-performance yet power-efficient embedded
platform. Real-time inference was achieved for safflower
filament and cluster classification at 63 FPS under 15 W,
maintaining high accuracy under constrained
computational budgets. These results confirm that
CNATNet is not only accurate but also lightweight and
deployment-ready, providing a practical and scalable
solution for intelligent plant quality assessment in
modern agriculture.

10.3389/fpls.2025.1639269

2 Materials and methods

2.1 Data collection

Xinjiang is the largest safflower-producing region in China, with
its favorable climate and soil conditions contributing to filaments
that are superior in color, texture, and bioactive compound content
compared to those from other regions. The experimental sites for
this study were located in the main safflower production areas of
Changji Hui Autonomous Prefecture, including Changji City,
Manas County, and Hutubi County. The collected samples from
these areas were characterized by vivid coloration, fine and intact
filament structure, and high medicinal and economic value.

Traditionally, safflower classification relies on quantifying active
constituents such as safflower yellow pigment. However, these
methods are time-consuming and involve complex chemical
operations, making them unsuitable for real-time classification or
automated sorting systems. To meet the demands of automation,
this study adopts a visual classification standard based on the
appearance of safflower filaments. By combining field observations
and expert feedback from local growers, the filaments were
categorized into two major quality classes: premium-grade
filaments suitable for medicinal applications, and regular-grade
filaments intended for auxiliary uses. Premium-grade filaments are
defined by their bright color, compact structure, and high fiber
integrity, making them ideal for clinical or health-related purposes.
In contrast, regular-grade filaments exhibit dimmer coloration,
inconsistent thickness, and lower fiber quality, and are better
suited for daily health care, soaking, or pigment extraction. This
classification standard is practical for both manual annotation and
automated model training and effectively captures intrinsic quality
differences. Figure 1 presents representative examples of premium-
grade and regular-grade single safflower filaments, illustrating their
visual distinctions in color, texture, and structural integrity.

FIGURE 1

Visual comparison of safflower filaments across different quality grades. (A) High-quality Carthamus tinctorius (L.) filament. (B) Common-quality

Carthamus tinctorius (L.) filament.

Frontiers in Plant Science

frontiersin.org


https://doi.org/10.3389/fpls.2025.1639269
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Ma et al.

From June to August 2024, safflower filament images were
acquired across multiple plantation sites in Changji Prefecture
using a mobile imaging setup equipped with an iPhone 14 Pro
Max. All samples were selected from post-harvest and naturally air-
dried filaments to ensure consistency with real-world processing
conditions. To enhance dataset diversity and improve the
robustness of model generalization, images were acquired under
diverse environmental conditions. Specifically, the dataset was
constructed by capturing images across various camera angles,
illumination levels, and background complexities. The acquisition
scenarios included:

(i) outdoor environments under natural daylight; (ii) indoor
settings with diffuse artificial lighting; (iii) backgrounds exhibiting
different levels of clutter and occlusion.

A total of 5,800 images were acquired at a resolution of
3840x2160 pixels and saved in PNG format to ensure lossless
preservation. The dataset comprises both scattered single
filaments and densely stacked floral clusters. Image acquisition
was performed at various distances, ranging from close-up views
(<0.15 m) to medium-to-long ranges (>0.15 m), thereby enhancing
the robustness and generalization capability of the proposed
classification model.

2.2 Dataset creation and annotation

To ensure annotation accuracy prior to model training, all
original safflower filament images were labeled using the Roboflow
platform. Each image was annotated with a single instance
representing either a premium-grade or regular-grade filament. The
two categories were respectively labeled as “CT Premium” and “CT
Normal”. Each image contains only one target object, either an
isolated filament or a dense filament cluster, assigned with the
appropriate class label. Considering the influence of environmental
variation—such as fluctuating lighting and complex backgrounds—
this study adopts a binary classification strategy based on single-
instance images. The model directly learns quality classification from
global visual features of individual filaments. This strategy enables the
model to focus on overall filament appearance, thereby improving
classification accuracy and robustness under challenging real-world
conditions. To visually illustrate the environmental variations
considered in the proposed classification strategy, representative
filament samples captured under different lighting conditions are
shown in Figure 2. For each quality grade, the left panel presents
filaments photographed under natural daylight, while the right panel
corresponds to images captured with diffuse artificial lighting.
Additionally, the lower row displays individual filaments extracted
from the bulk samples, serving as single-instance inputs
for classification.

The safflower filament dataset used in this study was constructed
through systematic image acquisition under diverse environmental
conditions. To ensure a comprehensive representation of real-world
scenarios, images were captured across multiple variables, including
filament quantity (single or multiple filaments), shooting distance
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(close-up or distant view), illumination condition (natural or
supplementary lighting), camera angle, and background
complexity. Owing to natural variations in field cultivation and
post-harvest processing, the collected dataset exhibits differences in
filament quality, structure, and visual appearance. A total of 5,800
high-resolution images (3840x2160 pixels) were acquired, covering
both premium-grade and common-grade safflower filaments. The
detailed class distribution is summarized in Table 1.

To support downstream model training and evaluation, the full
dataset was randomly partitioned into training, validation, and
testing subsets at a ratio of 7:2:1. The class distribution was
maintained consistently across all subsets to ensure balanced data
quality and enable fair performance comparisons. The collected
images cover diverse acquisition conditions, including variations in
shooting angles, shot distances, and environmental complexities, to
enhance model robustness and generalization, as illustrated in
Figure 3. To mitigate overfitting and reduce sensitivity to class
distribution bias, multiple data augmentation techniques were
applied during training. Specifically, random rotation, horizontal
flipping, brightness adjustment, and affine transformations were
employed to simulate variations in angle, lighting, and background
complexity. These augmentations not only enrich the diversity of
training samples but also enhance the model’s generalization
capability under challenging conditions. Representative examples
of these augmentation strategies are illustrated in Figure 4.

2.3 Model architecture

2.3.1 CNATNet framework overview

CNATNet is a hybrid network that integrates convolutional
neural networks with attention mechanisms. It consists of two main
components: a backbone for multi-scale feature extraction and
fusion, and a classification head for safflower filament quality
prediction. As illustrated in Figure 5, the architecture integrates
both convolutional and attention-based modules across feature
extraction and classification stages. Specifically, the backbone
incorporates convolution-centric C2S2 modules and attention-
enhanced AnC2f modules, forming a synergistic structure that
leverages the strengths of both paradigms. The C2S2 module
focuses on efficient representation learning with reduced
computational cost (Chen et al., 2024b; Liu et al., 2024), while the
AnC2f module enhances spatial attention and multi-scale
perception through stacked attention blocks (Li et al., 2021; Lv
et al,, 2022). For final prediction, CNATNet employs a lightweight
DWClassify head based on depthwise separable convolutions to
minimize parameter count and optimize inference speed (Dwika
Hefni Al-Fahsi et al., 2024; Gao et al., 2021).

2.3.2 C2S2: cascaded split-and-concatenate
structure

C2S2 is a lightweight convolutional feature extractor designed
for early-stage processing within CNATNet. It starts with a
standard convolution to extract base-level features, followed by a
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4 Extracted filaments.

1 Extracted filaments.

FIGURE 2

Visual comparison of safflower filaments under different quality grades and lighting conditions. (A) High-quality sample. (B) Common-quality sample.

channel-wise split into two parallel branches. Each branch processes
features through stacked GhostBottleneck or Bottleneck layers to
enhance representational capacity while reducing parameter
overhead (Huang and Wang, 2025; Yu and Zhou, 2023). The
internal architecture of C2S2 is illustrated in Figure 6, which
details the feature flow, dual-branch operations, and lightweight
convolutional structure.

After local refinement in each branch, a bottleneck layer
compresses channel dimensions to extract key features, which are
then concatenated across branches to form the unified output.
Mathematically, the feature fusion process of C2S2 can be
expressed as (Equation 1):

Fasy = Concat(f; (X)), /2(X3)) o

Frontiers in Plant Science

where X; and X, represent the channel-wise partitions of the
input feature map X, which are independently processed by the
branch-specific transformation functions f(-) and f,(-), respectively.
The outputs of these branches are concatenated along the channel
dimension by the Concat(-) operation, resulting in the unified
feature representation Feygo.

The parameter complexity of C2S2 is quantified in Equation 2:

2
PCZSZ = E(Csplit X K x K x Csplit) + Cmerge X Cout (2)

i=1

where Cg,j;; denotes the number of channels assigned to each
branch after splitting, K represents the convolution kernel size,
Cinerge refers to the number of channels in the fusion (bottleneck)
layer, and C,,, is the output channel number of the C2S2 module.
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TABLE 1 Class distribution of the safflower dataset under various acquisition conditions.

Scenario Category Premium Normal Total
Single filaments 1650 1350 3000
Filament quantity
Multiple filaments 1450 1350 2800
Close-up view 1750 1550 3300
Shooting distance
Distant view 1350 1150 2500
Natural lighting 1900 1600 3500
Lighting condition
Supplementary lighting 1200 1100 2300
Frontal view 1600 1400 3000
Camera angle
Multi-angle view 1500 1300 2800
Clean background 1800 1500 3300
Background complexity Cluttered background 900 800 1700
Occluded background 800 700 1500

The first summation term calculates the cumulative parameter
count of the dual-branch convolutions, each operating within its
respective channel partition, while the final term accounts for the
parameters introduced by the merging operation that recombines
the branch-specific features.

Different Angles

Different Distances

Different Enviroments

FIGURE 3

Visual examples of safflower captured under different acquisition conditions.
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By leveraging its parallel structure, C2S2 achieves a balanced
trade-off among computational efficiency, feature diversity, and
structural consistency, making it particularly well-suited for
processing safflower filament images with directional textures and
densely packed patterns (Lau et al, 2024; Zhu et al., 2024). This
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Horizontal flipping

FIGURE 4

10.3389/fpls.2025.1639269

Random rotation

Brightness adjustment

Representative examples of augmented safflower filament images. (A) Original image, (B) random rotation, (C) Horizontal flipping, (D) Brightness

adjustment.

design ensures robust feature extraction while maintaining low
computational overhead, which is critical for practical deployment

in resource-constrained environments.

2.3.3 AnC2f: attention-enhanced cross-stage
fusion

AnC2f is an attention-driven fusion module inspired by the C2f
architecture from YOLOv8 and the original CSPNet structure
(Varghese and M, 2024; Wang et al., 2019). It enhances cross-
stage learning by injecting multiple stacked Attention Blocks
(ABlocks) into the fusion process. The structural details of the
AnC2f module are depicted in Figure 7. As shown, AnC2f retains
the dual-path feature flow of C2f, where the input features are split
into two branches: a shortcut branch for direct feature propagation,
and a main branch for progressive feature refinement.

In the main processing branch, stacked Attention Blocks
(ABlocks) are applied to modulate the input features through
spatially adaptive weighting. This modulation process is
formulated as (Equation 3):

Frontiers in Plant Science

Fancar = 0(Conv(F;,)) © Fy, (3)

where F;, denotes the input feature map, Conv(-) represents a
1 x 1 convolutional layer that generates attention weights, o(-) is the
Sigmoid activation function ensuring the attention weights are
bounded between 0 and 1, and ® denotes element-wise
multiplication, enabling spatial modulation of F;,,.

To preserve the original information flow, AnC2f incorporates a
shortcut branch that directly propagates the input features without
attention modulation. The outputs of the main and shortcut
branches are then fused through element-wise addition, as
defined in (Equation 4):

FAnCZfOut = Fonorteur + FAnCZf (4)

where Foncue refers to the identity feature path, facilitating
information retention and gradient propagation, while Fj,caf
represents the attention-refined features from the main branch. This
residual fusion mechanism ensures that the enhanced attention
features are complemented by the original unaltered information,
leading to richer and more robust representations.
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FIGURE 5

CNATNet structure diagram.

By seamlessly integrating attention-driven enhancement with
lightweight computational design, AnC2f effectively improves
multiscale feature learning, contributing to the overall
performance of CNATNet while maintaining high efficiency.

AnC2f divides input features into parallel paths, applying
convolutional and attention operations independently before
recombining them via residual connections. Attention blocks are
stacked in parallel to progressively improve the model’s sensitivity
to important spatial regions and morphological patterns (Ding
et al, 2021; Yin et al.,, 2024). This enables the network to more

effectively capture fine-grained structural details characteristic of
safflower filaments.

2.3.4 DWClassify: lightweight classification head
DWClassify functions as the final classification head in
CNATNet, aiming to deliver accurate predictions with minimal
computational overhead. To this end, DWClassify adopts a
depthwise separable convolutional structure, which effectively
decouples spatial and channel-wise feature extraction. This design
choice significantly reduces both the parameter count and

I
GBN GBN GBN
— Conv Split Split BN Concat Conv
BN
BN

FIGURE 6
Internal architecture of the C2S2 module.
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FIGURE 7

Structural comparison among CSPNet (A), C2f (B), and the proposed AnC2f (C)

computational complexity compared to conventional convolutional
layers (Dwika Hefni Al-Fahsi et al., 2024; Wang et al., 2023a).

The parameter complexity of DWClassify is quantified as
(Equation 5):

Ppyw =Cjy, x KX K+ C;, X C,yy (5)

where C;, and C,,, denote the input and output channel
dimensions, respectively, and K represents the kernel size of the
depthwise convolution. Specifically, the first term C;, x K x K
corresponds to the parameters of the depthwise convolution, which
performs spatial filtering independently on each input channel. The
second term C;, x C,,; accounts for the pointwise convolution
parameters, responsible for inter-channel feature aggregation via 1
x 1 convolutions.

In addition to parameter reduction, DWClassify exhibits high
computational efficiency. The floating-point operations (FLOPs)
required for inference are estimated by (Equation 6):

FLOPspyy = H x W x (C;,, x K X K+ C;,, X Cyy) (6)

where H and W denote the spatial dimensions of the input feature
map. The multiplication with H x W accounts for the per-pixel
computation cost across the entire feature map. Similar to the
parameter calculation, the first term reflects the spatial filtering cost
of the depthwise convolution, while the second term represents the
channel-wise aggregation cost incurred by the pointwise convolution.

The architectural details of DWClassify are illustrated in Figure 8. By
decoupling spatial and channel-wise operations, DW Classify achieves an
optimal balance between model compactness and predictive accuracy.
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This lightweight design not only enhances inference speed but also
ensures seamless deployment in resource-constrained environments
such as embedded devices and mobile platforms.

3 Results and analysis

3.1 Experimental setup and evaluation
metrics

3.1.1 Experimental environment and parameters

All experiments were conducted on a workstation equipped
with an NVIDIA RTX 3070 Ti GPU. The model was implemented
using the PyTorch 1.12 framework under a Windows environment.
For optimization, the Adam optimizer was employed with a
learning rate of 0.001. The training process utilized a batch size of
32 and was conducted for a total of 300 epochs. The specific
configuration details are summarized in Table 2.

3.1.2 Evaluation metrics

To comprehensively evaluate the performance of the proposed
CNATNet model, this study adopts four core metrics: floating point
operations (FLOPs), number of parameters (Params), accuracy
(ACC), and latency. These metrics jointly assess the
computational efficiency, model complexity, prediction precision,
and real-time inference capability of the network.

FLOPs measure the computational complexity required for a
single forward pass, indicating the model’s resource consumption.
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DWConv DWConv
A 4
Conv Conv

FIGURE 8
Architecture of the DWClassify module.

The total FLOPs are computed based on the number of operations
performed per spatial location and aggregated over all feature maps,
as formulated in Equation 7:

HOH:inM%MﬁXKXKXC& )
=1
where L denotes the total number of convolutional layers, H;
and W, represent the spatial dimensions of the I-th layer’s feature
map, Cgl) and CY, are the input and output channel numbers, and K
is the kernel size.
Params refer to the total count of learnable parameters within
the model, directly reflecting its memory footprint. The calculation
is expressed in Equation 8:

L
Params = ECSB x K x K x Ch +cl, (8)
I=1

where the first term accounts for convolutional weights and the
second term represents biases.

Accuracy (ACC) measures the ratio of correctly classified
samples to the total number of samples in the test set, providing
an intuitive evaluation of the model’s classification capability. The
formula is shown in Equation 9:

TP+ TN

ACC =
cC TP+ TN + FP + FN ©)

where TP, TN, FP, and FN denote true positives, true negatives,
false positives, and false negatives, respectively.

Latency quantifies the average time taken to process a single
input image during inference. This metric reflects the practical
deployment capability of the model, particularly in real-time
scenarios. The latency is defined in Equation 10:

TABLE 2 Experimental environment configuration.

Component Configuration

GPU NVIDIA RTX 3070 Ti
Framework PyTorch 1.12
Optimizer Adam
Learning Rate 0.001
Batch Size 32
Epochs 300
Frontiers in Plant Science 10
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Latency = (10)

samples
where Ty, represents the total inference time across all test
samples, and Nyg,,,pies is the number of test samples.

3.2 Experimental results and analysis

To comprehensively evaluate the proposed model’s effectiveness
in real-world safflower sorting scenarios, we divided the
classification task into two distinct levels: cluster classification and
monomer classification. The cluster-level task simulates
coarsegrained recognition of densely packed safflower clusters,
where the model must make a global judgment based on group-
level visual cues. This setup reflects typical conditions in automated
harvesting or packaging lines, where safflower bundles are
processed in bulk. In contrast, the monomer-level task focuses on
fine-grained classification of individual filaments, emphasizing
subtle morphological differences such as color, curvature, and
integrity. This setting aligns with higher-precision quality control
scenarios, such as pharmaceutical sorting or premium product
filtering. By evaluating both levels independently, we aim to
demonstrate the robustness and generalizability of CNATNet
across varied granularities of visual complexity.

3.2.1 Cluster classification results

To evaluate the effectiveness of different models in identifying
the overall quality of densely packed safflower clusters, we
formulated a cluster-level classification task. In this setting, the
input images consist of multiple overlapping filaments, simulating
the typical appearance of harvested safflower in agricultural
processing lines. A comprehensive comparison was conducted
across a wide set of models, including CNATNet, YOLOV5s,
YOLOX (Ge et al., 2021), DAMO-YOLO (Xu et al., 2022b), PP-
YOLOE (Xu et al, 2022a), YOLOv6 (Li et al., 2022), YOLOv7
(Wang et al., 2023b), YOLOv8n/s/m, YOLOv10n/s/m (Wang et al.,
2024), YOLOv11n/s/m, RT-DETRv2s (Lv et al., 2024), and RF-
DETR-B. The complete quantitative results are summarized in
Table 3. The visual detection results of CNATNet for cluster
classification are shown in Figure 9.

As shown in the table, CNATNet achieved the highest
classification accuracy (98.6%) while maintaining low latency (1.9
ms) and moderate model size (9.8 M parameters, 4.6 B FLOPs),
highlighting its superior balance between performance and
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TABLE 3 Quantitative results of the cluster classification experiment.

Model FLOPs (B) RETET I ()] Accuracy (%) Latency (ms)
CNATNet 4.6 9.8 98.6 1.9
YOLOV5s 1.7 24 85.2 1.5
YOLOXs - - 91.4 1.5
DAMO-YOLO-1 - - 84.4 13
PP-YOLOE+s - - 85.6 15
YOLOV6-3.0n - - 85.4 1.2
YOLOv71 - - 93.5 4.2
YOLOv8n 0.5 2.7 85.0 1.1
YOLOVS8s 1.7 6.4 88.0 1.5
YOLOv8m 53 17.0 91.3 33
YOLOv10n 0.5 1.6 89.4 1.2
YOLOV10s 1.7 5.8 91.6 1.6
YOLOv1Om 5.1 11.7 93.5 29
YOLOI11n 0.5 1.6 89.4 1.1
YOLOv11s 1.6 55 922 14
YOLO11lm 5.1 10.4 93.9 2.1
RT-DETRv2s - 20.0 86.4 23
RE-DETR-B - 19.7 95.8 2.2

FIGURE 9
Cluster-level classification visualization with CNATNet.
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computational efficiency. In contrast, lightweight variants such as
YOLOv8n and YOLOvV10n offered faster inference but at the expense
of accuracy, while larger-scale models such as YOLOv7l and
YOLOvl1lm provided competitive accuracy but with considerably
higher latency. Transformer-based approaches (RT-DETRv2s and RF-
DETR-B) demonstrated stronger representational capacity, with RF-
DETR-B achieving the second-highest accuracy (95.8%) but requiring
higher model complexity.

It should be noted that for several comparative models,
including YOLOX, DAMO-YOLO, PP-YOLOE, YOLOvS6,
YOLOv7, RT-DETRv2, and RF-DETR, FLOPs and parameter
counts were not reported in their original publications or

« »

repositories, and are thus marked as in Table 3. Since
accuracy and latency are available for all methods, the

comparative evaluation remains fair and informative.

3.2.2 Monomer classification results

To further evaluate the models on fine-grained morphological
recognition, a filament-level classification task was formulated. In
this setting, each input image contained a single isolated safflower
filament, requiring the models to identify subtle visual cues such as
color, curvature, and integrity. A comprehensive comparison was
performed across CNATNet, YOLOv5s, YOLOX (Ge et al., 2021),
DAMO-YOLO (Xu et al, 2022b), PP-YOLOE (Xu et al., 2022a),

10.3389/fpls.2025.1639269

s/m, YOLOv10n/s/m (Wang et al, 2024), YOLOvl1n/s/m, RT-
DETRv2s (Lv et al,, 2024), and RE-DETR-B, all trained and tested
under identical conditions. The complete quantitative results are
reported in Table 4. The visual detection results of CNATNet for
monomer classification are shown in Figure 10.

As shown in the table, CNATNet achieved the highest accuracy
(95.6%) with a low inference latency (1.9 ms) and moderate model
complexity (9.8 M parameters, 4.6 B FLOPs), confirming its ability
to balance efficiency and precision in fine-grained filament
recognition. In contrast, lightweight models such as YOLOv8n
and YOLOvV10n delivered faster inference but suffered noticeable
accuracy drops, whereas larger models like YOLOv7] and
YOLOv10m achieved higher accuracy at the cost of increased
latency. Transformer-based architectures exhibited strong
representational power, with RF-DETR-B reaching the second-
highest accuracy (92.1%) but with substantially larger model size
and computational requirements.

It should be emphasized that for several comparative models,
including YOLOX, DAMO-YOLO, PP-YOLOE, YOLOV6,
YOLOv7, RTDETRv2, and RF-DETR, FLOPs and parameter
counts were not reported in their original papers or official
repositories. These values are therefore omitted (“-”) in Table 4.
Nevertheless, since both accuracy and latency are consistently
available, the comparative evaluation remains comprehensive

YOLOV6 (Lietal,, 2022), YOLOv7 (Wang et al., 2023b), YOLOV8n/  and fair.
TABLE 4 Quantitative results of the filament classification experiment.
Model FLOPs (B) Params (M) Accuracy (%) Latency (ms)
CNATNet 4.6 9.8 95.6 1.9
YOLOV5s 1.7 24 82.6 1.5
YOLOXs - - 88.7 1.5
DAMO-YOLO-1 - - 81.5 13
PP-YOLOE+s - - 82.9 1.5
YOLOV6-3.0n - - 83.0 1.2
YOLOv71 - - 91.0 4.2
YOLOv8n 0.5 27 82.3 1.1
YOLOVS8s 1.7 6.4 85.4 1.5
YOLOv8m 53 17.0 88.6 33
YOLOv10n 0.5 1.6 86.5 1.2
YOLOvV10s 1.7 58 89.2 1.6
YOLOv10m 5.1 11.7 91.0 29
YOLOI11n 0.5 1.6 85.8 1.1
YOLOvl11s 1.6 55 88.3 14
YOLO11m 5.1 10.4 86.4 2.1
RT-DETRv2s - 20.0 83.8 23
RF-DETR-B - 19.7 92.1 2.2
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FIGURE 10
Filament-level classification visualization with CNATNet.

3.3 Ablation study on structural modules to the overall performance of CNATNet, the results are
components shown in Table 5. The baseline model (M1) was constructed by

removing all three proposed modules, employing a conventional
An ablation study was conducted to investigate the individual ~ convolutional residual block as the backbone, a simplified C2f neck
and joint contributions of the C2S2, AnC2f, and DWClassify ~ without attention mechanisms, and a dense convolutional layer

TABLE 5 Ablation study on structural components of CNATNet.

Model C2s2 AnC2f DWClassify FLOPs (B) Params (M) Acc (%) Latency (ms)
Ml (Baseline) - - - 17 6.4 86.2 1.4
M2 (+C282) v - - 14 6.1 86.5 11
M3 (+AnC2f) - v - 51 105 95.4 23
M4 (+DWClassify) - - v 15 6.0 86.1 1.0
M6 (+C2S2+AnC2f) v v - 49 10.1 95.5 25
M7 (+C2S2+DW_Classify) v - v 12 5.8 86.1 0.8
M8 (+AnC2f+DWClassify) - v v 5.0 10.1 95.1 24
M9 (CNATNet) v v v 4.6 9.8 95.6 1.9
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oNVIDIA Ampere™ Architecture GPU
#1024 x CUDA Core
32 x 3rd Gen Tensor Core
e6-Core Arm Cortex-A78 AE CPU
¢8GB 128-bit LPDDRS RAM
FIGURE 11

Jetson Orin Nano physical image.

stack as the classification head. This configuration resulted in 6.4M
parameters, 1.7B FLOPs, and 1.4,ms latency, achieving a
classification accuracy of 86.2%.

Model M2 introduced the lightweight C2S2 backbone, which
reduced FLOPs from 1.7B to 1.4B and parameters from 6.4M to
6.1M, with latency reduced to 1.1,ms. Accuracy slightly increased to
86.5%, showing improved efficiency but limited gains in
representational power.

Model M3 integrated the AnC2f attention-enhanced fusion
module. This markedly improved accuracy to 95.4%, demonstrating
its effectiveness in capturing multiscale structural information.
However, the added attention increased parameters to 10.5M,
FLOPs to 5.1B, and latency to 2.3,ms.

Model M4 replaced the dense classifier with the proposed
DWClassify head. This lightweight adjustment reduced parameters
to 6.0M and FLOPs to 1.5B, achieving the lowest latency of 1.0,ms.
Accuracy was comparable to the baseline (86.1%), highlighting
DWClassify’s role in efficiency rather than accuracy enhancement.

When combining modules, Model M6 (C2S2+AnC2f) achieved
95.5% accuracy with 10.1M parameters and 4.9B FLOPs, showing
that C2S2 complements AnC2f by reducing part of its
computational burden. Model M7 (C2S2+DW(Classify) provided
the most efficient setting, with only 5.8M parameters, 1.2B FLOPs,
and 0.8,ms latency, though accuracy remained at 86.1%. Model M8
(AnC2f+DWClassify) yielded 95.1% accuracy with 10.1M
parameters, 5.0B FLOPs, and 2.4,ms latency, achieving a balance
between accuracy and efficiency compared to using AnC2f alone.

Finally, the complete CNATNet (M9), which integrates all three
modules, demonstrated the best trade-off between accuracy and
efficiency. It achieved 95.6% accuracy with 9.8M parameters, 4.6B
FLOPs, and 1.9,ms latency. Compared with M3 (highest accuracy
but heavy) and M7 (highest efficiency but low accuracy), CNATNet
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effectively balances both aspects, confirming the synergistic
contribution of C2S2, AnC2f, and DW(Classify.

Overall, the ablation results confirm that each proposed module
contributes uniquely: C2S2 improves backbone efficiency, AnC2f
significantly enhances feature fusion and accuracy, and DWClassify
ensures lightweight classification. Their joint integration enables
CNATNet to achieve superior performance while maintaining low
computational overhead, meeting the requirements of automated
saftlower filament classification tasks.

3.4 Embedded deployment and system
implementation on Jetson Orin Nano

With the increasing computational capabilities of modern
embedded AI hardware, edge devices have become viable
platforms for deploying deep learning models in real-world
agricultural applications. To evaluate the practicality of the
proposed model in resource-constrained scenarios, we deployed
our lightweight classification network, CNATNet, on the Jetson
Orin Nano platform. This deployment demonstrates the model’s
suitability for real-time, on-device safflower filament grading
without reliance on high-end GPU servers. The Jetson Orin
Nano, based on the ARM architecture and optimized for Al
inference tasks, provides a compelling balance between energy
efficiency and computational performance. A visual overview of
the deployed system is presented in Figure 11, while detailed
hardware specifications are summarized in Table 6.

3.4.1 Model deployment

To support intelligent plant recognition in embedded
agricultural scenarios, this study adopts a coarse-to-fine
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TABLE 6 Key specifications of Jetson Orin Nano (8GB).

NETE Jetson Orin Nano (8GB)

CPU 6-core ARM Cortex-A78AE @ 1.7GHz
GPU 32-core NVIDIA Ampere, 67 TOPS Al compute
Memory 8GB LPDDR5, 102.4GB/s
Storage 128GB external NVMe SSD
Network 1 x Gigabit Ethernet
USB 4 x USB 3.2 Gen2

FIGURE 12

Visual demonstration of real-time safflower classification using
CNATNet deployed on Jetson Orin Nano. (A) On-device inference
setup. (B) Prediction result: PREMIUM grade.

classification framework. Specifically, a cluster-level (coarse)
classification is first performed to quickly filter and group
safflower samples, followed by a fine-grained filament-level
recognition to achieve precise grading. The proposed CNATNet
model, which integrates lightweight convolutional and attention
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mechanisms, was initially trained and optimized on a high-
performance local workstation. The final optimized version was
then deployed to the Jetson Orin Nano platform for real-time on-
device inference. This deployment not only verifies the model’s
efficiency and robustness under low-power constraints, but also
highlights the advantage of its lightweight design, which enables
stable inference on embedded hardware at 63.29 FPS with only 15
W power consumption. These results demonstrate the potential of
CNATNet in enabling intelligent, embedded plant classification for
modern agricultural systems.

3.4.2 Test results and analysis

In order to evaluate the real-time performance of the
CNATNet-based safflower classification system on the Jetson
Orin Nano platform, a live camera-based testing method is
employed, enabling real-time recognition of safflower clusters and
filaments under practical deployment conditions. The overall
process is illustrated in Figure 12, where the camera captures
input images, which are then processed by the deployed model
for on-device inference. The classification results are displayed in
real time, demonstrating the effectiveness of the system in practical
scenarios. Specifically, subfigure (A) presents the actual on-device
deployment setup, including the Jetson Orin Nano, camera, and
display screen, while subfigure (B) shows the corresponding real-
time prediction results with the classified safflower grade,
confirming that the lightweight CNATNet model achieves both
accuracy and efficiency in embedded agricultural environments.

4 Conclusion

In this study, a lightweight hybrid network, CNATNet, was
proposed for safflower filament classification. The architecture
integrates multi-branch convolutional feature extraction,
attention-enhanced fusion, and a lightweight classification head,
achieving a balance between accuracy and computational efficiency.

Experimental evaluations showed that CNATNet achieved
95.6% classification accuracy, with markedly reduced parameters,
floatingpoint operations, and inference latency. These results
confirm that the proposed lightweight design meets the practical
requirements of real-time deployment in resource-constrained
agricultural environments. Furthermore, deployment on the
Jetson Orin Nano platform demonstrated stable real-time
performance at low power, validating its suitability for embedded
agricultural grading tasks. The lightweight design principles
adopted in CNATNet provide a feasible solution for fine-grained
quality assessment, with potential applications extending beyond
safflower classification to other agricultural and industrial scenarios.

Nevertheless, challenges remain under complex environmental
conditions such as variable illumination, occlusion, and background
interference, which may affect robustness. Future work will focus on
improving generalization through adaptive illumination
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normalization, domain-specific data augmentation, and lightweight
multimodal fusion strategies.
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