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1College of Information and Technology, Jilin Agricultural University, Changchun, China, 2College of
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Introduction: As amajor global food crop, maize faces serious threats from pests

that significantly impact crop yield and quality. Accurate and efficient pest

detection is crucial for effective agricultural management. However, existing

detection methods demonstrate inadequate performance when addressing

challenges including diverse pest morphologies, inter-species similarities, and

complex field environments. This study introduces AMS-YOLO, an enhanced

detection model based on YOLOv8n, to address these critical challenges in

maize pest identification.

Methods: To improve pest detection performance, we developed three

synergistic modules specifically designed to address the identified challenges.

First, the SMCA attention mechanism enhances target recognition within

complex environmental settings. Second, an MSBlock multi-scale feature

fusion module improves adaptability to pests across different growth stages.

Third, an AMConv optimized downsampling strategy preserves subtle features

necessary for distinguishing similar pest species. These architectural

improvements were integrated into the YOLOv8n framework to create the

AMS-YOLO model.

Results: Experimental evaluation on a dataset comprising 13 common maize

pests covering comprehensive developmental stages demonstrates the

effectiveness of AMS-YOLO. The model achieved 90.0% precision, 89.8%

recall, 94.2% mAP50, and 73.7% mAP50:95, surpassing the original YOLOv8n

by 3.1%, 3.7%, 3.2%, and 4.0%, respectively. Comprehensive comparative

experiments showed superior performance over existing detection methods

including SSD, RT-DETR, and various YOLO variants. Deployment tests on

Jetson Nano revealed that the model size is only 5.3MB, representing a 15.9%

reduction compared to the original YOLOv8n, with 19.6% fewer parameters

and 16% reduced computational requirements while maintaining low

resource utilization.

Discussion: The proposed AMS-YOLO model successfully addresses key

challenges in maize pest detection through targeted architectural improvements.

The lightweight design enables extended field deployment while maintaining high

detection accuracy, making it highly suitable for resource-constrained agricultural
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environments. This advancement demonstrates significant potential for supporting

more targeted pest management decisions, contributing to precision pesticide

application and resource optimization in field conditions, thereby advancing

intelligent and sustainable plant protection.
KEYWORDS

maize pests, multi-scale feature fusion, attention mechanism, object detection,
intelligent plant protection
1 Introduction

Maize (Zea mays L.; corn) is a globally important food crop,

animal feed, and industrial raw material (Nuss and Tanumihardjo,

2010; Erenstein et al., 2022), playing a critical role in ensuring food

security and supporting industrial production. Maize suffers

significant yield losses of up to 22.5% due to pests (Savary et al.,

2019). These pests not only disrupt material transport during crop

growth, but also act as vectors for viruses, ultimately leading to

nutrient depletion, reduced quality, and lower yields (Ayres and

Lombardero, 2018; Eigenbrode et al., 2018).

Traditional pest management relies primarily on chemical

pesticides. The widespread application of chemical pesticides causes

environmental pollution and reduced biodiversity (Sánchez-Bayo and

Wyckhuys, 2019), and exacerbates pest resistance problems (Bass

et al., 2015), with negative impacts on environmental and food safety

becoming increasingly evident. Sustainable crop protection aims to

effectively control pests while minimizing negative environmental

impacts, protecting biodiversity, and supporting the long-term

productivity and resilience of agricultural systems. This necessitates

establishing enhanced, effective, and eco-friendly pest recognition

systems to support decision-making for precision application and

ecological pest management.

Pest identification technology has evolved from manual visual

inspection or trap counting (Preti et al., 2021; Katranas et al., 2024),

through traditional image processing techniques, to machine learning

and deep learning approaches. Early studies mainly relied on manually

extracted morphological features and shallow machine learning

algorithms, including support vector machines (Suthaharan, 2016),

adaptive boosting (Freund and Schapire, 1997), shallow artificial neural

networks (Asefpour Vakilian and Massah, 2013), k-nearest neighbors

(Wang et al., 2012), and ensemble methods (Larios et al., 2008). These

algorithms rely heavily on manual feature engineering and often

struggle to extract effective features in complex real-world

environments. This leads to underfitting, low robustness, poor

generalization ability, and high computational cost (Valan et al.,

2019). Deep learning has fundamentally transformed pest

identification. Object detection algorithms, particularly Faster

R-CNN (Ren et al., 2015), SSD (Suthaharan, 2016), and the YOLO

series (Redmon et al., 2016), have substantially enhanced the accuracy

and robustness of pest detection. Two-stage detectors such as Faster
02
R-CNN offer high precision but their computational complexity limits

application in resource-constrained environments. Single-stage

detectors including SSD and RetinaNet have improved speed by

simplifying the detection process. The YOLO series, with its

efficiency and real-time performance, has become the preferred

solution for edge device deployment.

Nevertheless, existing models still face significant challenges

when addressing the unique complexities of maize pest detection,

failing to meet practical requirements of sustainable plant protection.

These challenges primarily manifest in three critical areas. First,

morphological diversity resulting from complete metamorphosis

presents a major obstacle. Dramatic morphological variations

across different developmental stages of the same species increase

model generalization difficulty. Second, high similarity among pests

of the same order or family substantially increases misidentification

risk. Third, complex field backgrounds, including plant foliage, soil,

and variable lighting and shadow conditions, further reduce detection

precision. These three challenges severely limit the reliability and

practicality of intelligent pest identification technology, constituting

key technical barriers to achieving sustainable plant protection and

precision agricultural management.

To address these challenges, this study proposes three key

technical improvements based on the YOLOv8 framework:
1. enhancing the SMCA attention mechanism to strengthen

the model’s capability for differentiating target regions

within complicated backgrounds.

2. introducing the MSBlock attention mechanism to

enhance morphological feature capture across different

developmental stages.

3. designing AMConv to optimize the downsampling

strategy, enhancing perception of subtle differences

between similar pests.
Figure 1 shows the overall framework of the AMS-YOLOmodel

training process, including data preprocessing, model architecture,

and the training pipeline. Experimental results demonstrate that the

improved model substantially outperforms the original YOLOv8n

across all performance metrics while maintaining real-time

performance on edge devices, thereby offering effective technical

support for sustainable plant protection.
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2 Related work

Intelligent identification of agricultural pests is essential for

precision plant protection. Previous studies have proposed various

approaches to address the unique challenges in agricultural settings.

(Jiao et al., 2022) proposed an adaptive feature fusion pyramid

network for addressing insufficient multi-scale feature extraction in

agricultural pest detection. This network introduces an adaptive

enhancement module to minimize information loss in high-level

feature maps. It obtained 77.0% accuracy with the AgriPest21

dataset, substantially outperforming methods such as SSD and

RetinaNet. The model still demonstrates insufficient bounding

box precision in complex scenarios. (Chen et al., 2023a)

addressed misidentification among morphologically similar

lepidopteran pest larvae through feature refinement methods,

reaching 72.7% mAP on the SimilarPest5 dataset. The results

demonstrate that model improvements for specific pest scenarios

are more effective than general object detection methods.

Because of its excellent balance of speed and accuracy, the

YOLO series has become the mainstream choice for agricultural

pest detection. (Wang et al., 2025) introduced Insect-YOLO with

Convolutional Block Attention Module (CBAM) for pest detection

in low-resolution images, achieving 93.8% mAP50. (Zhang et al.,

2022a) developed Coordination and Local Attention (CLA)

mechanism and Grouped Spatial Pyramid Pooling Fast (GSPPF)

module for pests with scale variations, reaching 71.3% mAP50 on a
Frontiers in Plant Science 03
24-class pest dataset. (Tian et al., 2023) proposed MD-YOLO with

DenseNet blocks and Adaptive Attention Module (AAM) for small

lepidopteran pests, achieving 86.2% mAP50. The pest species

diversity remains limited. (Li et al., 2023) addressed the limited

computational resources on edge devices. They proposed an

improved point-line distance loss function and mixed online data

augmentation algorithm. The method achieved 96.51% precision

and 7.7ms detection time in passion fruit pest detection. This result

demonstrates that single-stage detectors can be effectively deployed

on edge computing devices. (Zhang et al., 2022b) integrated

GhostNet with YOLOv5 to minimize redundant computation.

Their approach improved mAP50 by 1.5% over original YOLOv5

in orchard pest detection while reducing parameters by 2–3 times.

This provides a feasible solution for deployment on devices with

limited resources.

Attention mechanisms, as a key technology for improving deep

learning model performance, have demonstrated significant value

in agricultural pest detection. (Tang et al., 2021) introduced

squeeze-and-excitation attention for small and similar pests,

achieving 71.6% mAP50 on a 24-class dataset. (Tang et al., 2023)

improved Pest-YOLO by replacing the original SE mechanism with

Efficient Channel Attention (ECA) mechanism. They combined it

with transformer encoder to capture global features. Cross-Stage

Feature Fusion (CSFF) was used to enhance small target

representation. This improved detection capability for small pests,

but the increased parameters limited inference speed (Liu et al.,
FIGURE 1

General framework of AMS-YOLO model training process, including data preprocessing, model architecture, and training pipeline.
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2022). adopted triple attention mechanism (YOLOv4-TAM) and

focal loss function to handle complex background and sample

imbalance problems in tomato pest detection. The method

achieved 95.2% average recognition accuracy. (Lv and Su, 2024)

addressed the challenge of distinguishing similar diseases by

combining Convolutional Block Attention Module with

transformer encoder. The model achieved excellent performance

in detecting visually similar apple leaf diseases. (Kang et al., 2023)

addressed edge computing deployment challenges in rice pest

detection. They proposed attention enhancement methods and

knowledge distillation networks. (Cheng et al., 2017) used deep

residual learning to solve pest identification problems in complex

agricultural backgrounds. The method achieved 98.67% recognition

accuracy, outperforming traditional methods.

Despite substantial advances in pest detection using deep

learning, existing research still has four major limitations. First,

dataset construction focuses on a single developmental stage or a

specific environment. This makes it difficult for models to cope with

morphological changes in different growth stages of the same pest.

Second, detection algorithms insufficiently distinguish pests with

high interclass similarity. Third, computational resources and

detection accuracy remain poorly balanced. High-accuracy

models are still difficult to deploy efficiently on agricultural edge

devices. These limitations seriously constrain the practical value

of intelligent pest identification technology in sustainable

plant protection.

To address these limitations, this study implements targeted

improvements to YOLOv8n through innovations in attention

mechanisms, feature fusion, and multi-scale representation. Our

goal is to build a high-performance pest detection system that can

be implemented on resource-constrained edge devices while

remaining robust in complex field environments, supporting

sustainable agricultural goals of precision spraying and reduced

pesticide use.
3 Materials and methods

3.1 Maize pest dataset

This study employed a maize pest identification dataset derived

from the IP102 dataset (Wu et al., 2019), containing 13 maize pest

species. After quality screening, we retained 4,293 valid images from

the original dataset. We also captured 242 images using a Vivo S9

smartphone from a 2,500 m² experimental maize field at Jilin

Agricultural University (43°79’N, 125°40’E) in July 2024. All

images were annotated with rectangular bounding boxes under

expert guidance. The dataset was randomly split into training,

validation, and test sets in an 8:1:1 ratio.

Sufficient and balanced training samples are critical for effective

deep learning model training. The dataset covers 13 major maize

pest species. These species exhibit notable morphological

differences between developmental stages but high similarity

among different species at similar stages. For example, Ostrinia

nubilalis transforms from cream-colored larvae to winged moths.
Frontiers in Plant Science 04
The three cutworm species Agrotis ypsilon, Agrotis tokionis, and

Agrotis segetum exhibit nearly identical larval morphologies despite

being different species. This ‘intra-class heterogeneity, inter-class

similarity’ characteristic poses a major challenge to computer vision

recognition systems. However, limited sample numbers and

imbalanced class distributions may cause unstable model training

and reduced generalization (Lu et al., 2025). Therefore, we

implemented systematic data augmentation to optimize dataset

quality (Tang et al., 2020). Five data augmentation methods are

illustrated in Figure 2.

For the public dataset, we randomly applied one of five

augmentation techniques: vertical flip, random brightness

adjustment, Gaussian blur, motion blur, and Popcorn noise to

increase data diversity. For self-collected field images, we applied

three techniques: Gaussian blur, motion blur, and Popcorn noise.

These methods simulate common imaging issues in agricultural

environments, including camera shake, focus inaccuracy, and

sensor noise. Table 1 shows the dataset composition before and

after augmentation by source.

To ensure augmented image effectiveness, we inspected training

set image quality, removing 183 images with minimal visual

changes or poor quality. Considering validation and test sets are

primarily used for model evaluation, we maintained the integrity of

their augmented images to preserve evaluation consistency. The

final dataset comprises 9,371 images, with detailed distribution

shown in Table 2.
3.2 AMS-YOLO model structure

YOLOv8n builds upon its predecessor’s advantages and

improves performance through architectural innovation and

algorithm optimization. Its anchor-free detection framework

abandons traditional preset anchor box limitations and directly

predicts object location and size. The network backbone adopts an

optimized CSPNet variant. It creates efficient feature extraction

paths through the C2f module and enhances multi-scale target

sensing capability with the SPPF module.

The feature fusion stage integrates FPN (Lin et al., 2017) and

PAN (Li et al., 2018) structures, enabling bidirectional feature flow

and complementary information interaction. The detection head

utilizes a task decoupling strategy to separate classification and

regression paths, optimizing their respective performances. For the

loss function, Binary Cross-Entropy loss handles classification,

while CIoU loss ensures accurate bounding box predictions for

localization. The model incorporates a Task Aligned Assigner (Feng

et al., 2021) to dynamically evaluate sample quality and balance

classification accuracy with localization precision, achieving

optimal speed-accuracy trade-offs.

However, despite YOLOv8’s robust capabilities for most

detection applications, this model exhibits substantial constraints

when applied to maize pest detection in real agricultural

environments. These practical constraints substantially impact

pest management decision reliability, ultimately affecting

sustainable plant protection strategy effectiveness. To address
frontiersin.org
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these challenges, this study proposes AMS-YOLO, an improved

YOLOv8n version specifically designed for agricultural pest

detection applications. As illustrated in Figure 3, our framework

processes maize pest image data through carefully designed

architectural innovations.

In the AMS-YOLO model, the improved SMCA module

enhances spatial-multiscale context awareness by introducing

adaptive spatial weighting and multi-scale feature enhancement.

The novel AMConv module preserves critical morphological details

through adaptive kernel weighting and residual feature

preservation. Additionally, the MSBlock embedded in the neck

structure implements stage-aware attention and adaptive feature

fusion. These targeted improvements work synergistically to

enhance detection precision while maintaining computational

efficiency suitable for edge deployment in agricultural settings.
Frontiers in Plant Science 05
3.2.1 Spatial-multiscale context attention
Identifying pests in complex agricultural environments requires

rich contextual information to avoid confusion between similar

species and reduce background interference. However, inherent

local convolution operations and excessive pooling challenge the

extraction of sufficient global context and effective target detection.

To address this, this study proposes the Spatial-Multiscale Context

Attention (SMCA) module, which is incorporated within the

backbone feature extractor of the YOLOv8n detection network.

The design of the SMCA module is based on two key

observations. First, pest appearance in images is influenced by

surrounding elements such as maize leaves and stalks, requiring

full global context capture. Second, distinguishing morphological

features of similar pests requires extracting local details. Unlike

sequential attention mechanisms such as CBAM (Woo et al., 2018)
FIGURE 2

Comparison of different data augmentation techniques applied to maize pest images: (A) raw image; (B) vertical flip; (C) random brightness;
(D) gaussian blur; (E) motion blur; (F) popcorn noise.
TABLE 1 Datasets composition before and after augmentation by source.

Data source Spilt Original Augmentation technique Augmented

Public Datasets
(IP102)

Training Set (80%) 3445 Choose one of the following methods at
random:

Vertical flip
Random brightness

Gaussian blur
Motion blur
Popcorn noise

6870

Validation Set (10%) 429 858

Test Set (10%) 429 858

Self-collected

Training Set (80%) 194 Using three data augmentation methods:
Gaussian blur
Motion blur
Popcorn noise

776

Validation Set (10%) 24 96

Test Set (10%) 24 96
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or channel-focused approaches like ECA (Wang et al., 2020),

SMCA employs a unified framework that simultaneously

processes spatial self-attention and multi-level contextual

information through joint local-global weighting, addressing the

limitations of independent attention processing for morphologically
Frontiers in Plant Science 06
similar pest identification. The SMCA structure is shown

in Figure 4.

The core of the SMCA module consists of two key steps: spatial

attention computation and multi-scale feature fusion. The spatial

attention module first computes attention features using the multi-

head self-attention mechanism, as shown in Equation 1:

Xs = Reshape(softmax( QK
Tffiffi
d

p )V) (1)

Where Q, K , V ∈ R(h�N�d) are the query, key, and value

matrices, respectively. Here, h represents the number of attention

heads, N = H �W indicates the total number of spatial positions,

where H and W correspond to the height and width of the input

feature map, respectively. The scaling factor
ffiffiffi
d

p
prevents extremely

large values after dot-product, stabilizing the training process. The

attention mechanism computes the similarity between Q and K to

generate an attention map, which is then used to weight V , resulting

in an enhanced spatial feature representation.

Following spatial attention, the SMCA module introduces a

multi-level contextual attention mechanism (Wan et al., 2023),

consisting of two branches, local and global, as defined in

Equations 2 and 3:

Fl = Avgpooling(Xs) ∈ RC�ks�ks (2)

Fg = Avgpooling(Fl) ∈ RC�1�1 (3)

Where ks determines the spatial range of local feature

extraction, with a default value of 5. C denotes the channel

count within the feature map. This AvgPoollocal( · )applies

adaptive average pooling to reduce spatial dimensions to ks � ks,

while AvgPoolglobal( · ) further compresses Fl to a single value per
FIGURE 3

The complete framework of our AMS-YOLO model. AMConv is average max pooling convolution, SMCA is proposed spatial-multiscale context
attention, MSBlock is multi-scale block, SPPF represents spatial pyramid pooling, Upsample refers to upsampling, Concat represents tensor
concatenation, MaxPool2d represents maximum pooling, and DETECT serves as detection head.
TABLE 2 Composition of training, validation, and testing datasets.

Name
Training

set
Validation

set
Test
set

Holotrichia diomphalia (grub) 349 44 43

Gryllotalpa unispina (mole cricket) 695 87 87

Pleonomus canaliculatus
(wireworm)

339 42 43

Euxoa oberthuri (white margined
moth)

313 39 39

Agrotis ypsilon (black cutworm) 720 90 90

Agrotis tokionis (large cutworm) 489 61 61

Agrotis segetum (yellow cutworm) 621 78 77

Tetranychus truncatus (red spider) 512 64 64

Ostrinia nubilalis (corn borer) 678 85 85

Mythimna separata (army worm) 659 82 83

Sitobion avenae (aphids) 701 88 87

Protaetia brevitarsis (White-
spotted flower chafer)

650 81 81

Dichocrocis punctiferalis (peach
borer)

771 96 97
The “Name” column presents Latin scientific names of pest species with their corresponding
common names in parentheses.
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channel. This two-branch strategy enables the module to

concurrently process both local structural details and global

contextual information.

To extract meaningful channel relationships from both Fl and

Fg  , a 1D convolution operation with an adaptively determined

kernel size k is applied to both local and global features. The

feature maps are first reshaped to 1D representations suitable for

channel-wise convolution. Conv1Dk( · ) applies one-dimensional

convolution across channels to model inter-channel dependencies

efficiently. The kernel size k is computed based on the number of

channels C in the feature map using Equation 4:

k = ½log2 (C)+bg � (4)

Where b and g are hyperparameters that control the receptive

field size, with default values b = 1 and g = 2. The convolution

kernel size k is maintained as an odd number, thereby preserving

spatial symmetry in feature mapping. The kernel size increases

logarithmically with the number of channels, enabling the attention

mechanism to adaptively adjust its receptive field according to

different feature dimensions. After applying Conv1Dk to both Fland

Fg , the results are transformed by sigmoid function s and combined

to compute the final attention weight:
Frontiers in Plant Science 07
Afinal = ws (Conv1Dk(Fl)) + (1 − w)s (Conv1Dk(Fg)) (5)

Where w is a learnable parameter with default 0.5 that balances

the contributions of local and global attention, and s is the Sigmoid

activation function that transforms attention values to range [0,1],

making them suitable for feature modulation. This balanced

approach allows the model to adaptively focus on different levels

of contextual information.

Finally, the computed attention weights Afinal from Equation 5

are applied to the input feature map Xs from Equation 1 through

element-wise multiplication, as shown in Equation 6:

Y = Xs ⊙Afinal (6)

Where ⊙ denotes element-wise multiplication. This operation

performs channel-wise feature recalibration, emphasizing

important features while suppressing less informative ones,

resulting in a final enhanced feature map Y that effectively

combines spatial attention with multi-scale contextual information.

In AMS-YOLO, this study combines the SMCA module with

the C2f structure to create the C2f_SMCA module, as shown in

Figure 5. The C2f structure uses a multi-branch design, where one

branch retains the original information, and the other is processed

through a Bottleneck layer before merging.
FIGURE 5

Architectural diagram of the C2f_SMCA module.
FIGURE 4

Structure of SMCA model.
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Embedding SMCA into C2f fully leverages the complementary

strengths of both components. The multi-branch structure of C2f

provides a fundamental channel for feature extraction and

propagation, while SMCA enhances feature representation

through the attention mechanism. Additionally, the skip-

connection structure of C2f facilitates gradient backpropagation,

ensuring effective training of the SMCA module in deeper layers.

This integration prevents feature information loss, offers an

improved feature fusion mechanism, and maintains high

computational efficiency. The multi-branch design also reduces

the model’s reliance on individual features, thereby enhancing

its robustness.

3.2.2 Average-max pooling convolution
In target recognition tasks, downsampling operations are

commonly used to reduce feature map size. However, the original

YOLOv8n model’s downsampling operations cause detailed

information loss when reducing feature map dimensions. This

particularly impacts detection performance in complex

backgrounds and for objects with varied scales.

Conventional downsampling approaches in CNNs typically use

single-strategy processing. They employ either stride convolutions

directly reducing spatial dimensions or pooling operations

summarizing local regions. Stride convolutions allow learnable

downsampling but may cause information loss. Pooling operations

provide fixed downsampling with limited adaptability. Recent

efficient convolution variants reduce computational constraints

differently. GhostConv (Han et al., 2020) generates redundant

feature maps through lightweight linear operations, reducing

computational cost. Depthwise separable convolutions (Chollet,

2017) process each channel independently before combining them

via pointwise convolution. These approaches, however, still operate

through single-path processing strategies. Our proposed AMConv

module uses a dual-path architecture combining average and

maximum pooling strategies to preserve both global context and

local detail during downsampling. To address this, we propose the

Average-Maximum Pooling Convolution (AMConv) module by

optimizing the convolution operations in YOLOv8n.

The working principle of the AMConv module is illustrated in

Figure 6. First, the input feature map undergoes average pooling

with stride 1 and kernel size 2, preserving important global

information while initiating downsampling. Next, the feature map
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is split along the channel dimension into two equal parts. The first

part is processed using 3� 3 convolution with stride 2 to extract

features and reduce dimensionality. Meanwhile, the second part

undergoes max pooling with 3� 3 kernel and stride 2, followed by

1� 1 pointwise convolution to enhance its nonlinear feature

representation. Finally, the processed feature maps from both

paths are concatenated along the channel dimension to form the

AMConv module output.

3.2.3 Multi-scale block
YOLOv8n introduces a large number of C2F modules

throughout its neck structure for improving feature extraction.

Nevertheless, such high complex computations and substantial

parameter count associated with this design significantly increase

inference time. Therefore, the Multi-scale Block with large kernel

convolutions (Chen et al., 2023b) is introduced into the

architecture. We adapt the original design by removing the

Global Query Learning mechanism to reduce computational

complexity while maintaining hierarchical multi-scale feature

extraction capability. This makes the design more suitable for

real-time pest detection applications. The streamlined MSBlock

design enriches feature extraction by providing larger receptive

fields, thereby enhancing the model’s contextual understanding

capability for accurate pest detection.

Specifically, the core idea is to split the input channels into several

channel groups and then perform multi-scale convolutional

operations, such as 1� 1, 3� 3, and 5� 5, on these sub-channels

to improve the perception of targets at different scales. Efficient

aggregation and feature enhancement of the channels are achieved

through layer-by-layer convolution operations, while feature

compression and fusion are accomplished using 1� 1 convolutions

to reduce computational overhead. The specific architecture and

implementation of the MSBlock module are shown in Figure 7.

Suppose X represents the input feature map with C input

channels. After a 1� 1 convolution, the channel dimension of X

is expanded according to the designed expansion mechanism. To

balance computational efficiency and feature representation

capability, we set the configurable hyperparameters expansion

ratio rexpend = 3 and down-sampling ratio rdown = 2. The expanded

channel dimension is calculated as shown in Equation 7:

Cexpanded =
C�rexpend
rdown

(7)
FIGURE 6

Structural diagram of the AMConv module.
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The 1� 1 convolution achieves dimensionality increase by

setting the number of output channels to 1:5C, which is greater

than the number of input channels C. In our implementation, the

1� 1 convolution layer maps from C input channels to Cexpanded =

1:5C output channels, effectively expanding the feature

representation space before multi-scale processing.

The expanded feature map is then divided into N different

groups, denoted as X1,X2…,  Xnf g, where i   ∈  ½1,N�. The input is
split into multiple branches, with each handling a different subset of

channels. Each group processes features through inverted

bottleneck layers with different kernel sizes. These kernel sizes

include 1� 1, 3� 3, and 5� 5 convolutions. Groups with kernel

size k = 1 use identity mapping for computational efficiency.

Starting from the second group, each group’s input incorporates

the output from the previous group. This establishes a cumulative

feature propagation mechanism. This mathematical representation

for the output Yi can be expressed as:

Yi =
Xi,     i = 1

IBk�k(Yi−1 + Xi),     i > 1

(
(8)

According to Equation 8, the cumulative connection mechanism

allows each branch to retain information from previous processing

stages while incorporating new transformations. Within each branch,

feature transformation is performed using a 1� 1 convolution for

channel expansion. This is followed by a k� k depthwise separable

convolution and finally a 1� 1 convolution for channel compression.

All branches are then concatenated. A final 1� 1 convolution is

applied to facilitate interaction between the branches, with each

branch encoding features at different scales.

By replacing the traditional C2F module with C2f_MSBlock on

these P3, P4, and P5 feature levels within the neck architecture, this

design enables such the model to focus on small-scale pest targets

through the P3 layer features, enhancing the ability to capture fine
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details; medium-scale pest targets are captured by the P4 layer

features, which focus on morphological characteristics; and large-

scale pest targets are detected by the P5 layer features, utilizing large

receptive field convolutions to ensure target integrity. This

approach not only addresses the scale inconsistency problem in

maize pest detection but also enriches the model with more detailed

pest micro-features and improves localization accuracy for

pest detection.
4 Experiments and analysis of results

4.1 Experimental setup and parameter
configuration

The experiments used an NVIDIA RTX 4070 SUPER GPU and

Intel Core i5 processor. The software environment used PyTorch

deep learning framework with CUDA acceleration. Table 3 provides

detailed hardware and software configuration parameters.

For model training, we used the AdamW optimizer (Loshchilov,

2017) for stochastic gradient descent. Table 4 shows other default

hyperparameter settings.
4.2 Dataset and evaluation metrics

This study selected the following evaluation metrics: Precision

(P), Recall (R), mAP50, mAP50:95, Parameters, andWeights. These

metrics assess the model’s performance in maize pest detection.

mAP50 represents the mean average precision (mAP) at an IoU

threshold of 0.5, while mAP50:95 denotes the average mAP across

IoU thresholds from 0.5 to 0.95 (step size: 0.05). Equations 8–12

define these metrics.
FIGURE 7

Multi-scale block structure diagram.
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Precision(P) = TP
TP+FP (9)

Recall(R) = TP
TP+FN (10)

APi =
Z 1

0
Pi(Ri)dRi (11)

mAP = 1
Nc o

Nc

i=1
APi (12)

Parameters = O(o
n

i=1
(M2

i · K
2
i · Ci−1 · Ci)) (13)

In Equations 9 and 10, True Positive (TP) refers to positive

samples correctly classified as positive. False Negative (FN)

represents positive samples incorrectly classified as negative, and

False Positive (FP) indicates negative samples incorrectly classified

as positive. In Equations 11 and 12, n is the number of pest species.

Pi represents the precision of the i-th pest category, and Ri

represents its recall. In Equation 13, O denotes the order of

magnitude, K represents the kernel size, C is the number of

channels, M is the input image size, and i is the number

of iterations.
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4.3 Comprehensive performance analysis
of model improvement and attention
mechanisms

4.3.1 Comparative experiments between the
original and improved model

The Precision, Recall, mAP50, and mAP50:95 for the original

YOLOv8n model and the AMS-YOLO model after 200 training

iterations appear in Figure 8. In the early training stages, both

models show relatively low performance metrics with significant

fluctuations. This reflects gradual model learning of target features.

As training progresses, the AMS-YOLO model demonstrates faster

convergence and superior performance across all metrics. The

AMS-YOLO advantage in mAP50:95, a comprehensive evaluation

metric, is particularly pronounced, confirming its robustness across

varying detection thresholds. By training completion, the AMS-

YOLO model outperforms the original YOLOv8n model in all

metrics, validating that the proposed improvement strategy

successfully improves the detection capability of the model for

maize pests.

Figure 9 presents representative detection samples for each

category, providing a clear visualization of the AMS-YOLO

model’s effectiveness in maize pest identification. Only results in

which the predicted category matches the corresponding ground

truth label are shown, ensuring an accurate reflection of the model’s

recognition capability.

As shown in Figure 10, this study compares the visual

performance of YOLOv8n and the improved AMS-YOLO model

on identical pest images. For Holotrichia diomphalia detection,

AMS-YOLO reduces false positives in background regions. When

detecting Pleonomus canaliculatus, AMS-YOLO substantially

decreases class confusion rates and eliminates false detections. For

Sitobion avenae identification, AMS-YOLO successfully identifies

individuals that YOLOv8n fails to detect. In Ostrinia nubilalis cases,

AMS-YOLO maintains stable performance under complex

backgrounds, achieving more precise bounding boxes. Results

demonstrate that AMS-YOLO outperforms the baseline

YOLOv8n model by reducing false positives, false negatives, and

background interference while improving bounding box accuracy.

These findings validate its potential for practical agricultural

pest monitoring.

4.3.2 Comparison of the effects of different
attention mechanisms

To evaluate the effectiveness of SMCA, YOLOv8n was used as

the baseline model, and different attention modules were embedded

in C2f within the backbone. Compared attention mechanisms

include ACMix (Pan et al., 2022), FLA (Han et al., 2023), iRMB

(Zhang et al., 2023), EMA (Ouyang et al., 2023), and Triplet

Attention (Misra et al., 2021). Table 5 shows the effects of

different attention modules on the model’s detection metrics.

The proposed SMCA module achieved optimal performance

across all metrics. Precision was 89.2% and Recall was 88.2%, with
TABLE 3 Experimental test platform configuration.

Hardware Model number Parameters

Operating System Windows 11 RAM: 64 GB

CPU Intel Core i5-13600KF Frequency: 3.50 GHz

GPU
NVIDIA RTX 4070

SUPER
Video memory: 12

GB

Deep Learning
Framework

PyTorch Version: 1.12.1

Computational Platform CUDA Version: 11.3

Software environment Python 3.9
TABLE 4 Training parameters.

Hyperparameters Value

Image size 640 �640

Epoch 200

Batch Size 16

Workers 4

Optimizer AdamW

Learning Rate 0.002

Momentum 0.937

Weight Decay 0.0005
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FIGURE 9

Visual result map. (a) grub (b) mole cricket; (c) wireworm; (d) white margined moth; (e) black cutworm; (f) large cutworm; (g) yellow cutworm;
(h) red spider; (i) corn borer; (j) army worm; (k) aphids; (l) Potosiabre vitarsis; (m) peach borer.
FIGURE 8

Training process curves of AMS-YOLO and YOLOv8n.
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FIGURE 10

Detection result comparison between YOLOv8n and AMS-YOLO: left original images, middle YOLOv8n predictions, right AMS-YOLO predictions.
TABLE 5 Performance comparison table of different attentions under multiple indicators.

Model Precision (%) Recall (%) mAP50 (%) mAP50:95 (%) Parameters (M)

YOLOv8n 86.9 86.1 91.0 69.7 3.15

YOLOv8n+ACMix 86.3 87.7 91.6 69.6 3.12

YOLOv8n+FLA 87.8 87.5 91.7 70.1 3.12

YOLOv8n+iRMB 87.3 87.6 91.6 70.2 3.12

YOLOv8n+EMA 88.8 86.8 91.8 70.0 3.01

YOLOv8n+Triplet Attention 88.3 87.4 91.7 70.2 3.01

YOLOv8n+SMCA 89.2 88.2 92.9 71.5 3.12
F
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Bold values represent the best comparison result for the corresponding metric.
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mAP50 at 92.9%, showing significant improvements over other

attention mechanisms. Precision improved by 2.9% compared to

ACMix, indicating SMCA’s distinct advantage in separating maize

pest features from complex backgrounds. Compared to FLA with

similar parameters, SMCA improved Precision by 1.4%,

demonstrating superior selectivity in feature extraction. With

similar parameters, SMCA outperformed Triplet Attention

mAP50 by 1.2%, showing the efficiency of the module design.

The 71.5% improvement in mAP50:95 demonstrates that the model

maintains strong performance across different detection thresholds,

highlighting its practical applicability. These improvements

demonstrate SMCA’s superiority in key morphological feature

extraction. The module also excels in background interference

suppression for maize pest detection.

4.3.3 Comparison of performance at different
locations of the attention mechanism

To evaluate the effectiveness of the SMCA mechanism in

different model components of the model, this study embeds

SMCA into both the Backbone and Neck structures of YOLOv8n

and compares the resulting performance metrics. The experimental

results are shown in Table 6:

These findings indicate placing SMCA in such Backbone offers

significant advantages over Neck placement. Specifically, Backbone-

C2f achieves 92.9% mAP50, marking a 1.9% improvement over

original YOLOv8n, whereas Neck-C2f only achieves a 0.4%

improvement. This performance difference occurs because the

Backbone progressively extracts features from basic to advanced

levels in the original image. By placing SMCA in the Backbone, the
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model can begin fusing local and global attention early in feature

extraction. Additionally, C2f_SMCA in the Backbone handles

multi-scale features ranging from 128 to 1024 channels. In

contrast, it only processes limited P3, P4, and P5 scales in the

Neck. This early-stage enhancement of multi-scale features enables

better feature utilization in subsequent layers.
4.4 Ablation experiment

For verifying the performance of SMCA, AMConv, as well as

MSBlock for improving YOLOv8n, we conducted ablation studies

using the maize pest dataset. Eight models were tested, comparing

performance between improved and original models across various

metrics. Table 7 presents the experimental results, analyzing the impact

of different modules on the model’s performance improvement.

Model 2 shows that SMCA improves Precision from 86.9% to

89.2%, indicating effective reduction of false detections from

background interference. Model 3 reveals that MSBlock increases

Recall to 87.1% and mAP50:95 to 71.1%, proving strong

adaptability in handling pests of different sizes. This proves

particularly useful for simultaneous detection of pests at different

developmental stages, such as adults and larvae. Model 4 indicates

that AMConv reduces parameter count to 2.84M while maintaining

high detection accuracy. This enables model deployment in real

agricultural scenarios. Model 5 exhibits that SMCA and MSBlock

synergy improves mAP50:95. The model enhances detection

performance for varying target sizes while mitigating background

interference. Models 6 and 7 demonstrate that multi-scale detection
TABLE 6 Comparison of performance of different locations.

Model Precision (%) Recall (%) mAP50 (%) mAP50:95 (%) Parameters (M)

YOLOv8n 86.9 86.1 91.0 69.7 3.15

YOLOv8n-Neck-C2f 86.7 88.2 91.4 70.7 3.09

YOLOv8n-Backbone-C2f 89.2 88.2 92.9 71.5 3.12
Bold values represent the best comparison result for the corresponding metric.
TABLE 7 Ablation study of AMS-YOLO on datasets.

Model SMCA AMConv MSBlock
Precision

(%)
Recall
(%)

mAP50
(%)

mAP50:95
(%)

Parameters
(M)

Weights
(MB)

Model 1 × × × 86.9 86.1 91.0 69.7 3.15 6.3

Model 2 ✓ × × 89.2 88.2 92.9 71.5 3.12 6.25

Model 3 × ✓ × 87.8 87.1 92.5 71.1 2.59 5.2

Model 4 × × ✓ 89.6 86.8 92.3 71.1 2.84 5.8

Model 5 ✓ ✓ × 88.9 88.2 93.1 72.1 2.70 5.7

Model 6 ✓ × ✓ 87.2 87.4 92.2 71.0 2.95 6.0

Model 7 × ✓ ✓ 87.9 89.3 93.2 73.2 2.42 5.0

Model 8 ✓ ✓ ✓ 90.0 89.8 94.2 73.7 2.53 5.3
Bold values represent the best comparison result for the corresponding metric.
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capability remains unaffected even with smaller parameters. Model

8 achieves optimal results, with 90.0% Precision and 89.8% Recall.

This shows substantial progress in reducing false positives and

negatives while maintaining small parameter size. mAP50 and

mAP50:95 reach 94.2% and 73.7%, respectively.

As shown in Figure 11A, incorporating SMCA, AMConv, and

MSBlock consistently improves Precision, Recall, mAP50, and

mAP50:95. Figure 11B demonstrates that these improvements are

achieved with a reduced parameter count and more compact model

size. This proposed approach achieves excellent balance between

practicality and performance, confirming the synergistic effect of

these three modules.
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4.5 Comparison of other classical models

For additional validation of the advantages of the improved

AMS-YOLO in maize pest detection, a comprehensive evaluation of

12 mainstream object detection models was conducted, including

traditional architectures such as SSD, RetinaNet, RT-DETR, and

various YOLO models. The evaluation metrics included Precision,

Recall, mAP50, and mAP50:95, as well as model efficiency,

Parameters, and Weights. The results are shown in Table 8.

AMS-YOLO demonstrates superior performance across all

detection metrics while maintaining lightweight design. Compared

with lightweight YOLO variants like YOLOv5n and YOLOv12n,
FIGURE 11

Trend curves of ablation experimental results. (A) Trend curves of detection Precision, Recall, mAP50, and mAP50:95 metrics for enhanced
YOLOv8n implemented with SMCA, AMConv, and MSblock. (B) Trend curves showing the variations in Parameters and Weights metrics for the
improved YOLOv8n model.
TABLE 8 Comparison of different detection models.

Model Precision (%) Recall (%) mAP50 (%)
mAP50:95

(%)
Parameters

(M)
Weights
(MB)

SSD 76.1 77.5 80.2 64.2 26.2 62.8

Retina Net 73.0 78.3 80.6 64.5 27.1 103.4

RT-DETR 89.9 87.6 88.2 69.7 42.8 160.3

YOLOv3-tiny 83.5 86.2 88.2 63.6 12.1 24.4

YOLOv5n 84.9 86.9 90.3 67.6 2.50 5.3

YOLOv5s 89.0 89.9 93.5 72.8 9.11 18.5

YOLOv6n 83.2 83.5 88.1 66.5 4.23 8.7

YOLOv8n 86.9 86.1 91.0 69.7 3.15 6.3

YOLOv9c 90.0 88.2 93.4 73.1 25.3 51.6

YOLOv10n 89.9 86.2 92.0 69.9 2.70 5.8

YOLOv11n 88.7 88.7 93.0 72.8 2.58 5.5

YOLOv12n 86.2 86.6 91.0 69.0 2.51 5.4

AMS-YOLO 90.0 89.8 94.2 73.7 2.53 5.5
Bold values represent the best comparison result for the corresponding metric.
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AMS-YOLO achieves advanced metrics with comparable parameter

counts, indicating optimal balance between performance and

computational efficiency. Compared with traditional architectures

like SSD and RetinaNet, AMS-YOLO reduces computational

overhead while improving detection performance by 15%.

Transformer-based RT-DETR exhibits strong performance but

requires 42.8M parameters. In contrast, AMS-YOLO achieves

superior detection results with only 2.53M parameters, highlighting

the proposed method’s efficiency.

As illustrated in Figure 12, the scatter plot clearly demonstrates

the trade-off between model complexity Parameters and mAP50:95,

with color representing model weight.
4.6 Edge device deployment for
sustainable pest monitoring

During evaluation, we deployed the trained AMS-YOLO model

on the NVIDIA Jetson Nano embedded development board. This

provided a cost-effective intelligent monitoring solution for

sustainable plant protection. The device featured CUDA support

to accelerate inference and meet real-time field monitoring
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requirements. The system captured images at 480×640 pixel

resolution through an external camera. This enabled pest

detection in natural farmland environments. All experiments used

simulated field conditions to ensure result applicability in real-

world agricultural settings. Figure 13 shows the real-time detection

system and deployment workflow, demonstrating the complete

process from image acquisition to pest identification results on

the target hardware platform.

As shown in Table 9, during stable operation, YOLOv8n

requires 85.0 ms for inference, with total processing time of 95.0

ms at 10.52 FPS. In contrast, AMS-YOLO reduces inference time to

69.4 ms and total processing time to 81.7 ms, achieving 12.25 FPS.

AMS-YOLO improves inference performance by 18.4%, overall

processing efficiency by 14.0%, and frame rate by 16.4%. Resource

utilization analysis reveals that AMS-YOLO achieves 58.5% CPU

utilization during warm-up, markedly lower than YOLOv8n’s

74.7%, demonstrating enhanced resource efficiency through

architectural optimization. Lower CPU utilization reduces device

heat generation, extends battery life, and decreases overall

power consumption.

Experimental results demonstrate that AMS-YOLO effectively

improves inference efficiency through architectural optimization.
FIGURE 12

Comparison of object detection model performance: mAP50:95, parameter and model weight (MB) bubble diagram.
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This proves critical for field edge monitoring devices powered by

solar panels or limited battery systems. The approach provides cost-

effective intelligent monitoring solutions for sustainable

plant protection.
4.7 Interpretability experiment

The confusion matrix provides clear representation of model

predictions versus true labels. It illustrates classification performance
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for each category, including TP, FP, TN, and FN. This matrix offers

critical insights for comprehensive model performance evaluation.

Figure 14 shows the confusion matrices for AMS-YOLO and

YOLOv8n models on this dataset.

Quantitative analysis based on the normalized confusion matrix

shows that our improved method outperforms the YOLOv8n

baseline model in multi-class pest recognition tasks. For example,

black cutworm recognition accuracy improved from 78% to 81%. The

confusion rate with large cutworm decreased substantially from 17%

to 11%. This improvement demonstrates that fine-grained feature
FIGURE 13

Real-time detection system and deployment workflow.
TABLE 9 Inference time breakdown and system performance.

Model
Test
run

Preprocessing
time (ms)

Inference
time (ms)

Postprocessing
time (ms)

Total processing
time (ms)

FPS
Max CPU
percent (%)

YOLOv8n

Warm-up
Phase

8.0 110.0 4.8 3123.6 0.32

74.7Stable
Operation
Phase

6.2 85.0 4.0 95.0 10.52

AMS-YOLO

Warm-up
Phase

7.3 89.5 4.2 3033.7 0.32

58.5Stable
Operation
Phase

5.3 69.4 3.2 81.7 12.25
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FIGURE 14

Confusion matrix visualization of YOLOv8n and AMS-YOLO models for agricultural pest detection. (A) YOLOv8n baseline model confusion matrix.
(B) The proposed AMS-YOLO model confusion matrix.
FIGURE 15

YOLOv8n and AMS-YOLO heat map visualization comparison, image1, image2 and image3 are examples of black cutworm and mole cricket
respectively.
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extraction improved considerably. The model better captures subtle

differences between nocturnal moth pests, exhibiting stronger

discriminative power in classifying similar species. For aphid

classification, the misclassification rate dropped markedly from

11% to 7%, a 36.4% reduction. This indicates the model is more

robust against complex background interference and more accurately

distinguishes target pests from background environment.

Figure 15 shows heatmap comparison of YOLOv8n and AMS-

YOLO models. The more pronounced and complete red region

coverage demonstrates that AMS-YOLO exhibits more focused

attention distribution across the insect’s body. This indicates that

the model effectively reduces background interference while

enhancing its ability to capture spatial details.
5 Discussion

The proposed AMS-YOLO model achieved 94.2% mAP50 and

73.7% mAP50:95, improving by 3.2% and 4.0% over baseline

YOLOv8n. Integrating SMCA attention mechanism, AMConv

downsampling, and MSBlock multi-scale fusion enhances detection

accuracy under challenging agricultural conditions. Our approach

addresses limitations in traditional methods. Manual identification

suffers from subjectivity and scalability issues. Image processing

methods using handcrafted features demonstrate poor adaptability

to complex agricultural environments. Traditional machine

learning approaches like SVM and Random Forests rely on manual

feature design, limiting performance on high-dimensional

agricultural imagery.

Attention mechanisms have proven valuable in agricultural pest

detection applications. Recent developments include CSE-ELAN for

soybean pest detection (Chen et al., 2025) and MDGA for litchi

disease identification (Li et al., 2025), highlighting specialized

attention designs in complex agricultural contexts. Our SMCA

module builds upon these advances by effectively addressing

complex background interference while excelling in differentiating

morphologically similar pest species. This is achieved through

strategic combination of spatial attention computation with multi-

level contextual attention mechanisms. The synergistic effect of

AMConv and MSBlock modules further optimizes performance:

AMConv preserves critical information during downsampling

through its dual-path architecture, while MSBlock enhances the

model’s capability to identify pests across different developmental

stages through multi-scale feature fusion. Edge deployment testing on

NVIDIA Jetson Nano validated real-world applicability,

demonstrating robust computational performance with real-time

detection at 12 FPS. This performance establishes technical

feasibility for continuous farmland monitoring, marking an

important step toward practical deployment in agricultural settings.

Several limitations warrant acknowledgment. First, our dataset

encompasses only 13 maize pest species, potentially limiting

generalizability to broader pest populations. Second, while 12 FPS

performance on Jetson Nano represents a significant achievement,

the model still demands higher computational resources and power

consumption than traditional image processing approaches. Third,
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model robustness requires further validation under extreme

environmental conditions, such as intense direct sunlight or

heavy rainfall. Despite notable improvements in distinguishing

morphologically similar species, misidentification risks persist

when interspecies morphological differences are minimal. Finally,

model generalization across different geographical regions and

seasonal variations needs validation through more extensive

field trials.

Future research should prioritize three critical areas to advance

this technology toward widespread adoption. First, developing

large-scale, standardized pest datasets is essential to improve

model generalization, as pest morphological characteristics vary

considerably due to geographical location, climatic conditions, host

plant variations, and nutritional status (Liu and Wang, 2021).

Second, deep optimization of lightweight technologies represents

a crucial step toward achieving true edge intelligence. Building on

our successful edge deployment experience, future efforts should

focus on systematic optimization strategies, including advanced

model pruning and knowledge distillation (Xu et al., 2024; Zhang

et al., 2024). Third, integrating IoT and AI technologies will be

instrumental in building comprehensive intelligent monitoring

ecosystems. This technological convergence can facilitate a

paradigm shift from reactive pest management to proactive

prevention strategies through data-driven decision support

systems (Ahmed et al., 2024; Kariyanna and Sowjanya, 2024).

These technological advances will establish the foundation

necessary to translate our theoretical contributions into practically

deployable intelligent monitoring systems. By providing robust

technical support for sustainable plant protection objectives, this

work contributes to promoting harmonious agricultural-

environmental development in modern farming systems.
6 Conclusions

Within this study, we propose a lightweight maize pest

detection model upon the YOLOv8n algorithm, named AMS-

YOLO. First, the proposed SMCA module replaces the C2f

feature extraction module in the backbone. This module

effectively addresses confusion among similar pests while

suppressing background interference from maize leaves and

stalks. Second, AMConv replaces traditional convolution for

downsampling, reducing feature map size while preserving key

information and reducing computational burden. Finally,

MSBlock replaces the original C2f module in the neck for feature

extraction. This solves scale inconsistency problems in pest

detection and enhances key localization information.

Through extensive validation experiments, AMS-YOLO

demonstrates excellent performance. Compared with the original

model, AMS-YOLO improves mAP50 by 3.2%, mAP50:95 by 4%,

Precision by 3.1%, and Recall by 3.7%. The model requires only

2.53M parameters and 5.5MB storage. Comparative experiments

further demonstrate that AMS-YOLO outperforms several widely

used target detection models, including SSD, RetinaNet, RT-DETR,

and various YOLO families. Actual deployment tests demonstrate
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that AMS-YOLO maintains stable real-time monitoring capabilities

in resource-constrained environments. This provides reliable

support for precise prevention and control decisions. Therefore,

the AMS-YOLO model suits maize pest detection tasks well. Its

compact size provides a reliable reference solution for edge

computing devices.

This study promotes object detection algorithm applications in

agriculture. It provides practical tools for sustainable and intelligent

plant protection, demonstrating computer vision technology’s critical

value in supporting sustainable agricultural development. As a key

component of intelligent agricultural infrastructure, these results

provide strong support for precision agriculture development. The

results are expected to contribute positively to building more

environmentally friendly and efficient modern agricultural

production systems. Additionally, they help promote agricultural

green transformation and intelligent infrastructure construction.
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Automated taxonomic identification of insects with expert-level accuracy using
effective feature transfer from convolutional networks. Systematic Biol. 68, 876–895.
doi: 10.1093/sysbio/syz014

Wan, D., Lu, R., Shen, S., Xu, T., Lang, X., and Ren, Z. (2023). Mixed local channel
attention for object detection. Eng. Appl. Artif. Intell. 123, 106442. doi: 10.1016/
j.engappai.2023.106442

Wang, N., Fu, S., Rao, Q., Zhang, G., and Ding, M. (2025). Insect-YOLO: A new
method of crop insect detection. Comput. Electron. Agric. 232, 110085. doi: 10.1016/
j.compag.2025.110085

Wang, J., Lin, C., Ji, L., and Liang, A. (2012). A new automatic identification system
of insect images at the order level. Knowledge-Based Syst. 33, 102–110. doi: 10.1016/
j.knosys.2012.03.014

Wang, Q., Wu, B., Zhu, P. F., Li, P., Zuo, W., and Hu, Q. (2020). “ECA-net: efficient
channel attention for deep convolutional neural networks,” in Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern Recognition (CVPR). (Los Alamitos,
CA: IEEE Computer Society) 11531–11539.

Woo, S., Park, J., Lee, J.-Y., and Kweon, I.-S. (2018). CBAM: convolutional block
attention module. ArXiv abs/1807.06521. 11211, 3–19. doi: 10.1007/978-3-030-01234-2_1

Wu, X., Zhan, C., Lai, Y.-K., Cheng, M.-M., and Yang, J. (2019). “Ip102: A large-scale
benchmark dataset for insect pest recognition,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition (CVPR). (Los Alamitos, CA:
IEEE Computer Society) 8787–8796.

Xu, D., Dong, Y., Ma, Z., Zi, J., Xu, N., Xia, Y., et al. (2024). MAFIKD: A real-time
pest detection method based on knowledge distillation. IEEE Sensors J. 24, 1–1.
doi: 10.1109/JSEN.2024.3449628

Zhang, Y., Cai, W., Fan, S., Song, R., and Jin, J. (2022b). Object detection based on
YOLOv5 and GhostNet for orchard pests. Information 13, 548. doi: 10.3390/
info13110548

Zhang, W., Huang, H., Sun, Y., and Wu, X. (2022a). AgriPest-YOLO: A rapid light-
trap agricultural pest detection method based on deep learning. Front. Plant Sci. 13,
1079384. doi: 10.3389/fpls.2022.1079384

Zhang, J., Li, X., Li, J., Liu, L., Xue, Z., Zhang, B., et al. (2023). “Rethinking mobile
block for efficient attention-based models,” in Proceedings of the 2023 IEEE/CVF
International Conference on Computer Vision (ICCV). (Los Alamitos, CA: IEEE
Computer Society) 1389–1400.

Zhang, X., Liang, K., and Zhang, Y. (2024). Plant pest and disease lightweight
identification model by fusing tensor features and knowledge distillation. Front. Plant
Sci. 15. doi: 10.3389/fpls.2024.1443815
frontiersin.org

https://doi.org/10.1016/j.compag.2022.106827
https://doi.org/10.3390/insects14070660
https://doi.org/10.1016/j.atech.2024.100517
https://doi.org/10.1016/j.atech.2024.100517
https://doi.org/10.3390/agronomy14040656
https://doi.org/10.1007/s00138-007-0086-y
https://doi.org/10.48550/arXiv.1805.10180
https://doi.org/10.48550/arXiv.1805.10180
https://doi.org/10.1016/j.compag.2022.107534
https://doi.org/10.1016/j.eswa.2025.126816
https://doi.org/10.1016/j.eswa.2025.126816
https://doi.org/10.1186/s13007-021-00722-9
https://doi.org/10.3389/fpls.2022.814681
https://doi.org/10.3389/fpls.2022.814681
https://doi.org/10.48550/arXiv.1711.05101
https://doi.org/10.1016/j.compag.2025.110306
https://doi.org/10.1016/j.compag.2025.110306
https://doi.org/10.3389/fpls.2023.1323301
https://doi.org/10.1111/j.1541-4337.2010.00117.x
https://doi.org/10.1111/j.1541-4337.2010.00117.x
https://doi.org/10.1007/s10340-020-01309-4
https://doi.org/10.1007/s10340-020-01309-4
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1016/j.biocon.2019.01.020
https://doi.org/10.1016/j.biocon.2019.01.020
https://doi.org/10.1038/s41559-018-0793-y
https://doi.org/10.1155/2020/5892312
https://doi.org/10.1155/2020/5892312
https://doi.org/10.1016/j.ecoinf.2023.102340
https://doi.org/10.1016/j.compag.2023.108233
https://doi.org/10.1093/sysbio/syz014
https://doi.org/10.1016/j.engappai.2023.106442
https://doi.org/10.1016/j.engappai.2023.106442
https://doi.org/10.1016/j.compag.2025.110085
https://doi.org/10.1016/j.compag.2025.110085
https://doi.org/10.1016/j.knosys.2012.03.014
https://doi.org/10.1016/j.knosys.2012.03.014
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1109/JSEN.2024.3449628
https://doi.org/10.3390/info13110548
https://doi.org/10.3390/info13110548
https://doi.org/10.3389/fpls.2022.1079384
https://doi.org/10.3389/fpls.2024.1443815
https://doi.org/10.3389/fpls.2025.1640405
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	AMS-YOLO: multi-scale feature integration for intelligent plant protection against maize pests
	1 Introduction
	2 Related work
	3 Materials and methods
	3.1 Maize pest dataset
	3.2 AMS-YOLO model structure
	3.2.1 Spatial-multiscale context attention
	3.2.2 Average-max pooling convolution
	3.2.3 Multi-scale block


	4 Experiments and analysis of results
	4.1 Experimental setup and parameter configuration
	4.2 Dataset and evaluation metrics
	4.3 Comprehensive performance analysis of model improvement and attention mechanisms
	4.3.1 Comparative experiments between the original and improved model
	4.3.2 Comparison of the effects of different attention mechanisms
	4.3.3 Comparison of performance at different locations of the attention mechanism

	4.4 Ablation experiment
	4.5 Comparison of other classical models
	4.6 Edge device deployment for sustainable pest monitoring
	4.7 Interpretability experiment

	5 Discussion
	6 Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


