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Introduction: Monitoring the growth status and aboveground biomass of wild and
cultivated medicinal herbs remains a persistent challenge in precision agriculture.
Methods: In this study, we developed machine learning and deep learning
models to estimate SPAD values and biomass of Lamiophlomis rotata (Benth.).
The models used hyperspectral data and time-series phenotypic traits from 508
samples collected across different altitudes. Regions of interest (ROIs) were
manually defined from plant contours. The corresponding mean spectral
profiles were then preprocessed. To improve feature selection, we proposed a
Dynamic Reptile Search Algorithm-enhanced CARS (DRSA-CARS) method. This
method integrates a dynamic behavioral strategy into the CARS framework to
identify informative spectral bands. Vegetation indices (VIs) and gray-level co-
occurrence matrix (GLCM)-based texture parameters were extracted and
combined with spectral features to construct the PLSR, SVR, FNN, and
CNN models.

Results: Compared to CARS, the DRSA-CARS method reduced feature
dimensionality by up to 75.7% for SPAD and 29.2% for biomass, while
improving prediction accuracy (R?) by 24.4% and 34.7%, respectively. Among all
models, the FNN achieved the highest performance, with R? values of 0.7732
(training) and 0.7502 (testing) for SPAD and 0.8260 and 0.7933 for biomass.
Feature fusion further improved predictive accuracy by 11% for SPAD and 30% for
biomass compared to models based on individual feature types.
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Discussion: These results demonstrate that coupling DRSA-CARS-based feature
selection with deep learning provides a robust, non-destructive approach for
evaluating plant growth status. This framework highlights the potential of
hyperspectral imaging as a rapid, reliable, non-invasive tool for precision

hyperspectral data, time-series phenotypes, vegetation index, textural features,

Wu et al.
cultivation of medicinal herbs.
deep learning
time series .. Hyperspectral data acquisition
sample Fae ’ accelerated growth stage: 166 ’

mature growth stag: 188

SPAD +— screening feature bands (FBs)

above-ground textural features extraction (TFs)

biomass

UOIDUIWIAIAP X3pUY [02160j0ISAYd

nutrient accumulation stage: 154

DRSA-CARS 7'

Feature extraction and selection l

[ vegetation indexes extraction (VIs)

corrected
spectrum

uotbai [0y 1PN

Fot— Mﬂ first derivative
i * —

| E—

GLCM

Construction of feature fusion model

FBs + Vs PLSR .
. prediction| SVR optimai moder ;
Y + X D-matrix 4 FBs model | ENN : L
FBs+ TFs CNN Ve gaa e v Ve e

GRAPHICAL ABSTRACT

1 Introduction

The Nobel Prize awarded to Youyou Tu for the discovery of
artemisinin from the medicinal plant Artemisia annua L. has
reaffirmed the pivotal role of herbal medicine in alleviating
human suffering and driving new drug discovery. In recent years,
the global demand for herbal medicine has increased significantly,
with annual consumption exceeding four million tons (Gao et al.,
2020). To address the shortage of wild resources and the labor-
intensive nature of harvesting, more than 200 species of herbal
plants have been successfully cultivated (Zhang, 2019). Compared
with other botanicals, alpine medicinal plants inhabit high-altitude
environments, leading to harvesting challenges and limited resource
availability (Nagy and G., 2009). Therefore, there is an urgent need
to conduct cultivation trials, particularly for medicinal plants that
grow at high altitudes and are widely used in clinical practice.
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However, numerous challenges remain in cultivation, with the
quality of medicinal materials, such as phenotypic traits, chemical
composition, and clinical efficacy, being a primary concern (Canter
et al., 2005; Hao and Xiao, 2018).

Phenotype is a primary and intuitive indicator for evaluating
the structural and functional characteristics of plants, and it can be
used to identify varieties, assess quality, and monitor growth stages,
among other applications (Feng et al., 2021). Dong et al. (2024)
investigated three varieties of Corydalis yanhusuo collected from
Zhejiang Province to screen for superior provenances based on
phenotypic analyses of flower morphology and rhizome yield. The
formation of drumstick-shaped roots, a distinctive phenotypic trait
of Panax notoginseng, is commonly attributed to saponin
accumulation and has been shown to be closely associated with
carbohydrate metabolism in the plant’s vegetative organs (Zhang
etal., 2022a). Another typical example of phenotypic variation with
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distinct functional implications is the comparison between Ziqin
and Kugin. Zigin is characterized by a compact root interior,
whereas Kuqin exhibits a hollow root structure. Both types are
derived from Scutellaria baicalensis (Sun et al., 2023). Hence, the
phenotype is considered a three-dimensional expression of space,
time, and the interaction between genes and the environment.
Importantly, the phenotype is tightly related to biomass,
particularly in medicinal plants where the aboveground parts are
utilized, an aspect of major concern for cultivators. Therefore,
establishing a fast and real-time method for phenotypic
monitoring is of great significance for quality evaluation and
cultivation of medicinal plants.

Compared with traditional destructive analytical methods,
spectral technology mitigates limitations such as labor intensity
and chemical reagent consumption and has been widely applied to
distinguish origins, processing methods, and adulteration, among
others (Liu et al., 2023; Wu et al, 2018a, b). Hyperspectral imaging
(HSI), in particular, is a non-destructive sensing technology that has
gained popularity for real-time vegetation monitoring (Shakoor
et al.,, 2017). Specifically, HSI can simultaneously capture hundreds
of images across different wavelengths, providing detailed spectral
signatures (Wang et al, 2021). Variations in leaf characteristics
caused by environmental factors or growth stages can be captured
in a timely manner by HSI. Consequently, HST in combination with
computational modeling has been widely used in agriculture to
detect both external and internal quality attributes (Khan et al,
2022). For example, the internal quality of Red Globe grapes has
been successfully estimated based on HSI spectral information and
images collected at various growth stages. The correlation
coefficients of the partial least squares regression (PLSR) model
for the calibration and prediction sets were 0.9775 and 0.9762,
respectively (S. Gao and Xu, 2022a). Additionally, vegetation
indices (VIs) derived from maize at different growth stages using
unmanned aerial vehicles (UAVs) have been used to explore
chlorophyll content variation. The partial least squares (PLS)
model for chlorophyll content prediction, constructed using
optimal spectral variables and VIs, achieved R* values of 0.7530
and 0.682 for the training and validation sets, respectively (Qiao
et al., 2022). The aboveground biomass of spinach crops grown
under two different conditions was predicted using satellite imagery
(Marcone et al., 2024). Despite these advances, HSI data are often
high-dimensional and contain redundant spectral bands, which can
hinder efficient modeling and reduce prediction robustness. This
makes feature selection essential for extracting the most informative
spectral variables for accurate and stable analysis.

Feature selection (FS) is a critical step in HSI to address high
dimensionality, band collinearity, and noise, and retain
discriminative information. FS methods are generally classified
into filter, wrapper, and embedded approaches (Hennessy et al,
2020). Recent HSI studies have explored metaheuristic band
selection schemes, including wild-horse optimizer variants and
multimodal evolutionary strategies for unsupervised selection
(Chen et al,, 2024; Li et al., 2011). These approaches illustrate the
rapid development of FS research. The Reptile Search Algorithm
(RSA) is a swarm-intelligence optimizer inspired by crocodile
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behavior (Abualigah et al., 2022). It alternates between encircling
(exploration) and hunting (exploitation) to balance global and local
search and has demonstrated strong performance on high-
dimensional optimization tasks. Classical RSA can prematurely
converge and lose population diversity when solving complex,
multimodal problems (Wu et al., 2023a). These issues become
more severe in HSI feature selection, where bands are highly
correlated and noisy. Recent studies have introduced improved
RSA variants that add adaptive parameters, hybrid moves, or
mutation to strengthen early exploration, enhance late-stage
exploitation, and maintain diversity, thereby achieving more
stable convergence (Khan et al., 2023). For wavelength selection,
Competitive Adaptive Reweighted Sampling (CARS) combines
Monte Carlo sampling with PLS coefficients to iteratively
eliminate uninformative variables. This process produces
parsimonious models, but its reliance on stochastic resampling
and regression-coefficient paths can make CARS unstable across
runs, sensitive to noise and sample size, and prone to discarding
correlated but complementary bands (Li et al., 2009; Park et al.,
2025). These limitations have led to stability-oriented extensions.
To address these issues, we embed a dynamic RSA (DRSA) into the
CARS framework to stabilize and optimize variable elimination in
noisy, high-dimensional HSI. This approach produces robust and
compact band subsets for real-time phenotyping and biomass
estimation. Collectively, DRSA-CARS combines CARS’s
parsimony with dynamic global search to improve stability
against run-to-run variability and noise, broadening its
applicability to medicinal plant HSI analysis. With these
informative bands identified, integrating HSI with machine
learning (ML) ofters powerful tools for modeling target variables
and enhancing prediction performance.

ML, one of the fastest-growing technical fields, currently forms
the core of artificial intelligence and data science (Jordan and
Mitchell, 2015). ML primarily includes unsupervised learning,
supervised learning, and neural networks (Mahesh, 2020). The
integration of HSI and ML has proven effective in predicting
target variables. However, the suitability of each method depends
on the specific algorithm and the nature of the data problem.
Numerous studies have combined HSI with ML methods to
effectively assess the quality and yield of medicinal plants. HSI
data processed with multiplicative scatter correction and modeled
with Bayesian ridge regression have been used to evaluate flavonoid
content in Ginkgo biloba leaves, achieving an R* value of 0.8700 for
the test set (Lu et al., 2024). This study demonstrates a rapid and
accurate approach for assessing the quality of G. biloba leaves.
Additionally, biomass of Mentha crops was estimated using spectral
data and a multilayer perceptron artificial neural network (ANN)
model, yielding an R value of 0.7620 (Khan et al., 2020). Therefore,
the integration of non-destructive, environmentally friendly, and
rapid spectroscopic techniques with ML provides a promising
approach for evaluating the quality and biomass of cultivated
medicinal plants.

Lamiophlomis rotata (Benth.) Kudo is a perennial medicinal
plant widely distributed across meadows, grasslands, and gravelly
habitats at altitudes ranging from 2,700 to 4,500 m (Ding et al,
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2023). Lamiophlomis rotata has been traditionally used for its
medicinal properties, including the treatment of injuries, relief of
muscle and bone pain, reduction of joint swelling, and management
of conditions such as dysmenorrhea and metrorrhagia (Cui et al.,
2020). In the herbal medicine market, most L. rotata is sourced
from wild populations. Due to increasing demand and
overharvesting, L. rotata has become endangered and is now
classified as a first-class endangered Tibetan medicinal plant (Li
et al,, 2021). Therefore, artificial cultivation is necessary to promote
the survival and sustainable utilization of L. rotata. However,
various environmental uncertainties, such as changes in altitude,
climate variability, and insect infestations, can affect the growth and
development of L. rotata during artificial cultivation. Liu et al.
(2020) found that leaf phenotypes, including length, width, and
thickness, exhibited plasticity along an altitudinal gradient ranging
from 3,000 to 4,600 m. Changes in leaf shape and thickness may
result in altered biomass allocation patterns and metabolic
pathways. In previous studies, destructive analytical methods have
been used to investigate the metabolic responses of wild L. rotata
collected from different altitudes (Ma et al., 2015). However, such
invasive methods are not suitable for real-time evaluation of the
growth status of cultivated L. rotata.

In view of this, the objectives of this study are as follows: 1) to
investigate the temporal phenotypic variations of L. rotata grown at
three different altitudes; 2) to evaluate the potential of an HSI
system to monitor the vegetative growth of cultivated L. rotata with
Soil Plant Analysis Development (SPAD) values and aboveground
biomass as references; 3) to compare the effectiveness of wavelength
selection between the proposed DRSA-CARS method and the
classical CARS on HSI data; and 4) to compare the predictive
performance of regression models based on individual spectral
features and on fused features, including VIs and textural features
(TFs). The ultimate goal is to develop a rapid, non-invasive, and
efficient HIS-based method integrated with deep learning models to
predict vegetation dynamics and aboveground biomass of L. rotata.

TABLE 1 The cultivation and sample information of Lamiophlomis rotata.

10.3389/fpls.2025.1640779

2 Materials and methods

2.1 Experimental materials

In this study, L. rotata materials were collected from Sichuan
Province with three altitude districts, and the detailed information is
summarized in Table 1. The average temperature and humidity were
supervised in real time by the Jingxun yun platform (Weihai Jingxun
Unimpeded Electronic Technology Co., Ltd., Jinan Branch). The
sowing and transplanting experiments of L. rotata were conducted
at the Sichuan Hongyuan Endangered Alpine Medicinal Plants
Breeding Technology Center. To exclude the influence of soil
factors and the interaction among L. rotata plants, one plant was
transplanted into a flowerpot measuring 11cm in height and 9cm in
width on 21 March 2024, and gap filling was conducted on 5 May
2024. Throughout the experiment, the irrigation procedure, fertilizer
schedule, and pest and disease management procedures were
consistently maintained. A total of 720 (240 x 3) L. rotata plants
were randomly selected based on the approximate uniform sizes and
evenly allocated to three altitude districts (Hongyuan County, Qiongxi
Town; Maoxian County, Shaba Town; and Chongzhou City,
Jiguanshan Town) on 26 and 27 May 2024. Qiongxi (QX) and
Shaba (SB) are located in the Aba Tibetan and Qiang Autonomous
Prefecture of Sichuan Province, while Jiguanshan (JGS) is located in
Chongzhou City, Sichuan Province. To consider the potential
variability of feature importance across growth stages, the samples
were collected at three representative time points, corresponding to
early growth, rapid growth, and maturity stages of L. rotata at each
altitude. These time points allow us to investigate whether the
predictive contribution of spectral, textural, and vegetation index
features remains consistent or varies over time. After 1 month of
acclimation to growth conditions, some of the L. rotata samples died
and then the cultivated L. rotata plants were collected from three
separate altitudes, and the detailed sample information is shown in
Table 1. In total, 508 samples were collected for this study.

o . . . Samplin Sample Monthly mean Monthly mean
District  Altitude Longitude Latitude npling P y yr
time amount temperature humidity
June 25th 58 13.01 71.60
iongyxi 102°34/ 32°49’
Qiongxi 3,506 ) July 15th 52 15.54 8430
(QX) 09.1450"E 11.8074'N
August 6th 20 20.86 84.16
June 24th 72 16.35 77.35
103°31" 31°46'
Shaba (SB) 2,560 147936E 8 1124'N July 14th 72 1835 87.69
August 5th 72 22.46 89.14
June 26th 36 1991 69.55
Jiguanshan 103°20’ 30°45'
1,293 ., July 16th 64 2071 78.64
(JGS) 56.1076"E 38.0419'N
August 7th 62 23.54 87.38
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2.2 Data collection of hyperspectral images

In this program, a HY-6010-S NIR-HSI portable push broom
hyperspectral system (Hangzhou Hyperspectral Imaging
Technology Co., Ltd., China) equipped with an imaging
spectrograph was used to collect hyperspectral images of L. rotata
across three periods. This system consists of two 450-W halogen
light sources, and the two lamps were set with the incident angle of
the light source of 45° to provide uniform lighting in the field of
view. The HSI image acquired by this system consists of 300 spectral
bands (bit depth of 12) between 380 and 1,022 nm with a spectral
resolution of 2.8 nm. The distance from the sensor to the samples
was approximately 46cm, resulting in a spatial resolution of 25 um
per pixel, and the optimized frames per second (fps) was set to 5.
After image acquisition, the raw spectra were radiometrically
calibrated to relative reflectance using the HHIT software (version
1.9.1; Hangzhou Hyperspectral Imaging Technology Co., Ltd.,
China). Calibration was performed by subtracting dark-current
noise and normalizing each spectrum to a 20% diffuse reflectance
standard panel (nominal accuracy *+ 2%), thereby reducing
background noise and compensating for instrument response.
Then, the radiation correction hyperspectral data were imported
into ENVI 5.3 software (Research Systems Inc., Boulder, CO, USA)
for further analysis.

2.3 RO selection from hyperspectral
images

With the advancement of image processing, the concept of
region of interest (ROI) gradually emerged in fields such as
computer vision and signal processing to facilitate more efficient
and targeted data analysis. After radiometric calibration, the
hyperspectral data were saved in SPE file format and imported
into ENVT 5.6 software to extract the ROI of the L. rotata manually.
In this study, the ROI was defined by drawing shapes based on the
outline of the plant image. After the extraction of ROI, the mean
spectra and spectral image were extracted, with the former saved as
a data matrix of 300 wavelength bands and the latter saved as a
metadata file HDR for subsequent analysis.

2.4 Measurement of phenotypic data

2.4.1 Measurement of SPAD

The SPAD value is commonly used to estimate the chlorophyll
content in plant leaves (Jiang et al., 2017). The relative index was
used to assess the plant growth status and nitrogen levels. In this
study, a non-destructive handheld chlorophyll meter (Konica
Minolta SPAD-502Plus, Japan) was used to assess the chlorophyll
content of L. rotata. To ensure data reliability, two opposite leaves
were selected to obtain the SPAD value for each sample, and this
data acquisition procedure was carried out at the cultivation site
between 10a.m. and 12 p.m. on the sampling day. Finally, the
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average value calculated from both leaves of each L. rotata plant was
considered the final valid data.

2.4.2 Measurement of biomass

After HSI analysis, all L. rotata plants were removed from the
flowerpots, and the surface soil both in the leaves and roots was
washed off using running water. Subsequently, the L. rotata plants
were separated into above- and belowground tissues, which were
then dried at 60°C in a constant temperature oven (Experimental
Instrument Factory, Shanghai, China) until constant weight was
achieved. Afterward, the biomass of the aboveground tissue was
accurately weighed using an electronic analytical balance (G&G
JJ223BC, America).

2.5 Data processing and analysis

2.5.1 Preprocessing of spectra

To eliminate interference from the environment and equipment,
pretreatment methods such as standard normal variate (SNV),
multiplicative scatter correction (MSC), Savitzky—Golay smoothing
(SG), and first-order derivative (FD) were applied to process the raw
spectra. SNV and MSC are commonly used to correct spectral errors
caused by scattering among samples (Wu et al.,, 2018a). SG can preserve
the details of the spectral signal by fitting it with a polynomial (Wu et al,,
2018b). A derivative is usually employed to enhance the resolution and
amplify the difference in the spectral signal, which has been mainly used
for extracting fine structure features of HSI (Liu and Han, 2017). In this
part, the best spectra preprocessing methods were evaluated by a PLSR
model with a fixed parameter of components of 5 and a ratio of 7:2:1 of
the training, validation, and test sets.

2.5.2 Selection of feature wavelengths

The preprocessed spectral data matrix contains comprehensive
information derived from HSI. Therefore, it is essential to apply
effective feature selection techniques to reduce data redundancy and
computational complexity. In particular, identifying the most
informative wavelengths facilitates a clearer understanding of
their contributions to model performance and enhances the
explainability of spectral-based predictions. In this study, a widely
applied technique in the field of feature band selection of the CARS
algorithm was adopted as the primary method for selecting optimal
feature bands associated with SPAD and aboveground biomass (Li
etal., 2014; Su et al,, 2021). Specifically, CARS selects features based
on the absolute values of the regression coefficients in a PLS model
and iteratively eliminates variables with lower contributions. The
subset yielding the minimum root mean square error of cross-
validation (RMSECYV) is retained as the optimal band combination
(Su et al, 2021; Yao et al., 2021; Zhang et al.,, 2021). However,
despite its effectiveness in reducing data dimensionality, the
classical CARS algorithm exhibits limitations in selecting the
proper number of selected wavelengths. It focuses on maximizing
prediction performance, but often overlooks the redundancy or
multicollinearity among selected wavelengths.
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The dynamic behavior-based reptile search algorithm for feature
selection.

To overcome the limitations of classical CARS, an improved
variable selection strategy based on the RSA was proposed, termed
DRSA. Compared to the original RSA, DRSA introduces three key
strategies: dynamic exploration probability decay, exploration
strength modulation, and randomized behavior switching.

(1) Exponential decay of exploration probability.

To smoothly transition from global exploration to local
exploitation, DRSA applies an exponential decay function to
control the probability of exploration behavior:

At
Pexplore(t) = eTmox

where A is a decay rate parameter, t is the current iteration, and
Tomax is the total number of iterations. This design allows DRSA to
perform global search in early iterations and switch to local fine-
tuning in later stages.

(2) Exploration strength modulation.

A dynamic disturbance factor ES is introduced in the belly-
walking behavior to enhance population diversity:

ES=2xrx(1-——

max

)r€4{-1, 0, 1}
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This factor is used to perturb individuals in the search space
when simulating the belly-walking action:

i j(£+ 1) = Best;(t) x x,;(t) x ES x rand)()

(3) Behavior-based position update mechanism.

Each iteration randomly selects one of four reptilian behaviors
for each individual and dimension:

High walking:

x;, j(t + 1) = Best;(t) = 1;; X B~ R;; X rand()
Belly walking:

x; j(t +1) = Best;(t) x x,; x ES x rand()
Coordination hunting:

x; j(t + 1) = Bestj(t) x P; ; x rand()

Cooperation hunting:

x; j(t+1) = Best;(t) = 1; ; X €= R, ; X rand()
where
Best; — x,;
BT Best; + €
x;; — mean(x;)

P.=o+
v Best; x (UB; - LB;) + €

ni,j :Bestj X PI,]

This strategy enables DRSA to flexibly alternate between
exploration and exploitation while preserving a balance between
convergence accuracy and global search ability. The structures of
this modified algorithm are illustrated in Figure 1. Compared with
other RSA variants that rely on chaotic maps or simulated
annealing (Abualigah et al., 2022; Elgamal et al,, 2022; Khan
et al,, 2023), the DRSA-CARS adopts a behavior-driven strategy
that is both adaptive and computationally efficient. This design
helps the algorithm avoid local optima and remain stable during
convergence. In the modified CARS framework, the DRSA-CARS
module selects the optimal variable subset by minimizing the
RMSECV of the PLS model. The selected bands from both
methods were used to establish PLSR models with fixed
parameters. The one exhibiting superior predictive performance
was selected for subsequent analysis and modeling.

2.5.3 Selection of spectral vegetation index

The relationship between chlorophyll content and VIs, widely
regarded as a non-destructive and high-throughput method, has
been extensively discussed in the context of precision agriculture for
monitoring photosynthetic capacity and growth status (Bannari
2024). VIs, which combine
reflectance information from the visible and infrared regions to

et al., 1995; Kandpal and Kumar,

extract biophysically meaningful indicators from HSI, are designed
to maximize sensitivity to target traits while minimizing
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TABLE 2 The vegetation indices utilized in this study.

10.3389/fpls.2025.1640779

Vegetation index Formula Illustration References
Chlorophyll index with green NIRg;, Is used to assess the overall health of Qiao et al.
(CI green) Cl green = Gosg -1 vegetation (2022)
Chlorophyll index red edge (CI NIRg;, Tracks the chlorophyll content changes for Qiao et al.
rededge) Cl rededge = REG; -1 monitoring plant health and growth (2022)
. Sensitivity to low vegetation saturation and is .
Enhanced vegetation index 2.57(NIRgy; —Ry56) Lo i Qiao et al.
EVI) EVI = i S 72 WL used for analysis in high vegetation cover (2022)
( NIRg75+6iiRyz6—7.50Byg +1 areas
Modified simple ratio with red NIRg;) Estimates the photosynthetic efficiency of Wu et al.
REGy5-1 . .
edge (MSRREG) MSRREG = TR vegetation to monitor growth status (2023b)
REG i1
Normalized difference red edge NDRE - NIRg;, — REGs0 Is used for assessing plant nitrogen content Qiao et al.
(NDRE) " NIRg, + REG», and chlorophyll (2022)
O f th t tation indi
Normalized difference NIR.. — R ne ,O ¢ mos confmﬁ)n vegeta ‘C,m fndices Qiao et al.
ion index (NDVI) NDVI = 871 — 1720 and is used for monitoring vegetation growth (2022)
vegetation index NIRg;; + Ry status
Optimized soil-adjusted .
Red the infl f soil back d ao et al.
vegetation index with red edge  OSAVIREG =(1 + 0.16)(NIRgs; —REGy,6)(NIRgy3 -+ REGyog +0.16) | oo (e INTence of sobl backgroun Qiao et a
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interference from non-target factors. In this study, the predictive
power of VIs for plant growth status and phenotypes such as SPAD
was not only supported by statistical performance but also rooted in
physiological principles. The red edge (680-750 nm) and near-
infrared (750-1,000 nm) spectral regions are particularly sensitive
to chlorophyll concentration and internal leaf structure,
respectively. VIs, such as the chlorophyll index red edge (CI
rededge) and the normalized difference red edge index (NDRE),
leverage these spectral regions to capture photosynthetic activity,
thereby exhibiting strong correlations with SPAD values. Similarly,
the green spectral region (540-560 nm), commonly used in the
chlorophyll index with green (CI green), provides complementary
information related to leaf pigments and enhances the sensitivity of
VIs to chlorophyll dynamics. Therefore, chlorophyll-sensitive VIs,
including CI green, CI rededge, NDRE, and modified simple ratio
with red edge (MSRREG), were selected based on their
physiological relevance and strong correlations with chlorophyll
content (Qiao et al., 2022). In addition, classical VIs, including the
normalized difference vegetation index (NDVI), enhanced
vegetation index (EVI), optimized soil-adjusted vegetation index
with red edge (OSAVIREG), and red difference vegetation index
with red edge (RDVIREG), were incorporated to capture broader
plant growth and physiological status (Qiao et al., 2022). Hence,
eight VIs were selected to evaluate the relative chlorophyll content
to assess the growth status of L. rotata, and the detailed VI
calculation formulae are presented in Table 2. To determine the
optimal band combination for VI calculation, all possible pairs
among the red edge (680-750 nm), near-infrared (700-1,000 nm),
and green (540-560 nm) bands were systematically evaluated. The
pair that yielded the highest Pearson correlation coefficient with
SPAD values was selected for each index.
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2.5.4 Selection of textural features

In visible and infrared wavelength remotely sensed images, texture
has provided information on independent spectral reflectance values
and can improve the model accuracy (Hall-Beyer, 2017). In the HSI,
texture features extracted from the spectrum image can capture the
spatial variability of object surface information by combining spectral
information with spatial structure, which has been widely employed to
measure weight (Saif et al,, 2023). The pixel’s gray value and its spatial
relationship with neighboring pixels can be used to capture the local
texture characteristics of the image (Wan et al., 2023). The gray-level
co-occurrence matrix (GLCM) proved to be the most effective metric
for assessing biomass and has been widely used to extract texture
features (Kelsey and Neff, 2014; Zheng et al, 2019). Traditionally,
texture features were extracted from each individual spectral band and
resulted in high computational cost and substantial redundant
information due to strong interband correlation. In this study,
principal component analysis (PCA) was first applied to reduce
dimensionality to extract representative texture features from
hyperspectral images. Then, the first three principal components
(PCs), accounting for the representative bands with the highest
contribution to spectral variation, were reconstructed into spatial
images. For each PC, the spectral band with the highest absolute
loading weight was selected as the most representative band for texture
extraction. This texture feature extraction method based on PCA not
only reduces computational burden and minimizes redundant
information but also retains essential spatial variation relevant to
plant phenotypes. From each selected band image, four statistical
texture features, including mean (MEA), contrast (CON), dissimilarity
(DIS), and entropy (ENT), were calculated based on the GLCM
method following the formulation proposed by Hall-Beyer (2017).
The above textural features quantitatively describe the spatial
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Phenotypic characteristics of Lamiophlomis rotata observed across three altitudes and three sampling periods.

arrangement of pixel intensities. Particularly, CON and DIS represent
spatial variation and edge sharpness, ENT quantifies the randomness
and complexity of the pixel arrangement, and MEA captures the
average pixel intensity within the region of interest. Therefore, the
aforementioned textural features are closely associated with plant
architectural characteristics such as canopy complexity and leaf
arrangement. Consequently, they serve as useful indicators of plant
vigor and aboveground biomass. The extracted features were then
used for subsequent model development.

2.5.5 Model development and evaluation

In this study, classical supervised learning of PLSR and support
vector regression (SVR) and neural networks of feedforward neural
network (FNN) and convolutional neural network (CNN) were
used to establish the prediction model to assess the SPAD and
aboveground biomass of L. rotata, respectively. PLSR is the most
prevalent method for establishing data matrices of X and Y through
a linear multivariate model (Wold et al., 2001). SVR, a
representative of supervised machine learning, aims to make
sample points closely approximate the regression hyperplane as
much as possible to handle regression problems (Zhang and
O’Donnell, 2019). Both methods were extensively applied to the
quality of herbal medicine (Li et al, 2023). Deep learning
algorithms, renowned for their exceptional self-learning
capabilities, are especially adept at processing high-dimensional
spectral data, thereby enhancing prediction accuracy (Wang et al.,
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2023). Among deep learning models, the FNN, commonly used
with the backpropagation learning algorithm, has been effectively
utilized in various domains, including pattern classification,
clustering, and regression (Shaik et al., 2020). Furthermore, CNN
is particularly favored for evaluating traditional Chinese medicine
by simultaneously performing multiple non-linear processing tasks
to achieve a globally optimal prediction of the target variables
(Wang et al., 2024). Therefore, the integration of DL and HSI
should be further investigated to explore its potential as a non-
destructive technique for estimating plant phenotypes and
expanding the application of HSI in analysis.

The preprocessed data matrix was used to establish the PLSR,
SVR, ENN, and CNN models based on their characteristic bands or
selected features. In order to evaluate the generalization ability of
the models, the data matrix was divided into training, validation,
and test sets with a ratio of 7:2:1 by the function “cvpartition.” To
comprehensively evaluate the performance of the prediction
models, several statistical metrics were employed, including the
coefficient of determination (R?), root mean square error (RMSE),
and residual prediction deviation (RPD). R> was used to assess the
proportion of variance in the observed data that can be explained by
the model, with higher values indicating a better model fit. RMSE
was calculated to quantify the average magnitude of prediction
errors, with lower values indicating better predictive accuracy.
Additionally, RPD, defined as the ratio of the standard deviation
of the measured values to the RMSE, was adopted to assess the
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The range of reference values of SPAD and aboveground biomass.
robustness and generalizability of the models. An RPD value 3 Resylts

between 1.5 and 2 was considered acceptable, and a value greater
than 2 generally indicated a model with strong predictive ability.
The above evaluation criteria were applied to the training,
validation, and test datasets for each model, enabling a
comprehensive comparison of the predictive performance among
the PLSR, SVR, FNN, and CNN models. During data processing,
MATLAB R2023b (MathWorks, Inc., USA) was used to establish
the PLSR, SVR, FNN, and CNN models, and statistical data were
calculated by GraphPad Prism version 8.3.0 (GraphPad Software
Inc., San Diego, CA, USA).

3.1 Statistical analysis of phenotypic
characteristics

The phenotypic characteristics of L. rotata are illustrated in
Figure 2. Variations in leaf morphology among samples from QX,
SB, and JGS are presented in the upper panel of the figure. Whole-
plant images highlighted phenotypic differences associated with
altitude. Lamiophlomis rotata grown at the high-altitude site QX
exhibited a smaller overall size compared to those from SB and JGS.
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TABLE 3 The preprocessing method results for HSI based on the PLSR model.

Preprocessing methods Quiality attributes R? RMSE R? RMSECV R?P RMSEP
SPAD 0.5291 5.8130 0.6334 6.4327 0.6601 5.6906
SNV
Aboveground biomass 0.3440 0.1503 0.2893 0.1493 0.2832 0.2298
SPAD 0.5291 6.4327 0.6334 5.8130 0.6601 5.6906
MSC
Aboveground biomass 0.3440 0.1493 0.2893 0.1503 0.2832 0.2298
SPAD 0.4898 6.6959 0.5409 6.3774 0.5524 6.4811
SG
Aboveground biomass 0.4341 0.1387 0.4389 0.1337 0.4562 0.2083
SPAD 0.6018 5.9154 0.6339 5.7490 0.6890 5.5899
FD
Aboveground biomass 0.4810 0.1328 0.3402 0.1465 0.4119 0.2101

Bold values indicate the best performance values for each quality attribute (SPAD or Aboveground biomass) among the compared preprocessing methods.

Notably, SB and JGS showed comparable growth performance.
Scanned images of opposite leaves from all three sites (QX, SB,
and JGS) at three growth stages are displayed in the lower panel of
Figure 2. Over the growing season, all L. rotata samples displayed a
progressive darkening of leaf color. Notably, the leaves from QX
consistently exhibited the smallest area among all sites.

Furthermore, statistical analysis was conducted to quantify
differences in SPAD values and aboveground biomass. Figure 3
summarizes the relevant parameters: SPAD values are shown on the
left, while aboveground dry weights are presented on the right.
SPAD values were the highest in samples from QX, followed by SB,
and the lowest in JGS. Temporal fluctuations in SPAD values are
attributed to differences in sampling times. Plants from QX
maintained low and relatively stable aboveground biomass
throughout the growing season. In contrast, plants from SB and
JGS exhibited significantly higher and gradually increasing biomass
over time. These morphological trends suggest that phenotypic
plasticity may facilitate acclimation to lower-altitude environments.
Therefore, the development of a rapid, non-destructive model for
quality assessment is crucial to support the successful introduction
and cultivation of L. rotata.

3.2 Raw and preprocessed spectral profile

The spectral reflectance of all L. rotata samples was recorded
across the 384~1,022-nm range, as shown in Figure 4. The raw
spectral curves exhibited similar overall trends and shapes.
However, reflectance differences were observed among the
samples from the three altitudes at the same time point. The
spectral curves from QX exhibited a narrower distribution range
compared to those from SB and JGS. Specifically, reflectance values
for L. rotata from QX were concentrated between 0.20 and 0.55. In
contrast, the values from SB and JGS ranged from 0.25 to 0.60. The
spectral curves from QX, SB, and JGS also displayed distinct
absorption characteristics.

Therefore, in-depth spectral analysis is essential for the accurate
assessment of plant growth status and biomass. To improve spectral
interpretability and model performance, four preprocessing
techniques, namely, SNV, MSC, SG, and FD, were applied to the
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raw spectra. As shown in Table 3, the FD method yields the best
predictive performance, achieving the highest coefficient of
determination (R?) and the lowest root mean square error
(RMSE) for both SPAD and aboveground biomass. Based on
these results, the FD preprocessed spectral data were selected for
the subsequent modeling.

3.3 Characteristic wavelength analysis

Based on the preprocessed hyperspectral data matrix, both the
classical CARS and the improved DRSA-CARS methods were
employed to identify informative spectral bands for predicting
SPAD values and aboveground biomass. These feature selection
approaches aim to reduce data redundancy while retaining key
variables associated with the target traits. In the classical CARS
method, feature weights are iteratively updated over 200 sampling
runs. Important variables are selected based on their contributions
to the PLS model, with the number of principal components
constrained to a maximum of 10. The optimal subset is
determined according to the lowest RMSECV. Supplementary
Figure SI illustrates the variable selection process and results. For
characteristic wavelength selection in SPAD, the lowest RMSECV
was observed at the ninth iteration, resulting in 140 selected
variables. Similarly, the optimal subset for aboveground biomass
was identified at the 18th iteration and yields 106 variables. After

TABLE 4 The feature extraction results of the CARS and DRSA-CARS
methods.

Feature extraction Number of
methods selected features
CARS (SPAD) 6.9894 | 0.4632 140

A
CARS (aboveground 01626 | 03347 106
biomass)
DRSA_CARS (SPAD) 62113 | 0.5761 34
DRSA_CAR
SA_CARS 0.1478 0.4502 75

(aboveground biomass)

Bold values indicate the best performance values for each quality attribute (SPAD or
Aboveground biomass) among the compared feature extraction methods.
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The feature wavelength selected by CARS and DRSA-CARS.

eliminating duplicate indices, the final number of selected variables
is shown in Table 4.

The CARS method was further integrated with DRSA to form
the DRSA-CARS framework, which aims to enhance global search
capability and stabilize feature selection. In this approach, the
number of variables is adaptively adjusted, and dynamic
behavioral strategies are employed during the search process
(Supplementary Figure S2). As a result, 34 bands were selected
for SPAD prediction and 75 for aboveground biomass (Table 4).
Figure 5 displays the spectral distribution of feature wavelengths
selected by CARS and DRSA-CARS for both traits. Each point
represents a selected wavelength. Their horizontal positions
corresponded to specific wavelengths in the hyperspectral range
of 380-1,020 nm. For both prediction tasks, fewer but more
concentrated wavelengths were selected by the DRSA-CARS
method compared to classical CARS. Specifically, a large number
of bands selected by the CARS were broadly distributed across the
visible and near-infrared (NIR) regions. In contrast, the DRSA-
CARS variants yielded more compact subsets. These selected
wavelengths were evenly distributed, with clearer clustering
patterns, particularly in vegetation-sensitive regions such as 550-
750 nm and 900-1,000 nm. These regions were associated with
chlorophyll absorption and red-edge effects, suggesting that the
DRSA-CARS method can better capture physiologically relevant
spectral features. Overall, the visualization indicated that feature
dimensionality was reduced and biological interpretability was
enhanced by DRSA-CARS through its focus on informative
spectral intervals. Hence, the feature wavelengths selected by the
DRSA-CARS method were used for the following analysis.
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3.4 Calculation of vegetation index

To enhance the physiological relevance and predictive power of
VIs, multiple red-edge and near-infrared band combinations were
explored. The final selected indices were constructed based on
optimized wavelengths, particularly centered around NIRg;;—g;3 nm
and REG;;3-7,; nm, which lie within the key spectral domains
associated with chlorophyll absorption, red-edge transition, and
canopy structure sensitivity (Table 2). Notably, indices such as
NDRE, NDVI, and RDVIREG utilized NIRg,, or NIRgy; in
combination with REG;50—7,7, which corresponds to the classical
red-edge inflection zone. This region is known for its high
sensitivity to chlorophyll concentration and photosynthetic activity,
supporting its effectiveness in SPAD prediction. Moreover, NDRE and
RDVIREG leveraged the contrast between NIR and red-edge
reflectance to enhance the detection of subtle differences in leaf
pigment levels, particularly under varying environmental stress
conditions. In addition, indices such as EVI and OSAVIREG
integrated both blue (Byso) and red-edge (REG;,s) components,
thereby not only capturing pigment content but also reducing soil
background and atmospheric noise. Compared to traditional
broadband indices, these indices showed correspondence to regions
with well-documented links to plant biochemical and structural traits.
These results supported the fact that integration of red-edge NIR-
sensitive VIs with statistically optimized features may enable a robust
and biologically meaningful prediction framework for chlorophyll-
related traits in L. rotata. Therefore, the optimized VIs combined with
the DRSA-CARS selected spectral bands were integrated into a new
feature set for SPAD prediction in subsequent analysis.
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The textural feature extraction results (take sample no. 1 as an example).

TABLE 5 SPAD prediction results based on the characteristic bands and the fusion of vegetation indices.

Models R? RMSE R* RMSECV R?® RMSEP RPD

PLSR characteristic band 0.6377 56.5985 0.6847 58.3853 0.6339 57.0362 0.1731
SVR characteristic band 0.6306 5.6402 0.7249 5.2756 0.6113 5.2263 1.6203
FNN characteristic band 0.6798 5.5000 0.6820 5.1654 0.6433 5.6243 1.5881
CNN characteristic band 0.6675 5.1877 0.5166 6.9849 0.6235 6.3991 1.6462
PLSR fusion vegetation index 0.6642 56.5970 0.6647 58.3787 0.6470 57.0201 0.1731
SVR fusion vegetation index 0.6877 5.0828 0.6758 5.9041 0.6810 5.1810 1.7885
FNN fusion vegetation index 0.7732 4.4426 0.4622 7.4471 0.7502 4.5284 1.9571
CNN fusion vegetation index 0.6766 5.2479 0.5914 6.1831 0.7040 5.2910 1.8565

Bold values indicate the best values within each column for comparison.
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3.5 Extraction of textural features

The GLCM can be applied to extract texture information across
the hyperspectral image. However, a large amount of redundant
spectral information may be included when extracting texture
features from all bands. To minimize the influence of irrelevant
information, PCA was applied to the images from selected regions
of interest for dimensionality reduction. The cumulative
contribution of the first three principal components (PCs) was
calculated to evaluate the proportion of total variance explained in
the data. The wavelengths with the highest contributions to each
principal component were identified based on the component
loading coefficients. Figure 6 displays the textural feature
extraction results of sample no. 1. The cumulative contribution of
the first three PCs reached 98.43%. The redundancy of texture
features was significantly reduced after dimensionality reduction. In
the images corresponding to the first three PCs, the leaf vein
structure of L. rotata was clearly visible, enabling the
identification of effective wavelengths (Figure 6). The bottom half
of Figure 6 shows the coefficient distribution for the first three PCs.
The wavelength image corresponding to the maximum coefficient
in each PC was selected as the effective wavelength image. In this
analysis, the wavebands at 779 nm, 738 nm, and 768 nm were
selected as effective wavelengths and were subsequently used for

10.3389/fpls.2025.1640779

texture feature extraction. Texture features extracted from each
principal component were compiled into a new feature vector.
Specifically, four GLCM-based texture features were extracted from
each PC, resulting in a total of 12 features (4 features x 3 PCs) per
sample. The extracted texture feature vectors were then combined
with the characteristic wavelengths identified by the DRSA-CARS
algorithm. This newly fused data matrix was used to develop the
prediction model for aboveground biomass.

3.6 Construction of the SPAD prediction
models

In this process, the predictive performances of the four models,
namely, PLSR, SVR, FNN, and CNN, were evaluated based on the
single characteristic and the combination of vegetation index
features. The single characteristic data matrix rows x columns
were (508 x 34), and the fused data matrix rows x columns were
(508 x 42). Both datasets were used to establish the SPAD
prediction models before normalization. The performances of the
prediction models based on the single and combined spectral and
vegetation index information for SPAD estimation are presented in
Table 5, with the corresponding model parameters summarized in
Supplementary Table SI. In the prediction model established with
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Prediction results of SPAD based on the PLSR, SVR, FNN, and CNN models.
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features screened by the RSA-CARS method, the R? value of the
training, verification, and test sets was approximately 0.65, among
which the FNN model R* value shown in the test set was 0.6433 and
had the best performance (Table 5). Compared with the single-
feature established model, the model established with the dataset
integrated with feature wavelength and vegetation index, the
prediction performance of PLSR, SVR, FNN, and CNN models
had improved. The R*? of the test set was improved by 1.3%, 7.0%,
10.7%, and 8.1%, respectively (Table 5). In the FNN model, the
coefficients of determination were 0.7732 for the training set and
0.7502 for the test set, and the RPD was 1.9571, indicating good
predictive performance for SPAD and reliable model predictions. In
a previous study, an RPD of approximately 1.95 for SPAD similarly
indicated that hyperspectral models can provide reliable, non-
destructive estimates of leaf chlorophyll status (Riefolo and
D’Andrea, 2024). Therefore, the RPD value of 1.9571 may not
fully replace high-precision laboratory measurements. However, it
shows that this model is useful for field applications, especially for
comparative monitoring and tracking growth over time, where non-
destructive assessment is important. Figure 7 displays the prediction
model results based on fusion features and vegetation index. The
scatter plots between the measured and predicted values for the
training set and the test set samples of the PLSR, SVR, FNN, and
CNN models were built through the fusion of spectral and
vegetation indices. The data in the training and test sets were
relatively concentrated, especially for the FNN model, indicating
that this model had a better detection effect. It can be seen that the
combination of hyperspectral band information and vegetation
index can improve the performance of the model.

3.7 Construction of aboveground biomass
prediction models

For the estimation of aboveground biomass, the model established
by fusion features exhibited a better performance. Table 6 shows the
prediction model results, and the corresponding model parameters are
provided in Supplementary Table S2. Specifically, in the single spectral
model, built by 75 feature bands, the R? values of the training and test
sets were approximately 0.5, and the RPD values were less than 1.5,

10.3389/fpls.2025.1640779

implying the poor performance of these prediction models. The R
value of the training, validation, and test sets of the FNN model
showed better performance than other models. Compared with the
single spectra model results, the predictive performance of the model
established by the fusion data was significantly improved. The R* of
the test set improved by 7.6%, 13.9%, 30.0%, and 22.7% in PLSR, SVR,
ANN, and CNN, respectively (Table 6). Furthermore, the RMSEP and
RPD values were 0.08 and 2.2, respectively, suggesting a reliable
prediction performance of this model. Figure 8 shows the
relationships between aboveground biomass measured and
estimated from the regression models established. In the fusion data
model, the indices obtained from the FNN model were relatively close
compared to those from the PLSR, SVR, and CNN models, suggesting
that the FNN model had a reliable and accurate estimation.

4 Discussion

4.1 Phenotypic plasticity across altitude
and growth state

The whole-plant images revealed phenotypic differences across the
altitudes. QX plants were smaller than those from SB and JGS,
suggesting that L. rotata cultivated at high altitudes faced significant
environmental stress, such as cool temperature (Table 1), which may
result in small and thick leaves. In contrast, L. rotata cultivated in SB
and JGS showed better growth. Lamiophlomis rotata picked from SB
and JGS consistently had the largest leaves. This suggests that both
altitudes provided more favorable growing conditions than QX,
leading to improved growth and development. Additionally, lower
altitudes were associated with a significant increase in leaf length,
indicating altitude-related plasticity in leaf development. Previous
research has demonstrated that leaf morphology is regulated by
environmental factors such as temperature and irradiance and that
high-altitude conditions tend to restrict leaf expansion due to cold and
UV stress (Wu et al., 2024).

The observed fluctuations in SPAD values across different
sampling times suggested seasonal changes in chlorophyll
concentration and photosynthetic capacity in L. rotata.
Lamiophlomis rotata from QX always exhibited the darkest green

TABLE 6 Aboveground biomass prediction results based on the characteristic bands and the fusion of textural features.

Models R? RMSE R RMSECV R?® RMSEP RPD
PLSR characteristic band 0.6171 0.7402 0.3607 0.8141 0.6004 0.7286 0.2119
SVR characteristic band 0.4930 0.1400 0.4473 0.1464 0.4671 0.1103 1.3837
FNN characteristic band 0.5074 0.1363 0.6052 0.1319 0.4937 0.1642 1.3815
CNN characteristic band 0.5465 0.1294 0.4432 0.1417 0.4098 0.1566 1.3149
PLSR fusion textural features 0.7640 0.0895 0.5866 0.1156 0.6765 0.1572 1.7139
SVR fusion textural features 0.7018 0.1074 0.6510 0.1163 0.6065 0.0948 1.6104
FNN fusion textural features 0.8260 0.0831 0.8101 0.0904 0.7933 0.0819 2.1991
CNN fusion textural features 0.6272 0.1175 0.6259 0.1121 0.6367 0.1288 1.6760
Bold values indicate the best values within each column for comparison.
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Prediction results of aboveground biomass based on the PLSR, SVR, FNN, and CNN models.

leaves. This observation may be explained by stronger UV radiation at
higher altitudes, which is known to promote the synthesis of
photosynthetic pigments as a protective response to oxidative stress
(Ren et al., 2010). Notably, the phenotypic differences observed in leaf
coloration and morphology were consistent with the statistical
patterns. SB plants showed moderate leaf color and stable SPAD
values, while JGS plants had the lightest leaf color, likely indicating
lower SPAD values and photosynthetic efficiency. These SPAD
variations suggested varying levels of physiological adaptation to
local environments, and elevation played a significant role in
shaping the phenotypic diversity of L. rotata.

Similarly, the biomass of QX remained low and relatively stable
from June to August, indicating limited vegetative growth
throughout the season. In contrast, L. rotata from SB and JGS
displayed significantly higher aboveground biomass. In both sites,
biomass showed a general increasing trend from June to August.
Lamiophlomis rotata cultivated in SB reached the highest biomass
values by August, suggesting that these environmental conditions
were more favorable for biomass accumulation. The statistical
patterns of biomass accumulation aligned well with the
phenotypic differences previously observed in plant stature, and
these results indicated that elevation plays a significant role in
shaping the phenotypic diversity of L. rotata. The morphological
and physiological observations above suggested that phenotypic
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plasticity has occurred during acclimation to a lower altitude.
However, we did not quantify the relationship between
pharmacopeial marker compounds and medicinal quality, nor did
we characterize the metabolic and molecular changes associated
with phenotypic plasticity in L. rotata. Therefore, future work
should integrate phytochemical profiling with molecular analyses.
This approach will quantify links between pharmacopeia markers
and bioactivity and elucidate the physiological and molecular
mechanisms underlying altitude acclimation in L. rotata.

4.2 Spectral feature selection and
characterization

The spectral signature of plants contained extensive details that
reflected their growth status (Rehman et al., 2020). The observed
differences in spectral reflectance across altitudes suggested that HSI
was an effective tool for monitoring the growth condition of L.
rotata in real time. The superior performance of the FD
preprocessed spectra was likely attributed to its ability to capture
reflectance slopes and amplify subtle spectral variations (Hou et al.,
2024). In particular, the spectral region from 680 to 700 nm, which
showed enhanced separability under FD processing, corresponded
to the red-edge absorption domain associated with chlorophyll
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content. This region included a characteristic absorption peak near
680 nm (Xiao et al., 2022). This peak aligned with the measured
differences in SPAD values among samples collected from different
altitudes. Therefore, an appropriate preprocessing method used in
HSI data was considered valuable for improving not only prediction
accuracy but also their biological interpretability. This finding
supported the application of HSI in plant growth assessment and
biomass estimation.

Genetic algorithms and the Least Absolute Shrinkage and
Selection Operator (LASSO) are two commonly used feature
selection methods. The former explores the combinatorial search
space stochastically but often requires substantial computation,
while the latter provides efficient linear shrinkage but may yield
biased coefficient estimates. In contrast, DRSA-CARS combines
rule-based attribute reduction with adaptive sampling, enabling
efficient spectral dimensionality reduction and the selection of
informative wavelengths closely associated with plant physiological
traits. These characteristic bands were primarily located in regions
known for red-edge transition and near-infrared reflection, which are
highly responsive to chlorophyll content, leaf structure, and biomass
accumulation (Zhang et al., 2022b). Compared with traditional
wavelength selection methods, the use of DRSA ensured global
optimization and minimized redundancy, thereby increasing the
speed and efficiency of feature selection (Khan et al., 2023). While
DRSA improves search efficiency, its performance in extremely high-
dimensional or noisy environments may be suboptimal, suggesting the
need for adaptive mechanisms to further enhance its exploration and
exploitation balance.

The VIs in this study were constructed by making full use of
red-edge and near-infrared band combinations to enhance
physiological relevance. Optimized indices such as NDRE,
RDVIREG, and OSAVIREG could capture chlorophyll-related
variation by leveraging reflectance differences in pigment-sensitive
regions (Zhang et al., 2022c). Some selected bands (e.g., REG726
and REG727) were not included in the DRSA-CARS result.
However, the strong physiological significance was supported by
existing knowledge of chlorophyll absorption and red-edge
positioning. The combination of biologically relevant VIs and
statistically selected wavelengths provided a solid foundation
for modeling.

In addition to spectral features, textural information extracted
from hyperspectral images contributed meaningfully to biomass
prediction. In this study, PCA was applied to reduce redundancy in
the GLCM texture features extracted from each spectral band. The
principal components with the highest variance explained were used
to identify representative wavelength images, from which texture
features were calculated. This approach retained structural patterns
such as leaf veins while avoiding information overload, allowing the
model to capture canopy-level spatial heterogeneity (Fan et al., 2024).
However, the use of PCA for dimensionality reduction prior to texture
extraction may lead to the loss of spatial detail or distortion of original
image features. To address this limitation, future studies could explore
3D texture analysis methods to jointly preserve spectral and spatial
integrity to achieve a better balance between interpretability and
computational efficiency.
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4.3 Integrative strategy for predicting the
target variable

In this study, spectral, VIs, and texture features were combined
within a unified modeling framework to predict SPAD and
aboveground biomass. As anticipated, deep learning models
outperformed traditional machine learning algorithms, reflecting
their capacity to capture complex non-linear relationships from
diverse input features. Among the deep learning models, the FNN
consistently delivered the highest predictive accuracy for both traits,
outperforming the CNN. This outcome was closely associated with the
nature of the input data. Instead of employing spectral imagery, the
models were provided with feature vectors that had undergone
extensive preprocessing. These vectors were derived from mean
spectra, first-derivative spectra, selected wavelengths, VIs, and
GLCM texture metrics, which together substantially altered the
original spatial dependencies. Although the preprocessing effectively
isolated informative variables and reduced dimensionality, it
inevitably removed the majority of pixel-level spatial dependencies
(Zhao et al., 2025). However, CNN architectures relied on local spatial
correlations to learn hierarchical representations. The loss of this
spatial context in our data substantially diminished their performance
advantage (Paoletti et al., 2019). In contrast, the FNN was well suited
to compact, high-dimensional tabular inputs, effectively capturing
non-linear patterns without relying on spatial neighborhood
information. This contrast likely reflected both the FNN’s
compatibility with the structured multi-source features and the
reduced spatial context that constrained CNN performance,
underscoring the importance of tailoring model architecture to the
feature characteristics in hyperspectral trait prediction.

Interestingly, the prediction models developed with feature
fusion improved the accuracy for SPAD and aboveground
biomass by 11% and 30%, respectively. For SPAD, the prediction
model integrated selected spectral bands with VIs that
predominantly characterized leaf spectral properties, which may
account for the relatively limited performance gain from feature
fusion. In contrast, the biomass prediction model combined
selected spectral bands with texture features extracted to capture
spatial structural information. Texture features characterized
canopy structural attributes, such as leaf arrangement, coverage,
and gap distribution, that were directly associated with
aboveground biomass (Dhakal et al, 2023). This relationship
likely explains the greater performance improvement observed
after fusion. While the fused feature model demonstrated
promising performance, the relative importance of different
feature types was treated as temporally static. However, plant
phenotypic and physiological traits undergo dynamic changes
across developmental stages, which can alter the predictive
relevance of different hyperspectral features (Aasen et al., 2018).
For instance, spectral reflectance tends to be more sensitive to
pigment changes during early vegetative growth, while VIs often
correlate more strongly with biomass accumulation and senescence
traits in later stages. Overall, although the feasibility of fused feature
modeling was confirmed in this study, the lack of temporal
adaptation in feature contribution may limit its scalability. In
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future work, stage-aware modeling schemes should be incorporated
to exploit the evolving predictive value of different hyperspectral
feature domains.

In this study, hyperspectral data of L. rotata were acquired
under controlled indoor conditions and combined with machine
learning methods to establish a baseline framework for estimating
SPAD and aboveground biomass. However, illumination variability
and complex terrain, which are characteristic of alpine
environments, represent major challenges for the deployment of
this technology. The former introduces shadowing and
bidirectional reflectance distribution function (BRDF) effects.
Aasen et al. (2015) recommended controlling these effects
through radiometric calibration using reflectance panels and a
downwelling irradiance sensor, combined with near-noon flights.
The latter causes fluctuations in ground-sampling distance and
geometric quality along flight lines. These effects can be mitigated
by terrain-following flight plans, high forward/side overlap, and
DEM-assisted orthorectification and 3D reconstruction (Maes,
2025). Building on these considerations, a UAV-DL pipeline was
established for wild L. rotata in our previous research (Ding et al,
2023). In that study, an identification precision of 89% was achieved
on UAV orthomosaics using Mask R-CNN, and plot-scale counts
and yield estimates were obtained. Accordingly, the integration of
hyperspectral sensing with UAVs and deep learning for monitoring
growth and bioactive compounds in wild L. rotata is currently
underway. These efforts will support the standardized, routine
deployment of hyperspectral technology for habitat monitoring of
wild medicinal plants in high-altitude areas.

5 Conclusion

Lamiophlomis rotata samples were cultivated at three altitudes,
and the time-series phenotype data were collected by HSI. Spectra
and phenotypic data were selected as the research objects to
monitor growth status and aboveground biomass of cultivated L.
rotata. After spectrum preprocessing, feature band screening, and
vegetation index and texture feature extraction, the selected feature
band was fused with vegetation index and texture feature, and a
prediction model of single feature input and multi-feature fusion
input was constructed. The prediction effect and generalization
ability of the model were compared. 1) The original spectrum was
pretreated using the SNV, MSC, SG, and FD methods, and FD was
the optimal method based on the fixed-parameter prediction model
performance of PLSR. 2) Compared with CARS, the band features
extracted by DRSA-CARS could reduce collinearity to obtain fewer
and more efficient features. 3) The FNN prediction model
constructed by integrating feature wavelength with vegetation
index showed the best prediction performance for SPAD
monitoring, and the coefficient of determination and the value of
RPD in the test set were 0.7502 and 1.9571, respectively. 4) In the
predictive models of biomass, FNN also exhibited optimal
performance based on the fusion data of feature wavelength and
texture features, and the coefficient of determination and the value
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of RPD in the test set were 0.7933 and 2.1991, respectively. The
above studies show that models using the characteristic wavelength
of HSI that fused features of vegetation index and texture
characteristics performed better than those based on single
features. This study verifies that the fusion features enhanced the
prediction accuracy and improved the model performance by the
spectral and spatial information collected from HSI. This also
reveals the potential of combining multi-temporal HSI data with
deep learning to enable dynamic growth monitoring and scalable
applications in precision herb cultivation.
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