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Introduction: Monitoring the growth status and aboveground biomass of wild and

cultivated medicinal herbs remains a persistent challenge in precision agriculture.

Methods: In this study, we developed machine learning and deep learning

models to estimate SPAD values and biomass of Lamiophlomis rotata (Benth.).

The models used hyperspectral data and time-series phenotypic traits from 508

samples collected across different altitudes. Regions of interest (ROIs) were

manually defined from plant contours. The corresponding mean spectral

profiles were then preprocessed. To improve feature selection, we proposed a

Dynamic Reptile Search Algorithm-enhanced CARS (DRSA-CARS) method. This

method integrates a dynamic behavioral strategy into the CARS framework to

identify informative spectral bands. Vegetation indices (VIs) and gray-level co-

occurrence matrix (GLCM)-based texture parameters were extracted and

combined with spectral features to construct the PLSR, SVR, FNN, and

CNN models.

Results: Compared to CARS, the DRSA-CARS method reduced feature

dimensionality by up to 75.7% for SPAD and 29.2% for biomass, while

improving prediction accuracy (R²) by 24.4% and 34.7%, respectively. Among all

models, the FNN achieved the highest performance, with R² values of 0.7732

(training) and 0.7502 (testing) for SPAD and 0.8260 and 0.7933 for biomass.

Feature fusion further improved predictive accuracy by 11% for SPAD and 30% for

biomass compared to models based on individual feature types.
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Discussion: These results demonstrate that coupling DRSA-CARS-based feature

selection with deep learning provides a robust, non-destructive approach for

evaluating plant growth status. This framework highlights the potential of

hyperspectral imaging as a rapid, reliable, non-invasive tool for precision

cultivation of medicinal herbs.
KEYWORDS

hyperspectral data, time-series phenotypes, vegetation index, textural features,
deep learning
GRAPHICAL ABSTRACT
1 Introduction

The Nobel Prize awarded to Youyou Tu for the discovery of

artemisinin from the medicinal plant Artemisia annua L. has

reaffirmed the pivotal role of herbal medicine in alleviating

human suffering and driving new drug discovery. In recent years,

the global demand for herbal medicine has increased significantly,

with annual consumption exceeding four million tons (Gao et al.,

2020). To address the shortage of wild resources and the labor-

intensive nature of harvesting, more than 200 species of herbal

plants have been successfully cultivated (Zhang, 2019). Compared

with other botanicals, alpine medicinal plants inhabit high-altitude

environments, leading to harvesting challenges and limited resource

availability (Nagy and G., 2009). Therefore, there is an urgent need

to conduct cultivation trials, particularly for medicinal plants that

grow at high altitudes and are widely used in clinical practice.
02
However, numerous challenges remain in cultivation, with the

quality of medicinal materials, such as phenotypic traits, chemical

composition, and clinical efficacy, being a primary concern (Canter

et al., 2005; Hao and Xiao, 2018).

Phenotype is a primary and intuitive indicator for evaluating

the structural and functional characteristics of plants, and it can be

used to identify varieties, assess quality, and monitor growth stages,

among other applications (Feng et al., 2021). Dong et al. (2024)

investigated three varieties of Corydalis yanhusuo collected from

Zhejiang Province to screen for superior provenances based on

phenotypic analyses of flower morphology and rhizome yield. The

formation of drumstick-shaped roots, a distinctive phenotypic trait

of Panax notoginseng, is commonly attributed to saponin

accumulation and has been shown to be closely associated with

carbohydrate metabolism in the plant’s vegetative organs (Zhang

et al., 2022a). Another typical example of phenotypic variation with
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distinct functional implications is the comparison between Ziqin

and Kuqin. Ziqin is characterized by a compact root interior,

whereas Kuqin exhibits a hollow root structure. Both types are

derived from Scutellaria baicalensis (Sun et al., 2023). Hence, the

phenotype is considered a three-dimensional expression of space,

time, and the interaction between genes and the environment.

Importantly, the phenotype is tightly related to biomass,

particularly in medicinal plants where the aboveground parts are

utilized, an aspect of major concern for cultivators. Therefore,

establishing a fast and real-time method for phenotypic

monitoring is of great significance for quality evaluation and

cultivation of medicinal plants.

Compared with traditional destructive analytical methods,

spectral technology mitigates limitations such as labor intensity

and chemical reagent consumption and has been widely applied to

distinguish origins, processing methods, and adulteration, among

others (Liu et al., 2023; Wu et al., 2018a, b). Hyperspectral imaging

(HSI), in particular, is a non-destructive sensing technology that has

gained popularity for real-time vegetation monitoring (Shakoor

et al., 2017). Specifically, HSI can simultaneously capture hundreds

of images across different wavelengths, providing detailed spectral

signatures (Wang et al., 2021). Variations in leaf characteristics

caused by environmental factors or growth stages can be captured

in a timely manner by HSI. Consequently, HSI in combination with

computational modeling has been widely used in agriculture to

detect both external and internal quality attributes (Khan et al.,

2022). For example, the internal quality of Red Globe grapes has

been successfully estimated based on HSI spectral information and

images collected at various growth stages. The correlation

coefficients of the partial least squares regression (PLSR) model

for the calibration and prediction sets were 0.9775 and 0.9762,

respectively (S. Gao and Xu, 2022a). Additionally, vegetation

indices (VIs) derived from maize at different growth stages using

unmanned aerial vehicles (UAVs) have been used to explore

chlorophyll content variation. The partial least squares (PLS)

model for chlorophyll content prediction, constructed using

optimal spectral variables and VIs, achieved R² values of 0.7530

and 0.682 for the training and validation sets, respectively (Qiao

et al., 2022). The aboveground biomass of spinach crops grown

under two different conditions was predicted using satellite imagery

(Marcone et al., 2024). Despite these advances, HSI data are often

high-dimensional and contain redundant spectral bands, which can

hinder efficient modeling and reduce prediction robustness. This

makes feature selection essential for extracting the most informative

spectral variables for accurate and stable analysis.

Feature selection (FS) is a critical step in HSI to address high

dimensionality, band collinearity, and noise, and retain

discriminative information. FS methods are generally classified

into filter, wrapper, and embedded approaches (Hennessy et al.,

2020). Recent HSI studies have explored metaheuristic band

selection schemes, including wild-horse optimizer variants and

multimodal evolutionary strategies for unsupervised selection

(Chen et al., 2024; Li et al., 2011). These approaches illustrate the

rapid development of FS research. The Reptile Search Algorithm

(RSA) is a swarm-intelligence optimizer inspired by crocodile
Frontiers in Plant Science 03
behavior (Abualigah et al., 2022). It alternates between encircling

(exploration) and hunting (exploitation) to balance global and local

search and has demonstrated strong performance on high-

dimensional optimization tasks. Classical RSA can prematurely

converge and lose population diversity when solving complex,

multimodal problems (Wu et al., 2023a). These issues become

more severe in HSI feature selection, where bands are highly

correlated and noisy. Recent studies have introduced improved

RSA variants that add adaptive parameters, hybrid moves, or

mutation to strengthen early exploration, enhance late-stage

exploitation, and maintain diversity, thereby achieving more

stable convergence (Khan et al., 2023). For wavelength selection,

Competitive Adaptive Reweighted Sampling (CARS) combines

Monte Carlo sampling with PLS coefficients to iteratively

eliminate uninformative variables. This process produces

parsimonious models, but its reliance on stochastic resampling

and regression-coefficient paths can make CARS unstable across

runs, sensitive to noise and sample size, and prone to discarding

correlated but complementary bands (Li et al., 2009; Park et al.,

2025). These limitations have led to stability-oriented extensions.

To address these issues, we embed a dynamic RSA (DRSA) into the

CARS framework to stabilize and optimize variable elimination in

noisy, high-dimensional HSI. This approach produces robust and

compact band subsets for real-time phenotyping and biomass

estimation. Collectively, DRSA-CARS combines CARS ’s

parsimony with dynamic global search to improve stability

against run-to-run variability and noise, broadening its

applicability to medicinal plant HSI analysis. With these

informative bands identified, integrating HSI with machine

learning (ML) offers powerful tools for modeling target variables

and enhancing prediction performance.

ML, one of the fastest-growing technical fields, currently forms

the core of artificial intelligence and data science (Jordan and

Mitchell, 2015). ML primarily includes unsupervised learning,

supervised learning, and neural networks (Mahesh, 2020). The

integration of HSI and ML has proven effective in predicting

target variables. However, the suitability of each method depends

on the specific algorithm and the nature of the data problem.

Numerous studies have combined HSI with ML methods to

effectively assess the quality and yield of medicinal plants. HSI

data processed with multiplicative scatter correction and modeled

with Bayesian ridge regression have been used to evaluate flavonoid

content in Ginkgo biloba leaves, achieving an R² value of 0.8700 for

the test set (Lu et al., 2024). This study demonstrates a rapid and

accurate approach for assessing the quality of G. biloba leaves.

Additionally, biomass ofMentha crops was estimated using spectral

data and a multilayer perceptron artificial neural network (ANN)

model, yielding an R² value of 0.7620 (Khan et al., 2020). Therefore,

the integration of non-destructive, environmentally friendly, and

rapid spectroscopic techniques with ML provides a promising

approach for evaluating the quality and biomass of cultivated

medicinal plants.

Lamiophlomis rotata (Benth.) Kudo is a perennial medicinal

plant widely distributed across meadows, grasslands, and gravelly

habitats at altitudes ranging from 2,700 to 4,500 m (Ding et al.,
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2023). Lamiophlomis rotata has been traditionally used for its

medicinal properties, including the treatment of injuries, relief of

muscle and bone pain, reduction of joint swelling, and management

of conditions such as dysmenorrhea and metrorrhagia (Cui et al.,

2020). In the herbal medicine market, most L. rotata is sourced

from wild populations. Due to increasing demand and

overharvesting, L. rotata has become endangered and is now

classified as a first-class endangered Tibetan medicinal plant (Li

et al., 2021). Therefore, artificial cultivation is necessary to promote

the survival and sustainable utilization of L. rotata. However,

various environmental uncertainties, such as changes in altitude,

climate variability, and insect infestations, can affect the growth and

development of L. rotata during artificial cultivation. Liu et al.

(2020) found that leaf phenotypes, including length, width, and

thickness, exhibited plasticity along an altitudinal gradient ranging

from 3,000 to 4,600 m. Changes in leaf shape and thickness may

result in altered biomass allocation patterns and metabolic

pathways. In previous studies, destructive analytical methods have

been used to investigate the metabolic responses of wild L. rotata

collected from different altitudes (Ma et al., 2015). However, such

invasive methods are not suitable for real-time evaluation of the

growth status of cultivated L. rotata.

In view of this, the objectives of this study are as follows: 1) to

investigate the temporal phenotypic variations of L. rotata grown at

three different altitudes; 2) to evaluate the potential of an HSI

system to monitor the vegetative growth of cultivated L. rotata with

Soil Plant Analysis Development (SPAD) values and aboveground

biomass as references; 3) to compare the effectiveness of wavelength

selection between the proposed DRSA-CARS method and the

classical CARS on HSI data; and 4) to compare the predictive

performance of regression models based on individual spectral

features and on fused features, including VIs and textural features

(TFs). The ultimate goal is to develop a rapid, non-invasive, and

efficient HIS-based method integrated with deep learning models to

predict vegetation dynamics and aboveground biomass of L. rotata.
Frontiers in Plant Science 04
2 Materials and methods

2.1 Experimental materials

In this study, L. rotata materials were collected from Sichuan

Province with three altitude districts, and the detailed information is

summarized in Table 1. The average temperature and humidity were

supervised in real time by the Jingxun yun platform (Weihai Jingxun

Unimpeded Electronic Technology Co., Ltd., Jinan Branch). The

sowing and transplanting experiments of L. rotata were conducted

at the Sichuan Hongyuan Endangered Alpine Medicinal Plants

Breeding Technology Center. To exclude the influence of soil

factors and the interaction among L. rotata plants, one plant was

transplanted into a flowerpot measuring 11cm in height and 9cm in

width on 21 March 2024, and gap filling was conducted on 5 May

2024. Throughout the experiment, the irrigation procedure, fertilizer

schedule, and pest and disease management procedures were

consistently maintained. A total of 720 (240 × 3) L. rotata plants

were randomly selected based on the approximate uniform sizes and

evenly allocated to three altitude districts (Hongyuan County, Qiongxi

Town; Maoxian County, Shaba Town; and Chongzhou City,

Jiguanshan Town) on 26 and 27 May 2024. Qiongxi (QX) and

Shaba (SB) are located in the Aba Tibetan and Qiang Autonomous

Prefecture of Sichuan Province, while Jiguanshan (JGS) is located in

Chongzhou City, Sichuan Province. To consider the potential

variability of feature importance across growth stages, the samples

were collected at three representative time points, corresponding to

early growth, rapid growth, and maturity stages of L. rotata at each

altitude. These time points allow us to investigate whether the

predictive contribution of spectral, textural, and vegetation index

features remains consistent or varies over time. After 1 month of

acclimation to growth conditions, some of the L. rotata samples died

and then the cultivated L. rotata plants were collected from three

separate altitudes, and the detailed sample information is shown in

Table 1. In total, 508 samples were collected for this study.
TABLE 1 The cultivation and sample information of Lamiophlomis rotata.

District Altitude Longitude Latitude
Sampling

time
Sample
amount

Monthly mean
temperature

Monthly mean
humidity

Qiongxi
(QX)

3,506
102°34′

09.1450″E
32°49′

11.8074″N

June 25th 58 13.01 71.60

July 15th 52 15.54 84.30

August 6th 20 20.86 84.16

Shaba (SB) 2,560
103°31′

14.7936″E
31°46′

58.1124″N

June 24th 72 16.35 77.35

July 14th 72 18.35 87.69

August 5th 72 22.46 89.14

Jiguanshan
(JGS)

1,293
103°20′

56.1076″E
30°45′

38.0419″N

June 26th 36 19.91 69.55

July 16th 64 20.71 78.64

August 7th 62 23.54 87.38
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2.2 Data collection of hyperspectral images

In this program, a HY-6010-S NIR-HSI portable push broom

hyperspectral system (Hangzhou Hyperspectral Imaging

Technology Co., Ltd., China) equipped with an imaging

spectrograph was used to collect hyperspectral images of L. rotata

across three periods. This system consists of two 450-W halogen

light sources, and the two lamps were set with the incident angle of

the light source of 45° to provide uniform lighting in the field of

view. The HSI image acquired by this system consists of 300 spectral

bands (bit depth of 12) between 380 and 1,022 nm with a spectral

resolution of 2.8 nm. The distance from the sensor to the samples

was approximately 46cm, resulting in a spatial resolution of 25 μm

per pixel, and the optimized frames per second (fps) was set to 5.

After image acquisition, the raw spectra were radiometrically

calibrated to relative reflectance using the HHIT software (version

1.9.1; Hangzhou Hyperspectral Imaging Technology Co., Ltd.,

China). Calibration was performed by subtracting dark-current

noise and normalizing each spectrum to a 20% diffuse reflectance

standard panel (nominal accuracy ± 2%), thereby reducing

background noise and compensating for instrument response.

Then, the radiation correction hyperspectral data were imported

into ENVI 5.3 software (Research Systems Inc., Boulder, CO, USA)

for further analysis.
2.3 ROI selection from hyperspectral
images

With the advancement of image processing, the concept of

region of interest (ROI) gradually emerged in fields such as

computer vision and signal processing to facilitate more efficient

and targeted data analysis. After radiometric calibration, the

hyperspectral data were saved in SPE file format and imported

into ENVI 5.6 software to extract the ROI of the L. rotatamanually.

In this study, the ROI was defined by drawing shapes based on the

outline of the plant image. After the extraction of ROI, the mean

spectra and spectral image were extracted, with the former saved as

a data matrix of 300 wavelength bands and the latter saved as a

metadata file HDR for subsequent analysis.
2.4 Measurement of phenotypic data

2.4.1 Measurement of SPAD
The SPAD value is commonly used to estimate the chlorophyll

content in plant leaves (Jiang et al., 2017). The relative index was

used to assess the plant growth status and nitrogen levels. In this

study, a non-destructive handheld chlorophyll meter (Konica

Minolta SPAD-502Plus, Japan) was used to assess the chlorophyll

content of L. rotata. To ensure data reliability, two opposite leaves

were selected to obtain the SPAD value for each sample, and this

data acquisition procedure was carried out at the cultivation site

between 10a.m. and 12 p.m. on the sampling day. Finally, the
Frontiers in Plant Science 05
average value calculated from both leaves of each L. rotata plant was

considered the final valid data.

2.4.2 Measurement of biomass
After HSI analysis, all L. rotata plants were removed from the

flowerpots, and the surface soil both in the leaves and roots was

washed off using running water. Subsequently, the L. rotata plants

were separated into above- and belowground tissues, which were

then dried at 60°C in a constant temperature oven (Experimental

Instrument Factory, Shanghai, China) until constant weight was

achieved. Afterward, the biomass of the aboveground tissue was

accurately weighed using an electronic analytical balance (G&G

JJ223BC, America).
2.5 Data processing and analysis

2.5.1 Preprocessing of spectra
To eliminate interference from the environment and equipment,

pretreatment methods such as standard normal variate (SNV),

multiplicative scatter correction (MSC), Savitzky–Golay smoothing

(SG), and first-order derivative (FD) were applied to process the raw

spectra. SNV and MSC are commonly used to correct spectral errors

caused by scattering among samples (Wu et al., 2018a). SG can preserve

the details of the spectral signal by fitting it with a polynomial (Wu et al.,

2018b). A derivative is usually employed to enhance the resolution and

amplify the difference in the spectral signal, which has beenmainly used

for extracting fine structure features of HSI (Liu and Han, 2017). In this

part, the best spectra preprocessing methods were evaluated by a PLSR

model with a fixed parameter of components of 5 and a ratio of 7:2:1 of

the training, validation, and test sets.

2.5.2 Selection of feature wavelengths
The preprocessed spectral data matrix contains comprehensive

information derived from HSI. Therefore, it is essential to apply

effective feature selection techniques to reduce data redundancy and

computational complexity. In particular, identifying the most

informative wavelengths facilitates a clearer understanding of

their contributions to model performance and enhances the

explainability of spectral-based predictions. In this study, a widely

applied technique in the field of feature band selection of the CARS

algorithm was adopted as the primary method for selecting optimal

feature bands associated with SPAD and aboveground biomass (Li

et al., 2014; Su et al., 2021). Specifically, CARS selects features based

on the absolute values of the regression coefficients in a PLS model

and iteratively eliminates variables with lower contributions. The

subset yielding the minimum root mean square error of cross-

validation (RMSECV) is retained as the optimal band combination

(Su et al., 2021; Yao et al., 2021; Zhang et al., 2021). However,

despite its effectiveness in reducing data dimensionality, the

classical CARS algorithm exhibits limitations in selecting the

proper number of selected wavelengths. It focuses on maximizing

prediction performance, but often overlooks the redundancy or

multicollinearity among selected wavelengths.
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To overcome the limitations of classical CARS, an improved

variable selection strategy based on the RSA was proposed, termed

DRSA. Compared to the original RSA, DRSA introduces three key

strategies: dynamic exploration probability decay, exploration

strength modulation, and randomized behavior switching.

(1) Exponential decay of exploration probability.

To smoothly transition from global exploration to local

exploitation, DRSA applies an exponential decay function to

control the probability of exploration behavior:

Pexplore(t) = e
−lt

Tmax

where l is a decay rate parameter, t is the current iteration, and

Tmax is the total number of iterations. This design allows DRSA to

perform global search in early iterations and switch to local fine-

tuning in later stages.

(2) Exploration strength modulation.

A dynamic disturbance factor ES is introduced in the belly-

walking behavior to enhance population diversity:

ES = 2� r � (1 −
t

Tmax
),r ∈ −1,   0,   1f g
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This factor is used to perturb individuals in the search space

when simulating the belly-walking action:

xi,  j(t + 1) = Bestj(t)� xrj(t)� ES� rand()

(3) Behavior-based position update mechanism.

Each iteration randomly selects one of four reptilian behaviors

for each individual and dimension:

High walking:

xi,  j(t + 1) = Bestj(t) − hi,j � b − Ri,j � rand()

Belly walking:

xi,  j(t + 1) = Bestj(t)� xrj � ES� rand()

Coordination hunting:

xi,  j(t + 1) = Bestj(t)� Pi,  j � rand()

Cooperation hunting:

xi,  j(t + 1) = Bestj(t) − hi,  j � e − Ri,  j � rand()

where

Ri,    j =
Bestj − xrj
Bestj + e

Pij = a +
xij −mean(xi)

Bestj � (UBj − LBj) + e

hi,j = Bestj � Pi,j

This strategy enables DRSA to flexibly alternate between

exploration and exploitation while preserving a balance between

convergence accuracy and global search ability. The structures of

this modified algorithm are illustrated in Figure 1. Compared with

other RSA variants that rely on chaotic maps or simulated

annealing (Abualigah et al., 2022; Elgamal et al., 2022; Khan

et al., 2023), the DRSA-CARS adopts a behavior-driven strategy

that is both adaptive and computationally efficient. This design

helps the algorithm avoid local optima and remain stable during

convergence. In the modified CARS framework, the DRSA-CARS

module selects the optimal variable subset by minimizing the

RMSECV of the PLS model. The selected bands from both

methods were used to establish PLSR models with fixed

parameters. The one exhibiting superior predictive performance

was selected for subsequent analysis and modeling.

2.5.3 Selection of spectral vegetation index
The relationship between chlorophyll content and VIs, widely

regarded as a non-destructive and high-throughput method, has

been extensively discussed in the context of precision agriculture for

monitoring photosynthetic capacity and growth status (Bannari

et al., 1995; Kandpal and Kumar, 2024). VIs, which combine

reflectance information from the visible and infrared regions to

extract biophysically meaningful indicators from HSI, are designed

to maximize sensitivity to target traits while minimizing
FIGURE 1

The dynamic behavior-based reptile search algorithm for feature
selection.
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interference from non-target factors. In this study, the predictive

power of VIs for plant growth status and phenotypes such as SPAD

was not only supported by statistical performance but also rooted in

physiological principles. The red edge (680–750 nm) and near-

infrared (750–1,000 nm) spectral regions are particularly sensitive

to chlorophyll concentration and internal leaf structure,

respectively. VIs, such as the chlorophyll index red edge (CI

rededge) and the normalized difference red edge index (NDRE),

leverage these spectral regions to capture photosynthetic activity,

thereby exhibiting strong correlations with SPAD values. Similarly,

the green spectral region (540–560 nm), commonly used in the

chlorophyll index with green (CI green), provides complementary

information related to leaf pigments and enhances the sensitivity of

VIs to chlorophyll dynamics. Therefore, chlorophyll-sensitive VIs,

including CI green, CI rededge, NDRE, and modified simple ratio

with red edge (MSRREG), were selected based on their

physiological relevance and strong correlations with chlorophyll

content (Qiao et al., 2022). In addition, classical VIs, including the

normalized difference vegetation index (NDVI), enhanced

vegetation index (EVI), optimized soil-adjusted vegetation index

with red edge (OSAVIREG), and red difference vegetation index

with red edge (RDVIREG), were incorporated to capture broader

plant growth and physiological status (Qiao et al., 2022). Hence,

eight VIs were selected to evaluate the relative chlorophyll content

to assess the growth status of L. rotata, and the detailed VI

calculation formulae are presented in Table 2. To determine the

optimal band combination for VI calculation, all possible pairs

among the red edge (680–750 nm), near-infrared (700–1,000 nm),

and green (540–560 nm) bands were systematically evaluated. The

pair that yielded the highest Pearson correlation coefficient with

SPAD values was selected for each index.
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2.5.4 Selection of textural features
In visible and infrared wavelength remotely sensed images, texture

has provided information on independent spectral reflectance values

and can improve the model accuracy (Hall-Beyer, 2017). In the HSI,

texture features extracted from the spectrum image can capture the

spatial variability of object surface information by combining spectral

information with spatial structure, which has been widely employed to

measure weight (Saif et al., 2023). The pixel’s gray value and its spatial

relationship with neighboring pixels can be used to capture the local

texture characteristics of the image (Wan et al., 2023). The gray-level

co-occurrence matrix (GLCM) proved to be the most effective metric

for assessing biomass and has been widely used to extract texture

features (Kelsey and Neff, 2014; Zheng et al., 2019). Traditionally,

texture features were extracted from each individual spectral band and

resulted in high computational cost and substantial redundant

information due to strong interband correlation. In this study,

principal component analysis (PCA) was first applied to reduce

dimensionality to extract representative texture features from

hyperspectral images. Then, the first three principal components

(PCs), accounting for the representative bands with the highest

contribution to spectral variation, were reconstructed into spatial

images. For each PC, the spectral band with the highest absolute

loading weight was selected as the most representative band for texture

extraction. This texture feature extraction method based on PCA not

only reduces computational burden and minimizes redundant

information but also retains essential spatial variation relevant to

plant phenotypes. From each selected band image, four statistical

texture features, including mean (MEA), contrast (CON), dissimilarity

(DIS), and entropy (ENT), were calculated based on the GLCM

method following the formulation proposed by Hall-Beyer (2017).

The above textural features quantitatively describe the spatial
TABLE 2 The vegetation indices utilized in this study.

Vegetation index Formula Illustration References

Chlorophyll index with green
(CI green) CI green ¼NIR871

G558
�1

Is used to assess the overall health of
vegetation

Qiao et al.
(2022)

Chlorophyll index red edge (CI
rededge) CI rededge ¼ NIR871

REG718
�1

Tracks the chlorophyll content changes for
monitoring plant health and growth

Qiao et al.
(2022)

Enhanced vegetation index
(EVI) EVI ¼ 2:5ñðNIR871�R726Þ

NIR873þ6ñR726�7:5ñB450þ1

Sensitivity to low vegetation saturation and is
used for analysis in high vegetation cover
areas

Qiao et al.
(2022)

Modified simple ratio with red
edge (MSRREG) MSRREG =

NIR871
REG718−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NIR871
REG718+1

q
Estimates the photosynthetic efficiency of
vegetation to monitor growth status

Wu et al.
(2023b)

Normalized difference red edge
(NDRE) NDRE =

NIR871 − REG720

NIR871 + REG720

Is used for assessing plant nitrogen content
and chlorophyll

Qiao et al.
(2022)

Normalized difference
vegetation index (NDVI) NDVI =

NIR871 − R720

NIR871 + R720

One of the most common vegetation indices
and is used for monitoring vegetation growth
status

Qiao et al.
(2022)

Optimized soil-adjusted
vegetation index with red edge

(OSAVIREG)
OSAVIREG ¼(1þ 0:16)(NIR873�REG726)(NIR873þREG726þ0:16)

Reduces the influence of soil background
through an improved algorithm

Qiao et al.
(2022)

Red difference vegetation index
with red edge (RDVIREG) RDVIREG ¼ NIR873�REG727ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NIR873þREG727
p

Focuses on changes of chlorophyll content
and is often used to monitor growth and
health

Qiao et al.
(2022)
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arrangement of pixel intensities. Particularly, CON and DIS represent

spatial variation and edge sharpness, ENT quantifies the randomness

and complexity of the pixel arrangement, and MEA captures the

average pixel intensity within the region of interest. Therefore, the

aforementioned textural features are closely associated with plant

architectural characteristics such as canopy complexity and leaf

arrangement. Consequently, they serve as useful indicators of plant

vigor and aboveground biomass. The extracted features were then

used for subsequent model development.

2.5.5 Model development and evaluation
In this study, classical supervised learning of PLSR and support

vector regression (SVR) and neural networks of feedforward neural

network (FNN) and convolutional neural network (CNN) were

used to establish the prediction model to assess the SPAD and

aboveground biomass of L. rotata, respectively. PLSR is the most

prevalent method for establishing data matrices of X and Y through

a linear multivariate model (Wold et al., 2001). SVR, a

representative of supervised machine learning, aims to make

sample points closely approximate the regression hyperplane as

much as possible to handle regression problems (Zhang and

O’Donnell, 2019). Both methods were extensively applied to the

quality of herbal medicine (Li et al., 2023). Deep learning

algorithms, renowned for their exceptional self-learning

capabilities, are especially adept at processing high-dimensional

spectral data, thereby enhancing prediction accuracy (Wang et al.,
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2023). Among deep learning models, the FNN, commonly used

with the backpropagation learning algorithm, has been effectively

utilized in various domains, including pattern classification,

clustering, and regression (Shaik et al., 2020). Furthermore, CNN

is particularly favored for evaluating traditional Chinese medicine

by simultaneously performing multiple non-linear processing tasks

to achieve a globally optimal prediction of the target variables

(Wang et al., 2024). Therefore, the integration of DL and HSI

should be further investigated to explore its potential as a non-

destructive technique for estimating plant phenotypes and

expanding the application of HSI in analysis.

The preprocessed data matrix was used to establish the PLSR,

SVR, FNN, and CNN models based on their characteristic bands or

selected features. In order to evaluate the generalization ability of

the models, the data matrix was divided into training, validation,

and test sets with a ratio of 7:2:1 by the function “cvpartition.” To

comprehensively evaluate the performance of the prediction

models, several statistical metrics were employed, including the

coefficient of determination (R²), root mean square error (RMSE),

and residual prediction deviation (RPD). R² was used to assess the

proportion of variance in the observed data that can be explained by

the model, with higher values indicating a better model fit. RMSE

was calculated to quantify the average magnitude of prediction

errors, with lower values indicating better predictive accuracy.

Additionally, RPD, defined as the ratio of the standard deviation

of the measured values to the RMSE, was adopted to assess the
FIGURE 2

Phenotypic characteristics of Lamiophlomis rotata observed across three altitudes and three sampling periods.
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robustness and generalizability of the models. An RPD value

between 1.5 and 2 was considered acceptable, and a value greater

than 2 generally indicated a model with strong predictive ability.

The above evaluation criteria were applied to the training,

validation, and test datasets for each model, enabling a

comprehensive comparison of the predictive performance among

the PLSR, SVR, FNN, and CNN models. During data processing,

MATLAB R2023b (MathWorks, Inc., USA) was used to establish

the PLSR, SVR, FNN, and CNN models, and statistical data were

calculated by GraphPad Prism version 8.3.0 (GraphPad Software

Inc., San Diego, CA, USA).
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3 Results

3.1 Statistical analysis of phenotypic
characteristics

The phenotypic characteristics of L. rotata are illustrated in

Figure 2. Variations in leaf morphology among samples from QX,

SB, and JGS are presented in the upper panel of the figure. Whole-

plant images highlighted phenotypic differences associated with

altitude. Lamiophlomis rotata grown at the high-altitude site QX

exhibited a smaller overall size compared to those from SB and JGS.
FIGURE 3

The range of reference values of SPAD and aboveground biomass.
FIGURE 4

HSI spectra and the preprocessed by first-order derivative of Lamiophlomis rotata samples.
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Notably, SB and JGS showed comparable growth performance.

Scanned images of opposite leaves from all three sites (QX, SB,

and JGS) at three growth stages are displayed in the lower panel of

Figure 2. Over the growing season, all L. rotata samples displayed a

progressive darkening of leaf color. Notably, the leaves from QX

consistently exhibited the smallest area among all sites.

Furthermore, statistical analysis was conducted to quantify

differences in SPAD values and aboveground biomass. Figure 3

summarizes the relevant parameters: SPAD values are shown on the

left, while aboveground dry weights are presented on the right.

SPAD values were the highest in samples from QX, followed by SB,

and the lowest in JGS. Temporal fluctuations in SPAD values are

attributed to differences in sampling times. Plants from QX

maintained low and relatively stable aboveground biomass

throughout the growing season. In contrast, plants from SB and

JGS exhibited significantly higher and gradually increasing biomass

over time. These morphological trends suggest that phenotypic

plasticity may facilitate acclimation to lower-altitude environments.

Therefore, the development of a rapid, non-destructive model for

quality assessment is crucial to support the successful introduction

and cultivation of L. rotata.
3.2 Raw and preprocessed spectral profile

The spectral reflectance of all L. rotata samples was recorded

across the 384~1,022-nm range, as shown in Figure 4. The raw

spectral curves exhibited similar overall trends and shapes.

However, reflectance differences were observed among the

samples from the three altitudes at the same time point. The

spectral curves from QX exhibited a narrower distribution range

compared to those from SB and JGS. Specifically, reflectance values

for L. rotata from QX were concentrated between 0.20 and 0.55. In

contrast, the values from SB and JGS ranged from 0.25 to 0.60. The

spectral curves from QX, SB, and JGS also displayed distinct

absorption characteristics.

Therefore, in-depth spectral analysis is essential for the accurate

assessment of plant growth status and biomass. To improve spectral

interpretability and model performance, four preprocessing

techniques, namely, SNV, MSC, SG, and FD, were applied to the
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raw spectra. As shown in Table 3, the FD method yields the best

predictive performance, achieving the highest coefficient of

determination (R²) and the lowest root mean square error

(RMSE) for both SPAD and aboveground biomass. Based on

these results, the FD preprocessed spectral data were selected for

the subsequent modeling.
3.3 Characteristic wavelength analysis

Based on the preprocessed hyperspectral data matrix, both the

classical CARS and the improved DRSA-CARS methods were

employed to identify informative spectral bands for predicting

SPAD values and aboveground biomass. These feature selection

approaches aim to reduce data redundancy while retaining key

variables associated with the target traits. In the classical CARS

method, feature weights are iteratively updated over 200 sampling

runs. Important variables are selected based on their contributions

to the PLS model, with the number of principal components

constrained to a maximum of 10. The optimal subset is

determined according to the lowest RMSECV. Supplementary

Figure S1 illustrates the variable selection process and results. For

characteristic wavelength selection in SPAD, the lowest RMSECV

was observed at the ninth iteration, resulting in 140 selected

variables. Similarly, the optimal subset for aboveground biomass

was identified at the 18th iteration and yields 106 variables. After
TABLE 3 The preprocessing method results for HSI based on the PLSR model.

Preprocessing methods Quality attributes R2 RMSE R2v RMSECV R2p RMSEP

SNV
SPAD 0.5291 5.8130 0.6334 6.4327 0.6601 5.6906

Aboveground biomass 0.3440 0.1503 0.2893 0.1493 0.2832 0.2298

MSC
SPAD 0.5291 6.4327 0.6334 5.8130 0.6601 5.6906

Aboveground biomass 0.3440 0.1493 0.2893 0.1503 0.2832 0.2298

SG
SPAD 0.4898 6.6959 0.5409 6.3774 0.5524 6.4811

Aboveground biomass 0.4341 0.1387 0.4389 0.1337 0.4562 0.2083

FD
SPAD 0.6018 5.9154 0.6339 5.7490 0.6890 5.5899

Aboveground biomass 0.4810 0.1328 0.3402 0.1465 0.4119 0.2101
Bold values indicate the best performance values for each quality attribute (SPAD or Aboveground biomass) among the compared preprocessing methods.
TABLE 4 The feature extraction results of the CARS and DRSA-CARS
methods.

Feature extraction
methods

RMSE R2 Number of
selected features

CARS (SPAD) 6.9894 0.4632 140

CARS (aboveground
biomass)

0.1626 0.3347 106

DRSA_CARS (SPAD) 6.2113 0.5761 34

DRSA_CARS
(aboveground biomass)

0.1478 0.4502 75
Bold values indicate the best performance values for each quality attribute (SPAD or
Aboveground biomass) among the compared feature extraction methods.
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eliminating duplicate indices, the final number of selected variables

is shown in Table 4.

The CARS method was further integrated with DRSA to form

the DRSA-CARS framework, which aims to enhance global search

capability and stabilize feature selection. In this approach, the

number of variables is adaptively adjusted, and dynamic

behavioral strategies are employed during the search process

(Supplementary Figure S2). As a result, 34 bands were selected

for SPAD prediction and 75 for aboveground biomass (Table 4).

Figure 5 displays the spectral distribution of feature wavelengths

selected by CARS and DRSA-CARS for both traits. Each point

represents a selected wavelength. Their horizontal positions

corresponded to specific wavelengths in the hyperspectral range

of 380–1,020 nm. For both prediction tasks, fewer but more

concentrated wavelengths were selected by the DRSA-CARS

method compared to classical CARS. Specifically, a large number

of bands selected by the CARS were broadly distributed across the

visible and near-infrared (NIR) regions. In contrast, the DRSA-

CARS variants yielded more compact subsets. These selected

wavelengths were evenly distributed, with clearer clustering

patterns, particularly in vegetation-sensitive regions such as 550–

750 nm and 900–1,000 nm. These regions were associated with

chlorophyll absorption and red-edge effects, suggesting that the

DRSA-CARS method can better capture physiologically relevant

spectral features. Overall, the visualization indicated that feature

dimensionality was reduced and biological interpretability was

enhanced by DRSA-CARS through its focus on informative

spectral intervals. Hence, the feature wavelengths selected by the

DRSA-CARS method were used for the following analysis.
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3.4 Calculation of vegetation index

To enhance the physiological relevance and predictive power of

VIs, multiple red-edge and near-infrared band combinations were

explored. The final selected indices were constructed based on

optimized wavelengths, particularly centered around NIR871–873 nm

and REG718–727 nm, which lie within the key spectral domains

associated with chlorophyll absorption, red-edge transition, and

canopy structure sensitivity (Table 2). Notably, indices such as

NDRE, NDVI, and RDVIREG utilized NIR871 or NIR873 in

combination with REG720–727, which corresponds to the classical

red-edge inflection zone. This region is known for its high

sensitivity to chlorophyll concentration and photosynthetic activity,

supporting its effectiveness in SPAD prediction. Moreover, NDRE and

RDVIREG leveraged the contrast between NIR and red-edge

reflectance to enhance the detection of subtle differences in leaf

pigment levels, particularly under varying environmental stress

conditions. In addition, indices such as EVI and OSAVIREG

integrated both blue (B450) and red-edge (REG726) components,

thereby not only capturing pigment content but also reducing soil

background and atmospheric noise. Compared to traditional

broadband indices, these indices showed correspondence to regions

with well-documented links to plant biochemical and structural traits.

These results supported the fact that integration of red-edge NIR-

sensitive VIs with statistically optimized features may enable a robust

and biologically meaningful prediction framework for chlorophyll-

related traits in L. rotata. Therefore, the optimized VIs combined with

the DRSA-CARS selected spectral bands were integrated into a new

feature set for SPAD prediction in subsequent analysis.
FIGURE 5

The feature wavelength selected by CARS and DRSA-CARS.
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FIGURE 6

The textural feature extraction results (take sample no. 1 as an example).
TABLE 5 SPAD prediction results based on the characteristic bands and the fusion of vegetation indices.

Models R2 RMSE R2v RMSECV R2p RMSEP RPD

PLSR characteristic band 0.6377 56.5985 0.6847 58.3853 0.6339 57.0362 0.1731

SVR characteristic band 0.6306 5.6402 0.7249 5.2756 0.6113 5.2263 1.6203

FNN characteristic band 0.6798 5.5000 0.6820 5.1654 0.6433 5.6243 1.5881

CNN characteristic band 0.6675 5.1877 0.5166 6.9849 0.6235 6.3991 1.6462

PLSR fusion vegetation index 0.6642 56.5970 0.6647 58.3787 0.6470 57.0201 0.1731

SVR fusion vegetation index 0.6877 5.0828 0.6758 5.9041 0.6810 5.1810 1.7885

FNN fusion vegetation index 0.7732 4.4426 0.4622 7.4471 0.7502 4.5284 1.9571

CNN fusion vegetation index 0.6766 5.2479 0.5914 6.1831 0.7040 5.2910 1.8565
F
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Bold values indicate the best values within each column for comparison.
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3.5 Extraction of textural features

The GLCM can be applied to extract texture information across

the hyperspectral image. However, a large amount of redundant

spectral information may be included when extracting texture

features from all bands. To minimize the influence of irrelevant

information, PCA was applied to the images from selected regions

of interest for dimensionality reduction. The cumulative

contribution of the first three principal components (PCs) was

calculated to evaluate the proportion of total variance explained in

the data. The wavelengths with the highest contributions to each

principal component were identified based on the component

loading coefficients. Figure 6 displays the textural feature

extraction results of sample no. 1. The cumulative contribution of

the first three PCs reached 98.43%. The redundancy of texture

features was significantly reduced after dimensionality reduction. In

the images corresponding to the first three PCs, the leaf vein

structure of L. rotata was clearly visible, enabling the

identification of effective wavelengths (Figure 6). The bottom half

of Figure 6 shows the coefficient distribution for the first three PCs.

The wavelength image corresponding to the maximum coefficient

in each PC was selected as the effective wavelength image. In this

analysis, the wavebands at 779 nm, 738 nm, and 768 nm were

selected as effective wavelengths and were subsequently used for
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texture feature extraction. Texture features extracted from each

principal component were compiled into a new feature vector.

Specifically, four GLCM-based texture features were extracted from

each PC, resulting in a total of 12 features (4 features × 3 PCs) per

sample. The extracted texture feature vectors were then combined

with the characteristic wavelengths identified by the DRSA-CARS

algorithm. This newly fused data matrix was used to develop the

prediction model for aboveground biomass.
3.6 Construction of the SPAD prediction
models

In this process, the predictive performances of the four models,

namely, PLSR, SVR, FNN, and CNN, were evaluated based on the

single characteristic and the combination of vegetation index

features. The single characteristic data matrix rows × columns

were (508 × 34), and the fused data matrix rows × columns were

(508 × 42). Both datasets were used to establish the SPAD

prediction models before normalization. The performances of the

prediction models based on the single and combined spectral and

vegetation index information for SPAD estimation are presented in

Table 5, with the corresponding model parameters summarized in

Supplementary Table S1. In the prediction model established with
FIGURE 7

Prediction results of SPAD based on the PLSR, SVR, FNN, and CNN models.
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features screened by the RSA-CARS method, the R2 value of the

training, verification, and test sets was approximately 0.65, among

which the FNNmodel R2 value shown in the test set was 0.6433 and

had the best performance (Table 5). Compared with the single-

feature established model, the model established with the dataset

integrated with feature wavelength and vegetation index, the

prediction performance of PLSR, SVR, FNN, and CNN models

had improved. The R2p of the test set was improved by 1.3%, 7.0%,

10.7%, and 8.1%, respectively (Table 5). In the FNN model, the

coefficients of determination were 0.7732 for the training set and

0.7502 for the test set, and the RPD was 1.9571, indicating good

predictive performance for SPAD and reliable model predictions. In

a previous study, an RPD of approximately 1.95 for SPAD similarly

indicated that hyperspectral models can provide reliable, non-

destructive estimates of leaf chlorophyll status (Riefolo and

D’Andrea, 2024). Therefore, the RPD value of 1.9571 may not

fully replace high-precision laboratory measurements. However, it

shows that this model is useful for field applications, especially for

comparative monitoring and tracking growth over time, where non-

destructive assessment is important. Figure 7 displays the prediction

model results based on fusion features and vegetation index. The

scatter plots between the measured and predicted values for the

training set and the test set samples of the PLSR, SVR, FNN, and

CNN models were built through the fusion of spectral and

vegetation indices. The data in the training and test sets were

relatively concentrated, especially for the FNN model, indicating

that this model had a better detection effect. It can be seen that the

combination of hyperspectral band information and vegetation

index can improve the performance of the model.
3.7 Construction of aboveground biomass
prediction models

For the estimation of aboveground biomass, the model established

by fusion features exhibited a better performance. Table 6 shows the

prediction model results, and the corresponding model parameters are

provided in Supplementary Table S2. Specifically, in the single spectral

model, built by 75 feature bands, the R2 values of the training and test

sets were approximately 0.5, and the RPD values were less than 1.5,
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implying the poor performance of these prediction models. The R2

value of the training, validation, and test sets of the FNN model

showed better performance than other models. Compared with the

single spectra model results, the predictive performance of the model

established by the fusion data was significantly improved. The R2p of

the test set improved by 7.6%, 13.9%, 30.0%, and 22.7% in PLSR, SVR,

ANN, and CNN, respectively (Table 6). Furthermore, the RMSEP and

RPD values were 0.08 and 2.2, respectively, suggesting a reliable

prediction performance of this model. Figure 8 shows the

relationships between aboveground biomass measured and

estimated from the regression models established. In the fusion data

model, the indices obtained from the FNNmodel were relatively close

compared to those from the PLSR, SVR, and CNNmodels, suggesting

that the FNN model had a reliable and accurate estimation.
4 Discussion

4.1 Phenotypic plasticity across altitude
and growth state

The whole-plant images revealed phenotypic differences across the

altitudes. QX plants were smaller than those from SB and JGS,

suggesting that L. rotata cultivated at high altitudes faced significant

environmental stress, such as cool temperature (Table 1), which may

result in small and thick leaves. In contrast, L. rotata cultivated in SB

and JGS showed better growth. Lamiophlomis rotata picked from SB

and JGS consistently had the largest leaves. This suggests that both

altitudes provided more favorable growing conditions than QX,

leading to improved growth and development. Additionally, lower

altitudes were associated with a significant increase in leaf length,

indicating altitude-related plasticity in leaf development. Previous

research has demonstrated that leaf morphology is regulated by

environmental factors such as temperature and irradiance and that

high-altitude conditions tend to restrict leaf expansion due to cold and

UV stress (Wu et al., 2024).

The observed fluctuations in SPAD values across different

sampling times suggested seasonal changes in chlorophyll

concentration and photosynthetic capacity in L. rotata.

Lamiophlomis rotata from QX always exhibited the darkest green
TABLE 6 Aboveground biomass prediction results based on the characteristic bands and the fusion of textural features.

Models R2 RMSE R2v RMSECV R2p RMSEP RPD

PLSR characteristic band 0.6171 0.7402 0.3607 0.8141 0.6004 0.7286 0.2119

SVR characteristic band 0.4930 0.1400 0.4473 0.1464 0.4671 0.1103 1.3837

FNN characteristic band 0.5074 0.1363 0.6052 0.1319 0.4937 0.1642 1.3815

CNN characteristic band 0.5465 0.1294 0.4432 0.1417 0.4098 0.1566 1.3149

PLSR fusion textural features 0.7640 0.0895 0.5866 0.1156 0.6765 0.1572 1.7139

SVR fusion textural features 0.7018 0.1074 0.6510 0.1163 0.6065 0.0948 1.6104

FNN fusion textural features 0.8260 0.0831 0.8101 0.0904 0.7933 0.0819 2.1991

CNN fusion textural features 0.6272 0.1175 0.6259 0.1121 0.6367 0.1288 1.6760
Bold values indicate the best values within each column for comparison.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1640779
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wu et al. 10.3389/fpls.2025.1640779
leaves. This observation may be explained by stronger UV radiation at

higher altitudes, which is known to promote the synthesis of

photosynthetic pigments as a protective response to oxidative stress

(Ren et al., 2010). Notably, the phenotypic differences observed in leaf

coloration and morphology were consistent with the statistical

patterns. SB plants showed moderate leaf color and stable SPAD

values, while JGS plants had the lightest leaf color, likely indicating

lower SPAD values and photosynthetic efficiency. These SPAD

variations suggested varying levels of physiological adaptation to

local environments, and elevation played a significant role in

shaping the phenotypic diversity of L. rotata.

Similarly, the biomass of QX remained low and relatively stable

from June to August, indicating limited vegetative growth

throughout the season. In contrast, L. rotata from SB and JGS

displayed significantly higher aboveground biomass. In both sites,

biomass showed a general increasing trend from June to August.

Lamiophlomis rotata cultivated in SB reached the highest biomass

values by August, suggesting that these environmental conditions

were more favorable for biomass accumulation. The statistical

patterns of biomass accumulation aligned well with the

phenotypic differences previously observed in plant stature, and

these results indicated that elevation plays a significant role in

shaping the phenotypic diversity of L. rotata. The morphological

and physiological observations above suggested that phenotypic
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plasticity has occurred during acclimation to a lower altitude.

However, we did not quantify the relationship between

pharmacopeial marker compounds and medicinal quality, nor did

we characterize the metabolic and molecular changes associated

with phenotypic plasticity in L. rotata. Therefore, future work

should integrate phytochemical profiling with molecular analyses.

This approach will quantify links between pharmacopeia markers

and bioactivity and elucidate the physiological and molecular

mechanisms underlying altitude acclimation in L. rotata.
4.2 Spectral feature selection and
characterization

The spectral signature of plants contained extensive details that

reflected their growth status (Rehman et al., 2020). The observed

differences in spectral reflectance across altitudes suggested that HSI

was an effective tool for monitoring the growth condition of L.

rotata in real time. The superior performance of the FD

preprocessed spectra was likely attributed to its ability to capture

reflectance slopes and amplify subtle spectral variations (Hou et al.,

2024). In particular, the spectral region from 680 to 700 nm, which

showed enhanced separability under FD processing, corresponded

to the red-edge absorption domain associated with chlorophyll
FIGURE 8

Prediction results of aboveground biomass based on the PLSR, SVR, FNN, and CNN models.
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content. This region included a characteristic absorption peak near

680 nm (Xiao et al., 2022). This peak aligned with the measured

differences in SPAD values among samples collected from different

altitudes. Therefore, an appropriate preprocessing method used in

HSI data was considered valuable for improving not only prediction

accuracy but also their biological interpretability. This finding

supported the application of HSI in plant growth assessment and

biomass estimation.

Genetic algorithms and the Least Absolute Shrinkage and

Selection Operator (LASSO) are two commonly used feature

selection methods. The former explores the combinatorial search

space stochastically but often requires substantial computation,

while the latter provides efficient linear shrinkage but may yield

biased coefficient estimates. In contrast, DRSA-CARS combines

rule-based attribute reduction with adaptive sampling, enabling

efficient spectral dimensionality reduction and the selection of

informative wavelengths closely associated with plant physiological

traits. These characteristic bands were primarily located in regions

known for red-edge transition and near-infrared reflection, which are

highly responsive to chlorophyll content, leaf structure, and biomass

accumulation (Zhang et al., 2022b). Compared with traditional

wavelength selection methods, the use of DRSA ensured global

optimization and minimized redundancy, thereby increasing the

speed and efficiency of feature selection (Khan et al., 2023). While

DRSA improves search efficiency, its performance in extremely high-

dimensional or noisy environments may be suboptimal, suggesting the

need for adaptive mechanisms to further enhance its exploration and

exploitation balance.

The VIs in this study were constructed by making full use of

red-edge and near-infrared band combinations to enhance

physiological relevance. Optimized indices such as NDRE,

RDVIREG, and OSAVIREG could capture chlorophyll-related

variation by leveraging reflectance differences in pigment-sensitive

regions (Zhang et al., 2022c). Some selected bands (e.g., REG726

and REG727) were not included in the DRSA-CARS result.

However, the strong physiological significance was supported by

existing knowledge of chlorophyll absorption and red-edge

positioning. The combination of biologically relevant VIs and

statistically selected wavelengths provided a solid foundation

for modeling.

In addition to spectral features, textural information extracted

from hyperspectral images contributed meaningfully to biomass

prediction. In this study, PCA was applied to reduce redundancy in

the GLCM texture features extracted from each spectral band. The

principal components with the highest variance explained were used

to identify representative wavelength images, from which texture

features were calculated. This approach retained structural patterns

such as leaf veins while avoiding information overload, allowing the

model to capture canopy-level spatial heterogeneity (Fan et al., 2024).

However, the use of PCA for dimensionality reduction prior to texture

extraction may lead to the loss of spatial detail or distortion of original

image features. To address this limitation, future studies could explore

3D texture analysis methods to jointly preserve spectral and spatial

integrity to achieve a better balance between interpretability and

computational efficiency.
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4.3 Integrative strategy for predicting the
target variable

In this study, spectral, VIs, and texture features were combined

within a unified modeling framework to predict SPAD and

aboveground biomass. As anticipated, deep learning models

outperformed traditional machine learning algorithms, reflecting

their capacity to capture complex non-linear relationships from

diverse input features. Among the deep learning models, the FNN

consistently delivered the highest predictive accuracy for both traits,

outperforming the CNN. This outcomewas closely associated with the

nature of the input data. Instead of employing spectral imagery, the

models were provided with feature vectors that had undergone

extensive preprocessing. These vectors were derived from mean

spectra, first-derivative spectra, selected wavelengths, VIs, and

GLCM texture metrics, which together substantially altered the

original spatial dependencies. Although the preprocessing effectively

isolated informative variables and reduced dimensionality, it

inevitably removed the majority of pixel-level spatial dependencies

(Zhao et al., 2025). However, CNN architectures relied on local spatial

correlations to learn hierarchical representations. The loss of this

spatial context in our data substantially diminished their performance

advantage (Paoletti et al., 2019). In contrast, the FNN was well suited

to compact, high-dimensional tabular inputs, effectively capturing

non-linear patterns without relying on spatial neighborhood

information. This contrast likely reflected both the FNN’s

compatibility with the structured multi-source features and the

reduced spatial context that constrained CNN performance,

underscoring the importance of tailoring model architecture to the

feature characteristics in hyperspectral trait prediction.

Interestingly, the prediction models developed with feature

fusion improved the accuracy for SPAD and aboveground

biomass by 11% and 30%, respectively. For SPAD, the prediction

model integrated selected spectral bands with VIs that

predominantly characterized leaf spectral properties, which may

account for the relatively limited performance gain from feature

fusion. In contrast, the biomass prediction model combined

selected spectral bands with texture features extracted to capture

spatial structural information. Texture features characterized

canopy structural attributes, such as leaf arrangement, coverage,

and gap distribution, that were directly associated with

aboveground biomass (Dhakal et al., 2023). This relationship

likely explains the greater performance improvement observed

after fusion. While the fused feature model demonstrated

promising performance, the relative importance of different

feature types was treated as temporally static. However, plant

phenotypic and physiological traits undergo dynamic changes

across developmental stages, which can alter the predictive

relevance of different hyperspectral features (Aasen et al., 2018).

For instance, spectral reflectance tends to be more sensitive to

pigment changes during early vegetative growth, while VIs often

correlate more strongly with biomass accumulation and senescence

traits in later stages. Overall, although the feasibility of fused feature

modeling was confirmed in this study, the lack of temporal

adaptation in feature contribution may limit its scalability. In
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future work, stage-aware modeling schemes should be incorporated

to exploit the evolving predictive value of different hyperspectral

feature domains.

In this study, hyperspectral data of L. rotata were acquired

under controlled indoor conditions and combined with machine

learning methods to establish a baseline framework for estimating

SPAD and aboveground biomass. However, illumination variability

and complex terrain, which are characteristic of alpine

environments, represent major challenges for the deployment of

this technology. The former introduces shadowing and

bidirectional reflectance distribution function (BRDF) effects.

Aasen et al. (2015) recommended controlling these effects

through radiometric calibration using reflectance panels and a

downwelling irradiance sensor, combined with near-noon flights.

The latter causes fluctuations in ground-sampling distance and

geometric quality along flight lines. These effects can be mitigated

by terrain-following flight plans, high forward/side overlap, and

DEM-assisted orthorectification and 3D reconstruction (Maes,

2025). Building on these considerations, a UAV-DL pipeline was

established for wild L. rotata in our previous research (Ding et al.,

2023). In that study, an identification precision of 89% was achieved

on UAV orthomosaics using Mask R-CNN, and plot-scale counts

and yield estimates were obtained. Accordingly, the integration of

hyperspectral sensing with UAVs and deep learning for monitoring

growth and bioactive compounds in wild L. rotata is currently

underway. These efforts will support the standardized, routine

deployment of hyperspectral technology for habitat monitoring of

wild medicinal plants in high-altitude areas.
5 Conclusion

Lamiophlomis rotata samples were cultivated at three altitudes,

and the time-series phenotype data were collected by HSI. Spectra

and phenotypic data were selected as the research objects to

monitor growth status and aboveground biomass of cultivated L.

rotata. After spectrum preprocessing, feature band screening, and

vegetation index and texture feature extraction, the selected feature

band was fused with vegetation index and texture feature, and a

prediction model of single feature input and multi-feature fusion

input was constructed. The prediction effect and generalization

ability of the model were compared. 1) The original spectrum was

pretreated using the SNV, MSC, SG, and FD methods, and FD was

the optimal method based on the fixed-parameter prediction model

performance of PLSR. 2) Compared with CARS, the band features

extracted by DRSA-CARS could reduce collinearity to obtain fewer

and more efficient features. 3) The FNN prediction model

constructed by integrating feature wavelength with vegetation

index showed the best prediction performance for SPAD

monitoring, and the coefficient of determination and the value of

RPD in the test set were 0.7502 and 1.9571, respectively. 4) In the

predictive models of biomass, FNN also exhibited optimal

performance based on the fusion data of feature wavelength and

texture features, and the coefficient of determination and the value
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of RPD in the test set were 0.7933 and 2.1991, respectively. The

above studies show that models using the characteristic wavelength

of HSI that fused features of vegetation index and texture

characteristics performed better than those based on single

features. This study verifies that the fusion features enhanced the

prediction accuracy and improved the model performance by the

spectral and spatial information collected from HSI. This also

reveals the potential of combining multi-temporal HSI data with

deep learning to enable dynamic growth monitoring and scalable

applications in precision herb cultivation.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Author contributions

XW: Methodology, Writing – original draft, Data curation.

LZ: Writing – original draft, Investigation. RD: Formal Analysis,

Writing – review & editing. CW: Writing – review & editing,

Validation. HC: Writing – original draft, Data curation.

SZ: Writing – review & editing, Conceptualization. RG: Writing –

review & editing, Conceptualization, Funding acquisition.
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. This work was supported

by the National Key Research and Development Program of the

Ministry of Science and Technology (No. 2019YFC1712305).
Acknowledgments

The authors would like to thank the responsible editor and

reviewers for their valuable comments and constructive suggestions,

which have greatly helped improve the quality of the manuscript.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1640779
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wu et al. 10.3389/fpls.2025.1640779
Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Frontiers in Plant Science 18
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2025.1640779/

full#supplementary-material

SUPPLEMENTARY FIGURE 1

The result of feature bands screening by CARS.

SUPPLEMENTARY FIGURE 2

The process of feature band screening by DRSA-CARS algorithm.

SUPPLEMENTARY TABLE 1

Hyperparameters and settings of PLSR, SVR, FNN, and CNN models for
SPAD prediction.

SUPPLEMENTARY TABLE 2

Hyperparameters and settings of PLSR, SVR, FNN, and CNN models for
above-ground biomass prediction.
References
Aasen, H., Burkart, A., Bolten, A., and Bareth, G. (2015). Generating 3D
hyperspectral information with lightweight UAV snapshot cameras for vegetation
monitoring: From camera calibration to quality assurance. ISPRS J. Photogrammetry
Remote Sens. 145, 245–259. doi: 10.1016/j.isprsjprs.2015.08.002

Aasen, H., Honkavaara, E., Lucieer, A., and Zarco-Tejada, P. J. (2018). Quantitative
remote sensing at ultra-high resolution with UAV spectroscopy: A review of sensor
technology, measurement procedures, and data correction workflows. Remote Sens. 10,
1091. doi: 10.3390/rs10071091

Abualigah, L., Abd Elaziz, M., Sumari, P., Geem, Z. W., and Gandomi, A. H. (2022).
Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert
Syst. Appl. 191, 116158. doi: 10.1016/j.eswa.2021.116158

Bannari, A., Morin, D., Bonn, F., and Huete, A. R. (1995). A review of vegetation
indices. Remote Sens. Rev. 13, 95–120. doi: 10.1080/02757259509532298

Canter, P. H., T., H., and E., E. (2005). Bringing medicinal plants into cultivation:
opportunities and challenges for biotechnology. Trends Biotechnol. 23, 180–185.
doi: 10.1016/j.tibtech.2005.02.002

Chen, T., Sun, Y., Chen, H., and Deng, W. (2024). Enhanced wild horse optimizer
with cauchy mutation and dynamic random search for hyperspectral image band
selection. Electronics 13, 1930. doi: 10.3390/electronics13101930

Cui, Z.-H., Qin, S.-S., Zang, E.-H., Li, C., Gao, L., Li, Q.-C., et al. (2020). Traditional
uses, phytochemistry, pharmacology and toxicology of Lamiophlomis rotata (Benth.)
Kudo: a review. RSC Adv. 10, 11463–11474. doi: 10.1039/D0RA01050B

Dhakal, R., Maimaitijiang, M., Chang, J., and Caffe, M. (2023). Utilizing spectral,
structural and textural features for estimating oat above-ground biomass using UAV-
based multispectral data andmachine learning. Sensors 23, 9708. doi: 10.3390/s23249708

Ding, R., Luo, J., Wang, C., Yu, L., Yang, J., Wang, M., et al. (2023). Identifying and
mapping individual medicinal plant Lamiophlomis rotata at high elevations by using
unmanned aerial vehicles and deep learning. Plant Methods 19, 38. doi: 10.1186/
s13007-023-01015-z

Dong, L., Li, Q., Li, J., Zhao, X., Zou, H., Ma, H., et al. (2024). Study on Character and
Alkaloid Content for High-quality Varieties of Rhizoma Corydalis in Zhejiang
Province. J. Sichuan Normal Univ. (Natural Science). 47 (6), 779–785. doi: 10.3969/
j.issn.1001-8395.2024.06.007

Elgamal, Z., Sabri, A. Q. M., Tubishat, M., Tbaishat, D., Makhadmeh, S. N., and
Alomari, O. A. (2022). Improved reptile search optimization algorithm using chaotic
map and simulated annealing for feature selection in medical field. IEEE Access 10,
51428–51442. doi: 10.1109/ACCESS.2022.3174854

Fan, J., Liu, Y., Fan, Y., Yao, Y., Chen, R., Bian, M., et al. (2024). Estimation of potato
leaf area index based on spectral information and Haralick textures from UAV
hyperspectral images. Front. Plant Sci. 15. doi: 10.3389/fpls.2024.1492372

Feng, L., Chen, S., Zhang, C., Zhang, Y., and He, Y. (2021). A comprehensive review
on recent applications of unmanned aerial vehicle remote sensing with various sensors
for high-throughput plant phenotyping. Comput. Electron. Agric. 182, 106033.
doi: 10.1016/j.compag.2021.106033

Gao, R., Hu, Y., Dan, Y., Hao, L., Liu, X., and Song, J. (2020). Chinese herbal
medicine resources: Where we stand. Chin. Herbal Medicines 12, 3–13. doi: 10.1016/
j.chmed.2019.08.004
Gao, S., and Xu, J. (2022a). hyperspectral image information fusion-based detection
of soluble solids content in red globe grapes. Comput. Electron. Agric. 196, 106822.
doi: 10.1016/j.compag.2022.106822

Hall-Beyer, M. (2017). Practical guidelines for choosing GLCM textures to use in
landscape classification tasks over a range of moderate spatial scales. Int. J. Remote Sens.
38, 1312–1338. doi: 10.1080/01431161.2016.1278314

Hao, D.-C., and Xiao, P.-G. (2018). Deep in shadows: Epigenetic and epigenomic
regulations of medicinal plants. Chin. Herbal Medicines 10, 239–248. doi: 10.1016/
j.chmed.2018.02.003

Hennessy, A., Clarke, K., and Lewis, M. (2020). Hyperspectral classification of plants:
A review of waveband selection generalisability. Remote Sens. 12, 113. doi: 10.3390/
rs12010113

Hou, M., Ai, Z., Li, X., Dang, X., Yao, Y., Deng, Y., et al. (2024). Exploring the optimal
model for assessing SOC and TN in Zanthoxylum bungeanum forest on the Loess
Plateau using VNIR spectroscopy. Ecol. Inf. 79, 102429. doi: 10.1016/
j.ecoinf.2023.102429

Jiang, C., Tsukagoshi, S., and Maruo, T. (2017). A correlation analysis on chlorophyll
content and SPAD value in tomato leaves. HortResearch, 71, 37–42. doi: 10.20776/
S18808824-71-P37

Jordan, M. I., and Mitchell, T. M. (2015). Machine learning: Trends, perspectives,
and prospects. Science 349, 255–260. doi: 10.1126/science.aaa8415

Kandpal, K. C., and Kumar, A. (2024). Migrating from invasive to noninvasive
techniques for enhanced leaf chlorophyll content estimations efficiency. Crit. Rev.
Analytical Chem. 54, 2583–2598. doi: 10.1080/10408347.2023.2188425

Kelsey, K., and Neff, J. (2014). Estimates of aboveground biomass from texture
analysis of landsat imagery. Remote Sens. 6, 6407–6422. doi: 10.3390/rs6076407

Khan, M. S., Semwal, M., Sharma, A., and Verma, R. K. (2020). An artificial neural
network model for estimating Mentha crop biomass yield using Landsat 8 OLI. Precis.
Agric. 21, 18–33. doi: 10.1007/s11119-019-09655-9

Khan, A., Vibhute, A. D., Mali, S., and Patil, C. H. (2022). A systematic review
on hyperspectral imaging technology with a machine and deep learning
methodology for agricultural applications. Ecol. Inf. 69, 101678. doi: 10.1016/
j.ecoinf.2022.101678

Khan, M. K., Zafar, M. H., Rashid, S., Mansoor, M., Moosavi, S. K. R., and Sanfilippo,
F. (2023). Improved reptile search optimization algorithm: application on regression
and classification problems. Appl. Sci. 13, 945. doi: 10.3390/app13020945

Li, S., Huang, X., Li, Y., Ding, R., Wu, X., Li, L., et al. (2023). Spectrum-effect
relationship in Chinese herbal medicine: current status and future perspectives. Crit.
Rev. Analytical Chem. 55 (2), 353–374. doi: 10.1080/10408347.2023.2290056

Li, Y., Li, F., Zheng, T., Shi, L., Zhang, Z., Niu, T., et al. (2021). Lamiophlomis herba:
A comprehensive overview of its chemical constituents, pharmacology, clinical
applications, and quality control. Biomedicine Pharmacotherapy 144, 112299.
doi: 10.1016/j.biopha.2021.112299

Li, H., Liang, Y., Xu, Q., and Cao, D. (2009). Key wavelengths screening using
competitive adaptive reweighted sampling method for multivariate calibration.
Analytica Chimica Acta 648, 77–84. doi: 10.1016/j.aca.2009.06.046
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2025.1640779/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2025.1640779/full#supplementary-material
https://doi.org/10.1016/j.isprsjprs.2015.08.002
https://doi.org/10.3390/rs10071091
https://doi.org/10.1016/j.eswa.2021.116158
https://doi.org/10.1080/02757259509532298
https://doi.org/10.1016/j.tibtech.2005.02.002
https://doi.org/10.3390/electronics13101930
https://doi.org/10.1039/D0RA01050B
https://doi.org/10.3390/s23249708
https://doi.org/10.1186/s13007-023-01015-z
https://doi.org/10.1186/s13007-023-01015-z
https://doi.org/10.3969/j.issn.1001-8395.2024.06.007
https://doi.org/10.3969/j.issn.1001-8395.2024.06.007
https://doi.org/10.1109/ACCESS.2022.3174854
https://doi.org/10.3389/fpls.2024.1492372
https://doi.org/10.1016/j.compag.2021.106033
https://doi.org/10.1016/j.chmed.2019.08.004
https://doi.org/10.1016/j.chmed.2019.08.004
https://doi.org/10.1016/j.compag.2022.106822
https://doi.org/10.1080/01431161.2016.1278314
https://doi.org/10.1016/j.chmed.2018.02.003
https://doi.org/10.1016/j.chmed.2018.02.003
https://doi.org/10.3390/rs12010113
https://doi.org/10.3390/rs12010113
https://doi.org/10.1016/j.ecoinf.2023.102429
https://doi.org/10.1016/j.ecoinf.2023.102429
https://doi.org/10.20776/S18808824-71-P37
https://doi.org/10.20776/S18808824-71-P37
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1080/10408347.2023.2188425
https://doi.org/10.3390/rs6076407
https://doi.org/10.1007/s11119-019-09655-9
https://doi.org/10.1016/j.ecoinf.2022.101678
https://doi.org/10.1016/j.ecoinf.2022.101678
https://doi.org/10.3390/app13020945
https://doi.org/10.1080/10408347.2023.2290056
https://doi.org/10.1016/j.biopha.2021.112299
https://doi.org/10.1016/j.aca.2009.06.046
https://doi.org/10.3389/fpls.2025.1640779
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wu et al. 10.3389/fpls.2025.1640779
Li, S., Wu, H., Wan, D., and Zhu, J. (2011). An effective feature selection method for
hyperspectral image classification based on genetic algorithm and support vector
machine. Knowledge-Based Syst. 24, 40–48. doi: 10.1016/j.knosys.2010.07.003

Li, X., Zhang, Y., Bao, Y., Luo, J., Jin, X., Xu, X., et al. (2014). Exploring the best
hyperspectral features for LAI estimation using partial least squares regression. Remote
Sens. 6, 6221–6241. doi: 10.3390/rs6076221

Liu, D., and Han, L. (2017). Spectral curve shape matching using derivatives in
hyperspectral images. IEEE Geosci. Remote Sens. Lett. 14, 504–508. doi: 10.1109/
LGRS.2017.2651060

Liu, W., Zheng, L., and Qi, D. (2020). Variation in leaf traits at different altitudes
reflects the adaptive strategy of plants to environmental changes. Ecol. Evol. 10, 8166–
8175. doi: 10.1002/ece3.6519

Liu, C., Zuo, Z., Xu, F., and Wang, Y. (2023). Authentication of herbal medicines based
on modern analytical technology combined with chemometrics approach: A review. Crit.
Rev. Analytical Chem. 53, 1393–1418. doi: 10.1080/10408347.2021.2023460

Lu, J., Jiang, Y., Jin, B., Sun, C., and Wang, L. (2024). hyperspectral imaging
combined with deep transfer learning to evaluate flavonoids content in Ginkgo
biloba Leaves. Int. J. Mol. Sci. 25, 9584. doi: 10.3390/ijms25179584

Ma, L., Yang, L., Zhao, J., Wei, J., Kong, X., Wang, C., et al. (2015). Comparative
proteomic analysis reveals the role of hydrogen sulfide in the adaptation of the alpine
plant Lamiophlomis rotata to altitude gradient in the Northern Tibetan Plateau. Planta
241, 887–906. doi: 10.1007/s00425-014-2209-9

Maes, W. H. (2025). Practical guidelines for performing UAV mapping flights with
snapshot sensors. Remote Sens. 17, 606. doi: 10.3390/rs17040606

Mahesh, B. (2020). Machine learning algorithms - A review. Int. J. Sci. Res. (IJSR) 9,
381–386. doi: 10.21275/art20203995

Marcone, A., Impollonia, G., Croci, M., Blandinières, H., and Amaducci, S. (2024).
Estimation of above ground biomass, biophysical and quality parameters of spinach
(Spinacia Oleracea L.) using Sentinel-2 to support the supply chain. Scientia Hortic.
325, 112641. doi: 10.1016/j.scienta.2023.112641

Nagy, L., and G., G. (2009). The biology of alpine habitats (USA: Oxford University Press).

Paoletti, M. E., Haut, J. M., Plaza, J., and Plaza, A. (2019). Deep learning classifiers for
hyperspectral imaging: A review. ISPRS J. Photogrammetry Remote Sens. 158, 279–317.
doi: 10.1016/j.isprsjprs.2019.09.006

Park, J.-J., Park, S.-K., Yun, D.-Y., Lee, G., Kim, S. S., Park, K.-J., et al. (2025). Non-
destructive quantification of sea lettuce in laver using hyperspectral imaging with
hybrid spectral feature selection techniques. Food Bioscience 66, 106272. doi: 10.1016/
j.fbio.2025.106272

Qiao, L., Tang, W., Gao, D., Zhao, R., An, L., Li, M., et al. (2022). UAV-based chlorophyll
content estimation by evaluating vegetation index responses under different crop coverages.
Comput. Electron. Agric. 196, 106775. doi: 10.1016/j.compag.2022.106775

Rehman, T. U., Ma, D., Wang, L., Zhang, L., and Jin, J. (2020). Predictive spectral
analysis using an end-to-end deep model from hyperspectral images for high-
throughput plant phenotyping. Comput. Electron. Agric. 177, 105713. doi: 10.1016/
j.compag.2020.105713

Ren, J., Duan, B., Zhang, X., Korpelainen, H., and Li, C. (2010). Differences in growth
and physiological traits of two poplars originating from different altitudes as affected by
UV-B radiation and nutrient availability. Physiologia Plantarum 138, 278–288.
doi: 10.1111/j.1399-3054.2009.01328.x

Riefolo, C., and D’Andrea, L. (2024). A non-destructive approach in proximal sensing
to assess the performance distribution of SPAD prediction models using hyperspectral
analysis in apricot trees. Exp. Agric. 60, e25. doi: 10.1017/S0014479724000206

Saif, M. S., Chancia, R., Pethybridge, S., Murphy, S. P., Hassanzadeh, A., and van
Aardt, J. (2023). Forecasting table beet root yield using spectral and textural features
from hyperspectral UAS imagery. Remote Sens. 15, 794. doi: 10.3390/rs15030794

Shaik, N. B., Pedapati, S. R., Taqvi, S. A. A., Othman, A. R., and Dzubir, F. A. A.
(2020). A feed-forward back propagation neural network approach to predict the life
condition of crude oil pipeline. Processes 8, 661. doi: 10.3390/pr8060661

Shakoor, N., Lee, S., and Mockler, T. C. (2017). High throughput phenotyping to
accelerate crop breeding and monitoring of diseases in the field. Curr. Opin. Plant Biol.
38, 184–192. doi: 10.1016/j.pbi.2017.05.006

Su, W.-H., Yang, C., Dong, Y., Johnson, R., Page, R., Szinyei, T., et al. (2021).
hyperspectral imaging and improved feature variable selection for automated
determination of deoxynivalenol in various genetic lines of barley kernels for
resistance screening. Food Chem. 343, 128507. doi: 10.1016/j.foodchem.2020.128507

Sun, J., Du, L., Qu, Z., Wang, H., Dong, S., Li, X., et al. (2023). Integrated metabolomics and
proteomics analysis to study the changes in Scutellaria baicalensis at different growth stages.
Food Chem. 419, 136043. doi: 10.1016/j.foodchem.2023.136043
Frontiers in Plant Science 19
Wan, G., Fan, S., Liu, G., He, J., Wang, W., Li, Y., et al. (2023). Fusion of spectra and
texture data of hyperspectral imaging for prediction of myoglobin content in nitrite-
cured mutton. Food Control 144, 109332. doi: 10.1016/j.foodcont.2022.109332

Wang, C., Liu, B., Liu, L., Zhu, Y., Hou, J., Liu, P., et al. (2021). A review of deep
learning used in the hyperspectral image analysis for agriculture. Artif. Intell. Rev. 54,
5205–5253. doi: 10.1007/s10462-021-10018-y

Wang, Y., Wang, S., Bai, R., Li, X., Yuan, Y., Nan, T., et al. (2024). Prediction
performance and reliability evaluation of three ginsenosides in Panax ginseng using
hyperspectral imaging combined with a novel ensemble chemometric model. Food
Chem. 430, 136917. doi: 10.1016/j.foodchem.2023.136917

Wang, Y., Xiong, F., Zhang, Y., Wang, S., Yuan, Y., Lu, C., et al. (2023). Application
of hyperspectral imaging assisted with integrated deep learning approaches in
identifying geographical origins and predicting nutrient contents of Coix seeds. Food
Chem. 404, 134503. doi: 10.1016/j.foodchem.2022.134503

Wold, S., Sjöström, M., and Eriksson, L. (2001). PLS-regression: a basic tool of
chemometrics. Chemometr. Intell. Lab. Syst. 58 (2), 109–130. doi: 10.1016/S0169-7439
(01)00155-1

Wu, G., Fang, Y., Jiang, Q., Cui, M., Li, N., Ou, Y., et al. (2023b). Early identification
of strawberry leaves disease utilizing hyperspectral imaging combing with spectral
features, multiple vegetation indices and textural features. Comput. Electron. Agric. 204,
107553. doi: 10.1016/j.compag.2022.107553

Wu, D., Wen, C., Rao, H., Jia, H., Liu, Q., and Abualigah, L. (2023). Modified reptile
search algorithm with multi-hunting coordination strategy for global optimization
problems. Math. Biosci. Eng. 20, 10090–10134. doi: 10.3934/mbe.2023443

Wu, X.-M., Zhang, Q.-Z., and Wang, Y.-Z. (2018b). Traceability of wild Paris
polyphylla Smith var. yunnanensis based on data fusion strategy of FT-MIR and UV–
Vis combined with SVM and random forest. Spectrochimica Acta - Part A: Mol.
Biomolecular Spectrosc. 205, 479–488. doi: 10.1016/j.saa.2018.07.067

Wu, X., Zhong, L., Chen, G., Zhong, S., and Gu, R. (2024). Morphological and
physiological plasticity of alpine medicinal plants along an elevational gradient. J. Appl.
Res. Medicinal Aromatic Plants 44, 100613. doi: 10.1016/j.jarmap.2024.100613

Wu, X. M., Zuo, Z. T., Zhang, Q. Z., and Wang, Y. Z. (2018a). Classification of Paris
species according to botanical and geographical origins based on spectroscopic,
chromatographic, conventional chemometric analysis and data fusion strategy.
Microchemical J. 143, 479–488. doi: 10.1016/j.microc.2018.08.035

Xiao, Q., Tang, W., Zhang, C., Zhou, L., Feng, L., Shen, J., et al. (2022). Spectral
preprocessing combined with deep transfer learning to evaluate chlorophyll content in
cotton leaves. Plant Phenomics 2022, 9813841. doi: 10.34133/2022/9813841

Yao, K., Sun, J., Tang, N., Xu, M., Cao, Y., Fu, L., et al. (2021). Nondestructive
detection for Panax notoginseng powder grades based on hyperspectral imaging
technology combined with CARS‐PCA and MPA‐LSSVM. J. Food Process Eng. 44,
e13718. doi: 10.1111/jfpe.13718

Zhang, C. L. (2019). Ecological mechanism of ecoregion difference of medicinal
ingredients in Salvia Miltiorrhiza Bunge (Doctoral dissertation). Yangling, China:
Northwest A&F University.

Zhang, J., Cheng, T., Guo, W., Xu, X., Qiao, H., Xie, Y., et al. (2021). Leaf area index
estimation model for UAV image hyperspectral data based on wavelength variable
selection and machine learning methods. Plant Methods 17, 49. doi: 10.1186/s13007-
021-00750-5

Zhang, H., Li, J., Liu, Q., Lin, S., Huete, A., Liu, L., et al. (2022b). A novel red‐edge
spectral index for retrieving the leaf chlorophyll content.Methods Ecol. Evol. 13, 2771–
2787. doi: 10.1111/2041-210X.13994

Zhang, H., Li, G., Zhao, C., Zhao, P., Jiang, M., Wen, G., et al. (2022a).
Characterizations of “drumstick-forming” on saponin contents of Notoginseng Radix
et Rhizoma and their saccharide metabolism basis of vegetative organs of Panax
notoginseng. Ind. Crops Products 180, 114699. doi: 10.1016/j.indcrop.2022.114699

Zhang, F., and O’Donnell, L. J. (2019). “Support vector regression,” in Machine
Learning: Methods and Applications to Brain Disorders (Cambridge: Elsevier), 123–140.
doi: 10.1016/B978-0-12-815739-8.00007-9

Zhang, X., Sun, H., Qiao, X., Yan, X., Feng, M., Xiao, L., et al. (2022c). Hyperspectral
estimation of canopy chlorophyll of winter wheat by using the optimized vegetation
indices. Comput. Electron. Agric. 193, 106654. doi: 10.1016/j.compag.2021.106654

Zhao, X., Ma, J., Wang, L., Zhang, Z., Ding, Y., and Xiao, X. (2025). A review of
hyperspectral image classification based on graph neural networks. Artif. Intell. Rev. 58,
172. doi: 10.1007/s10462-025-11169-y

Zheng, H., Cheng, T., Zhou, M., Li, D., Yao, X., Tian, Y., et al. (2019). Improved
estimation of rice aboveground biomass combining textural and spectral analysis of
UAV imagery. Precis. Agric. 20, 611–629. doi: 10.1007/s11119-018-9600-7
frontiersin.org

https://doi.org/10.1016/j.knosys.2010.07.003
https://doi.org/10.3390/rs6076221
https://doi.org/10.1109/LGRS.2017.2651060
https://doi.org/10.1109/LGRS.2017.2651060
https://doi.org/10.1002/ece3.6519
https://doi.org/10.1080/10408347.2021.2023460
https://doi.org/10.3390/ijms25179584
https://doi.org/10.1007/s00425-014-2209-9
https://doi.org/10.3390/rs17040606
https://doi.org/10.21275/art20203995
https://doi.org/10.1016/j.scienta.2023.112641
https://doi.org/10.1016/j.isprsjprs.2019.09.006
https://doi.org/10.1016/j.fbio.2025.106272
https://doi.org/10.1016/j.fbio.2025.106272
https://doi.org/10.1016/j.compag.2022.106775
https://doi.org/10.1016/j.compag.2020.105713
https://doi.org/10.1016/j.compag.2020.105713
https://doi.org/10.1111/j.1399-3054.2009.01328.x
https://doi.org/10.1017/S0014479724000206
https://doi.org/10.3390/rs15030794
https://doi.org/10.3390/pr8060661
https://doi.org/10.1016/j.pbi.2017.05.006
https://doi.org/10.1016/j.foodchem.2020.128507
https://doi.org/10.1016/j.foodchem.2023.136043
https://doi.org/10.1016/j.foodcont.2022.109332
https://doi.org/10.1007/s10462-021-10018-y
https://doi.org/10.1016/j.foodchem.2023.136917
https://doi.org/10.1016/j.foodchem.2022.134503
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.1016/j.compag.2022.107553
https://doi.org/10.3934/mbe.2023443
https://doi.org/10.1016/j.saa.2018.07.067
https://doi.org/10.1016/j.jarmap.2024.100613
https://doi.org/10.1016/j.microc.2018.08.035
https://doi.org/10.34133/2022/9813841
https://doi.org/10.1111/jfpe.13718
https://doi.org/10.1186/s13007-021-00750-5
https://doi.org/10.1186/s13007-021-00750-5
https://doi.org/10.1111/2041-210X.13994
https://doi.org/10.1016/j.indcrop.2022.114699
https://doi.org/10.1016/B978-0-12-815739-8.00007-9
https://doi.org/10.1016/j.compag.2021.106654
https://doi.org/10.1007/s10462-025-11169-y
https://doi.org/10.1007/s11119-018-9600-7
https://doi.org/10.3389/fpls.2025.1640779
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Non-destructive estimation of SPAD and biomass in Lamiophlomis rotata using hyperspectral imaging and deep learning with DRSA-CARS feature selection
	1 Introduction
	2 Materials and methods
	2.1 Experimental materials
	2.2 Data collection of hyperspectral images
	2.3 ROI selection from hyperspectral images
	2.4 Measurement of phenotypic data
	2.4.1 Measurement of SPAD
	2.4.2 Measurement of biomass

	2.5 Data processing and analysis
	2.5.1 Preprocessing of spectra
	2.5.2 Selection of feature wavelengths
	2.5.3 Selection of spectral vegetation index
	2.5.4 Selection of textural features
	2.5.5 Model development and evaluation


	3 Results
	3.1 Statistical analysis of phenotypic characteristics
	3.2 Raw and preprocessed spectral profile
	3.3 Characteristic wavelength analysis
	3.4 Calculation of vegetation index
	3.5 Extraction of textural features
	3.6 Construction of the SPAD prediction models
	3.7 Construction of aboveground biomass prediction models

	4 Discussion
	4.1 Phenotypic plasticity across altitude and growth state
	4.2 Spectral feature selection and characterization
	4.3 Integrative strategy for predicting the target variable

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


