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Introduction: Accurate wheat yield estimation is crucial for efficient crop 
management. This study introduces the Spatio–Temporal Fusion Mixture of 
Experts (STF-MoE) model, an innovative deep learning framework built upon 
an LSTM-Transformer architecture. 

Methods: The STF-MoE model incorporates a heterogeneous Mixture of Experts 
(MoE) mechanism with an adaptive gating network. This design dynamically 
processes fused multi-source remote sensing features (e.g., near-infrared 
vegetation reflectance, NIRv; fraction of photosynthetically active radiation 
absorption, Fpar) and environmental variables (e.g., relative humidity, digital 
elevation model) across multiple expert networks. The model was applied to 
estimate wheat yield in six major Chinese provinces. 

Results: The STF-MoE model demonstrated exceptional accuracy in the most recent 
estimation year (R² = 0.827, RMSE = 547.7 kg/ha) and exhibited robust performance 
across historical years and extreme climatic events, outperforming baseline models. 
Relative humidity and digital elevation model were identified as the most critical yield-
influencing factors. Furthermore, the model accurately estimated yield 1-2 months 
before harvest by identifying key phenological stages (March to June). 

Discussion: STF-MoE effectively handles multi-source spatiotemporal 
complexity via its dynamic gating and expert specialization. While 
underestimation persists in extreme-yield regions, the model provides a 
scalable solution for pre-harvest yield estimation. Future work will optimize 
computational efficiency and integrate higher-resolution data. 
KEYWORDS 

multi-source remote sensing, deep learning, wheat yield estimation, transformer, 
MoE module 
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1 Introduction 

Wheat, as a cornerstone crop in the global agricultural system, 
yields approximately 800 million metric tons annually, supporting 
the dietary energy needs of over 35% of the global population. In 
China, wheat accounts for 92.3% of total summer grain production 
(2024), rendering its accurate yield estimation critical for 
agricultural policymaking, food security assurance, and 
international trade equilibrium (Chen et al, 2024). 

Over the past decades, agricultural researchers have been 
dedicated to developing more precise crop yield estimation 
methods. Due to the complexity and limited applicability of 
conventional manual yield measurement techniques, remote 
sensing technology has achieved significant progress in 
agricultural monitoring by virtue of its rapid, cost-effective, and 
scalable advantages (Karthikeyan et al., 2020; Raza et al, 2025). Early 
remote sensing-based yield assessment primarily relies on 
vegetation indices and related parameters, which are derived from 
satellite remote sensing data to reflect crop growth status and health 
conditions. To further enhance estimation accuracy and 
mechanistic interpretability, advanced approaches such as light 
use efficiency (LUE)-based models and data assimilation have 
been extensively researched and applied (Lu et al., 2024a). The 
former quantifies crop yield potential by measuring the efficiency of 
light energy capture and conversion, while the latter integrates 
multi-source remote sensing observations into crop growth models 
to iteratively optimize simulation processes and state variables. 
Within these estimation frameworks—whether empirical-

statistical or process-based—leaf area index (LAI) and fraction of 
photosynthetically active radiation absorption (Fpar) are 
recognized as core biophysical variables for yield estimation 
(Smith et al., 2019; Liang and Wang (2020). By quantifying 
canopy light interception efficiency, these parameters directly 
indicate dry matter accumulation dynamics and constitute 
fundamental descriptors of vegetation photosynthetic activity and 
canopy structure (Smith et al., 2019; Liang and Wang (2020). While 
these biophysical parameters offer direct insights, their estimation 
from satellite imagery often relies on vegetation indices. A widely 
used example, the traditional normalized difference vegetation 
index (NDVI), however, encounters issues such as spectral 
saturation under high biomass conditions. To address the spectral 
saturation limitation of the traditional normalized difference 
vegetation index (NDVI) under high biomass conditions, the 
green normalized difference vegetation index (GNDVI) was 
developed by replacing the red band with a green band, 
significantly enhancing chlorophyll sensitivity (Tian et al, 2020). 
Similarly, the enhanced vegetation index (EVI) introduces a blue 
band correction mechanism to effectively suppress soil background 
noise (Burns et al., 2022). Notably, the near-infrared reflectance 
vegetation index (NIRv) achieves accurate inversion of vegetation-
absorbed photosynthetically active radiation through the 
multiplicative integration of NDVI and near-infrared reflectance 
(Mallick et al., 2024). In terms of environmental stress responses, 
embedding factors like solar radiation (Rad), soil organic carbon 
(SoC), and topography (DEM, Slope) into yield estimation models 
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is essential. These parameters synergistically govern the crop’s 
microenvironment and physiological responses; for instance, Rad 
is the primary energy source, SoC influences nutrient-water 
availability, and topography dictates local environmental 
variations. Consequently, there is a growing scholarly focus on 
integrating these environmental and topographical variables with 
the previously discussed remote sensing-derived vegetation 
characteristics (e.g., various VIs, LAI, Fpar). Numerous studies 
suggest that such a comprehensive approach to parameter 
selection and combination can effectively enhance yield 
estimation accuracy and robustness (Fu et al., 2025a; Lu et al., 
2025; Guo et al., 2024). This integration enables the dynamic 
dissection of yield formation mechanisms governed by “canopy 
physiological  responses  - mult i-factor  environmental  
feedback” interactions. 

Crop yield formation is characterized as a complex nonlinear 
process influenced by multiple factors, including terrain, 
phenological resources, and soil nutrients. Machine learning 
methods are capable of fitting implicit relationships between 
multiple data resources and the combination of representative 
models with remotely sensed data, such as random forest (RF) 
and gradient boosted decision trees (GBDT), have demonstrated 
superiority in yield estimation (Paudel et al., 2023; Li et al., 2022; 
Lischeid et al., 2022). Features are extracted from input data by deep 
learning models through multi-layer implicit neural network 
structures; complex nonlinear relationships can thereby be fitted, 
and an advanced application of machine learning in the domain of 
feature extraction is thus demonstrated (Kamilaris and Prenafeta-
Boldú (2018). Due to their capability in modeling intricate data 
relationships, deep learning techniques are widely acknowledged for 
their superior performance in natural language processing and crop 
classification, which has motivated researchers to focus extensively 
on the application of remote sensing data-driven deep learning 
models to crop yield estimation (Wang et al., 2022). Long Short-
Term Memory (LSTM) structures were introduced by Lu et al 
(2024b) for maize yield estimation in northeastern China, and an 
effective method was provided to quantify the impacts of external 
factors on maize production (Lu et al., 2024b). To capture the 
spatio-spectral features and temporal dependencies in remote 
sensing images, Wang et al. (2023) proposed a multi-spatial 
image yield estimation method based on dimensionality reduction 
techniques and three-dimensional convolutional neural networks, 
which effectively improved the accuracy of crop yield estimation 
(Wang et al., 2023).Additionally, latent features in long-term 
sequential images are effectively captured by LSTM architectures, 
through which spectral, spatial, and temporal information across 
the entire crop growth cycle is extracted, thereby enhancing yield 
estimation accuracy. Temporal series data are accurately and 
interpretably modeled by Transformer architectures via their self-
attention-based encoder-decoder framework without requiring 
recurrent units (Du et al., 2025). Although these two models are 
validated for their respective strengths in deep learning 
applications, the integration of Transformer and LSTM 
architectures with the mixture-of-experts (MoE) mechanism 
remains underexplored. The Mixture of Experts (MoE) is an 
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ensemble learning framework that employs multiple specialized 
“expert” subnetworks, each trained to handle different parts of the 
input space or different subtasks. A gating network then adaptively 
weights the contributions of these experts for a given input, allowing 
the model to effectively tackle complex problems by dividing them 
into simpler, more manageable components (Li et al., 2025; 
Rajbhandari et al., 2022). Therefore, in the field of wheat yield 
estimation, the exploration of MoE models combining 
Transformer-LSTM architectures with spatiotemporal feature 
fusion is considered to hold substantial research value. 

Hybrid models are increasingly applied across multiple 
domains  (Sansana  et  al. ,  2021). A CNN-LSTM hybrid 
architecture was constructed by Oikonomidis et al (2022) for crop 
yield estimation, through which the combination of spatial feature 
extraction and temporal modeling was utilized, and estimation 
accuracy  was  enhanced  (Oikonomidis  et  al,  2022).  A  
Transformer-LSTM model was designed by Jiang et al. (2024) for 
spatiotemporal meteorological data prediction, and the superiority 
of hybrid architectures was validated (Jiang et al., 2024a). Through 
practical implementation, the integration of recurrent structures 
into Transformer frameworks is demonstrated to significantly 
enhance their capability in processing temporal series data. 

Despite the excellent performance of deep learning models, 
their ‘black-box ’ nature limits interpretability. Post-hoc 
interpretability methods aim to reveal model reasoning and 
enhance comprehensibility, though not primarily for performance 
improvement (Markus et al., 2021). As a prominent post-hoc 
explanation tool, Shapley Additive Explanations (SHAP) is 
employed in this study to quantitatively assess the contribution of 
individual variables to the yield estimation models. 

Despite significant advancements in wheat yield estimation 
using multi-source remote sensing data, critical research gaps 
persist. Existing methods, including sophisticated deep learning 
techniques, often encounter difficulties in effectively integrating 
complex spatiotemporal data heterogeneity, dynamically adapting 
feature extraction and fusion strategies to diverse agricultural 
conditions (Zhu et al., 2018), and achieving a flexible learning 
balance between model complexity and estimation accuracy 
without resorting to overly rigid architectures (Hu et al., 2021). 
This highlights a pressing need for novel architectures capable of 
more adaptive information fusion and dynamic processing 
allocation to handle the multifaceted nature of yield formation. 
To address these specific limitations concerning spatiotemporal 
complexity, adaptive learning, and dynamic feature fusion, this 
study introduces a novel spatiotemporal fusion mixture-of-experts 
(STF-MoE) deep learning architecture. The proposed STF-MoE 
model is built upon a robust LSTM-Transformer hybrid framework 
and innovatively incorporates a heterogeneous mixture-of-experts 
mechanism. This mechanism is specifically designed to enhance 
spatiotemporal feature fusion capabilities by dynamically focusing 
on the most salient features and allocating specialized processing to 
different aspects of the input data, thereby tackling the multifaceted 
nature of yield formation. The model is applied to county-level 
wheat yield estimation, and the SHAP method is employed to 
interpret the estimation process and feature importance. The 
Frontiers in Plant Science 03 
objectives are: (1) to develop the STF-MoE architecture and 
evaluate its performance against baseline models; (2) to validate 
the model’s robustness across different spatial scales and error 
magnitudes; and (3) to explore the interpretability of the STF-
MoE model through analysis of selected test years. 
2 Materials and methods 

2.1 Materials 

2.1.1 Study area 
The study area is confined to major wheat-producing regions in 

mainland China, spanning a transitional ecological zone from 
subtropical monsoon to temperate continental arid climates. Six 
provincial-level administrative units are encompassed: Xinjiang 
Uygur Autonomous Region (southern Xinjiang oasis irrigation 
zone), Gansu Province (Hexi Corridor rainfed agriculture zone), 
Shaanxi Province (Guanzhong Plain winter wheat zone), Henan 
Province (core production area of Huang-Huai-Hai Plain), Anhui 
Province (Jiang-Huai watershed transition zone), and Shandong 
Province (high-yield intensive farming region of North China 
Plain), as illustrated in Figure 1. The Huang-Huai-Hai wheat belt 
and Northwest wheat belt, which are two of China’s three dominant 
wheat production zones, are covered by this region, accounting for 
79.66% of the national wheat cultivation area. A representative 
ecological gradient is provided by the climatic zonation and 
topographic diversity across this region, serving as a scientific 
transect for investigating wheat ecophysiological adaptability 
(Zhao, 2010). 

2.1.2 Farmland data and wheat yield data 
In this study, winter wheat yield statistics (unit: kg/ha) were 

obtained from county-/city-level statistical yearbooks published by 
provincial bureaus of China (2002–2021). Specifically, prefecture-
level data were used for Shaanxi, Shandong, Anhui, and Henan 
provinces, while county-level data were applied to Gansu Province 
and Xinjiang Uygur Autonomous Region. After regional screening 
and integration, 25,200 records (covering 126 cities/counties) were 
included, ensuring data completeness across all years within the 
study area. Spatial distribution data of winter wheat were sourced 
from the “2001–2023 China Winter Wheat Planting Distribution 
Dataset at 30-m Resolution” (provided by the National Ecosystem 
Science Data Center, National Science & Technology Infrastructure 
of China: http://www.nesdc.org.cn), which was developed and 
continuously updated by Dong et al (2020); Dong et al, 2024), 
with related research contributions from Fu et al (2025b) (Dong 
et al., 2020, Dong et al, 2024; Fu et al., 2025b). The dataset was 
generated using a time-weighted dynamic time warping (DTW) 
method based on seasonal variation curve similarity, producing 
distribution maps that cover China’s major winter wheat planting 
areas (>99% of national coverage) with an overall accuracy of 
91.6%. Data were formatted as GeoTIFF files under the Albers 
equal-area projection, represented as a binary classification (1 = 
winter wheat, 0 = non-winter wheat). This high-precision spatial 
frontiersin.org 

http://www.nesdc.org.cn
https://doi.org/10.3389/fpls.2025.1640806
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2025.1640806 
data enabled precise delineation of winter wheat cultivation areas, 
effectively excluding interference from other crops and natural 
vegetation, thereby providing a reliable spatial foundation for 
subsequent analyses. 
2.1.3 Remote sensing data 
2.1.3.1 MODIS data and vegetation index 

The MODIS Terra satellite MOD09A1 8-day composite surface 
reflectance product (500 m spatial resolution) was systematically 
analyzed to investigate spatiotemporal evolution patterns of surface 
reflectance characteristics across provinces, prefecture-level cities, 
and county-level units in China during 2001–2021. The observation 
period from September to June of the following year was selected to 
fully cover seasonal variation cycles, providing data support for 
understanding regional surface dynamics. Cloud-contaminated 
pixels were removed through StateQA band quality control to 
ensure data reliability. Four complementary vegetation indices 
were constructed based on red (620–670 nm, sur_refl_b01), near-
infrared (841–876 nm, sur_refl_b02), and blue (459–479 nm, 
sur_refl_b03) band reflectance. The normalized difference 
vegetation index (NDVI) was used to characterize vegetation 
coverage and biomass (Bevz et al., 2024). The enhanced 
vegetation index (EVI) was designed with blue band and soil 
adjustment coefficients to reduce atmospheric and soil 
background interference (Woldemariam et al., 2024). The near-
Frontiers in Plant Science 04
infrared reflectance of vegetation (NIRv) was generated by 
combining NDVI with near-infrared reflectance to optimize 
photosynthetic activity characterization (Lai et al., 2024).The 
green normalized difference vegetation index (GNDVI) was 
developed using green band reflectance to enhance chlorophyll 
sensitivity (Quille-Mamani et al., 2025). 

The near-infrared reflectance of vegetation (NIRv) is defined as 
a recently developed vegetation index, through which interference 
from non-photosynthetic components on vegetation signals is 
structurally eliminated, with its calculation formula expressed as 
Equation 1: 

NIRv = rNIR x NDVI = rNIR x rNIR −rRed (1)rNIR +rRed 

In this formulation, rNIR and rRed are defined as reflectance 
values of the near-infrared and red spectral bands, respectively. 
Background signal interference in vegetation photosynthetic 
activity estimation is structurally suppressed through this 
multiplicative formulation of NIRv, thereby enhancing the 
accuracy of vegetation photosynthetic capacity quantification. 
This approach is particularly applicable for monitoring vegetation 
seasonal dynamics and productivity variations. 

Additionally, the MODIS Terra LAI/FPAR 8-day composite 
product (MOD15A2H, 500 m resolution) was integrated in this 
study, from which two key vegetation biophysical parameters, leaf 
area index (LAI) and fraction of absorbed photosynthetically active 
FIGURE 1 

Hierarchical spatial distribution of Chinese wheat cultivation. (a) National–scale production zones. (b) Huang-Huai-hai Plain Wheat Region. (c) 
Wheat-growing areas in the arid and semi-arid regions of Northwest China. (d) High–density Xinjiang cultivation clusters. (e) Gansu Province Core 
Production Zones. (f) Field–scale characteristics in Huang-Huai-Hai Plain (Image credit: https://www.vcg.com/). 
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radiation (Fpar), were extracted. LAI is utilized to quantify 
vegetation canopy structural characteristics, while Fpar is 
employed to characterize vegetation light interception capacity 
within photosynthetically active radiation bands. Both parameters 
are retrieved through physical model inversion, establishing critical 
eco-physiological parameters for winter wheat growth assessment 
(Chen et al., 2017). 

2.1.3.2 Environmental variable data and related 
parameters 

Meteorological variables were derived from ERA5-Land hourly 
reanalysis data, where monthly average relative humidity (RHum) 
and cumulative solar radiation (Rad) were computed. RHum was 
calculated from 2-meter air temperature and dewpoint temperature 
using the Magnus formula, while Rad was obtained by aggregating 
hourly data and converting it to megajoules per square meter (MJ/ 
m²). Topographic data were integrated with the SRTM digital 
elevation model (DEM, 30-meter resolution), which was 
resampled to 500-meter resolution using bilinear interpolation, 
and slope (Slope) was calculated to quantify terrain effects. Soil 
organic carbon (SoC) content data were sourced from the 
OpenLandMap global open-access soil database (250-meter 
resolution), which was spatially resampled and aligned with 
MODIS data. All environmental variables were standardized to 
500-meter spatial resolution and rigorously matched with 
vegetation index data across temporal (monthly scale) and spatial 
(county-level administrative boundaries) dimensions. Mask-based 
zonal statistical methods were applied to extract mean 
environmental parameters within masked cultivation areas, 
through which a multi-source dataset was constructed to support 
Frontiers in Plant Science 05 
vegetation-climate-soil synergy mechanism analysis in wheat 
cropping systems. 
2.2 Dataset preprocessing 

A county-level wheat yield estimation framework for China 
from 2002 to 2021 was constructed, with temporal coverage 
spanning the complete wheat growth cycle (September to June 
annually) to precisely capture nine key phenological stages. 
Dynamic impacts of climate change on provincial wheat cropping 
systems and phenological shifts were simultaneously considered. A 
multi-source data fusion strategy was adopted, under which 
MODIS  remote  sensing  data,  vegetation  indices,  and  
environmental parameters were systematically processed through 
spatial standardization (unified resampling to 500-meter 
resolution), temporal standardization (monthly scale), annualized 
masking based on wheat cultivation areas, and spatial aggregation 
to county-level administrative units. Rigorous data quality control 
methods were implemented to filter discontinuous or missing yield 
records, ensuring dataset completeness and reliability. Data 
processing workflows were executed on the Google Earth Engine 
cloud computing platform using pixel-level statistical methods and 
administrative boundary-based spatial aggregation, achieving 
efficient large-scale remote sensing data processing. Deep 
integration of remote sensing data with statistical records was 
realized through Python programming in the PyCharm integrated 
development environment with pandas library, laying a solid data 
foundation for high-precision wheat yield estimation models. 
Detailed specifications of the dataset are summarized in Table 1, 
TABLE 1 Data sources. 

Category Variables 
Temporal 
resolution 

Spatial 
resolution Time coverage Data source 

Wheat yield and 
planting area 

Local and county– 
level production 

Yearly 
Local and 

county–level 
2002–2021,From September to 
June of the following year 

Statistical Yearbook of 
Each Province 

Planting area(The 
Cropland Data Layer ) 

Yearly 30m 
2001–2021,From September to 
June of the following year 

DOI:10.6084/ 
m9.figshare.12003990.v2 

MODIS data and 
vegetation index 

Surface Reflectance 
(Red–Sur_Sefl–b01) 

Daily 500m 
2001–2021,From September to 
June of the following year 

MOD09GA Version 6.1 

Vegetation index 
(NDVI,EVI, GNDVI) 

16–day 500m 
2001–2021,From September to 
June of the following year 

MOD13A1 Version 6.1 

Vegetation index(NIRv) Daily 500m 
2001–2021,From September to 
June of the following year 

Formula 1 can be calculated as 

Environmental data 

Photosynthesis–related 
Parameters(LAI,Fpar) 

8–day 500 m 
2001–2021,From September to 
June of the following year 

MOD15A2H 

Meteorological 
Parameters 

(RHum, Rad) 
1–hour 0.1° 

2001–2021,From September to 
June of the following year 

ECMWF ERA5–Land 
hourly data 

Topographic 
Parameters(DEM,Slope) 

Yearly 30 m 
2001–2021,From September to 
June of the following year 

SRTMGL1 v3 

Soil Parameters(SoC) Yearly 250 m 
2001–2021,From September to 
June of the following year 

SOL_ORGANIC– 
CARBON_USDA– 

6A1C_M/v02 
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and the integrated data processing and model training workflow is 
illustrated in Figure 2. 
 

2.3 Methods 

2.3.1 STF–MoE model 
A deep learning model named Spatio–Temporal Fusion 

Mixture of Experts (STF-MoE)is proposed in this study, as 
illustrated in Figure 3. This architecture is improved from an 
LSTM–Transformer hybrid framework, where a heterogeneous 
mixture-of-experts mechanism is introduced to enhance 
spatiotemporal feature fusion capabilities. In the STF-MoE 
framework, remote sensing input data with an input feature 
dimension of 10 and a temporal step size of 10 are mapped to a 
high-dimensional representation space through a linear embedding 
layer, while temporal sequence information is preserved via 
sinusoidal positional encoding. Wherein a time step of 10 is 
employed, this represents feature inputs from 10 months which 
span the entire wheat growing sea-son; furthermore, an input 
feature dimension of 10 indicates that the model input comprises 
these 10 remote sensing  feature variables. The  model core is

composed of two parallel branches: A Transformer branch with 4 
encoder layers (8 attention heads per layer) is designed to efficiently 
capture long-range temporal dependencies. A bidirectional two-
layer LSTM branch is constructed to precisely extract local 
contextual features and temporal dynamics. Outputs from both 
branches are concatenated and dynamically routed through an 
Frontiers in Plant Science 06
adaptive gating network to 5 structurally heterogeneous expert 
networks, each of which is equipped with distinct hierarchical 
architectures, activation functions, and regularization strategies to 
specialize in specific feature patterns. Expert weights are computed 
via a Softmax function in the gating mechanism, with the Top-2 
experts being selected for feature processing to optimize 
computational resource allocation. Final yield estimation is 
generated through a three-stage feature fusion layer where MoE 
outputs, Transformer final states, and LSTM final states are 
integrated. A 512-dimensional fusion layer is followed by a 256­
dimensional nonlinear mapping layer to produce high-precision 
wheat yield estimations. During the training phase, the Huber loss 
function is employed to balance outlier robustness and convergence 
speed. The Adam optimizer is configured with an initial learning 
rate of 0.0001, and a batch size of 32 is set to ensure GPU memory 
efficiency and gradient estimation stability over 600 training epochs. 
Gradient clipping is implemented with a threshold of 1.0 to prevent 
gradient explosion, while hierarchical Dropout (0.1–0.3) is applied 
to suppress overfitting. All feature standardization is rigorously 
performed using MinMaxScaler parameters fitted from the training 
set, ensuring model generalizability. 

2.3.2 Mixture of experts architecture 
In the STF-MoE model architecture, a mixture-of-experts 

(MoE) framework is employed with an efficient conditional 
computation paradigm, where adaptive feature processing of 
inputs is achieved through a dynamic routing mechanism. The 
MoE module receives the spatiotemporal feature representations 
FIGURE 2 

Flow chart of data processing and model training. 
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extracted by the Transformer and bidirectional LSTM branches, 
and a comprehensive input is formed through the concatenation of 
these representations. Specifically, global dependencies are captured 
by the Transformer branch via multi-head self-attention 
mechanisms, while temporal-local features are extracted by the 
bidirectional LSTM branch through recurrent architectures. Output 
features from these two components are concatenated along the 
hidden dimension, generating the input feature representation h ∈ 
Rbxtx2d , where b denotes batch size, t represents sequence length, 
and d corresponds to the model’s hidden dimension. 

2.3.2.1 Gating network design 
The core of the MoE architecture is implemented as a gating 

network, through which expert weights are dynamically allocated. 
The gating network is composed of two fully connected layers, 
between which the GELU activation function is employed to 
enhance nonlinear representation capabilities. A probability 
distribution of experts is generated via the Softmax function. 
Formally, the computational process of the gating network is 
defined by Equation 2: 

g = Softmax(W2·GELU(W1·havg + b1) +  b2) (2) 

Where havg ∈ Rbx2d is obtained by averaging the input features 
h along the temporal dimension. The weight matrices of the fully 
connected layers are represented as W1 ∈ R2dx256 and W2 ∈ R256x5 

, while the bias vectors are defined as b1 ∈ R256and b2 ∈ R5. The 
gating network output g ∈ Rbx5 is interpreted as assignment 
probabilities of each sample to the five experts. 
Frontiers in Plant Science 07 
 

2.3.2.2 Sparse activation mechanism 
To enhance computational efficiency and mitigate overfitting 

risks, a sparse activation strategy is employed in the model, where 
only the Top-2 experts with the highest probabilities in the gating 
network output are selected for computation. For each sample i, the 
gating output gi ∈ R5 is sorted to obtain the top k=2 expert indices g  g  
ei = ei1 , ei2 

and corresponding weights wi = wi1 , wi2 
, where 

J.wij = gi½eij

2.3.2.3 Expert processing and weighted fusion 
The implementation of the heterogeneous expert pool, which 

comprises multiple expert subnetworks, each with distinct 
architectural designs to foster specialization on varied data 
patterns, is governed by two critical phases: output standardization 
and dynamic fusion. To ensure compatibility among ex-pert network 
outputs, an Expert Adapter layer is introduced, through which 
output dimensions are standardized to d. The transformation 
Equation 3 is defined as: 

oij = Wadapt ·Experteij (hi) +  badapt (3) 

In this formulation, oij ∈ Rd is defined as the output vector of 
the i-th input sample processed and adapted by the j-th selected 
expert, with dimensionality d. This vector is represented as a 
standardized feature representation for subsequent fusion. Wadapt 

∈ Rdexpert xd and hi ∈ Rtx2d are defined, where hi ∈ Rtx2d is 
interpreted as the spatiotemporal feature representation of the i­
th input sample, with dimensions corresponding to sequence length 
t and feature dimension 2d. It is derived from the concatenation of 
FIGURE 3 

Architecture of the STF–MoE model: (a) Four–layer Transformer encoder; (b) Bidirec-tional LSTM module; (c) Feature fusion mechanism. 
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features extracted by the Transformer and bidirectional LSTM 
branches. The adapter layer is designed to ensure dimensional 
consistency among heterogeneous expert outputs, establishing the 
foundation for dynamic fusion. Through its linear transformation 
properties, feature information extracted by expert networks is 
preserved, while adaptive adjustments to diverse expert outputs 
are enabled via learnable parameters Wadapt , badapt . 

After output standardization, expert weights are calculated by 
the gating network based on input features, and outputs from 
selected experts are dynamically fused through the sparse 
activation strategy (Top-2 selection) to generate the final 
integrated feature representation. The mathematical expression is 
given by Equation 4: 

2 
oi = owij ·oij (4) 

j=1 

Where wij ∈ ½0, 1J is assigned by the gating network as the 
weight of the j-th selected expert for the i-th input sample, 
indicating the contribution level of this expert to the final output. 
Expert weights are calculated from the Softmax output of the gating 
network and are filtered through the Top-2 strategy to ensure j=1,2. 
The weight calculation of the gating network is dependent on the 
global representation of input features hi (typically obtained 
through temporal dimension averaging). Expert assignment 
probabilities are generated through a two-layer fully connected 
network and the Softmax function, after which the Top-2 experts 
and their corresponding weights are selected. 

2.3.3 Heterogeneous expert pool design 
In the STF-MoE model, a Heterogeneous Expert Pool is 

implemented, composed of five architecturally distinct neural network 
experts. Each expert is optimized for specific temporal feature patterns 
through specialized structural design. This architectural heterogeneity is 
demonstrated to significantly enhance the model’s representational 
capacity and generalization performance, enabling it to effectively 
process diverse features in complex temporal data. 

Five expert networks within the Heterogeneous Expert Pool are 
differentiated in terms of network depth, hidden layer 
dimensionality, activation function selection, and regularization 
strategies. Such architectural diversity is designed to enable the 
model to adapt to intrinsic complexity and variability in temporal 
data, while being governed by the gating network mechanism to 
allocate the most suitable expert combinations for distinct input 
features. The heterogeneous expert design is engineered to enhance 
the model’s capability to capture both long- and short-term 
dependencies as well as nonlinear patterns in temporal data, 
thereby strengthening its adaptability when processing non-
stationary temporal data. The Heterogeneous Expert Pool is 
composed of the following five expert net-works: 

2.3.3.1 A two-layer GELU-activated expert is constructed 
This expert is composed of two hidden layers, each of which is 

followed by GELU activation functions and Dropout layers. Its 
computational process is formulated as Equation 5: 
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Expert0(x) =  Dropout(GeLU(W2·Dropout(GeLU(W1·x + b1)) + b2)) 

(5) 

Where W1, W2 ∈ R2dxd are defined as weight matrices, b1 is 
specified as the first-layer bias vector with dimensionality matching 
the output layer, where a translational shift is introduced to enhance 
linear transformation flexibility. b2 is defined as the second-layer 
bias vector, dimensionally aligned with the output of W2. Dropout 
probabilities are set to 0.2 and 0.1, respectively. This expert is 
designed to effectively extract medium complexity temporal 
features. The choice of a two-layer architecture provides a balance 
between representational power and computational cost, making it 
suitable for capturing moderately complex temporal patterns 
without excessive parameters. The GELU activation function is 
employed for its smooth, nonlinear characteristics, which, unlike 
ReLU, allows for negative values and provides a probabilistic 
interpretation, potentially leading to better performance in 
modeling continuously varying patterns and more complex 
functions. Its nonlinearities help in learning intricate data 
relationships. Furthermore, the inclusion of Dropout with 
probabilities of 0.2 and 0.1 in respective layers serves as a crucial 
regularization technique, preventing overfitting by randomly 
deactivating neurons during training, thereby promoting the 
learning of more robust and independent features and enhancing 
the model’s generalizability across diverse wheat yield temporal 
datasets. This expert system is typically applicable to the majority of 
general feature extraction tasks for wheat yield. 

2.3.3.2 A wide-layer ReLU-activated expert is constructed 
This expert is composed of a wide hidden layer of 

dimensionality 2d and is activated by the ReLU function, with its 
computational process defined in Equation 6: 

Expert1(x) =  W2·Dropout(ReLU(W1·x + b1)) + b2 (6) 

Where W1 ∈ R2dx2d and W2 ∈ R2dxd are defined as weight 
matrices, and the Dropout probability is set to 0.3. This expert is 
specifically designed to capture complex nonlinear patterns in high-
dimensional temporal data. The wide-layer architecture, with a 
hidden layer dimensionality of 2d, significantly enhances the 
network’s capacity to learn a richer set of features and their 
interactions simultaneously from high-dimensional inputs. This 
breadth allows for more diverse feature combinations to be 
explored in a single layer, which is particularly beneficial for 
capturing complex, nonlinear relationships without resorting to 
excessive depth that could increase training difficulty. The Rectified 
Linear Unit (ReLU) activation function is chosen for several key 
advantages in this context: its sparsity (outputting zero for negative 
inputs) helps to reduce computational load and can lead to more 
disentangled representations; its nonsaturating nature in the 
positive domain alleviates the vanishing gradient problem, 
facilitating faster and more effective training, especially when 
combined with the wide architecture. The inherent computational 
efficiency of ReLU, coupled with the enhanced feature 
representation capabilities of the wide design, makes this expert 
adept at modeling intricate temporal dynamics. A Dropout 
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probability of 0.3 is applied to mitigate the risk of overfitting, which 
can be more pronounced in wider networks due to the increased 
number of parameters. 

2.3.3.3 A narrow-layer SiLU-activated expert is 
constructed 

This expert is composed of a narrow hidden layer with 
dimensionality d/2 and is activated by the SiLU function, as 
defined in Equation 7: 

Expert2(x) =  SiLU(W2·Dropout(SiLU(W1·x + b1)) + b2) (7) 

Where W1 ∈ R2dx2d , W2 ∈ R2dxd are defined as weight 
matrices, and the Dropout probability is set to 0.1. This expert is 
specialized in extracting local details and subtle fluctuations in 
temporal data. The narrow-layer design, with a hidden layer 
dimensionality of d/2, deliberately constrains the model’s 
capacity, forcing it to focus on more fine-grained, localized 
patterns and subtle variations within the temporal data rather 
than global, complex features. This reduction in dimensionality 
also contributes to lower computational complexity and a reduced 
risk of learning spurious correlations from noise, making it efficient 
for dissecting intricate local dynamics. The Sigmoid Linear Unit 
(SiLU, also known as Swish) activation function is selected for its 
unique properties: it is a smooth, nonmonotonic function that often 
outperforms ReLU, especially in deeper networks, by combining the 
benefits of linearity for large positive inputs (avoiding saturation) 
with a selfgating mechanism that allows for better gradient flow and 
expressive power. This enables the network to capture more 
nuanced feature variations and subtle temporal fluctuations 
effectively. The low Dropout probability of 0.1 is appropriate for 
this narrower architecture, providing regularization without overly 
restricting its learning capacity for these detailed features. 

2.3.3.4 A single-layer GELU-activated expert is 
constructed 

The single-layer GELU-activated expert is composed of a single 
fully connected layer followed by the GELU activation function. Its 
mathematical representation is formulated as Equation 8: 

Expert3(x) =  GeLU(W1·x + b1) (8) 

Where W1 ∈ R2dxd is defined as the weight matrix. This 
streamlined architecture is designed to prioritize computational 
efficiency and is recommended for rapid processing of linear or 
weakly nonlinear features, such as trend extraction tasks in 
stationary time series. The fundamental advantage of this expert 
lies in its extreme simplicity and computational efficiency, 
stemming from its single fully connected layer. This minimal 
architecture makes it exceptionally fast for processing large 
volumes of data where only linear or very simple nonlinear 
transformations are required. The GELU activation function is 
again employed for its smooth nonlinearity, offering a slight 
expressive advantage over a purely linear model while retaining 
high computational speed. This design is particularly well-suited for 
tasks like extracting dominant trends or baseline signals from 
stationary or near stationary time series, where complex feature 
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interactions are not the primary concern, and quick, efficient 
processing is paramount. 

2.3.3.5 A three-layer ReLU-activated expert is constructed 
The three-layer ReLU-activated expert is structured as a deep 

network architecture specifically designed to capture highly 
complex temporal features. Each layer is followed by a ReLU 
activation function and Dropout regularization. Its mathematical 
representation is expressed in Equation 9: 

Expert4(x) = W3 ·Dropout(ReLU(W2 ·Dropout(ReLU(W1 ·x + b1)) + b2)) + b3 

(9) 

2Where W1, W2 ∈ R2dx(d) (assuming W3 maps from d/2 to d) 
are specified as weight matrices with hidden layers of 
dimensionality d/2, and the Dropout probability is configured at 
0.2 for each Dropout layer. The primary strength of this expert lies 
in its three-layer deep architecture. This increased depth allows the 
network to learn a hierarchical representation of features, where 
each successive layer builds more abstract and complex concepts 
from the outputs of the previous layer. This hierarchical processing 
is crucial for capturing highly intricate temporal patterns and long-
term dependency relationships, such as those arising from 
cumulative climate effects or complex multivariable interactions 
influencing wheat growth, which shallower networks might fail to 
model adequately. The use of ReLU activation in each layer helps to 
mitigate the vanishing gradient problem often encountered in 
deeper networks, promoting stable and efficient training. The 
consistent application of Dropout with a probability of 0.2 after 
each ReLU layer provides robust regularization, which is 
particularly important in deeper architectures to prevent 
overfitting by discouraging complex co-adaptations of neurons 
and ensuring that the learned hierarchical features are generalizable. 

2.3.4 Comparative theoretical analysis 
The estimation of wheat yield is challenged by complex 

temporal dependencies in time series, diverse characteristics of 
multi-source data, and significant variations across growth stages. 
Traditional deep learning models are observed to exhibit certain 
limitations (Ishaq et al., 2025). While Long Short-Term Memory 
(LSTM) networks are capable of capturing temporal dependencies, 
their recursive computation demonstrates low efficiency when 
processing long-sequence data and is prone to gradient vanishing 
issues (Safwan Mahmood et al., 2023). This architecture is found to 
be insufficient for simultaneously accommodating distinct features 
such as sudden precipitation events and periodic temperature 
patterns, nor can it perform parameterized adjustments according 
to different phenological phases. Transformer models, though 
demonstrating superior performance in global dependency 
modeling, are limited in their ability to characterize gradual 
developmental changes and short-term meteorological events 
through their self-attention mechanisms (Li and Lu (2023). 
Furthermore, their uniform feed-forward network structure is 
proven inadequate for effectively processing heterogeneous data 
sources including vegetation indices, meteorological, and soil data. 
Existing LSTM-Transformer hybrid models are constrained by 
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inflexible fusion mechanisms, with particular deficiencies identified 
in their capacity to dynamically adjust feature weights according to 
data heterogeneity (Li et al., 2024). 

This study proposes an improved model named STF–MoE, 
which addresses the aforementioned challenges through innovative 
architectural design. The model is constructed with a Transformer 
branch that enables parallel processing of entire growing season 
data to capture long-range temporal dependencies, while a 
bidirectional LSTM branch is incorporated to enhance local 
growth dynamics modeling and precisely describe continuous 
physiological change processes. A heterogeneous expert system is 
implemented through structurally differentiated neural networks– 
including deep-narrow networks with GELU activation and wide-
shallow networks based on ReLU–to specifically handle multi-

source agricultural features, achieving adaptive modeling for 
critical growth stages. The core innovation lies in the introduced 
MoE gating mechanism, which dynamically activates the most 
suitable combination of experts according to spatiotemporal 
patterns of input features. Through an adaptive weight matrix 
that integrates multi-source features, the model optimizes feature 
processing strategies for diverse ecological environments and 
climatic conditions. 

The theoretical advantages of STF–MoE are primarily 
demonstrated in the following aspects: First, the TopK sparse 
gating mechanism enables dynamic allocation of computational 
resources, where computational complexity is adjusted according to 
the significance of different phenological stages. Second, the 
heterogeneous expert design eliminates structural homogeneity 
constraints inherent in conventional models, allowing adaptation 
to distinct feature distributions across meteorological data, soil 
parameters, and  vegetation  indices. Finally, the  multi-level

spatiotemporal feature fusion strategy enhances the model’s 
representational capacity for complex spatiotemporal interaction 
pat-terns, facilitating the interpretation of nonlinear relationships 
among climate variations, soil conditions, and vegetation indices. 
By integrating the global modeling capability of Transformers, 
sequential memory characteristics of LSTM, and adaptive feature 
extraction mechanisms of heterogeneous expert systems, STF–MoE 
provides a novel solution for wheat yield estimation. However, 
given the model’s architectural complexity, critical aspects such as 
estimation accuracy still require validation through further 
comparative experiments to ensure applicability within specific 
agricultural ecosystems and multi-source datasets, as well as to 
verify model interpretability. 

2.3.5 Comparative experiments 
Building upon the theoretical analysis of the STF–MoE model 

presented in Section 2.3.4,this section is designed to systematically 
evaluate its performance in wheat yield estimation tasks. To 
comprehensively validate the effectiveness of the STF–MoE 
model, comparative experiments were designed by selecting 
representative time series processing models including LSTM, 
Transformer and LSTM–Transformer as benchmarks. These 
models collectively embody different technical approaches for 
temporal data processing, establishing a multidimensional 
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reference framework for performance evaluation of the STF– 
MoE model. 

The experiment employed a unified dataset for model training 
and performance evaluation to ensure fairness and reliability in 
comparative analysis. During the data preprocessing phase, 
standardized processing procedures including missing value 
handling, feature normalization, and temporal feature extraction 
were implemented by this study. Specifically, the application of 
MinMaxScaler normalization to features combined with sliding 
window techniques for time-series feature extraction not only 
standardized input formats across all models but also significantly 
enhanced estimation accuracy and stability in wheat yield 
estimation. These preprocessing measures were particularly 
designed to address inherent characteristics of agricultural data 
such as seasonal fluctuations and uncertainty characteristics. 

All deep learning models were configured with identical 
hyperparameter settings to maintain experimental consistency: a 
learning rate of 0.0001, Huber loss function, and Adam 
optimization algorithm. This configuration ensured uniformity in 
experimental conditions while effectively addressing potential 
outlier issues in agricultural datasets. The selection of the Huber 
loss function was determined through comprehensive consideration 
of both mean squared error (MSE) and mean absolute error (MAE) 
advantages, achieving optimal balance between sensitivity to 
normal data distributions and robustness against outliers. The 
adaptive learning rate properties inherent in the Adam optimizer 
were specifically employed to handle sparse gradients  and
nonstationary characteristics commonly observed in agricultural 
time-series data, thereby guaranteeing stable estimation 
performance under complex and variable agronomic conditions. 

2.3.6 Performance evaluation 
To systematically validate the STF-MoE model, a dual 

evaluation strategy was adopted in this study. Firstly, three years 
—2002 (representing the early dataset phase), 2013 (an extreme 
weather-impacted year), and 2021 (the most recent year)—were 
selected as independent test sets, while data from the remaining 
years were partitioned into training and validation sets at an 8:2 
ratio for comprehensive evaluation. Secondly, a year-by-year rolling 
test protocol was designed to rigorously assess the model’s temporal 
generalizability: each year from 2002 to 2021 was individually 
designated as a test set, and training/validation sets were 
constructed following a temporally sensitive principle (e.g., data 
from 2002–2015 and 2017–2021 were used to predict 2016; data 
from 2003–2021 were used to predict 2002, etc.), maintaining an 8:2 
ratio to evaluate performance across varying temporal spans 
(Johnson, 2014). To holistically evaluate the model’s yield

estimation capability, three key metrics were selected: the 
coefficient of determination (R²), root mean square error (RMSE), 
and mean absolute error (MAE). Optimal estimation performance 
is indicated when R² approaches 1, while RMSE and MAE approach 
0. Computational formulas for these metrics are detailed in 
Equations 10–12. 

n nR2 = 1  − oi=1(yi − ybi)2 =oi=1(yi −  y)2 (10) 
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qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
nRMSE = (oi=1(yi − ybi)2)=n (11) 

1 nMAE = n oi=1jyi − ybij (12) 

where n is defined as the total sample size; yi and ybreak poi 
denote the actual and estimated values respectively; represents the 
mean value of the actual observations. 
3 Results 

3.1 Exploratory feature data analysis 

To guide variable selection for robust yield modeling, 
correlations between wheat yield and a series of predictors 
(remote sensing data, biophysical parameters, and environmental 
topography) in the study area during 2002–2021 were analyzed, as 
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presented in Figure 4, with the dual objectives of quantifying linear 
associations and diagnosing collinearity issues. A novel 
visualization methodology was subsequently implemented to 
enhance the interpretative representation of these analytical 
results (Jiang et al., 2024b). Based on this analysis and collinearity 
assessment, 10 predictors were selected for subsequent modeling: 
NDVI, EVI, NIRv, Red, LAI, Fpar, RHum, Rad, DEM, and SoC, 
while GNDVI and Slope were excluded due to collinearity risks and 
model complexity concerns. 

The correlation analysis (Figure 4) revealed that common 
vegetation indices (NDVI, EVI, NIRv) and biophysical parameters 
(LAI, Fpar) exhibited generally weak linear correlations with wheat 
yield (r-values ranging from 0.02 to 0.12). This suggests that single-
temporal vegetation growth metrics may inadequately capture key 
yield-determining variations, or the relationships between these metrics 
and yield are nonlinear, potentially influenced by phenological stages, 
saturation effects, or other factors. This observation of weak linear 
FIGURE 4 

illustrates the correlation heatmap between significant variables and crop yield. Blue and red colors denote positive and negative correlations, 
respectively, with the arc segment size quantitatively reflecting the magnitude of correlation strength. 
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correlations is not uncommon in complex agroecosystems, as reported 
in other studies (Lu et al., 2024c; Cao et al., 2021). Such findings often 
highlight that while direct linear relationships may be limited, these 
remote sensing variables still encapsulate crucial information about 
crop status that can be effectively harnessed by nonlinear models 
capable of discerning more intricate patterns and cumulative effects 
throughout the growing season. Notably, GNDVI showed near-zero 
linear correlation with yield (r≈0.00) and was highly collinear with 
other vegetation indices (e.g., NDVI, r=0.97) and biophysical 
parameters (e.g., Fpar, r=0.92; LAI, r=0.84). Therefore, to avoid 
multicollinearity and enhance model parsimony and robustness, 
GNDVI was excluded from subsequent modeling. In contrast, 
certain environmental and topographic factors demonstrated 
stronger associations, predominantly negative. Elevation (DEM, r=– 
0.42) and soil organic carbon (SoC, r=–0.47) showed moderate 
negative correlations with yield, likely associated with insufficient 
accumulated temperature in high-altitude regions/shortened growing 
seasons and specific soil/environmental constraints, respectively. The 
negative correlation of relative humidity (RHum, r=–0.34) may reflect 
disease risks induced by high moisture. Slope exhibited the strongest 
negative correlation (r=–0.65), indicating significantly lower yields in 
steep areas, potentially due to soil erosion, thinner soil layers, or 
cultivation management challenges. However, Slope also displayed 
moderate positive correlations with DEM (r=0.58) and SoC (r=0.67). 
Given that Slope’s effects may be partially mediated by DEM and SoC, 
and its strong correlation could introduce model complexity and 
overfitting risks, Slope was excluded from subsequent training to 
prioritize a generalized model focusing on vegetation physiology, soil 
properties, and macro-topographic influences. Red reflectance (Red, 
r=0.06) and radiation (Rad, r=0.06) showed negligible linear 
relationships with yield. 

By comprehensively evaluating the correlation strength and 
collinearity of variables—particularly identifying the potential risks 
posed by Slope and GNDVI—subsequent modeling prioritized 
DEM, SoC, and RHum, which demonstrated moderate 
associations and relative independence, to construct a model 
emphasizing vegetation physiology, soil attributes, and macro-

topographic impacts. 
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3.2 Accuracy comparison results: STF–MoE 
vs. baseline models 

In the wheat yield estimation task, the STF-MoE model 
demonstrated its performance through a dual evaluation strategy. 
Core data revealed that during the year-by-year rolling tests from 
2002 to 2021, the STF-MoE achieved a mean R² of 0.8712 and a 
mean RMSE of 529.0713 kg/ha (Supplementary Tables S1, S2). In 
comparison, the Transformer model yielded a mean R² of 0.8544 
and a mean RMSE of 537.5832 kg/ha, while the LSTM model 
produced a mean R² of 0.8448 and a mean RMSE of 586.1364 kg/ha. 
This indicates that the STF-MoE exhibited an overall advantage, 
reducing the mean RMSE by 57 kg/ha (9.7%) relative to the LSTM. 

In evaluations across three independent test years (2002, 2013, 
2021) (Table 2), the STF-MoE demonstrated relative superiority or 
competitive performance in R² and RMSE metrics: 2002 (R²: 0.745, 
RMSE: 717.4 kg/ha), 2013 (R²: 0.887, RMSE: 542.4 kg/ha), and 2021 
(R²: 0.827, RMSE: 547.7 kg/ha). For instance, in 2013, its R² 
exceeded that of the Transformer (0.878), and its RMSE was 
lower than the Transformer’s (563.6 kg/ha). Scatter plots in 
Figure 5 showed that predicted values from all models were 
generally distributed along the ideal fit line with actual values, 
though varying degrees of dispersion were observed. Notably, the 
STF-MoE also exhibited deviations from the ideal line, particularly 
in high-yield and low-yield regions. Year-by-year rolling test results 
(Supplementary Tables S1, S2) further revealed that the R² of STF-
MoE fluctuated from a minimum of 0.7449 (2002) to a maximum of 
0.9230 (2009), while RMSE varied from ~439.1 kg/ha (2009) to 
~717.4 kg/ha (2002). 

Collectively, the STF-MoE model demonstrated its capability in 
wheat yield estimation through superior mean performance metrics 
(mean R²: 0.8712; mean RMSE: 529.0713 kg/ha) and robust 
performance in specific independent years (e.g., R² = 0.887 in 
2013). However, interannual performance variability was 
observed, with the R² varying by ~0.18 and RMSE fluctuating by 
nearly 280 kg/ha across years. Concurrently, scatter plots visually 
confirmed that predicted values exhibited notable deviations from 
actual values at yield extremes. 
– – – – – –

TABLE 2 Performance comparison of STF-MoE and baseline models on the 2002, 2013, and 2021 test sets. 

Model 

2002 2013 2021 

RMSE 
(kg ha 1) R2 MAE 

(kg ha 1) 
RMSE 

(kg ha 1) R2 MAE 
(kg ha 1) 

RMSE 
(kg ha 1) R2 MAE 

(kg ha 1) 

Transformer 760.8 0.713 587.5 563.6 0.878 393.6 596.9 0.794 442.1 

LSTM 764.8 0.710 604.1 640.1 0.842 510.8 606.2 0.788 493.4 

LSTM– 
Transformer 

780.3 0.698 621.4 572.8 0.874 413.5 581.2 0.805 434.7 

STF–MoE 717.4 0.745 554.7 542.4 0.887 403.4 547.7 0.827 420.3 
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3.3 Yield estimation map of the STF-MoE 
model 

The STF-MoE model estimated the spatial distribution of wheat 
yields in the study area for 2002, 2013, and 2021 (Figures 6, 7) and 
was compared with baseline models. Results demonstrate that the 
STF-MoE superiorly captures spatial heterogeneity characteristics 
Frontiers in Plant Science 13 
of wheat yields: Figure 6 (prefecture-level) clearly distinguishes 
high-yield regions in the east/southeast from low-yield regions in 
the west/northwest, while Figure 7 (county-level) reveals similar 
regional disparities. Compared to baseline models, the STF-MoE 
provides clearer delineation of yield classes and spatial transitions, 
with richer detail. Temporally, the STF-MoE also reflects 
interannual yield variability. Prefecture-level yield maps 
FIGURE 5 

Scatter plots of estimated versus actual yields. Dashed lines represent regression lines (best-fit), and solid lines denote trend lines. The distribution of 
estimation scatters for four models across three independent test years is shown. 
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(Figure 6) visually illustrate interannual fluctuations in high-yield 
extent/intensity in core production zones (e.g., eastern regions) and 
growth trends in certain areas. For example, Table 3 data indicate a 
significant yield increase in Zhoukou City, Henan Province from 
2002 to 2021, which the STF-MoE largely captured, achieving an 
accuracy, where single sample accuracy is calculated as min(true 
value, predicted value)/max(true value, predicted value), exceeding 
Frontiers in Plant Science 14 
89% across all three years. At the county level (Figure 7), Zepu 
County, Xinjiang exhibited high yields in 2002 and 2013, with 
model accuracies reaching 90.6% and 97.5%, respectively; even in 
2021, when actual yields declined, model accuracy remained at 
94.3%. Collectively, the spatiotemporal estimation results of the 
STF-MoE model for the three independent test years (2002, 2013, 
2021) exhibit good consistency with official statistical data from 
FIGURE 6 

Prefecture-level yield estimation map. Red indicates high yields, and blue indicates low yields. The spatial distribution of estimations from four 
models across three independent test years (2002, 2013, 2021) is displayed. 
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representative counties in Table 3. For instance, Bozhou City, 
Anhui Province and Dezhou City, Shandong Province maintained 
high estimation accuracies across all three years (Bozhou: 92.7%– 
99.7%; Dezhou: >93%). This confirms that the STF-MoE not only 
accurately identifies overall spatial patterns and distinguishes high-/ 
low-yield regions but also reliably estimates specific yield levels 
across diverse regions and years. These results hold significant 
reference value for evaluating regional wheat production dynamics. 
Frontiers in Plant Science 15 
3.4 Early estimation capability of wheat 
yield 

Figure 8 reveals the temporal evolution of R² and RMSE for the 
STF-MoE model in estimating seasonal wheat yield (September to 
June of the following year), demonstrating accuracy improvements 
driven by cumulative data: R² increased progressively, while RMSE 
decreased correspondingly. During the  early growth phase
FIGURE 7 

County-level yield estimation map. Red indicates high yields, and blue indicates low yields. The spatial distribution of estimations from four models 
across three independent test years (2002, 2013, 2021) is displayed. 
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(September–December), model R² ranged between 0.3–0.6, with 
RMSE generally exceeding 800 kg/ha. From the overwintering 
period to February, wheat growth slowed, resulting in limited 
accuracy gains; however, beginning in March—coinciding with 
rapid growth stages (regreening, jointing, and heading)—model 
performance improved markedly. Notably, in some years (e.g., 
2009, 2011, 2017, 2021), R² reached high levels as early as April, 
highlighting early estimation potential. More commonly, as 
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additional growth data accumulated, most years exhibited 
significant accuracy improvements by May, with R² rising sharply 
(e.g., from ≈0.7 in March to >0.8 in May for 2017) and RMSE 
declining substantially (typically from 700–900 kg/ha in March 
to<500–700 kg/ha in May). By June (harvest), R² consistently 
exceeded 0.8, and RMSE reached minimal values (mostly<600 kg/ 
ha, some<500 kg/ha). This pronounced improvement in R² and 
RMSE from March to June clearly reflects significant physiological 
TABLE 3 Estimation accuracy of the STF-MoE model for selected counties/districts across three independent test years (AY, actual yield (kg/ha); EY, 
estimated yield). 

Year City AY EY Accuracy 

2002 

Zepu (Xinjiang) 6361.0 5764.208 90.6% 

Lingtai (Gansu) 2434.0 2696.8855 90.3% 

Weinan (Shaanxi) 3184.0 4174.843 76.3% 

Zhoukou (Henan) 5852.371 5224.6763 89.3% 

Bozhou (Anhui) 4569.0 4721.2676 96.8% 

Deizhou (Shandong) 5639.0 6025.6777 93.6% 

2013 

Zepu (Xinjiang) 6180.0 6027.9014 97.5% 

Lingtai (Gansu) 2564.0 2729.755 93.9% 

Weinan (Shaanxi) 3307.0 3999.7224 82.7% 

Zhoukou (Henan) 7438.536 6772.1553 91.0% 

Bozhou (Anhui) 7572.0 7019.9785 92.7% 

Deizhou (Shandong) 7181.0 6912.157 96.3% 

2021 

Zepu (Xinjiang) 5401.0 5725.526 94.3% 

Lingtai (Gansu) 3425.0 3175.9827 92.7% 

Weinan (Shaanxi) 4401.803 4360.7534 99.1% 

Zhoukou (Henan) 7542.0 7308.282 96.9% 

Bozhou (Anhui) 7260.0 7280.166 99.7% 

Deizhou (Shandong) 7002.3335 7191.1284 97.4% 
FIGURE 8 

Verify test (a) R2 and (b) RMSE from wheat by month stage from 2002 to 2021. 
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changes in wheat during critical growth stages: chlorophyll content, 
canopy structure, and photosynthetic intensity increase 
dynamically, while water demand peaks (Zhang et al., 2024; Liu 
et al., 2022). The indices selected in this study—NIRv (near-infrared 
reflectance vegetation index), Fpar (fraction of photosynthetically 
active radiation absorption), and RHum (relative humidity)— 
precisely capture these dynamics: NIRv and Fpar are highly 
sensitive to vegetation green biomass, chlorophyll status, and 
light-use efficiency, enabling accurate detection of canopy growth 
and photosynthetic enhancement, while RHum reflects  
atmospheric moisture stress during this critical period. The tight 
coupling between these remote sensing features and wheat’s 
phenological/ecological processes provides the model with 
dynamic information closely linked to final yield formation, 
thereby enabling substantial accuracy gains during these stages. 
These results confirm the STF-MoE model’s capability to leverage 
cumulative data for reliable yield estimation 1–2 months prior 
to harvest. 
3.5 Importance of individual indicators in 
yield estimation 

Figure 9 presents the SHAP analysis results, revealing the 
contributions of input features to the STF-MoE model’s wheat 
yield estimation across three test years (2002, 2013, 2021). RHum 
(relative humidity) and DEM (digital elevation model) consistently 
emerged as the top two drivers with the highest mean SHAP values. 
The SHAP dependence plots (right panels of Figure 9) demonstrate 
that higher RHum values (red points) stably corresponded to 
negative SHAP values in all years, indicating that elevated relative 
humidity consistently exerted a negative impact on yield 
estimations. This aligns with preliminary analyses in Section 3.1 
(Exploratory Feature Data Analysis) and may be attributed to 
disease risks, pollination interference, or adverse effects on crop 
maturation and drying under high humidity. DEM, reflecting 
macro-topographic influences, exhibited interannual variability in 
its impact patterns. For instance, in 2002, higher DEM values (red 
points) primarily corresponded to negative SHAP values, while in 
2013 and 2021, higher DEM values shifted to positive SHAP 
associations, suggesting that elevated areas in these years were 
l inked  to  higher  yield  est imations  due  to  integrated  
environmental advantages (e.g., improved drainage, sunlight 
exposure, or reduced pest/disease risks). Remote sensing indices 
closely tied to vegetation growth and photosynthetic capacity—Fpar 
(fraction of photosynthetically active radiation absorption) and 
NIRv (near-infrared reflectance vegetation index)—also displayed 
high SHAP values. Higher Fpar and NIRv values (red points) 
generally aligned with positive SHAP values, signifying superior 
vegetation status and photosynthetic potential that positively 
influenced yield (Murchie et al., 2009). Similarly, elevated Rad 
(photosynthetically active radiation) and SoC (soil organic 
carbon) values (red points) predominantly contributed positively 
to yield, as reflected in their positive SHAP values. Notably, while 
Frontiers in Plant Science 17 
the relative importance of key drivers remained broadly consistent 
across years, their specific SHAP magnitudes and rankings varied 
interannually. The directional shift in DEM’s influence (negative in 
2002 vs. positive in 2013/2021) exemplifies the complexity of feature 
impacts. Additionally, even for features with consistent directional 
effects like RHum, the intensity of their negative impacts (absolute 
negative SHAP values) varied across samples. Lower RHum values 
(blue points) mostly aligned with positive SHAP values, though 
instances of negligible or slightly negative effects were observed, 
reflecting potential nonlinear responses or complex feature 
interactions under specific conditions. 
4 Discussion 

4.1 Error discussion of the model in wheat 
yield estimation 

A comprehensive analysis of the error characteristics of the 
STF-MoE model in wheat yield estimation reveals its overall 
performance advantages while highlighting notable error patterns. 
Firstly, in terms of macro-level metrics, the STF-MoE achieved a 
mean R² of 0.8712 and a mean RMSE of 529.0713 kg/ha during 
year-by-year rolling tests from 2002 to 2021 (Supplementary Tables 
S1,S2), outperforming baseline models such as LSTM and 
Transformer and demonstrating competitive average predictive 
accuracy over long-term sequences. In critical independent year 
tests (Table 2), such as 2013 (an extreme weather year), the STF-
MoE exhibited robustness with an R² of 0.887 and an RMSE of 
542.4 kg/ha. Error boxplots in Figure 10 further corroborate these 
findings at a granular level: in 2013, the STF-MoE’s median raw 
errors approached zero across low-, medium-, and high-yield 
intervals, with tightly distributed absolute errors, indicating 
effective control of estimation biases across yield levels under 
complex conditions. County-level data in Table 3 validate the 
model’s potential, such as 99.7% accuracy in Bozhou, Anhui, and 
97.4% accuracy in Dezhou, Shandong in 2021, highlighting its high-
precision estimation capability in specific regions. 

However, a deeper dissection of error sources and distributions 
reveals that the STF-MoE’s estimation errors do not consistently 
achieve optimal performance. Scatter plots in Figure 5 visually 
demonstrate varying degrees of dispersion between predicted and 
actual values, particularly at yield extremes (low-yield and high-yield 
regions), with notable deviations from the ideal fit line. Error boxplots 
in Figure 10 quantify this: in high-yield regions for 2013 and 2021, the 
STF-MoE’s median raw errors were negative, unambiguously 
revealing a systematic underestimation tendency, while larger 
absolute error ranges reflect heightened uncertainty in these areas. 
County-level accuracy data in Table 2 echo this observation, such as 
underestimation in Zhoukou, Henan (2013), where actual yields were 
relatively high. Furthermore, interannual performance variability 
remains a critical concern, as shown in (Supplementary Tables S1 
and S2): R² fluctuated by ≈0.18 and RMSE by nearly 280 kg/ha across 
years, indicating room for improvement in model stability. 
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Collectively, the STF-MoE model has made significant strides in 
wheat yield estimation error control, particularly commendable in 
its average performance and resilience under specific complex 
conditions. Nevertheless, its error profile exposes challenges in 
handling yield extremes (especially underestimation in high-yield 
Frontiers in Plant Science 18 
regions) and maintaining consistency across years and regions. 
Specifically, the model exhibited relatively larger errors in certain 
low-yield areas (e.g., Weinan, Shaanxi in 2002) and high-yield 
samples (e.g., select high-yield cases in 2002 and 2021), alongside 
persistent interannual performance fluctuations. 
FIGURE 9 

Average SHAP values of features across three independent test years and SHAP value impacts of features on wheat yield estimation. 
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4.2 Ablation analysis discussion for the 
STF-MoE model 

To systematically evaluate the contributions of key architectural 
components within the STF-MoE model, specifically the Mixture of 
Experts (MoE) architecture and its sparse gating mechanism, an 
Frontiers in Plant Science 19 
ablation study was conducted. The results, detailed in Table 4 and 
derived from the 2021 test set, form the basis of this discussion. 
FLOPs (Floating Point Operations) are employed throughout this 
analysis as a metric for computational complexity, where lower 
values generally signify greater operational efficiency. The full STF-
MoE model (FLOPs: 32.59M) was compared to an “STF (without 
FIGURE 10 

Comparison of absolute and raw errors across different yield ranges in three independent test years (left panel: boxplots of absolute errors; right 
panel: boxplots of raw errors). 
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MoE)” variant (FLOPs: 31.98M). Superior performance in RMSE 
(547.7 vs. 578.4 kg·ha-¹), R² (0.827 vs. 0.807), and MAE (420.3 vs. 
463.9 kg·ha-¹) was observed for the STF-MoE, despite a marginal 
FLOPs increase, initially suggesting the MoE’s efficacy in enhancing 
predictive accuracy. To further probe the MoE fusion mechanism, 
an “STF-SingleExpert” configuration (FLOPs: 32.38M), utilizing a 
single general-purpose expert (detailed in Section 2.3.3 (1)), was 
examined. While this single-expert model outperformed the STF 
model lacking any MoE structure, it was notably surpassed by the 
complete STF-MoE model. This critically indicates that the MoE’s 
strength lies in its dynamic selection and fusion of multiple 
heterogeneous experts, allowing for more flexible and superior 
feature processing than a single expert, thereby substantiating the 
MoE fusion approach’s effectiveness. The impact of the sparse 
gating mechanism (Top-2 expert selection) was assessed by 
comparing the full STF-MoE with the “STF-MoE (without Sparse 
Gating, Top-2 removed)” variant. The performance metrics (RMSE, 
R², and MAE) indicated comparable predictive accuracy between 
these two configurations (e.g., R² of 0.827 for STF-MoE vs. 0.822 for 
the variant without sparse gating). However, a notable reduction in 
computational complexity was observed when sparse gating was 
employed, as evidenced by the lower FLOPs for the STF-MoE 
model (32.59M) compared to the model without sparse gating 
(33.51M). This finding underscores the primary advantage and 
utility of the sparse gating mechanism: it effectively curtails the 
model’s computational demands while maintaining a high level of 
predictive performance. 
4.3 Future research and improvements 

While the STF-MoE model demonstrates strong performance 
in wheat yield estimation, it faces challenges arising from objective 
factors and offers avenues for future refinement. Firstly, to address 
the model’s underestimation in high-yield regions, larger errors in 
low-yield areas, and interannual performance variability, future 
efforts should prioritize enhancing its adaptability to extreme 
yield values and spatiotemporal heterogeneity. This may involve 
integrating high spatiotemporal-resolution data sources that better 
capture localized microclimates, extreme weather events, sudden 
pest/disease outbreaks, and fine-scale agricultural practices (e.g., 
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irrigation/fertilization variations), alongside developing more 
effective feature fusion and representation methods. Secondly, 
given the practical demands of large-scale regional applications, 
computational cost and inference speed are critical considerations. 
Although the STF-MoE optimizes efficiency via Top-K sparse 
gating mechanisms, its complex architecture—incorporating 
Transformers and multiple expert networks—may impose 
computational overhead. Future research could explore model 
compression techniques (e.g., knowledge distillation, parameter 
pruning), lightweight network designs (e.g., efficient attention 
mechanisms or expert networks), or hardware acceleration (e.g., 
GPU/TPU optimization) to substantially reduce training/inference 
time, facilitating operational deployment and rapid response. 
Additionally, continuously expanding ground-truth yield datasets 
and high-precision remote sensing data across broader geographical 
regions and longer time series will be crucial to validate and 
enhance the model’s generalizability and robustness. This remains 
a pivotal direction for future research. 
5 Conclusions 

The dynamic gated deep learning model (STF-MoE), developed 
in this study through the integration of multi-source remote sensing 
data and a heterogeneous mixture-of-experts (MoE) mechanism 
built upon an LSTM-Transformer framework, significantly 
enhanced the accuracy and robustness of yield estimation in six 
major wheat-producing provinces in China. Year-by-year rolling 
experiments from 2002 to 2021 demonstrated that the STF-MoE 
outperformed baseline models in key metrics, achieving a mean R² 
of 0.8712 and a mean RMSE of 529.0713 kg/ha, while effectively 
capturing spatiotemporal yield heterogeneity and controlling errors 
across yield levels, particularly exhibiting strong adaptability during 
extreme weather years (e.g., 2013). SHAP-based interpretability 
analysis revealed the critical driving roles of environmental 
factors such as relative humidity (RHum) and digital elevation 
model (DEM) in yield estimation. Despite remaining challenges in 
handling yield extremes and maintaining interannual stability, 
alongside the need for further computational efficiency 
optimization to enable large-scale deployment, the STF-MoE 
model provides a valuable deep learning solution for precise crop 
– –

TABLE 4 Ablation analysis conducted on the 2021 test set. 

Experimental 
combinations 

RMSE (kg·ha 1) R2 MAE (kg·ha 1) FLOPs 

STF-MoE 547.7 0.827 420.3 32.59M 

STF (without MoE) 578.4 0.807 463.9 31.98 M 

STF-SingleExpert 
(MoE removed, weighted by a 

single expert) 
568.9 0.8130 430.0 32.38M 

STF-MoE 
(without Sparse Gating, Top­

2 removed) 
554.9 0.822 416.9 33.51M 
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yield estimation in complex agricultural ecosystems, offering robust 
technical support for food security assurance and agricultural 
management optimization. 
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