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1Engineering Research Center of Natural Medicine, Ministry of Education, Faculty of Geographical
Science, Beijing Normal University, Beijing, China, 2School of Pharmacy, Chengdu University of
Tradition Chinese Medicine, Chengdu, China
Introduction: Houttuynia cordata Thunb. (H. cordata), as a key ingredient in Lianhua

Qingwen capsules, plays a critical role in enhancing the antiviral and anti-

inflammatory efficacy of the prescription due to its heat-clearing and detoxifying

properties, and has contributed significantly to the prevention and control of the

COVID-19 pandemic. However, the increasing demand for H. cordata - containing

Chinese patent medicines and preparations has led to a continuous decline in its wild

reserves, which are now insufficient to meet industrial production needs. Current

research predominantly focuses on component identification, while themechanisms

underlying the effects of environmental factors on the accumulation of secondary

metabolites (SMs) remain poorly understood.

Methods: This study innovatively integrates ecological suitability with a spatial

quality assessment system. By employing the Biomod2 ensemble modeling

platform to predict the habitat suitability of H. cordata and combining path

analysis with Kriging interpolation to quantify causal relationships between

environmental variables and SMs (including 2-undecanone, quercitrin, and

quercetin), we delineated high-quality ecological zones to guide the site

selection of artificial cultivation bases.

Results: Key findings include: (1) Ecological suitability zones for H. cordata are

predominantly concentrated in regions south of the Yangtze River Basin andwest

of the Hengduan Mountains (e.g., Yunnan-Guizhou Plateau, Sichuan Basin), with

annual precipitation (Bio12) and human activities (human footprint, population

density) identified as primary drivers. (2) The spatial distribution of three SMs

exhibited marked heterogeneity, with no overlapping regions simultaneously

achieving high contents of all three metabolites.

Discussion: This spatial divergence underscores the necessity for differentiated

cultivation planning based on the pharmacological requirements of target SMs to

optimize medicinal value.
KEYWORDS

H. cordata, biomod2, secondary metabolites, spatial analysis, high-quality
ecological identifying
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1 Introduction

Houttuynia cordata Thunb. (H. cordata), a perennial herb of the

Saururaceae family, is widely distributed in humid and shaded

environments across East and South Asia, including China, Japan,

South Korea, and India. Traditionally valued for its medicinal

properties, this plant has been extensively utilized in treating

respiratory infections, inflammatory disorders, and gastrointestinal

ailments (Chen et al., 2022). In China, its natural habitats span the

Yangtze River Basin, Pearl River Basin, and Tibetan Plateau. Modern

pharmacological studies have corroborated its therapeutic efficacy,

demonstrating antibacterial (Li et al., 2017), antiviral (Yu et al., 2019),

immunomodulatory (Cheng et al., 2014), and diuretic activities.

Notably, H. cordata gained prominence during the COVID-19

pandemic as a key component of Lianhua Qingwen capsules, a

specific Chinese medicine formulation renowned for its lung-

detoxifying and antiviral effects (Zhao, 2023). The formula

synergizes multiple herbs, including Forsythia suspensa and

Lonicera japonica, with H. cordata contributing critically to its anti-

inflammatory and heat-clearing properties.

The pharmacological potency ofH. cordata stems from its diverse

SMs (SMs), including volatile oils (e.g., methyl heptenone),

flavonoids (e.g., quercetin, quercitrin, and hyperoside), and

alkaloids. In both traditional Chinese medicine clinical practice and

the Chinese herbal pharmaceutical industry, the volatile oil

components of H. cordata are considered to possess the highest

medicinal activity (Pan et al., 2013; Yang et al., 2006). The primary

constituent ofH. cordata volatile oil is methyl-n-nonyl ketone, which

is recognized as the main antimicrobial substance, while flavonoids

account for 18-35% of the total SMs and demonstrate anti-

inflammatory and anti-allergic activities. Studies have shown that

flavonoid extracts from H. cordata can inhibit the growth of SiHa

tumor cells and induce apoptosis (Zhang et al., 2009; Peng et al., 2012;

Xue et al., 2013). However, significant geographical variations in SMs

composition have been documented, with non-common components

distinguishing regional ecotypes (Song et al., 2013). These variations

are strongly influenced by ecological factors, underscoring the need to

elucidate environment-SM relationships for sustainable

resource management.

The superior varieties of medicinal plants form the foundation

for producing high-quality natural medicines. Effective

conservation and sustainable utilization of medicinal plant

resources require precise identification of suitable habitats and an

understanding of how environmental factors influence the

accumulation of secondary metabolites (SMs) (Teoh, 2015), in

order to delineate regions that support both optimal plant growth

and high SMs yield. Research indicates that there are significant

differences in the main SMs (volatile oil substances and flavonoids)

among different sources of H.cordata, and there are non-common

components that can distinguish the sources or types. The

relationship between volatile oil substances and morphological

characteristics is closely related, exhibiting latitudinal or

longitudinal geographical variations, demonstrating that the

ecological environment has a significant impact on the content of

its SMs (Song et al., 2013). Therefore, it is necessary to study the
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potential ecological suitable distribution areas of H.cordata herb

and high-quality ecological areas based on three SMs.

Species Distribution Models (SDMs) represent a cornerstone

methodology in conservation biogeography, enabling the

delineation of ecological niches through species-environment

relationship modeling (Franklin, 2013) and finding extensive

application in critical domains such as endangered species

protection (Hu et al., 2020; Qin et al., 2017) and environmental

impact assessment. However, the predictive robustness of single-

species SDMs exhibits a substantial decline with increasing input

data variability (Luo et al., 2017). This limitation can be effectively

mitigated through the use of ensemble models. Notably, the

biomod2 platform, implemented within the R environment,

facilitates ensemble modeling by integrating diverse base models

possessing distinct principles, assumptions, and algorithms, thereby

enhancing predictive stability and accuracy beyond single-model

approaches (Kai-qi et al., 2021; Thuiller, 2003). As one of the most

established multi-model frameworks, biomod2 supports robust

simulations of species spatial distributions and the identification

of key environmental drivers, leading to its widespread scholarly

adoption (Guo et al., 2021). For example, Uusitalo et al. (2019)

employed biomod2 to model the distributions of Culex L. and

Stegomyia Theobald mosquitoes in the Taita Hills of southeastern

Kenya, identifying population density, road distance, and slope as

predominant factors influencing Culex, while population density,

solar radiation, temperature, and vegetation were more impactful

for Stegomyia. Similarly, Resquin et al. (2020) utilized biomod2 to

investigate the current and potential habitat distributions of

Eucalyptus grandis Hill ex Maiden and E. dunnii Maiden forests

in Uruguay, revealing soil surface depth as the primary factor

constraining the distribution of both species.

Despite its economic importance in Southwest China as both a

medicinal and edible crop (Yang et al., 2013), wild H. cordata

populations face escalating depletion due to overharvesting and

habitat degradation, jeopardizing industrial supply chains (Qi,

2023). While Good Agricultural Practice (GAP) bases aim to

standardize cultivation, inconsistencies in medicinal quality—

particularly at the Ya’an GAP base—highlight limitations in

current practices. While studies have employed species

distribution models to investigate the suitable distribution areas

ofH. cordata under current and future climate conditions (Liu et al.,

2021), research has not yet explored the effects of environmental

factors on its SMs. Establishing cultivation zones that balance

ecological suitability with high SMs yield necessitates a dual

evaluation framework encompassing both habitat suitability and

metabolite optimization.

In this study, we employed the Biomod2 platform to construct

an integrated distribution model for H. cordata, aiming to identify

potential suitable habitats across China and combine SMs analyze

the ecological drivers of its spatial quality patterns. The study has

three objectives: (1) to identify key environmental determinants of

H.cordata distribution; (2) to decipher the mechanistic links

between abiotic factors and SMs accumulation; (3) to delineate

high-quality ecological zones for targeted cultivation. The proposed

“ecological suitability–medicinal quality” dual criteria system
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advances traditional SDM applications, offering a scalable model for

GAP base optimization and sustainable utilization of

medicinal plants.
2 Materials and methods

2.1 Study area

The research area is mainly located in the central, southeastern,

and southwestern provinces and regions south of the Yangtze River

basin in China, including Sichuan Province, Hubei Province,

Guizhou Province, Zhejiang Province and others (24°37′N-34°19′
N, 97°21′E-123°10’E). This plant mostly grows in tropical and

subtropical regions, preferring a shady and humid environment. Its

root system is shallow, with few root hairs, and it is highly sensitive to

water moisture. Soil humidity should be maintained at 70-80%, and

air humidity should be between 60-80%. H.cordata prefers loose soil,

and sandy loam soil is the most suitable soil type. This plant has low

light requirements and is highly shade-tolerant. At the same time,

H.cordata has a strong temperature adaptability, with its rhizomes

able to sprout as long as the temperature is above 12 °C.
2.2 Occurrence data, environmental
factors and chemical information

2.2.1 Collection of spatial data
The existence data ofH.cordata were obtained by consulting the

Global Biodiversity Information Facility (GBIF, http://

www.gbif.org/), the China Virtual Herbarium (CVH, http://

www.cvh.org.cn), the National Specimen Information

Infrastructure (NSII, www.org.cn), and literature review. Spatial

occurrence records spanning a 30-year temporal scope (1990-2020)

were rigorously curated for niche modeling implementation.

Geospatial precision was ensured by excluding records lacking

coordinate data; incomplete occurrences were georeferenced using

Google Earth (http://ditu.google.cn/). To minimize anthropogenic

bias, only wild populations of H. cordata were retained; through

literature annotations and online image recognition, cultivated

specimens were systematically excluded during the data

purification process. Following ecological homogeneity principles

where 1 km2 grid cells represent functionally equivalent habitats

(Zhang et al., 2019), ArcGIS 10.7 (ESRI, Redlands, CA)

implemented spatial filtering to eliminate duplicate records within

each 1 km×1 km grid, retaining single-point representations per

cell. This hierarchical curation protocol yielded a final dataset of 273

spatially independent occurrence points suitable for ecological

niche characterization. Using the Biomod2 to generate pseudo-

nonexistent data with point positions similar to existing ones for

model application, thus enhancing accuracy of the results.

The data points of H. cordata samples with SMs come from

previous studies. In the literature, there are records of SMs data for

multiple periods (Hong et al., 2013; Jiao et al., 2020; Chen and

Zheng, 2022; Chen, 2008), and the same processing method as
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H.cordata distribution data is used. In the end, 111 sample points

with 2-Undecanone, quercitrin, and quercetin were retained.

The spatial distribution diagram of specie sample points and

H.cordata with SMs is shown in Figure 1.

2.2.2 Environmental factors
This study is based on standards such as expert knowledge,

ecological knowledge, and exploratory analysis using preliminary

statistical models, considering the availability of data and the

relevance of biology to select ecological factors relevant to

modeling the H.cordata (Arenas-Castro et al., 2020; Guo et al.,

2018). According to the distribution characteristics of the

H.cordata, this study initially selected four sets of environmental

variables, including climate, soil, topography, and human activities

(Table 1). Climate Environmental Factors: including 19 derived

factors of precipitation and temperature (bio1 - bio19), solar

radiation (srad), and vapor pressure (vapr) data, all of which are

standard annual average data from 1970 to 2000, downloaded from

the Global Climate Database (http://worldclim.org/) (Hijmans

et al., 2005). The data downloaded from WorldClim can be

directly used for mapping and spatial modeling (Elith et al.,

2011). Soil Environmental Factors: Mainly include the spatial

distribution data of Chinese soil types (soil), the dataset of

Chinese soil characteristics (clay1, clay2, sand1, sand2), and soil

quality data (sq1 - sq7) (Wei et al., 2012). The ‘Spatial Distribution

Data of Chinese Soil Types’ is sourced from the Resource and

Environmental Science Data Center (https://www.resdc.cn/), the

‘Chinese Soil Characteristics Dataset’ is from the National Tibetan

Plateau Data Center (http://data.tpdc.ac.cn/zh-hans/), and the ‘Soil

Quality Data’ is from the Nanjing Institute of Soil Science, Chinese

Academy of Sciences (https://vdb3.soil.csdb.cn/). Terrain

Environmental Factors: primarily include elevation (ele), slope

(slop), and aspect (asp). Slope and aspect data were generated

from elevation data using spatial analysis tools in ArcGIS 10.7

software, while elevation data was sourced from the ENVIREM

dataset (Environmental Rasters for Ecological Modeling, https://

envirem.github.io/). Human Activity Factors: These encompass the

human footprint (hf) (Venter et al., 2016), population density (den)

(http://www.ciesin.org/ (accessed 2024.9.1)), and global human-

induced changes to the terrestrial system (ter) (https://

sedac.ciesin.columbia.edu/data (accessed 2024.9.1)). These

variables are derived from socio-economic data and the

Application Center (http://sedac.ciesin.columbia.edu).

All environmental parameters were resampled to a standardized

30-arcsecond spatial resolution (~1 km2 ground equivalent; Usher

et al., 2004; Venter et al., 2016) to maintain dimensional consistency

essential for modeling integrity. Given that multicollinearity among

predictors exacerbates model uncertainty, pairwise correlations

were quantified using Pearson’s coefficient through the R

Corrplot package. This approach systematically retained variables

exhibiting absolute correlation values below the established |r| < 0.7

threshold (Dormann et al., 2013) while accounting for dataset non-

normality. Variable selection further incorporated a priori

ecological knowledge of Coriandrum sativum physiology and

domain expertise from published literature. This dual-filtering
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http://www.gbif.org/
http://www.gbif.org/
http://www.cvh.org.cn
http://www.cvh.org.cn
http://www.org.cn
http://ditu.google.cn/
http://worldclim.org/
https://www.resdc.cn/
http://data.tpdc.ac.cn/zh-hans/
https://vdb3.soil.csdb.cn/
https://envirem.github.io/
https://envirem.github.io/
http://www.ciesin.org/
https://sedac.ciesin.columbia.edu/data
https://sedac.ciesin.columbia.edu/data
http://sedac.ciesin.columbia.edu
https://doi.org/10.3389/fpls.2025.1641634
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2025.1641634
FIGURE 1

Study area and sampling site distribution.
TABLE 1 Environmental variables used or not used in model.

Variable
type

Code (unit) Description
Variables
used in
modeling

Climatic variables

bio1(°C)
Annual mean air
temperature

bio2(°C)

Mean diurnal
temperature range
(max. temp-min.
temp)

✓

bio3
Isothermality (Bio2/
Bio7) × 100

✓

bio4(°C)
Temperature
seasonality

bio5(°C)
Max temperature of
warmest month

✓

bio6(°C)
Min temperature of
coldest month

bio7(°C)
Temperature annual
range

✓

bio8(°C)
Mean temperature of
wettest quarter

✓

bio9(°C)
Mean temperature of
driest quarter

bio10(°C)

(Continued)
F
rontiers in Plant Sc
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TABLE 1 Continued

Variable
type

Code (unit) Description
Variables
used in
modeling

Mean temperature of
warmest quarter

bio11(°C)
Mean temperature of
coldest quarter

bio12(mm) Annual precipitation ✓

bio13(mm)
Precipitation of
wettest month

bio14(mm)
Precipitation of driest
month

bio15(%)
Coefficient of variation
of precipitation

✓

bio16(mm)
Precipitation of
wettest quarter

bio17(mm)
Precipitation of the
driest quarter

✓

bio18(mm)
Precipitation of
warmest quarter

bio19(mm)
Precipitation of
coldest quarter

srad(kJ·m-2·d-1) Solar radiation ✓

(Continued)
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strategy preserved two biologically significant but correlated factors,

ultimately yielding 22 optimized environmental predictors for

subsequent modeling (Table 1).
2.3 Methods

2.3.1 Methodology overview
The spatial distribution of H. cordata was modeled using the

Biomod2 platform, integrating environmental variables with

occurrence data to establish habitat suitability patterns (Figure 2).

Path analysis - a robust methodology for quantifying direct and

indirect causal pathways in multivariate systems (Grapentine, 2000;

Suhr, 2008) - was subsequently employed to evaluate environmental

drivers of phytochemical quality. This analytical framework

generated three integrated indices: (1) Habitat Suitability Index
Frontiers in Plant Science 05
(HSI) derived from Biomod2 outputs; (2) Spatial Quality Indicators

(SQIs) developed through path analysis and spatial interpolation of

environmental parameters and three key SMs; (3) Ecological

Quality Indices (EQIs) constructed by coupling HSI and SQI

surfaces (Figure 2). Collectively, these metrics establish a

multidimensional assessment framework for medicinal

plant ecophysiology.

2.3.2 Biomod2 modeling process
Species distribution modeling was implemented using the

Biomod2 framework, where ensemble models were constructed

through systematic evaluation of individual model performance

based on established accuracy metrics. The optimal composite model

was subsequently derived from algorithmic selection of top-performing

constituent models. This study employed nine distinct single-models

within the biomod2 framework for modeling purposes (ANN, CTA,

FDA, GBM, GLM,MARS,MAXENT, RF, SRE). To enhance predictive

robustness, distribution data were partitioned into training (75%) and

validation (25%) subsets using randomized stratification. Three sets of

pseudo-absence points were algorithmically (In the “biomod2”

package, the BIOMOD_FormatingData function is configured with

the argument set to “random”) generated per model run, with 10-fold

cross-validation repeated across all configurations. This rigorous

validation protocol yielded 300 distinct model realizations (10

iterations × 3 pseudo-absence sets × 10 model replicates).

Model accuracy was assessed using 5-fold cross-validation, with

performance quantified through three established metrics: the Area

Under the Receiver Operating Characteristic Curve (AUC), the

True Skill Statistic (TSS), and Cohen’s Kappa coefficient. The AUC

measures discriminative capacity between presence and

background points, representing the area under the ROC curve

with values ranging from 0.5 (random discrimination) to 1.0

(perfect discrimination); higher values indicate superior model

performance. The Kappa coefficient provides a prevalence-

adjusted measure of model agreement by incorporating

distribution probability, specificity, and sensitivity, yielding values

typically between 0 and 1. This metric is particularly valued for its

conservatism and robustness in ecological modeling contexts, where

values approaching unity signify increasingly reliable predictive

accuracy. Its calculation formula is as follows Equations 1–3:

KAPPA =
P0 − Pe
1 − Pe

(1)

P0 = P � Sn + (1 − P)� Sp (2)

Pe = −2(Sn + Sp − 1)P(1 − P) + P0 (3)

Among these, P, Sn, and Sp represent sensitivity, specificity, and

accuracy, respectively; P0 stands for observed precision; Pe denotes

precision occurring by chance (Yunsheng, 2007).

The True Skill Statistic (TSS) represents a derivative metric

derived from Cohen’s Kappa coefficient, calculated as the difference

between the True Positive Rate (TPR) and False Positive Rate (FPR)

with values constrained to the interval [-1,1], where values

approaching +1 denote optimal performance. As a prevalence-
TABLE 1 Continued

Variable
type

Code (unit) Description
Variables
used in
modeling

vapr(hPa) Vapor pressure

Soil variables

soil Soil type ✓

clay1
Topsoil Clay Fraction
(0 - 30cm)

clay2
Subsoil Clay Fraction
(30 - 100cm)

✓

sand1
Topsoil Sand Fraction
(0 - 30cm)

sand2
Subsoil Sand Fraction
(30 - 100cm)

✓

sq1 Nutrient availability

sq2
Nutrient retention
capacity

✓

sq3 Rooting conditions ✓

sq4
Oxygen availability to
roots

✓

sq5 Excess salts

sq6 Toxicity ✓

sq7
Workability
(constraining field
management)

Topographical
variables

ele(m)
Elevation above sea
level

✓

slop(%) Slope ✓

asp Aspect ✓

Human activity
variables

hf Human Footprint ✓

den Population Density ✓

ter
Global Human
Modification of
Terrestrial Systems

✓
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independent metric, TSS exhibits a significant advantage over the

Kappa coefficient by remaining robust to variations in species range

size, thereby providing a more reliable measure of discriminatory

accuracy across biogeographical contexts. Furthermore, TSS

effectively mitigates the confounding influence of species

occurrence rates on predictive performance assessments by

explicitly distinguishing between true classifications and chance

agreement. Equation 4 is the formula for calculating TSS:

TSS =
ad − bc

(a + c)(b + d)
(4)

In Equation 4, a represents the true positive number, b

represents the false positive number, c represents the false

negative number, and d represents the true negative number.

Define the value ranges corresponding to different levels for

three evaluation methods (Table 2), providing reference for

subsequent model evaluations (Liu et al., 2011).

The final number of single models obtained using Biomod2

depends on the number of successful runs among the 10 models, the
Frontiers in Plant Science 06
predetermined number of pseudo-absences, and the number of

repetitions, which is the product of the three. Biomod2 allows

custom conditions for model selection among the successful runs,

thus selecting single models that meet the criteria to construct a

combination model. In this study, single models that performed

excellently in the KAPPA, AUC, and TSS evaluation criteria were

selected to build the combination model. Using the TSS value,

which is more suitable for model evaluation, the weights of each

model were calculated. The selected models were then weighted

summed to obtain the combination model result.

wi =
ri

oi=n
i=1

ri

.
(5)

HSIj =  oj=n
j=1Xijwi (6)

In Equation 5 and 6, wi represents the weight of the ith model, ri
represents the TSS value of the ith model, n represents the number

of models screened out (meeting KAPPA≥0.80, AUC≥0.90,

TSS≥0.80), HSIj represents the ecological suitability index of the j
TABLE 2 Accuracy evaluation criteria of species distribution model.

Evaluation index Excellent Fine General Low Fail

KAPPA

AUC

TSS

0.80-1.00 0.60-0.80 0.40-0.60 0.20-0.40 <0.20

0.90-1.00 0.80-0.90 0.70-0.80 0.60-0.70 <0.60

0.80-1.00 0.60-0.80 0.40-0.60 0.20-0.40 <0.20
FIGURE 2

Schematic representation of the methodological approaches.
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th grid for the combined model, and Xij represents the ecological

suitability index of the ith model in the jth grid. Output the model

results to obtain the ecological suitability index distribution map of

H.cordata, showing the degree of adaptation of H.cordata in China.

Ecological suitability index values, initially ranging from 0 to 1000,

were rescaled to the standardized interval [0,1] through division by

1000. Four discrete suitability classes were subsequently established

based on threshold values: unsuitable habitat (0–0.2), marginally

suitable habitat (0.2–0.5), moderately suitable habitat (0.5–0.7), and

highly suitable habitat (>0.7) (Zhang et al., 2024; Zhao, 2024).

2.3.3 Spatial quality modeling
To quantify the influence of environmental variables on SMs

accumulation, Spatial Quality Index (SQIs) were derived using

ArcGIS 10.7’s Spatial Analyst tools through the integration of

Weighted Overlay Path Quality Index (PQIs) and Spatial

Interpolation Index (SIIs). Both components were assigned equal

weighting (0.5) in the overlay analysis. The specific calculation

formula is as follows Equation 7:

SQI = 0:5� (POI ∩ SII) (7)
2.3.3.1 Path quality index, PQIs

To evaluate environmental influences on H. cordata’s SMs

production beyond traditional niche model contribution rates,

path analysis was implemented using environmental variables as

independent predictors and three key SMs as dependent response

variables. This quantitative approach established direct causal

relationships between specific environmental factors and

phytochemical compositions through rigorous regression

modeling. Correlation analyses among all continuous variables

were performed in SPSS software (Zhao et al., 2016) to validate

the path model assumptions. The resultant regression equations

formally quantify the mathematical relationships between

quantified environmental parameters and the measured chemical

constituents of H. cordata, as shown in Equation 8:

C = b1x1 + b2x2 +… + bnxn + b0 (8)

Among them, the content of C as a SM, bi (i≤n), and b0 are

determined using a stepwise regression method, where xn
represents the environmental variable (Ferrando and Lorenzo-

Seva, 2021).

Building upon prior analytical foundations, path analysis was

systematically conducted to examine the three principal SMs. This

statistical approach established causality criteria for metabolic

relationships by constructing matrix equations through

mathematical transformations of bivariate correlation coefficients

—both among independent variables and between independent

variables and the target metabolites. Ultimately, the method

quantified the relative weights of environmental factors governing

phytochemical constitutions through standardized path coefficients

derived from the structural equation framework. The relevant

equations are Equations 9 and 10:
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1 rx1x2 … rx1xn

rx2x1 1 … rx2xn

⋮ ⋮ ⋱ ⋮

rxnx1 rxnx2 … 1

2
666664

3
777775

b1
b2
⋮

bn

2
666664

3
777775
=

rx1y

rx2y

⋮

rxny

2
666664

3
777775

(9)

Ri = b2
i + 2oi ≠ jbirxixjbjy = 2birxixj − b2

i (10)

rxixj (i, j ≤ n) represents the simple correlation coefficient

between variables, bi (i ≤ n) denotes the direct path coefficient of

the independent variable xi   to the dependent variable y, rxiy (i ≤ n)

is determined by each independent variable xi relative to the

corresponding SMs y.

In addition, we use decision coefficients Ri to assess the extent to

which environmental variables lead to the accumulation of SMs. rxixj
bjy represents the Indirect Path Coefficient, and it influences the

dependent variable y indirectly through the independent variables xi
associated with xj. The decision capability b2i varies with the change

in values, indicating the path coefficients between environmental

variables. To measure the role of key environmental variables in the

accumulation of SMs, we calculate the impact weights of

environmental variables on SMs based on decision coefficients

using weighting coefficients, as shown in specific formula Equation

11:

gi =
Rij j

on
i=1 Rij j (11)

This study, based on direct path coefficients, indirect path

coefficients, decision coefficients, and environmental variable

weights, employs ‘Spatial Analysis’ in ArcGIS 10.7 to calculate the

spatial quality distribution of H. cordata, namely PQIs (Plant

Quality Indices), according to statistical results of SM content.
2.3.3.2 Spatial interpolation index, SIIs

Kriging is an method which can capable of accommodating four

variables simultaneously, with one acting as the primary variable

and the others as explanatory variables, known as collocated

variables. This study employs the Kriging for spatial interpolation.

This method combines the spatial auto-correlation of the primary

variable with the inter-correlation between the primary and

collocated variables, used in unbiased optimal variable estimation,

effectively reflecting the impact of multiple environmental factors

on the quality of medicinal materials. The expression for Kriging

estimated values is as Equation 12:

Z0 =on
i=1aixi +on

i=1biyi (12)

Among them, Z0 is the estimated value of the random variable

at position 0; x1,…, xn are the n sample data of the initial variable; y1,

…, ym are them sample data of the secondary variable; a1,…, an and

b1,…, bm are the Kriging weighting coefficients to be determined.

In ArcGIS 10.7, by utilizing the geostatistical analysis function,

the Spatial Interpolation results forH.cordata quality based on SMs,

SIIs, were obtained.
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2.3.4 Ecological quality modeling
To predict the ecological quality zones of H.cordata ‘s SMs, it’s

necessary to first determine the growth and distribution areas of this

species. Then, based on ecological suitability, conduct a spatial

quality analysis of the content of its SMs, that is, according to the

ecological suitability zoning and spatial quality zoning, to carry out

high-quality zoning of H.cordata regarding its SM components.

Based on the ecological suitability zoning and spatial quality zoning,

by fitting ecological suitability and SQIs, calculate the Ecological

Quality Index (EQI) of H.cordata to construct an ecological quality

model regarding its SMs.

The construction of EQIs was initiated by extracting moderately

and highly suitable habitats, designated as the HSI, from ecological

niche modeling outputs generated via Biomod2. This extraction

incorporated all environmental variables previously identified in

Section 2.2.2. Subsequently, HSI and SQIs were integrated at a 50%

weighting for each index using ArcGIS 10.7 spatial analysis tools to

create EQIs (Equation 13) (He et al., 2023). This coupling process,

performed at the grid-cell level, simulated spatial distribution

patterns of three key SMs.

EQIi = 0:5� (HSI ∩ SQIsi), i ≤ 3 (13)
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Among them, EQIi and SQIsi respectively represent the

ecological quality index and spatial quality index of each SM

product; HSI is the ecological suitability index determined by the

Biomod2 ecological niche model.
3 Results

3.1 Spatial distribution by ensemble-model
of H. cordata

Nine distinct species distribution models were successfully

implemented within the Biomod2 framework, each generating

comprehensive predictive outputs. The comparative performance

metrics of these models are presented in Figure 3.

The ensemble modeling approach incorporated only the

highest-performing individual models from the initial pool of 270

candidate models, applying stringent selection criteria

(KAPPA≥0.80, AUC≥0.90, TSS≥0.80) to ensure model

robustness. Five models meeting these rigorous standards were

integrated into the final composite model, which demonstrated

exceptional predictive performance with validation metrics of
FIGURE 3

Average accuracy test results for a single model.
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KAPPA = 0.857 ± 0.04, AUC = 0.975 ± 0.06, and TSS = 0.861 ± 0.03.

The resulting suitability predictions exhibited biologically

meaningful spatial patterns across all classification levels, showing

smooth ecotonal transitions between habitat quality categories.

The composite modeling outputs (Figure 4) exhibit coherent

spatial patterning across all habitat suitability classes, demonstrating

structural coherency with smooth transitions between classification

tiers. This integrated model achieves high spatial contiguity while

maintaining distinct hierarchical differentiation, effectively

delineating the ecological suitability distribution of H. cordata

across China. Geospatial analysis reveals primary suitable habitats

concentrated predominantly south of the Yangtze River Basin and

west of the Hengduan Mountains, encompassing the Yunnan-

Guizhou Plateau, Sichuan Basin, and Southeastern Hills. Core

distribution zones (moderate to high suitability) cluster

predominantly in eastern Sichuan’s Ya’an region, the Chongqing-

Hubei border interface, southern Yunnan, northwestern Taiwan, and

throughout Hainan, Guangxi, Hunan, Zhejiang, and Fujian

provinces. Marginal suitability areas form transitional buffers along

peripheries of medium-high suitability zones, with isolated

occurrences observed in southern Tibetan river valleys and limited

sectors of Shandong and Liaoning provinces. According to the

composite model results, the highly suitable area for H.cordata in

China covers an area of 1.09×106km2, the moderately suitable area

covers an area of 5.4×105km2, and the marginally suitable area covers

an area of 5.5×105km2. The area of the highly suitable region is
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roughly equal to the combined area of the moderately and marginally

suitable regions.
3.2 Spatial quality indicator for H. cordata

3.2.1 Result of path analysis
Table 3 displays the correlation between environmental

variables and three SMs (2-Undecanone, quercitrin and

quercetin) as revealed through correlation and regression analyses.

For 2-undecanone synthesis, thermal amplitude (Bio7), wet-

season temperatures (Bio8), and annual precipitation (Bio12)

emerged as critical climatic regulators, paralleling their

established roles in determining the species’ ecological suitability.

Edaphic factors—including slope-mediated drainage patterns,

nutrient retention capacity (Sq2), and root-zone oxygen

availability (Sq4) — were equally pivotal, aligning with recent

soil-plant interaction studies (Qi, 2023). The flavonoid derivatives

quercitrin and quercetin exhibited contrasting environmental

associations, demonstrating strongest correlations with thermal

variability (Bio7), subsurface sand content (Sand2), and

population density (Den). Notably, the persistent influence of

thermal amplitude (Bio7) across multiple metabolite classes

suggests fundamental physiological constraints on biochemical

pathways, potentially mediated through temperature-sensitive

enzymatic processes. Based on regression coefficients, a regression
FIGURE 4

Spatial distribution of H. cordata ecological suitability simulated by the ensemble model.
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equation between SMs and environmental variables can be

established, and it’s found that the equation can explain their

mathematical correlation, as shown in Equations 14–16:

y1 = 1:573 − 0:61x1 − 0:206x2 − 0:466x3 − 0:4x4 + 0:172x5

− 0:27x6 (14)

y2 = 0:471 + 0:174x1 + 0:356x7 − 0:351x8 (15)

y3 = −2:54 + 0:492x1 + 0:322x8 (16)

Among them, y1, y2 and y3 respectively represent 2-

Undecanone, quercitrin and quercetin. x1- x8 correspond to Bio7,

Bio8, Bio12, Slope, Sq2, Sq4, Den, and Sand2.

The synthesis of 2-undecanone showed predominant

dependence on Sq4, Sq2, and Bio8, with Bio12 and Slope gradient

exhibiting complementary positive associations. Notably, Bio7

demonstrated inhibitory effects on this volatile compound’s

accumulation. Contrastingly, flavonoid production revealed

differential controls: quercitrin concentrations correlated

positively with Sand2 and Den, while both quercitrin and

quercetin showed temperature-mediated regulation through Bio7

fluctuations. The persistent significance of Bio7 across all three SMs

underscores its fundamental role in modulating biosynthetic
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pathways, potentially through temperature-sensitive enzymatic

kinetics or stress-induced metabolic responses.

Based on the contributions of different variables to three types

of SMs, the weight indices of environmental variables for each SM

were also calculated through path analysis. Based on the obtained

weights, we used ArcGIS 10.7 to locate the PQIs of H.cordata.

3.2.2 Result of spatial quality distribution
By applying the CC method to interpolate the spatial quality of

three SMs of H.cordata, the resulting SIIs were overlaid with the

PQIs obtained from pathway analysis to generate a spatial quality

distribution map of the three SMs (Figure 5).

Predicted concentrations of three SMs exhibit spatial variability.

The concentration range of 2-Undecanone is 0.05-0.60mg/g, with

its high-concentration areas primarily located in central Guizhou

and southern Yunnan, and parts of Fujian also relatively high. The

concentration range of quercitrin is 0.07-10.1mg/g, with its high-

concentration areas more widely distributed, extending from

Sichuan, Guizhou, Guangxi, Hunan, and Hainan to most of

Zhejiang, marking the high-concentration zones of quercitrin.

The concentration range of quercetin is 0.16-6.51mg/g, yet its

high-concentration areas cover the smallest area, only found in

eastern Sichuan, Chongqing, and the southwestern part of Hubei, at

the peripheral regions.
TABLE 3 Path coefficients of environmental variables and three SMs.

(a) 2-undecanone

Environmental
variables

Indirect path coefficient
Accumulating
contribution

Decision-
making

Index
weight

Bio7 Bio12 Slope Bio8 Sq4 Sq2

Bio7 / 0.037 0.067 -0.004 -0.07 0.024 -0.610 0.308 0.115

Bio12 0.049 / 0.106 -0.028 0.034 0.050 -0.046 0.395 0.148

Slope 0.104 0.124 / 0.131 0.068 -0.04 -0.400 0.436 0.163

Bio8 -0.020 -0.060 0.256 / -0.08 0.016 -0.206 0.486 0.182

Sq4 -0.160 0.060 0.103 -0.064 / 0.069 -0.270 0.514 0.192

Sq2 -0.090 -0.140 0.106 -0.020 -0.110 / 0.172 0.533 0.199

(b) Quercitrin

Environmental
variables

Indirect path coefficient
Accumulating
contribution

Decision-
making

Index
weight

Bio7 Den Sand2

Bio7 \ 0.046 -0.018 0.174 0.344 0.367

Den -0.060 \ 0.074 0.356 0.311 0.332

Sand2 -0.038 -0.010 \ -0.351 0.282 0.301

(c) Quercetin

Environmental
variables

Indirect path coefficient Accumulating
contribution

Decision-
making

Index
weightBio7 Sand2

Bio7 \ 0.053 0.492 0.246 0.413

Sand2 0.049 \ 0.322 0.35 0.587
fr
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Considering the distribution of three types of SM contents,

areas with high concentrations of a single SM are relatively

concentrated, with no clear pattern of decrease from high to low,

and almost no region shows high contents of all three types of SMs

simultaneously. Therefore, in actual cultivation, different priority

planting areas can be determined based on the varying demands for

SMs, to maximize their value.
3.3 High-quality ecological regionalization
for H.cordata

This study uses HSI as a constraint region, limiting the predicted

range of 2-Undecanone, quercitrin and quercetin content in H.cordata

to areas with higher growth suitability. Based on EQIs results, this study

classifies the ecological zones for high-quality SMs of H.cordata into

four levels: unsuitable areas, low quality areas, generally quality areas,

and highly quality areas. The total area of generally and highly quality

zones for 2-Undecanone is approximately 9.2×105km2, for quercitrin

approximately 1.09×106km2, and for quercetin approximately

4.0×105km2 (refer to Table 4 and Figure 6).

The spatial distribution of high-quality ecological zones for SMs in

H. cordata exhibits distinct geographical patterns with significant

regional specificity. High-quality zones for 2-undecanone are

predominantly clustered along the Chongqing-Hubei border,

southwestern Guizhou, and northwestern Guangxi, reflecting optimal
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edaphic and microclimatic conditions for volatile oil biosynthesis.

Quercitrin-rich zones demonstrate partial spatial overlap with 2-

undecanone hotspots but exhibit pronounced longitudinal gradients,

displaying superior quality metrics in western regions—particularly

southwestern Hubei—with gradual declines toward eastern areas.

Conversely, quercetin optimization zones occupy the smallest spatial

footprint, primarily localized along the northern peripheries of the

species’ ecological suitability range, including southwestern Hubei and

adjacent transitional ecotones, exhibiting latitudinal quality

stratification with enhanced northern productivity. These findings

align with Yiling Pharmaceutical’s recent establishment of a H.

cordata cultivation base in the Chongqing-Hubei border region,
TABLE 4 Ecological quality area statistics of main SMs of H.cordata.

Ecological
quality

2-undecanone
(×105km2)

Quercitrin
(×105km2)

Quercetin
(×105km2)

Highly quality 4.58 4.57 0.98

Generally
quality

4.61 6.35 3.03

Lowly quality 5.26 3.52 8.25

Unsuitable 2.32 2.32 3.50

Generally and
highly

9.19 10.9 4.02
FIGURE 5

Spatial mass distribution map of H.cordata based on SMs.
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validating the methodological rigor and translational value of this

ecological quality assessment framework.
4 Discussion

The reliability of ecological niche models fundamentally depends

on the precision of input datasets, particularly the comprehensiveness

of environmental variables and georeferenced occurrence records, yet

data acquisition for critical ecological parameters remains a persistent

challenge in species distribution modeling (Sillero and Barbosa, 2020;

Wisz et al., 2008). Compounding these complexities, interspecific

variations in survival strategies and niche specialization introduce

substantial uncertainties in defining species-environment

relationships (Williams et al., 2012). To address this fundamental

challenge, the present study simulated H. cordata’s ecological niche

and spatial distribution through integrative analysis of environmental

variables and occurrence data. This modeling framework based on

comprehensive distribution point sampling. By isolating

biogeographic drivers from confounding anthropogenic factors, the

approach derives a baseline understanding of the species’ fundamental

niche dimensions. By integrating environmental predictors with

verified occurrence records, we developed a mechanistic

understanding of niche determinants while systematically evaluating

variable contributions through dual ecological and phytochemical
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lenses. The EQIs not only confirmed environmental regulation of

SMs biosynthesis but also revealed differential variable dominance

across metabolic pathways, demonstrating how microhabitat

conditions interactively govern phytochemical profiles.
4.1 Effects of environmental factors on
ecological suitability of H. cordata

The environmental drivers analysis revealed (Table 5)

precipitation as the dominant factor governing H. cordata

distribution, with Bio12 and Bio17 consistently ranking as top

predictors across models. This hydrological dominance aligns

with the species’ core distribution in China’s subtropical

monsoon zone, where regions exceeding 800 mm annual rainfall -

including peripheral areas like southern Tibetan valleys and

Liaoning’s coastal zone - provide essential moisture conditions for

its perennial growth cycle. The species’ phenological strategy,

characterized by extended vegetative periods (May-October

flowering/fruiting) and persistent rhizome systems, demonstrates

evolutionary adaptation to stable precipitation regimes that

maintain soil moisture through seasonal variations.

Topographic influences (Elev) operated indirectly through

microclimate modulation, particularly via elevation-mediated

temperature-precipitation gradients, rather than exerting direct
FIGURE 6

Ecological quality distribution map of H.cordata based on SMs.
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physiological constraints. Contrary to expectations, soil parameters

showed minimal predictive power, attributable to H. cordata’s

broad edaphic adaptability - thriving optimally in moist, humus-

rich sandy loams while maintaining viability in clay-dominated

substrates (wu et al., 2008). Furthermore, human footprint (Hf) and

population density (Den) frequently ranked among the top five

important variables, demonstrating the species’ tolerance to

moderate anthropogenic disturbance alongside its vulnerability to

habitat fragmentation in rapidly urbanizing landscapes. These

findings collectively underscore the primacy of macroclimatic

moisture availability over localized edaphic conditions in shaping

the species’ ecological niche, and anthropogenic pressures introduce

part ial modifiers to distr ibution patterns in human-

modified ecosystems.
4.2 The key role of environmental factors
in SMs

Path analysis revealed distinct environmental drivers for

specific SMs in H. cordata, with Slope, Sq2 and Sq4 exerting

significant control over 2-Undecanone accumulation. Conversely,

Bio7 and Sand2 emerged as critical determinants of quercitrin and

quercetin concentrations. This metabolite-specific environmental

sensitivity underscores the complex interplay between abiotic

factors and phytochemical biosynthesis, where temperature

regimes, hydrological conditions, and edaphic properties
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collectively modulate metabolic pathways through both direct

physiological effects and indirect microhabitat modifications.

The ecological significance of these SMs extends beyond plant

adaptation, as they represent valuable bioactive compounds with

documented pharmaceutical applications (Zhao et al., 2005). Plants

strategically modulate SM production as an evolutionary response

to environmental stressors (Bennett and Wallsgrove, 1994), with H.

cordata’s flavonoid profile particularly sensitive to geo-climatic

variations. The species’ preferential accumulation of quercitrin

over other flavonoids (Apple et al., 2000) suggests targeted

biosynthetic investment, potentially linked to its enhanced

antioxidant capacity and therapeutic efficacy. This spatial

heterogeneity in flavonoid composition, correlated with

morphological adaptations across populations (Wu et al., 2008),

necessitates geolocation-specific cultivation strategies to optimize

medicinal quality.

Notably, 2-Undecanone biosynthesis demonstrates strong

edaphic dependence, reflecting H. cordata’s niche specialization in

hydromorphic soils. Ecophysiological studies demonstrate that the

species’ characteristic distribution in flood-prone, organic-rich

substrates (Shi, 2014) creates optimal conditions for volatile

compound synthesis through anaerobic soil microbe interactions

and redox-sensitive enzymatic processes. Slope-mediated drainage

patterns further regulate soil aeration and nutrient mobility,

creating microhabitat gradients that directly influence terpenoid

precursor availability. These findings highlight the critical role of

pedological conditions in maintaining the biochemical integrity of
TABLE 5 Environmental variables and contribution of the single models.

Models Environmental variables and contribution (%) Accumulating contribution (%)

ANN
Bio12 Bio17 Elev Srad Den

90.7
57.2 12.2 8.7 6.3 6.3

CTA
Bio12 Bio17 Ter Elev Hf

84
69.2 8.7 2.3 2.1 1.7

FDA
Bio12 Bio17 Bio2 Sq2 Ter

93.6
39.4 26.4 10.2 9.5 8.1

GBM
Bio12 Bio17 Bio2 Ter Hf

42.7
23.2 10.1 5.3 2.7 1.4

GLM
Bio12 Bio2 Bio7 Bio17 Bio15

92.7
47.1 22.3 16.5 4.7 2.1

MARS
Bio12 Bio17 Bio2 Ter Hf

74.9
25.1 23.9 9.8 9.1 7.0

MaxEnt
Bio12 Bio17 Hf Elev Den

90
60.4 15.0 7.3 3.7 3.6

RF
Bio12 Bio17 Bio7 Bio2 Den

68.3
28.2 24.6 8.9 5.3 1.3

SRE
Bio12 Bio17 Bio7 Bio2 Den

93.7
30.5 30.2 28.3 2.4 2.3
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medicinal plants, particularly for lipophilic compounds like 2-

Undecanone that exhibit soil matrix-dependent stabilization.
4.3 Conservation strategies for H. cordata

The medicinal significance of H. cordata has been amplified in

contemporary therapeutics, particularly through its demonstrated

antiviral efficacy in COVID-19 management, which bridges

traditional phytomedicine and modern pharmacotherapy.

However, anthropogenic habitat fragmentation and climate-

driven biogeographic shifts have precipitated a transition from

contiguous populations to disjunct metapopulations, threatening

the species’ ecological resilience. This study advances a conservation

framework integrating habitat suitability modeling (HSI), spatial

metabolite profiling (SQIs), and ecological quality indices (EQIs) to

reconcile sustainable utilization with biodiversity preservation. The

proposed zoning strategy identifies southwestern Hubei as a novel

priority area for cultivation, supplementing established Good

Agricultural Practice (GAP) bases, while revealing metabolite-

specific biogeochemical optima: traditional production zones like

Sichuan and Guizhou maximize 2-Undecanone yields, whereas

northern ecoregions such as Hubei favor quercetin biosynthesis.

Such geolocation-driven cultivation protocols enable tiered

resource allocation—plants from high-metabolite geographies

supply precision pharmaceutical applications, while pharmacopeia-

compliant low-yield specimens serve general herbal markets. This

stratification optimizes commercial viability without compromising

therapeutic standards. Critically, SMs optimization requires

multivariate agroecological management, as biosynthetic pathways

respond nonlinearly to cultivation chronosequences, microclimate

modulation, and edaphic engineering. Implementation necessitates

rigorous ecotype evaluation to prevent invasive displacement of

native flora, ensuring cultivation landscapes mirror natural

community assemblages. By calibrating production landscapes to

both metabolic gradients and regional carrying capacity, this

paradigm shift in medicinal plant management balances

anthropogenic demand with biome conservation, establishing a

replicable model for climate-resilient phytopharmacology.
4.4 Future outlook

This study underscores the critical role of identifying key

environmental drivers in shaping both the ecological niche

dynamics and phytochemical quality of H. cordata. A precise

delineation of these variables enhances the predictive capacity of

ecological niche models while elucidating their regulatory

mechanisms on the biosynthesis of quality-defining SMs.

While centered on a medicinal species, the “Ecological Suitability

- Spatial Quality Zoning” framework demonstrates transferability to

agronomically vital crops - including tomato, potato, and rice - whose

productivity and phenotypic plasticity exhibit strong environmental

dependencies tied to thermal regimes, hydrological cycles, and

pedological characteristics (Mahmood et al., 2012.; Rykaczewska,
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2013; Timlin et al., 2006; van der Ploeg and Heuvelink, 2005). By

synergistically evaluating ecological constraints and metabolite

gradients, this dual-axis framework provides actionable insights for

precision agriculture, enabling spatially optimized crop zoning,

cultivation protocols, and resource allocation strategies that

concurrently support yield maximization and ecosystem integrity.

However, traditional SDMs operate under the assumption that a

species exhibits homogeneous environmental requirements—an

assumption not met in many medicinal plants. The sample data in

this study, for instance, did not account for interregional germplasm

variation. In reality, many nominal “species” encompass multiple

chemotypes or ecotypes that have undergone genetic differentiation,

resulting in distinct environmental demands and response patterns.

The formation of “genuine regional herbs” exemplifies this

complexity: it arises from Genotype (G) × Environment (E)

interactions, where specific genetic germplasms adapt to and

interact with unique local conditions to produce high-quality

medicinal materials. Incorporating germplasm data into ecological

niche modeling could therefore significantly improve predictive

accuracy. Such integration would allow not only the identification

of spatially suitable habitats but also the projection of zones

conducive to high accumulation of target bioactive compounds—

enabling a more scientifically-grounded approach to the conservation

and sustainable utilization of genuine regional herbs resources.
5 Conclusion

This study investigates the ecological suitability and

phytochemical quality distribution patterns of H. cordata by

integrating species distribution modeling with SMs spatial analysis.
(1) Employing occurrence records and environmental

variables, Biomod2 ensemble modeling identified optimal

growth habitats, revealing high-suitability zones

concentrated in subtropical monsoon regions of eastern

Sichuan (Ya’an), Chongqing-Hubei borderlands, and

southern Yunnan, with Bio12 and Bio17 emerging as

primary bioclimatic determinants.

(2) Path analysis coupled with Kriging interpolation elucidated

SMs-environment relationships, demonstrating distinct

spatial heterogeneity in three key metabolites: 2-

Undecanone concentrations correlated strongly with Bio7,

Sq4, and slope gradients; quercitrin and quercetin

distributions exhibited Bio7 associations with Sand2 and Den.

(3) The EQI, synthesized from habitat suitability and SMs spatial

patterns, delineated metabolite-specific cultivation hotspots -

2-Undecanone-rich areas clustered in Guizhou-Yunnan-

Fujian transitional zones, quercitrin-abundant regions

spanning southwestern to eastern provinces, and quercetin-

concentrated pockets in northern peripheries of the species’

range. Notably, SM optimization zones displayed minimal

geographical overlap, underscoring the necessity for

cultivation strategies tailored to target compounds.
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These findings advance precision agriculture paradigms by

establishing an ecological-quality dual assessment framework

applicable to medicinal plants and economically vital crops, while

highlighting microclimatic and edaphic factors requiring prioritized

consideration in conservation-oriented cultivation practices.
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Collinearity: a review of methods to deal with it and a simulation study evaluating their
performance. Ecography 36, 27–46. doi: 10.1111/j.1600-0587.2012.07348.x
Elith, J., Phillips, S. J., Hastie, T., Dudıḱ, M., Chee, Y. E., and Yates, C. J. (2011). A
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