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Omics applications in agriculture systems:unveiling functionality andpracticality
Plants respond to environmental stimuli in a variety of ways. They have developed

complex genetic and biochemical networks to adapt to environmental stresses, including

biotic, abiotic, herbicide, and metabolic demands (Sharma et al., 2012). With the swift rise

of multi-omics technologies, such as genomics, transcriptomics, proteomics, and

metabolomics, our ability to characterize molecular mechanisms has led to advances in

the understanding of crop resilience, disease resistance, and metabolic regulation (Crandall

et al., 2020; Zenda et al., 2021; Adhikary et al., 2024). Researchers in this Research Topic

have explored multiple domains across plant sciences, such as the underlying molecular

factors related to biotic stress involving Fusarium species in wheat and flax (Quintans et al.;

Walker et al.). Similarly, the genetic basis of leaf morphology in relict plant species such as

Ginkgo has been developed (Li et al.). Furthermore, genetic insights into the skin colour

variation in radish and strigolactones (SLs) biosynthesis in rice have been explored

(Li et al.). Finally, the availability of multi-omics approaches and the utility of

harnessing the power of data integration is highlighted in the review article (Sen et al.).

One of the key areas of focus is biotic stress, particularly the threat posed by Fusarium

head blight (FHB), a devastating fungal disease that affects a majority of cereal crops and

leads to significant yield losses and mycotoxin contamination (Shin et al., 2014; Hay et al.,

2022; Moonjely et al., 2023). To understand the molecular basis of FHB resistance, Walker

et al. performed a comparative transcriptomic analysis of three wheat genotypes: FHB-

resistant AC Emerson, FHB-moderately resistant AC Morley, and FHB-susceptible CDC

Falcon in response to F. graminearum, a dominant causative agent of the disease. The study

applied an RNA-sequencing approach and identified key defense mechanisms such as

lignin biosynthesis and DON detoxification via UDP-glycosyltransferases, providing

insights into the FHB resistance in wheat. Additionally, differential expression of

pathogenicity factors in F. graminearum was assessed, which offered potential targets for

developing resistant wheat varieties.

Moving from biotic stress to hormone-mediated development, another study explored

strigolactones (SLs) in rice, a class of carotenoid-derived hormones that regulate plant

architecture, response to nutrient availability, and developmental processes, including root
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and shoot development (López-Ráez et al., 2008; Koltai, 2011; Xu

et al., 2019; Li et al., 2023). Li et al. integrated a yeast one-

hybridization screening assay and metabolome approach to

identify OsSPL3 as a transcriptional repressor of OsDWARF10

(OsD10), a key gene in SL biosynthesis. The repression of OsD10

altered the metabolomic profile of polished rice, leading to an

increase in amino acids and vitamins. The discovery provided

new opportunities to manipulate SL pathways for improving

nutritional quality in rice, potentially addressing global food

security concerns (Li et al.).

In a related theme of agronomic trait enhancement, pigment

accumulation of anthocyanins in radish taproots presents both

economic and nutritional value (Khoo et al., 2017). An integrative

study using a genome-wide association study and yeast two-hybrid

assay has identified a novel genetic locus on the R2 chromosome

near RsMYB1.1 as a key genetic factor regulating skin colour

variation in radish, with a large AT-rich insertion in the

promoter region of non-red radishes inhibiting anthocyanin

biosynthesis (Kim et al.). This presence/absence variation

mechanism represents a novel genetic regulation model that

could be leveraged for crop improvement through targeted

gene editing.

While these studies focus on traits shaped by environmental

interactions and selective pressures, evolutionary aspects of plant

morphology are also crucial. Since the transition of plants from water

to land, terrestrial plants have undergone numerous morphological

changes over time. Ginkgo biloba, a living fossil, retains ancient

characteristics that can provide insights into plant adaptation

(Beerling et al., 2001). The unique flabellate (fan-shaped) leaves of

Ginkgo biloba exhibit distinct anatomical and physiological

characteristics compared to other plant leaves. An integrative study

involving transcriptomic and metabolomic analyses suggests that

endogenous hormones, such as gibberellin (GA), auxin, and jasmonic

acid, contribute to leaf shape formation (Li et al.). Additionally,

differences in flavonoid and phenolic acid accumulation indicate

potential adaptive advantages. Understanding the genetic basis of

leaf morphology in relict plant species like Ginkgo offers insights

into the organ development and the evolution of plants in the

terrestrial ecosystem.

Extending the theme of plant resilience, Quintans et al.

investigated how beneficial plant-microbe interactions can

enhance disease resistance in flax (Linum usitatissimum L.). The

crop has been challenged by several pests and pathogens (Moyse

et al., 2023). Fusarium wilt in flax, caused by F. oxysporum f. sp. lini,

is a major agricultural concern. However, research has shown that

inoculation with the mutualistic arbuscular mycorrhizal fungus

(AMF) Rhizoglomus irregulare can mitigate the negative effects of

the pathogen (Quintans et al.). This study integrated phenotypic

and transcriptomic analysis and investigated the response of flax

seedlings to F. oxysporum in the presence of AMF Rhizoglomus

irregulare. The findings revealed that flax prioritizes the expression

of mutualism-related genes over conventional defence responses,

thereby reducing pathogen-induced growth inhibition. This study
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highlights the potential of AMF inoculation as a biological control

strategy to enhance crop resilience in flax.

Complementing the focus on pathogen resistance, herbicide

resistance in weeds presents a significant challenge in modern

agriculture (Baucom, 2019). While several studies have explored

functional genomics, transcriptomics, proteomics, and metabolomics

separately, an integrated approach is needed to fully understand

resistance mechanisms, particularly non-target site resistance

(Adhikary et al., 2022a, 2022b; Peng et al., 2023; Sen et al., Dong

et al., 2024). High-throughput sequencing and molecular profiling

can help dissect the complex, multi-pathway responses that enable

weeds to survive multiple herbicide modes of action. Especially,

multi-omics provides a holistic picture of gene function within

complex biological systems. This systems biology approach

involving different layers of omics from molecular and cellular

levels enhances our ability to precisely identify biomarkers that are

related to various agronomic traits, including herbicide resistance,

and develop more effective weed management strategies. Through

this approach, we can link genes to phenotypes, capture regulatory

mechanisms, identify post-translational or post-transcriptional

modifications, which potentially affect gene functions, most

importantly, it improves the accuracy of gene annotation and

discovery. By continuing to explore these molecular pathways, we

can accelerate the development of crops with enhanced resistance,

improved nutrition, and greater adaptability to environmental

challenges, ultimately paving the way for a more sustainable and

food-secure future.

These studies collectively emphasize the transformative

potential of multi-omics approaches in revealing the genetic and

molecular mechanisms underlying key plant traits, evolutionary

adaptations, and resistance strategies. Future research should

prioritize the integration of various omics technologies, such as

genomics, transcriptomics, proteomics, and metabolomics, to

develop a holistic model of plant stress response. In parallel,

functional validation strategies such as genome editing, gene

overexpression, and gene silencing are essential to move beyond

descriptive omics data and rigorously confirm the roles of candidate

genes. This approach not only enhances the scientific value of

research outputs but also addresses a critical gap in basic science,

where functional characterization remains limited. Furthermore,

validating gene function strengthens the biological relevance of

findings and lays the groundwork for translational applications in

crop improvement. Additionally, leveraging beneficial plant-

microbe interactions can contribute to the development of

sustainable and resilient agricultural systems.
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