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Introduction: Pea is a nutrient-dense, functionally diversified vegetable.

However, its leaf diseases have a direct impact on yield and quality. Most

approaches for identifying pea leaf diseases exhibit low feature extraction

efficiency, significant environmental sensitivity, and limited large-scale

applications, making it impossible to meet the expectations of modern

agriculture for accuracy, real-time processing, and low cost.

Methods: Therefore, we propose a deep learning model for pea leaf disease

identification based on an improved MobileNet-V3_small, deformable

convolution strategy, self-attention, and additive attention mechanisms (DSA-

Net). First, a deformable convolution is added to MobileNet-V3-small to increase

the modeling skills for geometric changes in disease features. Second, a self-

attention mechanism is integrated to improve the ability to recognize global

features of complex diseases. Finally, an additive attention strategy to enhance

the feature channel and spatial position response relationship in edge-blurred

lesion areas. The experimental pea leaf data set consists of 7915 samples divided

into five categories. It includes one healthy leaf and four diseases: brown spot,

leaf miner, powdery mildew, and root rot.

Results: The experimental results indicate that the suggested DSA-Net has an

average recognition accuracy of 99.12%. It has a parameter size of 1.48M.

Discussion: The proposed approach will help with future edge device

deployments. The current proposed technique considerably enhances the

diagnostic accuracy of pea leaf diseases and has significant promotion and

application potential in agriculture.
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1 Introduction

Due to their high protein, vitamin, and mineral content, peas

are one of the most important leguminous crops in the world and a

necessary part of the human diet (Wu et al., 2023). Peas are

important to agriculture because of their wide range of

applications and high level of environmental adaptability.

However, throughout their growth stage, peas are especially

susceptible to a number of leaf diseases, such as powdery mildew,

brown spot, and leaf miner. Plant quality, productivity, and healthy

growth can all be directly impacted by pea leaf diseases. In severe

cases, they may even lead to crop failure, which would cause

agricultural output to suffer large financial losses.

Traditional techniques of plant leaf disease identification rely

mostly on personal observation and empirical judgment, which are

sometimes supplemented with simple diagnostic equipment. This

strategy is not only inefficient, but it is also heavily dependent on

expert expertise, which is very subjective. It is typically appropriate

for small farmers or preliminary screening, but it is difficult to meet

the actual requirements of large-scale agricultural production. Due

to subjectivity, lag, low precision, and low efficiency, it is prone to

misdiagnosis, delayed prevention and treatment, or overuse of

medication. With the development of computer technology, some

machine learning methods based on simple image features (Deng

et al., 2020) have been applied to disease recognition. For example,

Ali et al. (2022) proposed a method called feature fusion and

principle component analysis, which has an accuracy of 98.2%.

Paymode and Malode (2022) employed a convolutional neural

network (CNN)-based visual geometry group (VGG) model to

enhance performance measurement. In the trial, the proposed

approach had an average accuracy of 97.06% for grapes and

tomatoes leaf diseases. However, classic machine learning

methods based on simple picture features have clear drawbacks in

feature expression, environmental adaptation, real-time

performance, making it impossible to satisfy the objectives of

modern agriculture for accurate and efficient disease recognition

(Dang et al., 2024).

In recent years, deep learning technology has demonstrated

strong performance advantages in the field of image recognition,

and this technological innovation is driving the rapid development

of agricultural disease recognition towards intelligence and

precision. Deep learning models can automatically learn advanced

features of images, which has significant advantages in improving

recognition accuracy and efficiency. This advantage is gradually

replacing traditional image processing methods and becoming the

mainstream technical solution in the field of intelligent recognition

of agricultural diseases (Kanda et al., 2022). Among them, the

MobileNet series models, with their lightweight characteristics

(Srinivasu et al., 2021), have a good balance between recognition

accuracy and computational efficiency, making them more suitable

for the application needs of real-time diagnosis scenarios in the

field. The core modules of MobileNet-V3_small include the

inverted residual block, the squeeze and excitation module, and

the h-swift activation function. The h-swift activation function, the

squeeze and excitation module, and the inverted residual block are
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the three key components of MobileNet-V3_small. Utilizing

cutting-edge concepts like depthwise separable convolution and

inverse residual structure, MobileNet-V3_small significantly lowers

computation costs and parameter counts without sacrificing

accuracy. When it comes to identifying pea leaf diseases. Due to

some current models’ limitations in dynamic feature extraction

(e.g., small targets/occluded scenes), the static weight allocation of

depthwise separable convolutions is difficult to adapt to spatially

changing features.

In response to the above shortcomings, this study aims to

improve the accuracy and robustness of the MobileNet-V3_stall

model in identifying pea leaf diseases. Specifically, this study will

introduce deformable convolution network (DCN) and self-

attention (SA) and additive attentive (AA) mechanisms to enable

the model to pay more attention to the key features of disease areas.

Through these improvement strategies, a recognition accuracy of

99.12% was achieved on a self-built dataset, which is 10.5% higher

than the baseline model. The main contributions of this paper are

as follows:
1. The deformable convolution adjusts the convolution kernel’s

sample location by adding offset. It accurately captures the

varied morphological aspects of pea leaf diseases and

responds effectively to geometric changes.

2. The self-attention mechanism automatically learns feature

position correlations, improves important local feature

extraction, and strengthens the model’s ability and

robustness to deal with complex relationships between

diseased and healthy regions.

3. The additive attention mechanism dynamically distributes

channel and spatial weights. It highlights important disease

features and effectively suppresses noise interference.

4. The suggested method retains the model’s lightweight

architecture. It ensures efficient operation on resource-

constrained edge devices and provides feasibility for real-

time and accurate identification of pea leaf diseases.
We incorporated the DCN, SA, and AA modules individually in

MobileNet-V3 for the first time, achieving collaborative

optimization of capturing morphology+position+scale+small

lesion enhancement rather than adding attention modules in

isolation. Especially DCN has a unique ability to capture local

features. It can adaptively adjust the shape and position of the

convolution kernel based on the content of the input image, thereby

focusing more accurately on the small feature changes in the lesion

area, which is difficult to achieve with traditional fixed convolution

kernels. The self-attention mechanism is adept at capturing long-

range dependencies in images and can automatically identify

associations between different regions. The additive attention

mechanism further enhances the model’s ability to allocate

weights to different features, and it can dynamically adjust the

contribution of each feature according to task requirements. These

three modules work together, with the DCN providing fine local

features, the self-attention mechanism constructing global

correlation information, and the additive attention mechanism
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optimizing feature weights, resulting in a powerful combination of

complementary functions that differs significantly from existing

methods that use only one attention mechanism or simply overlay

convolution and attention mechanisms.

Our suggested model exhibits a significant degree of

architectural foresight. In particular, we shall effectively and

profoundly combine additive attention, self-attention, and DCN.

distinct from some of the basic component-mixing techniques now

in use. Here, we adopt a hierarchical interactive architecture. In the

shallow layer of the basic model MobileNet-V3, we use DCN to

perform preliminary feature extraction on the input image and

obtain local detail information. We feed these features into the self-

attention module to create an association of global feature

information. At the same time, we employ an additive attention

mechanism to dynamically alter the weights of features at each level,

ensuring that the features are constantly tuned during the

transmission process. This hierarchical dynamic architecture

allows the model to fine-tune features at various levels,

maximizing the benefits of each component and achieving more

efficient feature extraction and classification. Compared to typical

single architectures or simple combination architectures, our

architecture is more adaptable to illness classification tasks, with

improved performance and stronger generalization capacity.

The proposed model is capable of accurately comprehending

the intricate patterns of disease features and making prompt and

precise decisions based on the distinct process of disease

classification. The integrated model we propose has a unique

operating mechanism. It can adapt well to this demand.

Specifically, DCN provides rich initial information for the model

by accurately capturing local features, just like building a detailed

‘disease feature map’ for the model. The self-attention mechanism

can search for key “paths” on this map, establish connections

between different features, and form a global “disease feature

network.” The additive attention mechanism assigns an

“importance score” to each feature based on the information in

this network, highlighting the most helpful features for

classification. This mechanism enables the model to quickly and

accurately identify key features of diseases and classify them based

on these features.

Overall, our core work is to propose and validate a high-

precision identification and optimization network framework for

pea leaf diseases in device resource-constrained scenarios. We
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achieve a good combination of model efficiency and identification

accuracy by combining lightweight design with two complementary

attention methods based on MobileNet-V3, as well as customizing

integration and collaboration at key layers. The parameters of the

optimized model are as low as 1.48M. It is easy to deploy and run

efficiently on edge computing platforms such as UAVs to realize

real-time detection of field diseases. This efficient and practical

solution for practical agricultural applications, such as drones and

mobile terminals, provides better technical references for the

deployment of this field and has direct application prospects and

practical significance.
2 Literature review

Crop disease detection is an important activity in agricultural

production and an essential component of image processing.

However, it confronts numerous obstacles, such as complicated

backdrops, high similarity, and difficulty in region segmentation

(Kennedy and Huseth, 2022). The approaches utilized for crop

disease and pest identification are currently classified into two

categories: traditional machine learning and mainstream deep

learning algorithms (Jafar et al., 2024).

We summarized the traditional machine learning (ML), deep

learning (e.g., EfficientNet and VGG), and attention-based models

and compared their strengths and weaknesses. The results are

presented in Table 1.

Traditional machine learning algorithms are challenging to apply

to disease severity assessments (Huang et al., 2021). For example,

Gutierrez and Goodwin, (2022) presented a cutting-edge molecular

approach for detecting wheat pathogens based on loop-mediated

isothermal amplification. Kumar and Kannan (2022) designed an

adaptive boosting support vector machine (SVM) classifier to detect

rice diseases such as bacterial leaf blight, brown spot disease, and leaf

rust. This classifier detects and classifies rice leaf diseases with an

accuracy of up to 98.8%. To detect leaf-based diseases, Reddy et al.

(2021) employed the support vector machine (SVM) and the random

forest (RF) approach. Bao et al. (2021) created a new approach for

diagnosing wheat leaf diseases and their severity that uses the

elliptical maximum interval criteria metric learning and has an

accuracy rate of 94.16%. These methods have the advantage of

being suitable for edge device deployment (e.g., SVM and RF).
TABLE 1 Comparison of different methods.

Technical
category

Methods Advantages Limitations Relevance to this Study

ML
SVM+PCA

and AdaBoost
Small parameter count, suitable for

edge deployment
Relying on manual features

Highlighting the necessity of automatic
feature learning

Basic CNN VGG and AlexNet
End to end training with

high accuracy
High computational cost

Comparison baseline for
lightweight design

Lightweight CNN
MobileNetV3

and EfficientNet
Balancing efficiency and accuracy

Poor adaptability to geometric
deformation of lesions

Improved target for
deformable convolution

Attention Model Vision Transformer Dependency modeling Difficulty in edge deployment Global attention hierarchical design
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However, there are several important disadvantages, such as the

reliance on manual feature extraction, low generalization ability for

small samples, and poor adaptability to complicated backdrops.

Deep learning-based image processing and classification

techniques have become popular research methodologies in both

academia and industry as artificial intelligence research advances.

Using the YOLOv4 algorithm and Plant Village’s 50000 multi-

species leaf dataset, together with data augmentation, Aldakheel

et al. (2024) proposed a 99.99% disease diagnostic accuracy. By

merging modules and adjusting parameters, Sharma et al. (2023)

used the DLMC Net lightweight convolutional network to achieve

detection accuracy of 93.56%-99.50% in cross-crop disease

detection with a parameter scale of 6.4 million. By building a

dataset of 5932 rice leaves and integrating deep learning and

transfer learning, Ritharson et al. (2023) suggested a customized

VGG16 model that effectively recognized nine different disease

categories with an accuracy of 99.94%. Haridasan et al. (2023)

proposed an automated method that combines computer vision,

image processing, machine learning, and deep learning techniques

to construct a rice field disease recognition system. The system

integrates support vector machine classifiers and convolutional

neural networks for disease classification and achieves a

maximum validation accuracy of 91.45% using ReLU and

Softmax functions. Elaraby et al. (2022) proposed a deep learning

method for detecting 25 different plant diseases, and the deep

convolutional neural model AlexNet achieved an accuracy of

98.83%. Although deep learning methods have made significant

progress in plant leaf disease recognition, research needs to shift

from laboratory accuracy to field robustness and focus on solving

the collaborative optimization problem of data, models,

and applications.
3 Proposed methods

3.1 Introducing deformable convolution

In the task of identifying pea leaf diseases, MobileNet-V3_stall

has the advantages of lightweight architecture and efficient

computation. Therefore, we used the lightweight convolutional

neural network MobileNet-V3_small as the basis model for the

recognition of pea leaf diseases. However, the classic MobileNet-V3

failed to maintain a balance between shape adaptive feature

extraction, global local feature collaborative optimization, and

computational efficiency This results in unsatisfactory recognition

performance. Therefore, we improved its network architecture.

MobileNetV3’s depth-separable convolution produces a

predetermined geometric distribution pattern of receptive fields

using kernel sampling based on a regular rectangular grid design.

Images of diseased leaves can show intricate morphological

changes. For example, the size, form, and position of the lesion

may change, and traditional convolution’s fixed geometric structure

may fail to capture these changes. Additionally, there is the issue of

occlusion. Leaf photos taken in natural settings may be partially

hidden by neighboring leaves or soil. When dealing with occlusion,
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traditional convolution may lose some key properties. As a result,

MobileNet-V3_stall’s intermediate and shallow layers (layers 3, 4,

and 8) now have deformable convolution. By learning the offset, the

convolution kernel focuses on unobstructed areas, increasing

feature extraction flexibility, discriminability, and balancing detail

capture with computing efficiency.

In terms of feature abstraction hierarchy and adaptability to the

DCN, the shallow layers 1 and 2 of the MobileNet-V3 mainly

extract low-level features such as edges and textures, with low

spatial deformation. Conventional convolution is sufficient. The

middle layers 3 and 4 of the MobileNet-V3 begin to capture object

components and local structures (such as lesion contours and

region boundaries). The deformation characteristics of the DCN

can adapt to irregular geometric shapes and improve feature

expression ability. Compared to shallow layers (1–2 layers),

introducing the DCN in layers 3 and 4 can bring more significant

feature enhancement effects. Compared to deeper layers, it does not

affect overall efficiency due to excessive computational complexity.

The deep layer 8 of the MobileNet-V3 is approaching the output

layer of the network. Although the features are more abstract at this

point, the computational cost of introducing the DCN will further

increase with the depth of the network. As the features of the 8th

layer are crucial for the final classification task. Introducing the

DCN in the layer 8 can to some extent uncover deep and potential

feature interaction patterns in the data, improving the performance

of the model. Moreover, by reasonably controlling the application

scope of the DCN, it can find a balance between computational cost

and performance improvement.

In terms of balancing computational complexity and model

performance, the computational complexity of the DCN mainly

comes from two aspects: firstly, the need to calculate offset for each

sampling point, which adds additional parameters and

computational complexity. During the convolution process,

interpolation operations need to be performed based on the offset

to obtain feature values on irregular grids, which also incurs

additional computational overhead. In lightweight models like the

MobileNet-V3, there is a trade-off between computational efficiency

and model performance. If we apply the DCN to all layers of the

MobileNet-V3, it will result in a significant increase in

computational complexity, making it difficult for the model to

run efficiently in resource- constrained environments such as

mobile devices. And we chose to introduce the DCN in layers 3,

4, and 8, taking into account the importance of each layer’s features

and computational costs before making the decision. These layers

play a crucial role in feature transformation and expression in the

model. In summary, introducing the DCN can effectively improve

the performance of the model without significantly increasing the

overall computational complexity of the MobileNet-V3.

The DCN has strong geometric adaptability and can learn more

useful information about the target object. The comparison of

deformable and standard convolution is revealed in Figure 1.

Some important observations can be made from the content of

Figure 1. The deformable convolutions add an offset to each

convolution sampling point in ordinary convolutions. By

dynamically learning the offset of sampling points, the size and
frontiersin.org
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position can be used to identify object deformations based on

geometric shapes. After increasing the offset, the flexible sampling

mechanism of capturing the geometric features of irregular targets

more accurately enables the convolution kernel to fit the object

contour like an amoeba, significantly improving its modeling ability

for complex visual patterns such as deformation and rotation. The

proposed deformable convolution is sketched in Figure 2.

In Figure 2, the expression of the offset generation can be

defined Equation (1):

Dpk = foffset(x) (1)

where foffset is that the offset generation learns the offset through

auxiliary convolution

After deformation, the sampling can be expressed Equation (2):

y(p) = o
K

K=1
wk •x(p + pk + Dpk) (2)

w h e r e pk + Dpk i s t h e s amp l i n g p o s i t i o n a f t e r

dynamic adjustment.

Offset learning updates the parameters of the offset generation

network through gradient back propagation. It can be calculated

Equation (3):

∂ L
∂Dpk

=o
p

∂ L
∂ y(p)

•wk •
∂ (xp + pk + Dpk)

∂Dpk
(3)

where ∂ L
∂Dpk

is the gradient of the offset Dpk of the loss function L

to the k-th sampling point. The function is to guide how to adjust

the parameters of the offset generation network to make the

sampling points more suitable for the deformation of pea leaves.

where ∂ L
∂ y(p) is the gradient of the loss function at position p with the

output characteristic graph y, reflecting the importance of this

position for the classification of pea leaf lesions. wk represents the

weight of the k-th sampling of the convolution kernel to weight the

gradient signal. The weight of the convolution kernel with high

importance will amplify the adjustment amplitude of the offset.
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We used the variable convolution to replace the 3×3

convolution in the inverse residual block. Deep separable

convolution of the classical MobileNet-V3 can be expressed

Equation (4):

y = Conv1*1(DepthwiseConv3*3(x)) (4)

The improved expression can be formulated Equation (5):

y = Conv1*1(DeformableDepthwiseConv3*3(x)) (5)
3.2 Integrating self-attention

Although adding deformable convolution to the classical

MobileNetV3 improved the model’s modeling ability for non-

rigid geometric deformations as well as the robustness of complex

deformation scenes in tasks like leaf recognition, the adaptive

adjustment of its local receptive field may ignore global

contextual information, resulting in insufficient capture of subtle

deformations or distant feature associations. To compensate for the

limitations of global information modeling, I added a self-attention

mechanism to the sixth and tenth layers, which creates long-range

dependency links. The self-attention system is involved in

adaptively weighting color-related regions, increasing dominating

colors via global linkages, and reducing noise during recognition.

The integrated self-attention mechanism is manifested in Figure 3.

In the self attention mechanism, the input sequence is X =

½x1, x2, · · ·, xn�. The linear transformation generates Q, K, and V

through the weight matrix WQ, WK , and WV . They can be

described Equations (6)–(8):

Q = XWQ (6)

K = XWK (7)
FIGURE 1

The comparison of standard and deformable convolution.
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V = XWV (8)

where Q is the color characteristics of the current area. It

focused on the suspected lesion area. K means to provide a

feature library to be compared, that is, to store the global features

of blades. V contained actual feature information and carries

disease-specific features. Then use the attention weight to do

softmax for the score, and finally use the weight to sum the V

weight to map the features to the specific lesion label to complete

the classification task.

The calculation formula of the proposed self-attention can be

succinctly expressed Equation (9):

A(Q,K ,V) = Fsoftmax(
QKT

ffiffiffiffiffi

dk
p ) (9)

where dk s the dimension of the key. The softmax function is

used to normalize the attention weight into a probability

distribution, so as to express the importance of each time step.
3.3 Fusing additive attention

Although the effect of integrating the self-attention module is

evident, self-attention can collect global information, but the
Frontiers in Plant Science 06
computational complexity is substantial, particularly on high-

resolution feature maps, which may result in a significant

computational overhead. Furthermore, in some situations, self-

attention may focus too much on the global and miss local details

or fail to efficiently combine features at multiple levels, and noise may

disrupt the global weights of self-attention. Therefore, we added

additional attention. First, additive attention dynamically alters

feature weights to help the model focus on relevant regions and

improve detail capture capabilities. Second, additive attention

strengthens the model by explicitly describing the relationship

between significant features while suppressing irrelevant noise.

Compared to self-attention, additive attention has the ability to

dynamically suppress noise, optimize computational efficiency, and

model stronger local features. It provides a mix of accuracy and speed

in recognizing pea leaf diseases through dynamic feature calibration

and efficient computing, making it ideal for lightweight deployment

in complex situations. As a result, we applied additive attention to the

7th and 9th layers of this network. This modification allows the

model to strike a better balance between lightweight, accuracy, and

resilience, making it ideal for resource-constrained edge device

deployment in agricultural applications. The model’s adaptation to

complex agricultural situations is considerably improved by a joint

design of self-attention (i.e., global modeling) and additive attention

(i.e., local optimization), while maintaining lightweight properties.
FIGURE 2

Proposed deformable convolution.
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This hierarchical attention architecture provides a cost-effective

technical path for precision agricultural diagnosis in resource-

constrained environments, especially suitable for edge deployment

scenarios that require balancing computational costs and

recognition accuracy.

The proposed additive attention strategy is revealed in Figure 4.

The key elements in the diagram can be decomposed into Keys(K)

and Values(V). From the input feature representation, K is used to

calculate the attention weight. V is the actual weighted feature, and

finally generates the context quantity. The matching degree between

query and key is calculated through addition operation. The

formula can be expressed Equation (10):

Score(Q,K) = VT tanh (WqQ +WqK) (10)

where,WQ andWK are the learnable weight matrix and v is the

projection vector.

The score is normalized by softmax to obtain the weight

distribution. It can be defined Equation (11):

ai = Softmax (Score(Q,K)) (11)

Aggregation characteristics after weighted sum of weights and

values. It can be calculated Equation (12):

C =o
i
aiVi (12)

The input characteristics are split into K (key) and V (value),

and the two dimensions are usually the same or related. The

matching degree between the query (such as the current decoder

state) and each key is calculated through the additive scoring

function. Normalize the score result with softmax to obtain the

attention weight (i.e., highlight important features). The values are

weighted and summed with weights, and the fused context vector C

is output.

Based on the above analysis, the overall framework DSA-Net of

pea leaf disease identification is presented in Figure 5. In the

proposed model design, the positioning of SA and AA modules is
Frontiers in Plant Science 07
determined based on improving model performance and

optimizing feature extraction. Specifically, the SA enables the

model to focus on the correlation between different parts of the

data when processing input data, thereby better capturing global

information. The SA can make the model focus on the associations

between different regions in the image, which helps to understand

the overall semantics of the image. The reason why we chose to

apply the SA before the AA is that the SA can first perform global

feature correlation analysis on the input data. This provides a more

comprehensive and global perspective feature representation

foundation for subsequent attention processing. Through the SA

processing, the model has gained a certain understanding of the

internal structure and relationships of the data. At this point, the

AA module can be used to fine-tune attention to certain tasks or

features. In the task of identifying pea leaf diseases, the SA can first

direct the model to focus on the correlation between distinct disease

areas of peas and determine the overall morphological properties of

the leaves. Next, the AA module can focus more accurately on the

disease characteristics, highlighting the lesion areas on the leaves.

Therefore, applying hierarchical processing such as the SA before

the AA can fully leverage the advantages of different attention

mechanisms and improve the model’s ability to recognize

complex features.
4 Experimental results and analysis

4.1 Experimental setup

We established a corresponding experimental platform. Table 2

provides a detailed list of the operating system, graphics card,

central processing unit, memory, deep learning framework, editor,

and programming language used in the experiment.

Due to the inconsistency in the dimensionality of feature matrix

operations between convolutional and fully connected layers during

data processing, when the size of the input image changes, the
FIGURE 3

Integrated self-attention mechanism.
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generated feature maps will also change accordingly, resulting in

varying weights. If the weights are different after each input, the

model will not be able to be trained. Therefore, most deep learning

models typically require input images to have the same size. In our

experiment, we used the image processing software Photoshop to

batch process the training set, validation set, and test set. Based on

the characteristics of the data, we uniformly adjusted the image to

224 × 224 pixels. We used identical parameter configurations for all

deep learning models involved in our experiment. The specific

experimental process is manifested in Figure 6.

To discover the selection principles for several essential

parameters (e.g., batch size, learning rate, epoch, optimizer,

activation function, and dropout) in the proposed model, we

tested and analyzed various parameter combinations. The test

results are presented in Table 3. Table 3 reveals that the suggested

model has varying testing accuracy and losses for different

parameter combinations. When the epoch is 50 and the learning

rate is 0.0002, batch size 16 has a higher test loss and accuracy than

batch size 8. When epoch=50 and batch size=16, the test loss and

accuracy of learning rate=0.0002 are higher than those of learning

rate=0.0001. When the optimizer, activation function, and dropout

are Adam, H-swift, and 0.2, respectively, test loss and test accuracy

are superior to other parameter combinations. When the learning

rate is 0.0002, the test loss and accuracy for epoch=50 and batch

size=16 are higher than those for epoch=100 and batch size=32.

Therefore, we set the batch size, learning rate, optimizer, activation

function, dropout, and epoch to 16, 0.0002, Adam, H-swish, 0.005,

and 50, respectively.
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4.2 Experimental data

The experimental data was sourced from a pea planting base in

Henan Province, China. We used the mobile phone camera (Vivo

S16e, China) to take a portion of the original image in a laboratory

environment. The other part of the data is augmented by the

generative adversarial network Pix2Pix. There are a total of 7915

images, including 1369 original images and 6546 augmented

images. The experimental data includes one class of healthy and

four classes of diseased pea leaves, namely brown spot, leaf miner,

powdery mildew, and root rot diseases. There is no class imbalance

among the five categories due to the small differences in quantity.

The distribution of the original and augmented data for each

category is displayed in Table 4.

The five samples are shown in Figure 7.

The brown spot disease samples usually show brown spots with

clear edges and yellow halos. The leaf miner disease samples

typically exhibit white winding tunnels with dry and perforated

leaves. The powdery mildew samples typically exhibit a white

powdery mold layer, with yellowing and curled leaves. The root

rot disease samples usually exhibit yellowing and wilting of leaves.

The healthy samples typically exhibit a deep green color, smooth

surface, and no spots or mold layers.

Because our research is still in its early stages, our primary goal

is to swiftly evaluate the model’s viability and universality. This

allows us to quickly create experimental frameworks and perform

preliminary model training and evaluation. We used a 3:1:1 data

allocation strategy to distribute experimental data, which takes into
FIGURE 4

Proposed additive attention mechanism.
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account the characteristics and needs of the current research stage.

This segmentation method is frequently utilized in comparable

deep learning model research and has some universality and

referential value.

Although hierarchical k-fold cross-validation can provide more

robust model evaluation results, in the current research stage, we

focus more on fast iteration and the basic performance of the model.

Oversampling methods may alter the original distribution of data,

especially when our data volume is not particularly small. We

believe that the original data distribution is more representative

of practical application scenarios. We are concerned that

oversampling may cause the model to learn features that do not

actually exist, thereby affecting the model’s generalization ability.

Therefore, we used a common deep learning dataset partition ratio

of 3:1:1 to randomly divide the samples into training, validation,
Frontiers in Plant Science 09
and testing sets. Table 5 shows the specific quantity distribution of

each category.
4.3 Train and test results

To compare the proposed model’s feature extraction capabilities

for pea leaf disease identification with the classical MobileNet-

V3_small, we performed iterative training and observed the

relationship between accuracy and loss value. The results are

presented in Figure 8.

As can be seen in Figure 8, when the number of training epochs

increases, the accuracy of both the enhanced and traditional models

improves. However, in the early phases of training, the upgraded

model outperforms the classical model. As training goes on, both

models’ accuracy increases, but the improved model retains a lead,

and the gap widens in the later stages. In terms of loss value, the

trained classical model has a considerably larger loss value than the

upgraded model, and the loss value of the classical model

progressively stabilizes at 0.4-0.6. The loss value of the improved

model finally stabilizes between 0.1 and 0.2. By comparing and

analyzing the accuracy and loss value, it can be concluded that the

improved MobileNet-V3_smll model has stronger feature

extraction ability in pea leaf disease recognition tasks compared

to the classical MobileNet-V3_small model. It can more accurately

identify diseases and perform better in model fitting with lower loss

values. This validates the effectiveness and superiority of the

improved model.
FIGURE 5

Proposed overall framework DSA-Net for pea leaf disease identification.
TABLE 2 The experimental setup list.

Operating system Windows 11(64-bit)

Graphics Card NVIDIA GeForce RTX 4090

Central Processing Unit i9-13900HX

Memory 32GB

Deep learning framework Pytorch 2.4.1

Editor PyCharm 2024.1

Programming language Python 3.12
frontiersin.org

https://doi.org/10.3389/fpls.2025.1642453
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xu et al. 10.3389/fpls.2025.1642453
To test several deep learning models for pea leaf disease

identification, we employed specificity, precision, sensitivity, and

accuracy. These indicators offer a more thorough comprehension of

the model’s performance, ensuring the model’s predictive accuracy.

The four evaluation metrics can be expressed Equations (13)–(17):
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Specificity =
TN

TN + TP
(13)

Pr ecision =
TP

TP + FP
(14)
URE 6FIG

Experimental flowchart.
TABLE 3 Comparisons of different experimental configurations.

Methods
Batch
size

Learning
rate

Epoch Optimizer
Activation
function

Dropout
Test
loss

Test
accuracy

Proposed model

8 0.0002 50 Nadam ReLu 0.1 0.4683 95.54%

16 0.0001 50 Adam H-swish 0.5 0.3297 94.73%

32 0.0002 100 Nadam ReLu 0.2 0.2971 95.89%

8 0.0001 80 Adam ReLu 0.3 0.4508 93.85%

16 0.0002 50 Adam H-swish 0.2 0.1929 99.21%

Experimental
settings

16 0.0002 50 Adam H-swish 0.2 – –
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Sensitivity =
TP

TP + FN
(15)

F1 − score =
2� Pr ecision� Re call
Pr ecision + Re call

(16)

Accuracy =
TP + TN

TP + TN + FP + FN
(17)

where TP indicates that positive samples are designated as such.

FP denotes that negative samples are considered positive. TN

denotes that negative samples are marked as such. FN denotes

that positive samples have been labeled as negative.
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In order to compare the identification performance of the

proposed approach with other excellent deep learning models

such as AlexNet, EfficientNet-v2, and the classic MobileNet-V3

for pea leaf diseases, we used specificity, precision, sensitivity, F1-

score, and accuracy as evaluation metrics to draw a relevant tree

diagram. The results are sketched in Figure 9.

Detailed information has been acquired in Figure 9, the suggested

model performs in terms of specificity, accuracy, sensitivity, F1-score,

and accuracy when compared to the other three comparison models.

By avoiding the performance bottleneck or resource waste issues that

EfficientNetV2 may have in some application scenarios, the DSA-Net

model’s distinct structural design not only produces better results in a

variety of performance indicators but may also offer advantages in

computing resource consumption and other areas. At the same time,

in comparison to the traditional AlexNet model, the proposed DSA-

Net model successfully overcomes AlexNet’s limitations in complex

feature extraction due to its relatively simple network architecture via

advanced network optimization strategies, significantly improving

feature extraction accuracy and comprehensiveness. Although the

MobileNet-V3 model performed better, the proposed DSA-Net

model outperformed it not just in terms of accuracy and other key

metrics, but also in the model’s generalization capabilities and

adaptability to different data sets. This finding demonstrates that

the proposed DSA-Net model can efficiently harvest more important

information from complex and diverse data, resulting in a more

accurate and robust recognition effect.

A confusion matrix is a valuable tool for assessing the

performance of classification models. It visibly depicts the
TABLE 4 Distribution of each class on the original and augmented data.

Categories Brown spot Leaf miner
Powdery
mildew

Root rot Healthy Total

Original data 259 271 286 298 255 1369

Augmented data 1519 1283 1054 1386 1304 6546

Total 1778 1554 1340 1684 1559 7915
FIGURE 7

The five samples.
TABLE 5 The quantity of each category.

Categories
Training

set
Validation

set
Testing

set
Total

number

brown spot 1067 355 356 1778

leaf miner 933 311 310 1554

Powdery
mildew

804 268 268 1340

Root rot 1010 337 337 1684

Healthy 935 312 312 1559

Total number 4749 1583 1583 7915
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connection between the model’s expected results and the actual

labels. The rows of the confusion matrix indicate the actual

category, while the columns relate to the several prediction

categories. The value on the main diagonal indicates the total

number of samples successfully classified. The confusion matrix

allows us to properly identify the model’s weakness and guide the

subsequent optimization direction. As a result, we used the confusion
Frontiers in Plant Science 12
matrix in the image to compare the classification performance of

various models for pea leaf disease recognition. The classification

results of confusion matrices are presented in Figure 10.

As illustrated in Figure 10, the overall classification accuracy of

the proposed DSA-Net model is 99.12%, AlexNet’s is 96.02%,

EfficientNetV2’s is 94.5%, and MobileNet-V3’s is 97.73%. In

comparison to other models, the proposed DSA-Net model
FIGURE 8

Training accuracy and loss curves.
FIGURE 9

Comparison of evaluation indicators for different models.
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outperforms EfficientNetV2 by 4.62% while maintaining the lowest

accuracy. The proposed DSA-Net model has a high identification

rate for health, and all categories are correctly predicted. Powdery

mildews have the lowest classification rate. The proposed model has

weak recognition ability for the powdery mildew disease. At the

feature level, the background contour of powdery mildew is more

complex and diverse than that of the leaf miner disease. The disease

characteristic area of powdery mildew is more extensive than that of

leaf miner. The complexity of the background contour of powdery

mildew and the wide range of disease areas have weakened the

recognition ability of the proposed model. From a color perspective,

leaf miners form white winding tunnels when larvae feed on leaf

flesh, and the tunnels may turn white later due to oxidation. And

the surface of powdery mildew leaves is covered with a white

powdery mold layer. The variation of diseases with the same

color reduces the recognition ability of the model. From a

morphological perspective, leaf miners can experience leaf curling

and deformation due to larval feeding and powdery mildew

infection by fungi. The same curling and deformation of leaves
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also increase the difficulty of identifying powdery mildew in the

model. In summary, the proposed DSA-Net model performs well in

the task of recognizing pea leaf diseases.

In deep learning research, an ablation experiment is a method for

determining the requirement and effectiveness of each model

component. We can assess the contribution of a model component

by progressively removing or altering it and seeing how its performance

changes. Because the suggested approach combines deformable

convolution, self-attention, and additive attention mechanisms.

To further validate the feasibility of the ablation study, we tested

different ablation combinations using four different evaluation

metrics. This result is sketched in Figure 11.

From Figure 11, it can be seen that the four evaluation metrics

of the proposed Improved MobileNet-V3+DCN+SA+AA method

are higher than the other three ablation experimental methods.

Compared with the lowest Improved MobileNet-V3+SA, Improved

MobileNet-V3+DCN+SA+AA increased by 0.86%~3.43%.

Compared with the highest Improved MobileNet-V3+SA,

Improved MobileNet-V3+DCN+SA+AA increased by 0.3%
FIGURE 10

Confusion matrix classification results of different models.
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~2.56%. This indicates that the attention mechanism can filter and

weight the features extracted by deformable convolution, highlight

the key features of the target, suppress irrelevant information, better

cope with the deformation and scale changes of the target object,

and improve model performance. Adding AA alone to the

improved MobileNet-V3 is slightly higher than adding SA alone.

Adding DCN alone to the improved MobileNet-V3 results in

slightly higher evaluation metrics than adding SA alone. This

indicates that introducing DCN in layers 3, 4, and 8 can to some

extent explore deep and potential feature interaction patterns in the

data, improving the performance of the model. layers3, Layers 4 and

8 play a crucial role in feature transformation and expression in the

model. Introducing DCN can effectively improve the performance

of the model without significantly increasing the overall

computational complexity. Adding AA alone on the improved

MobileNet-V3 is slightly higher than adding DCN alone. This

indicates that adding AA alone on the improved MobileNet-V3

can improve the performance of the model more than adding DCN

and SA alone. Overall, the Improved MobileNet-V3+DCN+SA+AA

model performs well in all evaluation metrics, demonstrating its

superiority in pea leaf disease recognition tasks.

To further validate the feature extraction of the proposed

ablation method for four pea leaf diseases, we visualized the leaf

disease feature extraction under different methods using a heatmap.

This result is displayed in Figure 12.

Figure 12 shows that when the SA is added to the enhanced

MobileNet-V3, the heatmap’s response to the lesion area is

somewhat distributed, the highlight heat is not focused, and the

effect of collecting small spots is not optimal. When the DCN is

introduced to the improved MobileNet-V3, the activation intensity
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of the heatmap at the center of the lesion increases dramatically, but

edge localization remains imprecise. When the AA module is

introduced to the enhanced MobileNet-V3, the spatial dimension

stores positional information more effectively, and the heatmap

highlights are distributed more uniformly throughout the lesion’s

edge. Adding a separate AA module can better capture the

characteristics of disease areas than adding separate DCN and SA

modules. When the DCN, SA, and AA are combined with the

enhanced MobileNet-V3, the extracted heatmap reveals the most

concentrated highlight effect in the lesion area, particularly in minor

lesions and edges. This shows that the three modules we introduced

at the same time not only improve the accuracy of lesion

localization and the complementary gain of feature expression,

but they also do not interfere with one another or influence

classification performance.

We employed the identification accuracy as a comparative

standard. The ablation experiment results of different model

combinations are depicted in Figure 13.

As illustrated in Figure 13, when only the classical model is

utilized, the accuracy rate gradually increases with the number of

training rounds. After introducing the deformable convolution

neural (DCN) module, the model’s accuracy rate improves

dramatically and eventually stabilizes at a high level. When the

self-attention mechanism is added to this, the accuracy rate

improves dramatically and remains rather consistent during the

training period. After adding deformable convolution, a self-

attention mechanism, and an additive attention module to the

classical model, the accuracy rate increased and remained near

1.0 during the training period, indicating that the module improved

the model’s performance. In general, the model’s accuracy
FIGURE 11

Comparison of different evaluation indicators in ablation study.
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improved gradually as DCN, self-attention, and additive attention

mechanisms were added. This demonstrates that the combination

of these modules can successfully increase model performance, with

each module contributing to the model’s accuracy to varied degrees.

To comprehensively evaluate the performance of the classic

MobileNet-V3 and its improved versions in identifying pea leaf

diseases, especially considering the bias that may be caused by

imbalanced class distribution. We have plotted the receiver

operating characteristic (ROC) curves of each model in Figure 14.

The ROC curve is plotted with sensitivity as the Y-axis and

specificity as the X-axis. It presents a performance comparison

between the classical MobileNet-V3 and improved models

Improved MobileNet-V3, Improved MobileNet-V3+SA, Improved

MobileNet-V3+DCN, Improved MobileNet-V3+AA, and

Improved MobileNet-V3+SA+DCN+AA.

From Figure 14, it can be seen that the ROC curves of the six

models show a steep upward trend in the high sensitivity region
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(close to 1.0), but there are differences in the curves when the 1-

specificity is low (0.0 to 0.2). This indicates that the model has

strong recognition ability for most categories, but its performance

for a few categories may be limited by imbalanced class distribution.

Especially the classical MobileNet-V3 curve shows a significant

increase in the low 1-specification region. This indicates that it has

weak adaptability to imbalanced data. This is due to the uneven

distribution of sample size, which leads to an increase in

misclassification of minority categories. The proposed Improved

MobileNet-V3+SA+DCN+AA exhibits higher sensitivity across the

entire 1-specification range, with its curve closer to the upper left

corner. This indicates that combining the SA, DCN, and AA can

effectively alleviate the impact of distribution imbalance and

enhance the model’s ability to distinguish minority categories.

Especially when the 1-specification is below 0.1, the performance

of the curve is better than that of the classical MobileNet-V3. It

reflects the improved robustness of the model under high specificity
FIGURE 12

Visual heatmap of pea leaf disease feature extraction under different ablation experiments (A–D) reported Improved MobileNet-V3+DCN, Improved
MobileNet-V3+SA, Improved MobileNet-V3+AA, Improved MobileNet-V3+DCN+SA+AA Four methods are used from top to bottom to extract
heatmaps of leaf diseases for root rot, powder mill, brown spot, and leaf miner.
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conditions. The unbalanced distribution significantly affects the

performance of the classical MobileNet-V3, and the improved

model alleviates this problem through structural optimization.

We randomly selected four samples from the test set and used

the proposed method to test them. The predicted results are

presented in Figure 15. All predictions were correct and the

recognition probability was above 94.00%.
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We tested the suggested method for recognizing distinct plant

leaf diseases against various open-source plant leaf disease data to

ensure its generality, class imbalance, and robustness. Table 6 lists

this outcome.

Table 6 indicates that the proposed model outperforms four

previous open-source plant leaf disease datasets. In terms of recall

and F1-score, the suggested model offers equivalent evaluation
FIGURE 13

The results of ablation experiments on our dataset.
FIGURE 14

The ROC curves of different ablation study methods.
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metrics for all five categories of data. In terms of precision, the

proposed model outperforms the PlantifyDr Dataset (Corn) by

0.09% on its own data. In terms of specificity, the proposed model is

0.14% lower on its own data compared to the PlantPathology Apple

Dataset. Compared with the results obtained from our own pea leaf

disease data, some indicators on these open-source datasets have

slight fluctuations, indicating that the class imbalance of data

collected under different environmental conditions poses certain

difficulties to the classification ability of the model. Overall, our

method still maintains high robustness and universality in

identifying different plant leaf diseases.

We collected the latest literature on plant leaf diseases. The

results are displayed in Table 7.

From Table 7, it can be seen that the proposed model improves

by 7.12% compared to the lowest convolutional autoencoder

network proposed by Bhavani (2025). Compared with the transfer

learning proposed by Gulzar et al. (2025a), the proposed model

reduces by 0.33%. The classification performance of the proposed

model, PL DenseNet, Modified U-Net, and DWTFormer is not

significantly different, ranging between 99.12% and 99.35%. The

classification performance of Modified ResNet50 and Improved

Inceptionv3 is not significantly different, both between 98.44% and

98.73%. Overall, the proposed model performs better than most and

lower than a few plant leaf disease classification models. This

indicates that the proposed model has high recognition

performance for pea leaf diseases.
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4.4 Deployment potential on edge devices

We first co-designed the DCN, SA, and AA modules in the

lightweight model MobileNet-V3 and achieved an accuracy of

99.12% on 5 types of pea leaf disease data. It outperforms the

EfficientNet and ShuffleNet models while maintaining a good

1.48M parameter count for edge deployment. To further validate

the rationality of the proposed model’s inference speed, robustness,

and feasibility of edge deployment. We tested the params, FLOPs,

speed, and accuracy of four lightweight models with 32g of memory

and an RTX 4090 graphics card. The specific results are presented

in Table 8.

The proposed DSA-Net outperforms the other three lightweight

models in terms of FLOPs, speed, and accuracy. On Params, the

proposed DSA-Net is 0.03M more than the highest EfficientNetV2.

In FLOPs, the proposed DSA-Net is 2.65GB less than the highest

ShuffleNetv2. On Speed, the proposed DSA-Net is 1.52 ms faster

than MobileNet-V3. The proposed DSA-Net is significantly better

than the other three models in terms of accuracy. The parameter

quantities of ShuffleNetv2 and the proposed DSA-Net are not

significantly different, indicating that they have achieved a good

balance between model performance and computational resource

consumption. The proposed DSA-Net exhibits significant

advantages in both accuracy and inference speed. Although

slightly higher in parameter count than ShuffleNetv2, its overall

performance is within a reasonable range. It achieves a good balance
FIGURE 15

The test results on our test dataset.
TABLE 6 Comparison of test results for different plant leaf diseases.

Dataset names Recall Precision F1-score Specificity

Our own pea leaf disease data 99.94% 99.31% 99.62% 99.84%

Plant Pathology Apple Dataset 99.80% (↓0.14%) 99.40% (↑0.09%) 99.60% (↓0.02%) 99.90% (↑0.14%)

New Plant Diseases
Dataset (Potato)

99.70% (↓0.24%) 99.50% (↑0.19%) 99.60% (↓0.02%) 99.80% (↓0.04%)

PlantifyDr Dataset (Corn) 99.90% (↓0.04%) 99.20% (↓0.09%) 99.55% (↓0.07%) 99.85% (↓0.01%)

Rice Diseases Image Dataset 99.85% (↓0.09%) 99.35% (↑0.04%) 99.60% (↓0.02%) 99.75% (↓0.09%)
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between model performance and computational resource

consumption. This fully validates its feasibility and superiority in

edge deployment scenarios.

The suggested method has great potential in edge device

deployment. MobileNet-V3 itself is an efficient, lightweight model

designed to meet resource-constrained scenarios such as edge

computing. It has the characteristics of fewer parameters and lower

computational complexity. On the basis of MobileNet-V3, we have

carefully designed and optimized the integration of deformable

convolution, self-attention mechanism, and additive attention

mechanism for the first time. Although deformable convolution

generates additional offset learning, it effectively controls

computational overhead through reasonable parameter sharing and

optimization strategies. The self-attention mechanism and additive

attention mechanism adopt efficient computational methods in the

collaborative implementation process, avoiding excessive

computational costs. Therefore, the proposed model still maintains

its lightweight characteristics. This is conducive to deployment on

edge devices with limited computing resources and small memory

capacity so as to realize real-time processing of images and videos,

meet the requirements of edge computing for low latency and low

power consumption, and provide a reliable reference technology

scheme for intelligent applications on edge devices.
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In the future, to further enhance the edge deployment of the

proposed model, we will carry out work from multiple aspects. In

terms of model compression, we plan to use techniques such as

knowledge distillation and quantification to optimize the model.

Because knowledge distillation can transfer knowledge from

complex models to smaller models. It can further reduce the

number of model parameters while maintaining high performance.

Quantitative approaches can transform floating-point parameters in a

model to low-precision integer parameters, decreasing the model’s

storage and processing requirements while also making it more suited

for edge device hardware. In terms of hardware configuration, we will

conduct in-depth research on the hardware architecture and

computing characteristics of different edge devices and optimize and

adjust the model accordingly. For example, for edge devices with

specific acceleration units, we will optimize the computational flow of

the model, fully utilize the parallel computing capabilities of hardware,

and improve the running efficiency of the model. Furthermore, we will

investigate the model’s block deployment strategy, distribute various

model components to various edge devices or edge cloud collaboration

systems, accomplish load balancing, enhance the system’s overall

performance and stability, and make our model more applicable in

a greater variety of edge computing scenarios.
5 Conclusions

In this study, we provide a pea leaf disease detection technique

based on fused dual attention processes and enhanced MobileNet-

V3. With an average recognition accuracy of 99.12% on the test set,

the suggested approach can successfully enhance the model’s

capacity to extract and identify the traits of pea leaf diseases. The

proposed DSA-Net outperforms the lightweight models

EfficientNet and ShuffleNet while retaining a sufficient amount of

parameters for edge deployment (1.48M), less FLOPs (2.65g), and
TABLE 7 Comparison of the proposed method with other recent literature.

Authors.,
Ref., Year

Methods Dataset size
Number
of Classes

Category Accuracy

Ruby et al. (2024) Modified ResNet50 4500 4 Wheat 98.44%

Shoaib et al. (2022) Modified U-Net 18161 10 Tomato 99.35%

Xiang et al. (2025) DWTFormer 54306 9 Tomato 99.28%

Bhavani (2025)
Convolutional
autoencoder

1166 5 Soybean 92%

Seelwal et al. (2024) Deep learning 5932 6 Rice 94.25%

Alkanan and
Gulzar (2024)

MobileNetV2 17,801 4 Corn 96%

Gulzar (2024) Improved Inceptionv3 5513 5 Soybean 98.73%

Gulzar et al. (2025a) Transfer learning 1214 3 Alfalfa 99.45%

Gulzar and Ünal (2025b) PL-DenseNet 3505 4 Pear 99.18%

Gulzar and Ünal (2025c) PlmNet 400 3 Plums 97.58%

Proposed. (2025) DSA-Net 7915 5 Pea 99.12%
TABLE 8 Comparison of the proposed method with other methods.

Models
Params
(M)

FLOPs
(G)

Speed
(ms)

Accuracy

MobileNet-V3 1.73 3.26 1.94 97.73%

ShuffleNetv2 1.45 4.08 2.09 96.02%

EfficientNetV2 2.07 3.96 1.89 94.50%

DSA-Net 1.48 2.65 1.52 99.12%
frontiersin.org

https://doi.org/10.3389/fpls.2025.1642453
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xu et al. 10.3389/fpls.2025.1642453
quicker speed (1.52ms)., PlantifyDr Furthermore, the suggested

model achieved 99.9% recall (e.g., PlantifyDr Dataset), 99.5%

precision (e.g., PlantPathology Apple Dataset), 99.6% F1 score

(e.g., PlantifyDr Dataset and Rice Diseases Image Dataset), and

99.8% specification (e.g., New Plant Diseases Dataset) on four open-

source datasets. Even though the suggested approach has produced

some positive outcomes, there are still certain issues that require

improvement and refinement:

(1) Optimize attention mechanism fusion strategy: Although

the proposed strategy sequentially integrates deformable

convolution, self-attention, and additive attention mechanisms

and achieves certain results, this fusion method is not optimal.

The synergistic effect of different attention mechanisms has not

been fully explored. In the future, we will study the fusion methods

and synergistic effects between different attention mechanisms to

obtain more efficient fusion strategies.

(2) Improving model interpretability: Although the proposed

model has achieved good results in disease recognition tasks, there

is still a lack of in-depth explanation on how the model makes

decisions and which features play a key role in the recognition

results. In the future, we will conduct research on the

interpretability of deep learning models, using visualization,

feature importance analysis, rule extraction, and other methods to

reveal the decision-making process of the models.

(3) Optimize the model: In the process of improving the model,

we focus on maintaining its lightweight characteristics, but with the

introduction of multiple mechanisms, the complexity of the model

has increased, and the demand for computing resources has

correspondingly increased. In the future, we will use model

pruning, quantization, and knowledge distillation to remove

redundant parameters and structures in the model and improve

the real-time performance of the model on mobile devices and

embedded systems. On the other hand, we will explore more

efficient neural network architecture design methods that balance

model performance and computational efficiency as much as

possible while ensuring model performance.
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