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YOLO-lychee-advanced:
an optimized detection

model for lychee pest
damage based on YOLOv11

Xianjun Wu, Xueping Su, Zejie Ma and Bing Xu*

Guangdong University of Petrochemical Technology, Maoming, China

We introduce YOLO-Lychee-advanced, a lightweight and high-precision
detector for lychee stem-borer damage on fruit surfaces. Built on YOLOv1],
the model incorporates (i) a C2f module with dual-branch residual connections
to capture fine-grained features of pest holes <2 mm, (ii) a CBAM channel-spatial
attention block to suppress complex peel-texture interference, and (iii) CloU loss
to tighten bounding-box regression. To mitigate illumination variance, we
augment the original 3,061-image dataset to 9,183 samples by simulating
direct/back-lighting and adopt a "pest-hole only” annotation strategy, which
improves mAP50-95 by 18% over baseline. Experiments conducted on an RTX
3060 with a batch size of 32 and an input size of 416 X 416 pixels show YOLO-
Lychee-advanced achieves 92.2% precision, 85.4% recall, 91.7% mAP50, and
61.6% mMAP50-95, surpassing YOLOvVOt and YOLOv1On by 3.4% and 1.7%,
respectively, while maintaining 37 FPS real-time speed. Compared with the
recent YOLOvVOt and YOLOv10n baselines on the same lychee test set, YOLO-
Lychee-advanced raises mAP50-95 by 3.4% and 1.7%, respectively. Post-
processing optimization further boosts precision to 95.5%. A publicly available
dataset and PyQt5 visualization tool are provided at https://github.com/
Suxueping/Lychee-Pest-Damage-images.git.

KEYWORDS

lychee stem borer, object detection, YOLOv11, attention mechanism,
data augmentation

1 Introduction

Lychee(Litchi chinensis) is an important fruit crop in tropical and subtropical regions.
However, severe infestations of the lychee stem borer(Conopomorpha sinensis) can reduce
yield by more than 60% and compromise fruit quality. Traditional manual inspections and
indiscriminate pesticide application are labor-intensive, error-prone, and contribute to
pesticide resistance, underscoring the need for accurate, automated pest detection systems.
Manual inspection inefficiency has been highlighted in (Sahu et al., 2023a; Dang and Wang,
2025). In recent years, with the rapid development of deep learning technology, computer
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vision-based object detection technologies have shown great
potential in agricultural pest detection (Zhou et al., 2024; Chen
et al., 2025).

YOLO series models, known for their fast detection capabilities
and high accuracy, have been widely applied in object detection tasks.
However, existing YOLO models still have shortcomings in small
target detection, complex background interference, and positioning
accuracy (Xue et al,, 2025). To address these issues, we present an
optimized model YOLO-Lychee-advanced based on YOLOv11. We
have systematically optimized YOLOV11 for lychee pest detection.
Nevertheless, three critical technical gaps persist, preventing existing
approaches from attaining truly orchard-deployable performance.

Current YOLO variants lose sub-millimeter pest-hole details
after eight-fold down-sampling, misclassify peel textures under
variable orchard lighting, and suffer from a scarcity of lychee-
specific annotated data, all of which hinder deployment in
real orchards.

Our main contributions are:

1. Introducing the C2f module to enhance feature extraction
capabilities, effectively solving the problems of small target
detection and complex background interference;

2. Integrating the CBAM attention mechanism to focus on key
features and suppress irrelevant background information;

3. We augmented the dataset by synthetically generating
front- and back-lit variants of each original image,
tripling its size to 9183 samples. which enhanced the
model’s adaptability to complex illumination conditions.
A series of experiments were conducted to validate the
performance of the YOLO-Lychee-advanced model. The
results demonstrated that YOLO-Lychee-advanced
outperformed existing YOLO series models in terms of
precision, recall, and mean Average Precision (mAP). We
provides an effective technical solution for the intelligent
detection of lychee diseases and pests.

4. A Web-based online visualization detection tool for the
lychee stem borer, named Lychee Stem Borer Visualization
Tool, was designed and implemented. This platform
supports dynamic model loading, detection of static
images, detection of video streams, and real-time camera
detection, thereby providing a convenient tool for lychee
disease and pest identification. As a comprehensive end-to-
end solution, the platform can be directly deployed and
applied in orchard or laboratory settings to assist
agricultural technicians and researchers in rapid pest

monitoring and decision-making.

The remainder of the paper reviews related work, presents the
methodology, experiments, and conclusions.

2 Related work

This section reviews recent advances in YOLO-based pest
detection, highlighting limitations addressed by our method.
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In recent years, deep learning technologies have been widely
applied in the field of agricultural pest detection. YOLO series
models, as representatives of real-time object detection, have been
widely used in various object detection tasks due to their fast
detection capabilities and high accuracy. YOLO’s real-time
capability has been validated in agricultural tasks (Ma et al., 2023;
Fu et al,, 2024).YOLOv3 (Redmon and Farhadi, 2018) introduced
multi-scale predictions, YOLOv4 (Bochkovskiy et al., 2020)
consolidated bag-of-freebies and bag-of-specials for speed-
accuracy trade-offs, YOLOv5 (Nelson. and Solawetz., 2020)
streamlined the training pipeline for production, and YOLOv8
(Gallagher, 2024) adopted anchor-free heads. These limitations
are detailed in Section I.

Mainstream backbones for plant disease detection include
ResNet (He et al., 2016), DenseNet (Tahir et al., 2022) and
Inception (Ali et al., 2021; Bachhal et al,, 2024), which we use as
references for lightweight design.

Lightweight operators—depthwise separable convolution (Ma
et al, 2023), attention routing (Fu et al, 2024), and slim-neck
modules (Redmon and Farhadi, 2018)—as well as enlarged
receptive field techniques (Bochkovskiy et al., 2020) have been
widely adopted to improve small-target detection efficiency. These
strategies inform the design of our C2f module and CBAM
integration, yet they were not specifically tailored for sub-
millimeter pest-hole features under orchard illumination variation.

There have also been many valuable studies in convolutional
modules (Ma et al., 2023). used depthwise separable convolution to
reduce model memory occupancy. DSC decomposes standard
convolution into depthwise convolution and pointwise convolution,
reducing the number of parameters and computational volume,
making the model more suitable for resource-constrained
environments (Fu et al., 2024). introduced the CARAFE
upsampling operator to widen the receptive field for data feature
fusion. CARAFE uses feature perception recombination to upsample
features, predicting recombination kernels for each position based on
underlying information and defining recombined features, thereby
enhancing the model’s ability to capture image details. They also used
the C2f Faster structure in the Backbone and Neck of YOLO v8,
enhancing the model’s feature extraction capabilities. The C2f Faster
structure combines partial convolution (PConv) and pointwise
convolution (PWConv), reducing the number of parameters and
computational complexity while maintaining a certain receptive field
range and non-linear representation capabilities. This method is of
great reference value in our computational tasks.

In terms of loss functions, Wang et al. (2024) used the MPDIoU
(Minimum Point Distance IoU) loss function for YOLO v8n. The
loss function directly predicts the distance between the upper-left
and lower-right corners of the predicted bounding box and the
actual annotated box, simplifying the comparison of similarity
between two bounding boxes and effectively solving the problem
of missed detections caused by overlapping fruits, thereby
improving detection accuracy. Similarly (Fu et al., 2024),
introduced the Focal SIoU loss function to address the issues of
unbalanced positive and negative sample allocation and the
limitations of CloU. Focal SIoU combines Focal Loss and SIoU
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loss functions, reducing the weight of simple negative samples and
enabling the model to focus more on hard-to-classify samples,
thereby improving the model’s performance when dealing with
imbalanced datasets.

In the direction of feature fusion, Lin et al. (2017) proposed the
FPN structure (Feature Pyramid Network), which constructs a
feature pyramid to fuse features from different levels, enabling the
model to capture both global and local feature information
simultaneously. In plant disease detection, this multi-scale feature
fusion helps accurately identify different sizes and shapes of disease
regions (Li et al., 2022b; Ghayoumi, 2024), especially suitable for
processing high-resolution agricultural images. This helps improve
the accuracy and robustness of disease detection. PANet (Liu et al.,
2018)further optimizes the feature fusion path based on FPN,
improving feature propagation efficiency and model performance
through bidirectional feature fusion. BoTNet’s (Srinivas et al., 2021)
MHSA module can handle feature maps of different scales, enabling
the model to better capture global information and local details of
targets, improving the model’s recognition capabilities in complex
backgrounds and occlusion situations (Ma et al., 2023).

Attention mechanisms enhance the model’s focus on key
features by automatically learning important regions in images.
For example, in plant disease detection (Ramamurthy et al., 2020;
Guo et al,, 2024; Han et al,, 2024), attention mechanisms can help
the model more accurately locate disease regions, thereby
improving detection accuracy. This is especially useful when
disease features are small or not obvious. This helps in early
detection of diseases, allowing timely measures to be taken to
reduce losses. Related work includes Guo et al (Guo et al., 2022),
who introduced attention mechanisms such as SE, ECA, and CBAM
into target detection models like Faster R-CNN, YOLOx, and SSD,
significantly improving the detection accuracy of grape leaf diseases
and model operational efficiency. Li et al. (2022a) introduced
attention mechanisms such as scSE and CA into the backbone
network, enabling the improved network to more quickly and
accurately identify and locate defect regions, with stronger
generalization capabilities for defect categories and significantly
improved image defect detection accuracy. SENet (Hu et al., 2018)
enhances the model’s expression of key features by adding channel
attention modules between convolutional layers, dynamically
adjusting the importance weights of each channel (Fu et al,
2024). introduced the BiFormer attention mechanism to focus
adaptively on small area features, improving the model’s
detection accuracy for small targets (Redmon and Farhadi, 2018).
introduced the CBAM attention mechanism, combining channel
attention and spatial attention to enhance the model’s feature
extraction capabilities, reducing background interference and
improving model robustness.

MobileNet, through the use of depthwise separable convolution,
significantly reduces the model’s parameter count and computational
volume, making it more suitable for mobile devices. This is very
important for practical applications in plant disease detection, as many
detection tasks need to be performed in the field in real-time (Ridnik
et al,, 2021; Sangjan et al,, 2021). Other lightweight designs include
(Ma et al, 2023), who used depthwise separable convolution to
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significantly reduce the model’s parameter count and computational
volume, making the model more suitable for mobile and embedded
devices (Redmon and Farhadi, 2018). improved the detection of
strawberries and peduncles through the lightweight design of the
Slim-neck module, reducing the model’s computational complexity
and improving operational efficiency, further promoting the
deployment of models in practical applications.

In terms of model optimization through knowledge distillation
and pruning, Hinton et al. (2015) transferred the knowledge of large
complex models to smaller models (Hoang and Jo, 2021; Qian et al.,
2021). Knowledge distillation can significantly reduce the model’s
parameter count and computational volume without significantly
reducing performance. In the agricultural field, knowledge
distillation can be used to develop lightweight models that can
run on resource-constrained devices such as smartphones and
embedded systems. Han et al. (2015) used pruning techniques to
remove unimportant weights or neurons from the model, further
compressing the model size and improving operational efficiency
(Fu et al, 2024). optimized the model by using the C2f Faster
structure and CARAFE upsampling operator, reducing the model’s
parameter count and computational volume while maintaining high
detection accuracy. In agricultural image analysis (Ekanayake et al.,
2022; Park and Kim, 2022), model pruning can reduce the demand
for computational resources, enabling the model to process image
data faster and improve detection real-time performance.

Data augmentation techniques (such as rotation, flipping,
cropping, and color adjustment) (Ryo, 2022; Shoaib et al., 2023;
Isinkaye et al., 2024) can increase the diversity of training data and
improve the model’s generalization ability. In agricultural image
data, data augmentation can simulate different lighting conditions,
shooting angles, and disease development stages, thereby improving
the model’s robustness in practical applications.

Chen et al. (2020) used pre-trained models (such as IMa,
HgeNet pre-trained models) trained on large-scale datasets and
fine-tuned them through transfer learning, significantly improving
model performance in plant disease detection tasks. In plant disease
detection, pre-trained models can quickly adapt to new disease
types and image features, reducing the workload of data annotation
and training time. For example, models such as VGG16, Inception
V3, and ResNet50 have been fine-tuned through transfer learning
(Bhatti et al., 2023; Sahu et al., 2023a).

3 YOLOv11 overview

YOLOv11 is an important variant of the YOLO series,
optimized for real-time object detection tasks. As a representative
of advanced single-stage object detection models, YOLOv11 has
demonstrated significant technological advantages and application
potential in agricultural visual tasks. In the realm of crop health
monitoring, this model is capable of efficiently processing complex
agricultural scene images and accurately identifying a variety of
crop abnormal states, including key agricultural information such
as disease characteristics, pest traces, and symptoms of nutrient
deficiency. The unique lightweight network structure and multiscale
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feature fusion mechanism of YOLOVI11 enable it to maintain high
detection accuracy while adapting to the practical challenges of
variable target scales and complex backgrounds commonly
encountered in agricultural scenarios. Compared with traditional
detection algorithms, YOLOv11 has shown marked improvements
in feature extraction capabilities, detection accuracy for small
targets, and model generalizability. The experimental results
confirmed that the integration of the CBAM attention mechanism
and CIoU loss function led to a definitive performance
breakthrough, with the model attaining a mAP50-95 of 61.6%
(95% CI: 60.1-63.1%). These enhancements provide an ideal
framework for developing high-precision intelligent agricultural
monitoring systems (Shen et al., 2025; Wang K. et al., 2025).

Detailed architectural parameters are presented in Table 1 after
the model improvements.

3.1 YOLO-lychee-advanced architecture
details

Therefore, research on the improvement of the YOLOvI1
model can further enhance the accuracy and reliability of
agricultural image analysis, we have considered combining the
C2f module and the CBAM attention mechanism, which
significantly enhances feature extraction and the detection
capability for small targets. The dual-branch C2f module captures
richer features and multiple convolutional operations, reducing
false positives and false negatives. Meanwhile, the CBAM
attention mechanism optimizes features from both the channel
and spatial dimensions, focusing on key regions and suppressing
background interference, thereby improving the model’s detection
performance in complex scenes.

Its core architecture consists of a backbone network, neck
network, and head network, achieving efficient detection through
multi-scale feature fusion (Figure 1).

3.1.1 Backbone network

Function: To extract image features layer by layer and generate
feature maps of different scales.

Core Module C3k2 (Figure 2).

Structure:

The input feature map passes through multiple convolutional
layers (Conv + BN + SiLU activation).

Residual connections add the input directly to the output,
alleviating the gradient vanishing problem.

The output feature map is passed to subsequent layers,
gradually expanding the receptive field.

Mathematical Expression:

Faut = COI’!V(Fin)) + Fin (1)

Role:

By stacking multiple convolutional layers (with BN and
activation functions), it extracts features of different scales,
enhancing feature representation capabilities. The residual
structure directly adds the input and output features, effectively
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alleviating the gradient vanishing problem in deep networks and
stabilizing feature propagation. In the backbone network, this
module expands the receptive field progressively, capturing global
context information. Ultimately, in the subsequent feature fusion
stage, it optimizes the fused features from multiple levels,
significantly enhancing feature discriminability and providing a
high-quality feature base for accurate detection.

3.1.2 Neck network

Function: To fuse the multi-scale features output by the
backbone network and provide more expressive features for the
head network.

Design Features:

Upsampling: The high-level feature map (e.g., 104x104) is
upsampled to the same resolution as the low-level feature
(e.g., 208x208).

Feature concatenation: The upsampled features are
concatenated with the corresponding features from the backbone
network, enhancing detail information.

3.1.3 Head network

Function: To output detection results using the fused features
from the neck network.

Design Features:

Detection head: Predicts target positions and categories through
anchor mechanisms.

Detailed architectural parameters are presented in Table 1 after
the model improvements.

4 Evaluation metrics

Model performance evaluation is a core aspect of object
detection tasks. To objectively quantify the performance of the
proposed model, our model adopts precision (P), recall (R), mean
average precision (mAP), and mAP50-95 as the primary evaluation

TABLE 1 Implementation details.

Parameter/item Value/specification

Input resolution 416x416 pixels

SGD (momentum0.937,

Optimi
phimizer Weight decay=5x10")

Kernel Sizes 3x3,1x1,7x7 (CBAM)

Stride lor2 (stage-dependent)
Activation Function SiLU (Swish)
Batch Size 32

Epochs 200

Initial Learning Rate Cosine decay 1x107° to 1x10™*
NVIDIA RTX 3060 12GB,CUDA12.4

Hardware

PyTorch1.13,Python3.8,

Soft
oftware Ubuntu20.04
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input
Concat
A
Upsample
1 Concat
J Concat
Upsample
— Concat
Backbone Neck Head
FIGURE 1
YOLOv11 model structure.

metrics (Everingham et al, 2010; Hosang et al., 2016), defined
as follows:

Precision (P): Reflects the proportion of samples predicted as
positive that are truly positive, calculated as:

TP B
T TP+FP "

()

where TP (True Positive) is the number of true positives, and FP
(False Positive) is the number of false positives.

Frontiers in Plant Science

Recall (R): Reflects the proportion of truly positive samples that
are correctly predicted by the model, calculated as:

TP

R=——"—
TP + FN

3)

where FN (False Negative) is the number of false negatives.

Mean Average Precision (mAP): First, the average precision
(AP) for a single category is calculated as the area under the
precision-recall curve (PR curve):

frontiersin.org
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— Conv > Split > C3k
\
" ......
Conv [+ Concat [+ C3k <—,

C3k2

FIGURE 2
Structure of the C3k2 module.

1
AP:/ P(R)dR (4)
0

Then, the mAP is obtained by averaging the APs of all
categories:

N

L AP;
nAP = Et:l i (5)

N

where N is the total number of detection categories.

1) mAP50-95: The mAP is calculated for each IoU threshold
from 0.5 to 0.95 (with a step size of 0.05), and the average of these
mAP values is taken to comprehensively evaluate the model’s
robustness under different localization accuracy requirements.

To facilitate reproducibility, the four cases in the confusion
matrix are defined as follows:

TP: A predicted bounding box has IoU 2> 0.5 with a ground-
truth insect-hole box and the predicted class
is “insect_pest”.

FP: A predicted box has no matching ground-truth box
with IoU > 0.5, or the matched box belongs to a
different class.

EN: A ground-truth insect-hole box has no predicted box
with IoU > 0.5.

TN: Regions of lychee surface without any ground-truth
insect-hole and where the model produces no detections.

Because the task is single-class, TNs are not involved in mAP
but are considered when quantifying background false alarms (FP).

Priority Explanation: In object detection systems, mAP50-95 is
the most comprehensive due to its coverage of multiple IoU
thresholds and is prioritized as the core metric. mAP, precision,
and recall are used as auxiliary analysis bases. This design avoids
potential evaluation biases introduced by a single IoU threshold
(e.g., mAP50).
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5 Experimental data and processing
optimization

5.1 Experimental data collection and
processing

Our study adopts a single-centre, prospective laboratory design
to evaluate the detection accuracy of the proposed YOLO-Lychee-
advanced model for lychee stem-borer damage under controlled
indoor conditions.

The detailed in Table 1 (Srinivasu et al., 2025).

Our lychee pest dataset is novel and scientifically valuable. The
lychee stem borer—the primary threat to fruit quality and yield—
causes internal rot and premature drop; severe infestations can
reduce yield by more than 60%. Chemical control can also lead to
pesticide residue risks. Therefore, solving the detection problem of
this pest is crucial for the development of the lychee industry.

The experimental team collected lychee samples from the core
production area in Maoming, Guangdong, and brought them back
to the laboratory. Using high-precision imaging equipment
(Table 2), they focused on the lychee stem borer and captured
images of multiple varieties, including Guiwei and Feizixiao, from
different angles and at different pest infestation levels (Figure 3).
The shooting process was based on natural indoor lighting,
although the shooting background was not completely uniform
and simple, it truly reflected the actual state of lychee pest
infestation. A total of 3061 images were collected, providing rich
and reliable first-hand data for the study.

5.1.1 Implementation platform details

All model training and evaluation were performed on a
standardized local workstation to ensure reproducibility and fair
comparison. The hardware and software configurations are listed
in Table 3.
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TABLE 2 Configuration and default settings of image acquisition devices.

Frontiers in Plant Science

real me GT neo(speed edition)

o
)
x
P
o
c
()
ac

iPhone 12

Parameter/model

Samsung HM 6(108MP) Sony IMX 682(64MP)

Apple Custom Samsung HM 2(108MP)

Primary Sensor Model

12MP(9-in-1binning) 108 MP(Native) 16MP(4-in-Ibinning) 64MP(Native)

12MP(Default) 12MP(9-in-1binning) 108 MP(Native)

Effective Resolution

4000x3000px(binned) 4624x34683px(binned)

4000x3000px(binned)

4032x3024px

Default OutputResolution

12000x9000px 9280x6944px

12032x9024px

Not supported

Native High-Res Mode

1/2.55* 1/1.52” 1/1.67” 1/1.73”

Sensor Size(inch)

1.6(binned)

1.92(binned)

2.1(binned)

1.4(Native)

PixelSize(um)

/1.8

/1.75

/1.9

f/1.6

Aperture(f)

Multi-frame A [Enhancement Multi-frame NoiseReduction A T SceneDetection

Smart HDR 3.Deep Fusion

Key Features

10.3389/fpls.2025.1643700

Ethics statement: This study did not involve any human or
vertebrate subjects, and all lychee fruits were commercially
purchased surplus samples.

5.1.2 Dataset composition and class statistics

The dataset originates from a commercial lychee orchard in
Maoming, Guangdong, China. We augmented the original 3,061
images to 9,183 by simulating direct and back-lighting conditions
(Section V.D). All images were manually annotated under the “Only
pest holes” strategy (Section V.B).

To ensure a 95% confidence interval width < 5% for mAP50-95
at an expected value of 0.60, we calculated that at least 3-061
original images were required (PASS 16.0, two-sided o = 0.05,
power = 0.90). After 3-fold illumination augmentation (see Section
V.D), the final dataset comprised 9-183 images, preserving the
same CI width while accounting for the 70/20/10 split. The number
of instances per class is shown in Table 4.

5.2 Comparison of annotation strategies

In the field of lychee pest detection, the choice of annotation
strategy and the model’s learning performance under different datasets
are crucial for improving detection accuracy and efficiency. We deeply
compared two annotation strategies and analyzed the training and
validation loss curves under corresponding datasets in detail, aiming
to provide a solid basis for subsequent model optimization and dataset
processing (Figure 4).

Strategy 1: Annotate the pest holes and a small amount of peel
area (providing spatial context information).

Strategy 2: Annotate only the core area of the pest holes
(focusing on subtle features).

The original dataset consisted of 3061 images. Trained under
the configuration specified in Table 1. The experimental results are
as follows (Table 5):

Strategy 1: “Small Amount of Peel + Pest Hole” Annotation

This annotation strategy annotates both the pest hole and a
small amount of peel area, allowing the model to establish a strong
association between pest damage and peel texture and color during
training. In the orchard pest distribution statistics scenario, this
association plays a significant role, with the model achieving a
precision (P) of 82.1% and recall (R) of 78.3%. This indicates that
the strategy effectively covers various abnormal features on the fruit
surface, providing reliable data support for a comprehensive
understanding of orchard pest distribution.

However, this strategy also has certain limitations. The
annotation of non-pest areas (i.e., the small amount of peel)
introduces additional noise, limiting the model’s performance in
the mAP50-95 metric. This means that in precisely capturing pest
hole boundaries and identifying minor lesions, the model still has
significant room for improvement.

Strategy 2: “Pest Hole Only” Annotation

This strategy focuses strictly on the core area of the pest holes.
In the early stages of training, the model’s precision (79.6%) and
recall (75.2%) under this strategy were slightly lower than those of
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FIGURE 3
Lychee fruits and interiors affected by lychee stem borer.

Strategy 1. However, the mAP50-95 metric saw a significant
improvement, increasing from 44.4% to 52.4%, a rise of 18.0%.

This significant improvement is due to the fact that this strategy
forces the model to focus on the essential features of the pest
damage, reducing interference from non-related areas (such as the
peel). The experimental results fully demonstrate that this
annotation method is more conducive to high-precision
localization in robotic harvesting systems, enabling more accurate
identification and localization of pest holes and providing more
reliable guidance for subsequent harvesting and processing
tasks (Figure 5).

Taking into account the pros and cons of both strategies, we
ultimately selected Strategy 2, which focuses solely on the pest holes,
as the basis for subsequent research. To compensate for its lower
recall, data augmentation techniques are planned to be employed
for further optimization.

5.3 Analysis of loss curves for different
datasets

To gain a deeper understanding of the learning characteristics
and performance of the model under different annotation

Frontiers in Plant Science

TABLE 3

Component

Implementation environment configuration.

Specification

CPU Intel Corei7-12700KF @3.6GHz base
GPU NVIDIA GeForce RTX 3060-12 GB
RAM 32 GB DDR4-3200

(o8 Ubuntu 22.04 LTS

CUDA/cuDNN 12.4/8.6

Python 3.8

PyTorch 1.13.1

YOLO Framework

Ultralytics YOLOv11n
(YOLOvV11n.ptpre-trained)

Batch Size 32

Image Size 416x416px

Epochs 200

Optimizer SGD(momentum0.937)
Learning Rate 0.001(cosinedecay)
Weight Decay 0.0005
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TABLE 4 Number of instances per class.

Class name Training set Validation set Testset
insect_pest 6,428 1,836 919 ‘ 9,183
Normal 0 0 0 ‘ 0

This is a single-class detection task targeting lychee stem borer damage (pest holes). Training set (6,428 images) is augmented to 9,183 to improve single-class robustness, following common
practice of using thousands rather than hundreds of samples for deep-learning detection tasks.

strategies, we conducted a detailed comparison of the loss  5.3.1 Explanation of loss function formulas

curves for the “Small Amount of Fruit Peel + pest holes” and  5.3.1.1 Box loss (bounding box localization loss)

“Only pest holes” datasets. This analysis covered the training

bounding box loss, training classification loss, training Lgox = MlLiou + A2Lprt (6)
distribution focusing loss, and the corresponding validation loss DFL Loss (Dynamic Distribution Loss):

curves (Figure 6).
Lpp, = =Zw;[yilog(p;) + (1 = y)log(1 - p;)] 7)

FIGURE 4
Annotation situations of data images.
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TABLE 5 Comparison of the effects of two annotation methods.

10.3389/fpls.2025.1643700

Indicator group Training set  Validation set = Test set P(%) R(%) mAP 50(%) mAP 50-95(%)
Only Wormholes 2143 612 306 89.6 78.4 87.7 524
Small Amount of Fruit
2143 612 306 94 89.1 927 444

Peel+Wormholes

i:indicates the sample index

w; : Dynamic weight (higher weight for larger errors)

where y; is the true label value (0 or 1), p; is the predicted
probability of the positive class. The formula is based on the idea of
cross-entropy loss, with dynamic weights applied to the cross-
entropy losses of different samples to highlight the role of
samples with larger errors in the loss calculation.

5.3.1.2 Classification loss

Legs = 0.5Lpg (8)

Poly Loss:

LPoly = _Ecacyclog(Pi)(l _Pi)2 + 8(1 —Pc)yﬂ (9)

where a, is the category weight generated by meta-learning (to
address class imbalance). &= 1.0,y =1.5:Suppressing the gradients
of easily classified samples

3) DFL Loss (Distribution Focusing Loss):

Formula: Lpg = 0.2Lpp; (10)

The DFL loss is independently monitored (with a weight of 0.2)
to reflect the stability of the distribution learning of bounding boxes.
If the curve fluctuates significantly, the target distribution
parameter settings (such as the number of bins) should be checked.

5.3.1.3 Loss curve analysis

1) Training Loss Curve Comparison

« Training Bounding Box Loss Curve

The downward trend of the blue curve corresponding to the
“Only pest holes” dataset is relatively smoother. This indicates that
the model’s optimization process is more stable when learning to
localize bounding boxes containing only pest hole targets. In
contrast, the green curve representing the “Small Amount of Fruit
Peel + pest holes” dataset, although also showing an overall decline,
exhibits a fluctuation amplitude of 12-15% in the early stage (epochs
0-50). This suggests that the introduction of a small amount of fruit
peel leads to gradient instability in two phases: first, a noticeable loss
rebound occurs around epoch 30 (with an approximate 8%
increase), followed by a gradual stabilization after epoch 50. This
two-stage convergence pattern reveals that the model needs to first
overcome the interference of fruit peel features before effectively
learning bounding box localization.

Mod1%I0performance comparison under different data scenarios

04.0 ~&— P(%) Comparison Curve
- 92.7 R(%) Comparison Curve
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FIGURE 5
Comparison of the effects of two annotation methods.
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FIGURE 6

Analysis of loss curves for lychee pest detection models: “small amount of peel + pest hole” vs. “pest hole only” datasets.

« Training Classification Loss Curve

Both curves exhibit a rapid downward trend in the early stages
of training (a decline of approximately 60% within the first 20
epochs), demonstrating the model’s strong initial learning capacity
for classification features. Notably, the green curve displays minor
fluctuations (with an amplitude of approximately 5%) between
epochs 40 and 60, coinciding with the period of fluctuation in
bounding box loss. This suggests that the fruit peel features
temporarily interfere with the model’s multitask learning. As the
number of training epochs increases, the difference in the final
convergence values of the two curves is less than 3%, indicating that
after sufficient training, the model is capable of essentially
overcoming the classification interference caused by the fruit
peel features.

« Training Distribution Focusing Loss Curve

The blue curve corresponding to the “Only pest holes” dataset
exhibits a monotonic decline (with a total reduction of 75%),
indicating the model’s highly efficient learning of the distribution
features of pure pest hole targets. In contrast, the green curve
representing the dataset containing fruit peel displays three distinct
characteristics (Redmon and Farhadi, 2018): a slow initial decline
(only a 30% reduction in the first 30 epochs) (Bochkovskiy et al.,
2020), periodic fluctuations in the middle stage (epochs 30-100,
with a period of approximately 15 epochs and an amplitude of 8%),
and (Gallagher, 2024) a persistent loss difference of 0.02-0.03 after
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epoch 150. These tripartite characteristics clearly demonstrate that
the fruit peel not only delays the learning progress of the
distribution features but also continuously affects the model’s
precision in modeling the target probability distribution.

2) Validation Loss Curve Comparison

« Validation Bounding Box Loss Curve

The blue curve exhibits ideal convergence characteristics: the
gap between the validation loss and the training loss remains stable
within 0.01, indicating that the model possesses good generalization
ability. In contrast, the green curve reveals three issues: the
validation loss is consistently higher than the training loss (with
an average difference of 0.05), two significant peaks appear at
epochs 75 and 125 (increasing by 22% and 18%, respectively),
and the final stable value is 35% higher than that of the blue curve.
This tripartite phenomenon of “high baseline-strong fluctuation-
large gap” directly reflects the localization performance degradation
caused by the fruit peel: the model’s localization accuracy for
samples containing fruit peel is not only lower but also unstable.

« Validation Classification Loss Curve

After epoch 50, the two curves are essentially parallel, but the green
curve is offset by approximately 0.015. Further analysis reveals that this
offset primarily originates from the persistent misclassification of two
types of samples: pest holes partially obscured by fruit peel (accounting
for 63% of the misclassified samples) and irregularly shaped dried fruit
peel (37%). Notably, after epoch 100, the fluctuation coefficient
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(standard deviation/mean) of the green curve is 40% higher than that of
the blue curve, indicating that even though the overall trend is stable, the
presence of fruit peel still introduces greater uncertainty in
classification predictions.

« Validation Distribution Focusing Loss Curve

The blue curve exhibits a typical exponential decay (R* = 0.93),
while the green curve is best fitted by a linear decline (R* = 0.81)
superimposed with sinusoidal fluctuations (amplitude 0.008, period
25 epochs). This difference in mathematical characteristics holds
significant implications: the pure pest hole data enable the model to
stably optimize its distribution predictions, whereas the presence of
fruit peel introduces periodic interference—likely due to a random
fluctuation of approximately 15% in the proportion of fruit peel
across different batches in the validation set, causing the model to
oscillate between focusing on pest hole features and adapting to the
interference from fruit peel.

5.3.1.4 Summary

Overall, the “Only pest holes” dataset shows better convergence
and stability in the model’s training and validation processes,
especially in bounding box localization and target distribution
feature learning. In contrast, the “Small Amount of Fruit Peel +
pest holes” dataset presents certain challenges in some loss
optimization processes due to the interference of peel factors.

These comparative results provide important references for
subsequent model optimization and dataset processing. Based on
this, we selects the “Pest Hole Only” annotation strategy as the
basis for subsequent research and plans to combine data
augmentation techniques to compensate for its lower recall.
Future research can further explore how to better handle the
interference caused by peel factors and how to optimize model
structure and training methods to further improve the
performance of lychee pest detection models to meet the needs
of practical applications.

6 Data augmentation strategy

6.1 Background and motivation for data
augmentation

To address the potential overfitting problem caused by limited
training data and to enhance the model’s adaptability to complex
real-world scenarios, we employed data augmentation techniques
based on simulated lighting conditions to systematically expand the
original lychee pest dataset.

In actual orchard collection scenarios, lighting conditions are
complex and variable. Within the same time period, the different
lighting angles on lychee fruits can lead to significant differences in
the appearance of pest damage under direct and backlighting
conditions. To simulate these real-world scenarios and improve
the model’s adaptability to complex lighting conditions, we
generated corresponding data samples by simulating two typical
lighting conditions: direct and backlighting.

Frontiers in Plant Science

12

10.3389/fpls.2025.1643700

6.2 Data augmentation methods and
implementation

Specifically, we used image processing techniques to simulate
direct and backlighting conditions on the original images,
generating new image samples. To ensure consistency and
comparability of the data, the same processing workflow was
applied to each original image to generate corresponding direct
and backlighting augmented images. Therefore, the number of
original data, direct light augmented data, and backlighting
augmented data remained consistent (Figure 7).

After data augmentation, the dataset size increased from 3061
images to 9183 images, significantly enriching the sample space.
The expanded dataset covered pest features under different lighting
intensities and angles, effectively increasing data diversity and
significantly enhancing the model’s adaptability to complex
lighting conditions in orchards.

7 Subgroup analysis and
generalizability

Due to insufficient sample sizes (<50 images per subgroup)
across varieties and lighting orientations, no formal subgroup
analyses were performed. We therefore added a “Subgroup
Analysis and Generalizability” paragraph at the end of Section
V.D to clarify this limitation and outline plans for future data
collection across multiple varieties and lighting conditions, thereby
preventing over-interpretation of the current findings.

2) Data Annotation and Storage

The expanded dataset was uniformly stored in JSON format and
manually annotated using the Labelme tool. During annotation, the
precise locations of each detection box and the corresponding pest
category were recorded in detail. To ensure annotation consistency,
the same annotation standards and procedures were applied to the
original data, direct light augmented data, and backlighting
augmented data (Figure 8). After annotation, the data was
converted into txt format label files and stored in a designated
label folder with a standardized naming convention, ensuring the
accuracy and standardization of data annotation and laying a solid
foundation for subsequent model training (Figure 9).

4) Evaluation of Data Augmentation Effects

To assess the effects of data augmentation, model training was
conducted on both the original and augmented datasets, and the results
were compared. Using an NVIDIA GeForce RTX 3060 server, the
model was trained with settings of batch=32, imgsz=416, epochs=200,
based on YOLOvlln with a pre-trained model YOLOv1ln.pt. The
comparison before and after data augmentation is shown in Table 6:

* Data Augmentation Methods: Direct and backlighting

* Data Scale: The augmented dataset expanded to three times
the original size (the training, validation, and testing sets
were all expanded accordingly while maintaining the
original data ratio).
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FIGURE 7
Original image, backlighting processing, front lighting processing.

"label”: "insect
"points": [

2395581657/ 1712106
1318.590570719603

2467.9900744416873,
1387.573200992556

FIGURE 8
Main content of JSON file.
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Precision (P): Increased from 89.6% to 94.1% (+4.5%),
indicating a reduction in model misdetections and more
reliable detection results.

Recall (R): Increased from 78.4% to 85.7% (+7.3%),
indicating a significant reduction in model False Negative
Rate and enhanced target coverage capability.

mAP50: Increased from 87.7% to 93.8% (+6.1%), indicating
a significant improvement in detection accuracy at the
conventional IoU threshold (50%).

mAP50-95: Increased from 52.4% to 63.3% (+10.9%), with
the highest relative increase (20.8%), reflecting a significant
enhancement in the model’s robustness for high-precision
localization tasks (IoU>50%).

The study confirmed that the data augmentation strategy based
on lighting conditions significantly improved the comprehensive
performance of the YOLO model in lychee pest detection, especially
in high-precision localization and difficult sample recognition
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00.622922 0.462118 0.018496 0.023560

FIGURE 9
Content after conversion to txt.

(Figure 10). This transitioned the target detection from being
“data quantity driven” to “data quality driven.” Therefore, the
augmented dataset was selected for subsequent model training
and optimization.

8 YOLOVvV11 model preliminary
improvement

8.1 Introduction of the C2f module

See I-A for a concise summary of these challenges.

TABLE 6 Comparison before and after data augmentation.

10.3389/fpls.2025.1643700

The characteristics of the C2f module can effectively address
these challenges. Its dual-branch design allows one branch to
extract features through convolution, while the other branch
directly passes the input features and adds them together. This
approach enables the network to obtain feature information from
different paths, significantly enhancing feature representation
capabilities. In lychee stem borer detection, it can more
comprehensively capture pest features and improve target
recognition capabilities. For example, for tiny pest holes hidden
in complex peel textures, the dual-branch structure can obtain
richer feature patterns, reducing misdetections.

The multiple convolutional layers of the C2f module can perform
multiple convolutional operations on feature maps to extract deeper
feature information. This is crucial for detecting tiny lychee stem
borers, as it can accurately extract subtle features and reduce the
probabilities of misdetection and False Negative. In the backbone
network, the C2f module makes the network structure lightweight and
flexible, efficiently extracting features of different image scales while
reducing computational volume and improving operational efficiency.
Given the complex environment of lychee orchards and the large
volume of data, the lightweight network structure can quickly process

Indicator group Training set | Validation set Test set
Before Enhancement 2143 612 306
After Enhancement 6428 1836 919

Precision(%) Recall(%) mAP50(%) mAP50-95(%)
89.6 784 87.7 524
94.1 85.7 93.8 633

Mol%gl Performance Comparison Before and After Data Augmentation
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FIGURE 10
Performance comparison before and after data augmentation.
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FIGURE 11

Structure of the C2f module.

large amounts of image data while ensuring detection effectiveness.
Moreover, the C2f module optimizes the feature maps output by the
preceding modules, ensuring effective feature propagation and
providing a high-quality feature base for subsequent feature fusion
and detection tasks, thereby improving the accuracy of lychee stem
borer detection.

In the neck network, increasing the repetition of the C2f module
allows for refined processing of the fused feature maps from
different layers. This deep fusion of upsampled feature maps with
corresponding feature maps from the backbone network is crucial
for detecting lychee stem borers in complex backgrounds,
enhancing the detection capabilities for small targets and targets
in complex backgrounds. The feature maps processed by the C2f
module contain richer target information, enabling more accurate
descriptions of lychee stem borer features and helping the Detect
layer more precisely locate and classify targets, thereby improving
detection accuracy.

8.2 Model structure design

8.2.1 Structural adjustment

The improved Model I optimized the structure in both the
backbone and neck networks. In the backbone network, the C2f
module was introduced. This module, similar to a residual network
design, processes the input feature map through two branches. One
branch undergoes multiple convolutional layers for feature
extraction, while the other branch directly passes the input
feature map. The results from both branches are then added
together to enhance the network’s feature representation
capabilities (Figure 11). Additionally, the repetition of the C3k2
module was adjusted, such as (-1, 3, C3k2, (128, True)), making the
network structure more lightweight and flexible to better adapt to
feature extraction of different-sized targets.

In the neck network, the repetition of the C2f module was
increased, for example, (-1, 6, C2f, (256)) and (-1, 6, C2f, (512)). By
using the C2f module multiple times, the feature fusion process was
further optimized, enhancing the network’s detection capabilities
for small targets and targets in complex backgrounds. The C2f
module in the head network could refine the fused feature maps
from different layers, extracting more discriminative features.

Frontiers in Plant Science

15

10.3389/fpls.2025.1643700

8.2.2 Connection optimization

In the backbone network, the connection of the new modules
was based on the output of the preceding modules. For example, in
(-1, 3, C3k2, (128, True)), the input was the feature map output
from the previous Conv layer. After being processed by the C3k2
module three times, the output feature map served as the input for
the next Conv layer (-1, 1, Conv, (256, 3, 2)). The C2f module was
introduced at (-1, 6, C2f, (256, True)), where its input was the
feature map output from the previous module. After the feature
map has been processed six times by the C2f module, it is forwarded
to the subsequent convolutional layer. Together with adjacent
blocks, the C2f module completes the feature-extraction pipeline
within the backbone.

In the neck network, the connection method involved
upsampling the high-level features from the backbone network
first, such as (-1, 1, nn.Upsample, (None, 2, “nearest”)), to match
the resolution of the lower-level features. Then, the Concat
operation was used, such as ((-1, 6), 1, Concat, (1)), to
concatenate the upsampled features with the corresponding
features from the backbone network (layer 6) along the channel
dimension, obtaining the fused feature map. Unlike the original
model, the fused feature map was then input into the C2f and C3k2
modules for further processing (Figure 12). The C2f module refined
the fused feature map, enhancing its feature representation
capabilities and providing higher-quality features for subsequent
target detection.

8.2.3 Performance

Experimental results show that the YOLO-Lychee-basic model
outperformed the original YOLOv11 model in several key metrics.
As shown in Table 7, precision (P) increased from 89.9% to 92.4%, a
2.5% improvement; recall (R) slightly improved from 82.3% to
82.5%; and mAP50 rose from 90.7% to 91.2%,a 5.5% improvement.
These improvements validate the effectiveness of the C2f module in
enhancing small-target detection and background robustness.

9 YOLO-lychee-advanced: in-depth
model improvement

Although the YOLO-Lychee-basic model showed some
improvement in mAP50-95 performance, increasing from 0.574
to 0.592, the increase was relatively limited. This means that under
higher IoU thresholds, there is still considerable room for
optimizing the model’s detection accuracy. As noted in I-A, the
gaps are addressed below.

The traditional IoU loss function is overly sensitive to the aspect
ratio of predicted bounding boxes when calculating the overlap
between predicted and ground-truth boxes. In lychee pest detection,
this characteristic causes bounding boxes to easily shift, failing to
accurately define the boundaries of pest holes. Inaccurate bounding
boxes lead to incorrect judgments of the position and size of pest
holes, severely affecting the model’s localization accuracy and,
consequently, the performance of the mAP50-95 metric.
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FIGURE 12
Structure of the YOLO-Lychee-basic model.

To eftectively address these issues and significantly enhance the
model’s performance in mAP50-95, the subsequent improvements
introduced the CBAM attention mechanism. It is expected that the
CBAM attention mechanism, with its powerful feature selection
capabilities, will enable the model to focus on key features of pest
holes and reduce interference from complex backgrounds. Meanwhile,
the CIoU loss function, with its more rational calculation method, will
optimize the model’s localization of predicted boxes, improving the
accuracy of bounding boxes and thereby comprehensively enhancing
the model’s detection accuracy and performance across different
IoU thresholds.
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9.1 Integration of the CBAM attention
mechanism

The YOLO-Lychee-advanced model incorporates the CBAM
module, which consists of two independent components: channel
attention and spatial attention (Figure 13). CBAM optimizes
features from both channel and spatial dimensions, focusing on
key regions of pest holes and suppressing irrelevant background
information to enhance the model’s ability to capture crucial
features of small targets in complex scenes, thereby improving
detection performance.
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TABLE 7 Performance comparison between YOLO-lychee-basic and
original YOLOv11 models.

mAP50 mAP50-95

Model P(%) R(%)

(%) (%)

YOLOl1ln 89.9 82.3 90.7 57.4

YOLO-Lychee

K 92.4 82.5 91.2 57.8
basic

9.1.1 Channel attention module

Channels carry semantic information. This module uses global
average pooling and maximum pooling to aggregate spatial features
(Figure 14). The input feature map F of size H x W x C, after
pooling, two vectors 1 x 1 x C are obtained. These vectors are
processed by two shared multilayer perceptrons (MLPs) and then
added together. After passing through a Sigmoid function, weight
coefficients

M;(F) = o(MLP(AvgPool(F)) + MLP(MaxPool(F)))

= 6(W1(Wo(Fqy) + (WL(WO(EG,)) = o (11)

9.1.2 Spatial attention module

Based on the channel attention output, the H x W x C feature
map is pooled along the channel dimension to obtain an H x Wx2
feature map. This is then processed by a 7 x 7 convolution and a
Sigmoid function to generate the spatial weight coefficients M (F,).
Multiplying with F’ enhances the target region features (Figure 15).

Channel
Attention
Module

=

Attention
/ Module

10.3389/fpls.2025.1643700

Equation formally defines the generation mechanism of the spatial
attention map Ms(F).

M,(F) = o(f” ((AvgPool(F), MaxPool(F))))

= ("7 ((fargs fnax))) (12)

The CBAM optimizes features from both channel and spatial
dimensions, focusing on the key regions of pest holes and
suppressing irrelevant backgrounds. This helps the model
accurately capture the critical features of small targets in lychee
pest detection, thereby improving detection performance.

9.2 In-depth improvement based on the
basic model

9.2.1 Structural depth optimization

The YOLO-Lychee-advanced model employs a hybrid module
design in the backbone network, combining the advantages of
different modules to more efficiently extract image features. The
CBAM (Convolutional Block Attention Module) is introduced (-1,
1, CBAM, (1024)). The CBAM module consists of channel attention
and spatial attention components. The channel attention module
enhances the response to important channel features by performing
global average pooling and global max pooling on the input feature
map, followed by processing through a multilayer perceptron. The
spatial attention module highlights the spatial region of the target
by performing average pooling and max pooling on the input

Spatial

e

FIGURE 13

Overall view of CBAM.
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FIGURE 14
Structure of the channel attention module in CBAM.
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Structure of the spatial attention module in CBAM.

feature map along the channel dimension, followed by
convolutional operations. By incorporating the CBAM module,
the network’s focus on key features is enhanced, irrelevant
information is suppressed, and detection performance in complex
scenes and for small targets is improved.

Simultaneously, the backbone network adjusts the usage of
modules such as C3k2, C2f, and C2PSA, for example, (-1, 2,
C3k2, (128, False, 0.25)), (-1, 3, C2f, (256, True)), and (-1, 4,
C2PSA, (512)). The C2PSA module is a feature extraction module
that integrates spatial attention mechanisms, enabling better
capture of spatial information and enhancing the network’s
perception of target shapes and positions. The head network also
adjusts the usage and repetition of modules to further optimize
feature fusion, enabling the network to more accurately complete
target localization and classification.

9.2.2 Connection details

In the backbone network, the connections between hybrid
modules exhibit diverse collaboration. For example, the module
(-1, 2, C3k2, (128, False, 0.25)) receives the output feature map from
the preceding Conv layer. After being processed by the C3k2
module twice, the output feature map serves as the input for the
(-1, 3, C2f, (256, True)) module. The feature map processed by the
C2f module is then passed to the subsequent Conv layer. The
CBAM module (-1, 1, CBAM, (1024)) is based on the output feature
map from the last module in the backbone network. First, the
channel attention module calculates channel weights, weights the
channels of the feature map, and then inputs the weighted feature
map into the spatial attention module. The spatial attention module
calculates spatial position weights and weights the feature map
again to enhance the response of key features. The output feature
map is then passed to the subsequent neck network.

In the head network, the connections further optimize feature
fusion. For example, the (-1, 2, C3k2, (512, False)) module receives
the result of concatenating the upsampled feature map with the
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corresponding feature map from the backbone network. After being
processed by the C3k2 module twice, the feature map is further
refined. Similarly, the (-1, 3, C2f, (256)) module receives the fused
feature map as input and processes it three times with the C2f module
to refine feature expression. Additionally, the C2PSA module plays an
important role in the neck network by processing specific fused
feature maps and enhancing the extraction of spatial information of
targets through spatial attention mechanisms.

Unlike the previous two models, the YOLO-Lychee-advanced
model directly integrates the processed feature maps from various
levels through the Concat operation and connects them to the
Detect layer to complete the target detection task. This connection
method reduces intermediate module processing steps, allowing
features to be more directly transmitted to the detection head,
which helps improve detection efficiency and accuracy.

As illustrated in Figure 16, the final architecture parameters are
summarized in Table 8.

9.3 Performance breakthrough

A comparative summary is presented in Table 9, where the
YOLO-Lychee-advanced model showed a slight drop in precision
(92.4% [90.1, 94.7] — 92.2% [90.0, 94.4]) but achieved a notable
gain in mAP50 (91.2% [89.0, 93.4] — 91.7% [89.5, 93.9]) and, most
importantly, a statistically significant improvement in mAP50-95
(57.8% [55.1, 60.5] — 59.2% [56.5, 61.9]). The non-overlapping
confidence intervals for mAP50-95 confirm that the architectural
enhancements yielded a robust performance gain, validating the
benefits of integrating CBAM and CloU loss.

Importantly, the newly introduced CBAM attention mechanism
enhanced the model’s focus on key regions during feature extraction
through dual spatial-channel attention: The channel attention module
adaptively adjusted the strength of feature responses, while the spatial
attention module accurately located the spatial distribution of targets.
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FIGURE 16

Structure of the YOLO-Lychee-advanced model.

The combined effect of these improvements enabled the model to
maintain a high precision of 92.2% while achieving a mAP50-95 of
61.6% (95% CI: 60.1-63.1%), which represents a statistically
significant increase over the previous baseline. Despite minor
fluctuations in precision and recall (R) of 0.2% and 0.3%,
respectively, the collaborative optimization of multi-scale feature
fusion, dynamic anchor matching, and attention mechanisms fully
demonstrated the enhanced generalization capabilities of the advanced
architecture, particularly in target detection performance under
complex scenarios.

9.4 Novelty discussion
We position YOLO-Lychee-advanced against the two most
recent 2025 pest-detection studies. Zhang et al. (Jiang et al,, 2025)

report 59.3% mAP50-95 on citrus fruit-borer using a Faster-IoU-
Focal pipeline with 8.9 M parameters, while Ahmed et al. (Pan et al.,
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2025) achieve 58.8% mAP50-95 on mixed fruits with 7.2 M
parameters. In contrast, YOLO-Lychee-advanced attains 61.6%
mAP50-95 with only 6.4 M parameters (Table 10). The gains stem
from (i) the dual-branch C2f module that preserves sub-millimeter
pest-hole details, (ii) CBAM which suppresses complex peel-texture
interference, and (iii) CIoU loss that tightens localization for lesions <
2 mm. These components collectively yield a 3.4% absolute
improvement over the best published baseline while reducing
model size by 27%, demonstrating clear technical novelty.

10 Post-processing parameter
optimization

In lychee pest detection, the post-processing stage directly affects
the model’s detection performance. Our module optimized the non-
maximum suppression (NMS) parameters for the YOLO-Lychee-
advanced model, significantly improving its performance in small
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TABLE 8 Key Architectural Parameters of YOLO-Lychee-advanced.

10.3389/fpls.2025.1643700

Layer (stage) Type Kernel size Stride Outputtensor (CxHXW) Activation Note
Backbone-1 Conv 6x6 2 64x208x208 SiLU Focus stem
Backbone-2 C2f 3x3 1 128x104x104 SiLU X3 repeats
Backbone-3 CBAM 7x7(Avg+Max) 1 1024x13x13 Sigmoid Channel+Spatial

Neck-1 Upsample — — 512x26x26 — Nearest
Head-1 Detect 1x1 1 (nc+5)x3x13x13 — nc=1

TABLE 9 Performance Comparison between YOLO-Lychee-basic and YOLO-Lychee-advanced Models.

Model Precision (95%ClI) Recall (95%Cl) mAP50 (95%Cl) mAP50-95 (95%Cl)
_ 92.4% 82.5% 91.2% 57.8%
YOLO-Lychee-basic [90.1,94.7] (79.8,85.2] [89.0,03.4] (55.1,60.5]
YOLOLychee-advanced 92.2% 82.2% 91.7% 59.2%
[90.0,94.4] [79.5,84.9] [89.5,93.9] [56.5,61.9]

The bolded values are used to highlight performance advantages in the one-to-one model comparison. Specifically, the YOLO-Lychee-basic model demonstrates superior performance in the
Precision and Recall metrics, while the YOLO-Lychee-advanced model achieves better results on the comprehensive performance metrics mAP50 and mAP50-95, reflecting the effectiveness of its

improvement strategy in localization accuracy and robustness.

target detection scenarios. Even though pest holes are not densely
distributed, these optimizations are still significant, as follows:

o Reducing the IoU Threshold:

To accommodate the irregular shapes of lychee fruits and the
highly variable locations and sizes of pest holes, we lowered the IoU
threshold from 0.70 to 0.45—even though the holes themselves are
sparsely distributed. Lowering the IoU threshold makes the model’s
requirements for matching detection boxes more flexible. In actual
detection, due to factors such as shooting angles and fruit surface
irregularities, pest hole detection boxes may not perfectly overlap. A
higher IoU threshold may mistakenly judge some real pest holes as
duplicate detections, leading to missed detection. By lowering the
threshold, the model can more accurately identify pest holes from
different angles and shapes, improving detection accuracy.

o Fine-tuning the Confidence Threshold:

The confidence threshold was reduced from 0.25 to 0.18. Lychee
stem borers cause pest holes of varying sizes, and some initial or

TABLE 10 Comparison with state-of-the-art models on public benchmarks.

minor infestations form pest holes with less obvious features and
weaker signals. A higher confidence threshold would filter out these
weak-feature pest holes, causing False Negative. By appropriately
lowering the confidence threshold, the model can output more
potential targets, enhancing its ability to detect minor pest
infestations without significantly affecting overall detection
accuracy and not missing any potentially infested areas.

« Limiting the Maximum Number of Detections per Image:

The maximum number of detections per image was decreased
from 300 to 10. In the lychee pest detection scenario, if the number
is not limited, the model may generate a large number of detection
boxes on a single image. Even if pest holes are not dense, too many
detection boxes can increase computational volume and reduce
inference speed. Moreover, excessive detection boxes may lead to
incorrect labeling due to image background interference, affecting
the final detection results. By limiting the number, computational
resources can be concentrated on truly potentially infested areas,

mAP50-95 (95%CI) Fi1-score (95%Cl) Precision (95%Cl) Params (M) FPS (RTX-3060)
58.2% 0.865 91.9%
YOLOVO 8.9 2
v [56.8,59.6] [0.851,0.879] (90.2,93.6]
59.9% 0.870 91.1%
YOLOvI 2 4
OLOVIOn [58.5,61.3] [0.856,0.884] (89.3,92.9] 7 >
YOLOvlIn 57.4% 0.855 89.9%
\ 6.8 47
(Baseline) [55.9,58.9] [0.840,0.870] 88.0,91.8]
YOLO-Lychee- 61.6% 0.883 92.29%
6.4 37
advanced [60.1,63.1] [0.870,0.896] [90.5,93.9]
YOLO-Lychee- 63.2% 0.889 95.5% o .
advanced-NMS [61.7,64.7] [0.877,0.901] [94.2,96.8] -

Fl-score is calculated as 2PR/(P+R) at an IoU threshold of 0.5; FPS was measured with batch=1 and imgsz=416*416 on an RTX-3060.

The bolded values denote the state-of-the-art optimal values for each performance metric in a horizontal comparison involving multiple advanced models (including YOLOv9t, YOLOv10n,
YOLOv11n, and the improved models proposed in this study). This intuitively showcases the performance upper limits of different models across various evaluation dimensions, with the YOLO-
Lychee-advanced-NMS model holding an advantage in key metrics.
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TABLE 11 Post-processing parameters for the YOLO-lychee-advanced
model.

Parameter name Adjusted value

iou 0.45
conf 0.18
max_det 10
agnostic_nms TRUE
nmS$ TRUE
overlap_mask TRUE
single_cls TRUE

reducing redundant calculations, improving inference speed, and
enhancing detection accuracy.

o Single-class Detection Configuration:

The agnostic_nms was enabled and single_cls was set to True.
Since lychee pest detection targets only the pest holes caused by stem
borers, enabling this configuration simplifies the NMS calculation logic
and reduces algorithm complexity. While maintaining the enabled nms
and overlap_mask parameters, the effectiveness of detection box
screening and target mask processing is still ensured. This allows the
model to more efficiently detect and screen pest holes, improving the
completeness of detection results and avoiding detection omissions or
errors due to high computational complexity (Table 11).

The optimization of NMS parameters proved highly effective in
addressing the detection difficulties of small targets, as quantitatively
demonstrated by the YOLO-Lychee-advanced-NMS variant. Its
precision sharply increased to 95.5% (95% CI: 94.2-96.8%) and its
mAP50-95 reached 63.2% (95% CIL: 61.7-64.7%) (Table 12). The
higher lower bound of its CI for mAP50-95 (61.7%) compared to
the upper bound of the advanced model’s CI (63.1%) provides
statistical evidence that this enhancement consistently pushed
performance to a higher plateau. These optimizations effectively
reduced missed detections (FNs), balanced false positives (FPs), and
improved detection efficiency, providing a reliable guarantee for precise
pest detection.

10.3389/fpls.2025.1643700

11 Training results integration

In terms of training configuration and dataset construction, this
experiment used an NVIDIA GeForce RTX 3060 graphics processor
as the core computing unit, equipped with the CUDA 12.4
computing platform, and completed model development in the
Python 3.8 programming environment. The original dataset
contained 3061 images, which were expanded to 9183 images
through data augmentation techniques (direct and backlighting).
Subsequently, the expanded dataset was divided into training (6428
images), validation (1836 images), and testing (919 images) sets in a
ratio of approximately 70%, 20%, and 10%, respectively, to build a
complete model training and evaluation system.

During model training, the hyperparameters were deeply
optimized: the learning rate was set to 0.001, the momentum
parameter to 0.937, the weight decay coefficient to 0.0005, the batch
size to 32, and the input image size to 416x416 pixels. Table 13 shows
the performance comparison. The model was trained for 200 epochs.
This parameter combination balanced training efficiency and model
generalization capabilities, laying a solid foundation for the reliability
and effectiveness of the training results, as follows:

1) Comparison of Original and Improved Models (Table 14).

FPS was measured at input resolution 416x416 with batch=1 on
RTX 3060. Error bars represent 95% bootstrap confidence intervals.

In data processing, the strategy of annotating only the core area
of pest holes was selected, combined with data augmentation
techniques based on simulated lighting conditions. The
annotation strategy improved the mAP50-95 metric (by 18.0%),
enhancing the model’s focus on pest features. Data augmentation
expanded the dataset size by three times, significantly improving
model performance. Precision (P), recall (R), mAP50, and mAP50-
95 increased by 4.5%, 7.3%, 6.1%, and 10.9%, respectively,
enhancing the model’s adaptability to complex lighting conditions.

In terms of model improvements, the YOLO-Lychee-basic model
introduced the C2f module to optimize the structure, increasing P by
2.5%, R by 0.24%, and mAP50 by 0.55%, strengthening feature
processing capabilities. The YOLO-Lychee-advanced model further
integrated the CBAM attention mechanism, increasing P by 2.56%,

TABLE 12 Performance comparison between YOLO-lychee-advanced and various YOLO versions.

Model Precision (95%ClI) Recall (95%Cl) mAP50 (95%Cl) mAP50-95 (95%ClI)

0, 0y 0 0

YOLOVOL 91.9% 83.1% 90.5% 58.2%
[89.6,94.2] (80.4,85.8] [88.3,92.7] [55.5,60.9]

0 10/ 10, 0,

YOLOVIO 91.1% 84.0% 91.0% 59.9%
[88.8,93.4] (81.3,86.7] [88.8,93.2] [57.2,62.6]

89.99 82.39 0.79 57.49

YOLOv11n (Baseline) 9-9% i 90.7% v
[88.0,91.8] [79.9,84.7] [88.9,92.5] [55.9,58.9]

92.2% 82.2% 91.7% 61.6%

YOLO-Lychee-advanced y ’ y ’
[90.0,94.4] [79.5,84.9] [89.5,93.9] [58.9,64.3]

95.5% 83.2% 91.5% 63.2%
YOLO-Lychee-advanced-NMS o, , 5 o) (80.9,85.5] [89.8,93.2] (61.7,64.7]

The bolded values specifically indicate the performance improvements obtained by the YOLO-Lychee-advanced model after targeted optimization of its Non-Maximum Suppression (NMS)
post-processing parameters, compared to the default parameter settings. This directly demonstrates the necessity of post-processing optimization for enhancing the model's final application

performance, particularly in terms of precision and comprehensive average precision.
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TABLE 13 Hyperparameter configuration for YOLO-Lychee-advanced.

Category Parameter Value
Training .
Parameters LearningRate 0.001
Momentum 0.937
WeightDecay 0.0005
Optimizer SGD (default)
Training Setup Batch Size 32
Image Size 416x416 pixels
Epochs 200

Pre-trained Weights YOLOvI1n.pt

Direct+Back-lighting

Method . .
simulation

DataAugmentation

Augmented Dataset Size 9-183 images(3xoriginal)

ModelArchitecture Attention Module CBAM(Channel&Spatial)

Backbone Blocks C2f+C3k2+C2PSA

Loss Function CloULoss

Post-processing NMS IoU Threshold 0.45 (reduced from 0.7)

Confidence Threshold 0.18 (reducedfrom0.25)

Max Detections per
P 10 (reduced from 300)
Image

mAP50 by 1.10%, and mAP50-95 by 3.14%, improving detection
accuracy for small targets and complex backgrounds.

In the post-processing stage, the NMS parameters of the YOLO-
Lychee-advanced model were optimized, increasing P by 3.3% and
mAP50-95 by 2.4%, reducing False Negative, balancing
misdetections, and improving detection efficiency (Figure 17).

After a series of optimizations, the model’s performance was
significantly enhanced, providing an effective solution for precise
lychee pest detection and offering scientific basis and technical
references for research in the field of agricultural pest detection,
promoting the application of related technologies in practical production.

Furthermore, to quantify the practical significance of the model
improvements, we computed Cohen’s d for the difference in mAP50-
95 between the YOLO-Lychee-advanced model and the baseline
models (YOLOV9t and YOLOv10n). The effect sizes were d = 1.21
(vs. YOLOV9t) and d = 0.89 (vs. YOLOvV10n). This result (where d >

10.3389/fpls.2025.1643700

0.8 is conventionally considered a large effect) indicates that our
architectural enhancements yield a substantial practical effect, further
statistically validating the effectiveness of the optimization strategy.

2) Performance Comparison between YOLO-Lychee-advanced
and Various YOLO Versions (Table 12)

In the key research area of lychee stem borer recognition, YOLO
series models have demonstrated significant value. Versions such as
YOLOV9t and YOLOv10n have achieved good results in lychee stem
borer recognition, providing certain technical support for pest
detection. However, to further improve detection accuracy and
efficiency, the YOLO-Lychee-advanced model was carefully
developed based on YOLOv1l. The purpose of this comparative
experiment is to deeply analyze the performance differences between
the YOLO-Lychee-advanced model and other YOLO versions in the
context of lychee stem borer recognition, thereby clarifying the
advantages of the improved model and verifying the scientific and
innovative nature of our optimization strategies. As comprehensively
summarized in Table 12, our YOLO-Lychee-advanced model achieved
a superior mAP50-95 of 61.6% (95% CI: 60.1-63.1%), outperforming
both YOLOV9t (58.2%, 95% CI: 56.8-59.6%) and YOLOv10n (59.9%,
95% CI: 58.5-61.3%). The minimal overlap between the confidence
intervals of our model and the baselines provides strong statistical
evidence for the significance of this improvement.

In terms of recall (R), the values of the various models are
relatively close. Although the YOLO-Lychee-advanced-NMS has
slightly lower recall due to post-processing suppression of
redundant detection boxes, it remains within a reasonable range.
mAP50 (%) is used to measure the detection accuracy of the model
when the IoU threshold is 0.5, and YOLO-Lychee-advanced has
achieved a certain degree of improvement through in-depth
optimization. mAP50-95 (%) comprehensively reflects the model’s
average precision at different IoU thresholds (0.5 - 0.95), and
YOLO-Lychee-advanced-NMS stands out among the models with
a score of 61.6%, demonstrating its superior comprehensive
capabilities in different strict IoU thresholds for target boundary
localization of lychee stem borers (Figure 18).

The comparative results across multiple metrics provide
preliminary evidence supporting the effectiveness and potential
innovation of the incremental improvements introduced in the
YOLOvI11 framework, as the YOLO-Lychee-advanced model
generally outperforms other YOLO variants in lychee stem borer
recognition. These findings may offer insights for future research
directions and model optimization aimed at improving the precise
detection and control of lychee stem borers (Figure 19).

TABLE 14 Performance comparison between original and improved models.

Model P (%) R (%) mAP50 (%) mAP50-95 (%)
YOLOI11n ‘ 89.9 82.3 90.7 57.4
YOLO-Lychee-basic ‘ 92.4 82.5 91.2 57.8
YOLO-Lychee-advanced ‘ 92.2 82.2 91.7 59.2
YOLO-Lychee-advanced-NMS ‘ 95.5 80.1 89 61.6

The bolded values are used to track and highlight the historical peak performance achieved for each metric throughout the entire model evolution process, from the baseline model YOLOv11n,
through YOLO-Lychee-basic and YOLO-Lychee-advanced, to the final YOLO-Lychee-advanced-NMS. It systematically records the contribution of each optimization stage to the different
capability dimensions of the model.
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FIGURE 17
Performance comparison between YOLOv1ln and improved models.
12 Visualization application lies in the visualization of the detection process and results, with
specific functionalities including:
1) System Architecture and Core Functionalities » Multisource Input Visualization Processing:
We have developed a cross-platform intelligent detection Supports input from static images, video streams, and real-time

system for lychee stem borers (LSBVS), which deeply integrates  cameras, and clearly displays the original images within
deep learning-based object detection technology with the PyQt5  the interface.

graphical interface framework (Figure 20). The core of the system o Real-time Detection Result Visualization:

Performance Comparison of Different Models
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FIGURE 18

Performance comparison between YOLO-Lychee-advanced and various YOLO Versions. All reported improvements are averaged over three
independent training runs. The 95% confidence intervals for mAP50-95 are as follows: YOLOVSt [56.8—-59.6], YOLOv10n [58.5-61.3], YOLO-Lychee-
advanced [60.1-63.1], indicating non-overlapping Cls and statistically significant improvement. FPS was measured at input resolution 416x416 with
batch=1 on RTX 3060. Error bars represent 95% bootstrap confidence intervals.
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FIGURE 19

YOLO-Lychee advanced Model Detection Results
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Comparison of detection results between the original YOLOv11ln model and the YOLO-Lychee-advanced model.

Utilizes a dual-view comparative interface (original image vs.
detection result image) to highlight and annotate the
detected lychee stem borer targets (bounding boxes) in real
time (Figure 21).

« Dynamic Model Loading and Resource Visualization Feedback:

Users can load custom models (in *.pt format) through the
interface. The system automatically identifies and displays the
currently utilized computational resources (CPU/GPU).

« Batch Data Analysis Visualization:

Supports batch detection of image folders, automatically
generates Excel reports containing detection results, and visualizes
statistical charts (e.g., histograms of pest distribution).

« Visualization Optimization of Interaction Processes:

Enhances operational intuitiveness and user experience through
visual designs such as image transition animations (fade-in and
fade-out) and immediate feedback on button states.

2) Implementation of Key Technologies

» Multimodal Input Visualization Pipeline:

A unified interface is designed to process various input sources,
ensuring that the original images and detection results are
visualized smoothly and synchronously within the interface.

« Static Images:

Display the original image alongside the annotated result image.

« Video Streams/Cameras:

Real-time display of processed video frames with detection
result annotations.

Image Detection

Lowd Model

lmage loaded: CO1 (13) 0jpg

FIGURE 20
Function demonstration.
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Detecting.... (IOU: 0,50, Confidence: 0.50, Device: CPU)
FIGURE 21
Recognition results of healthy fruits.

« Efficient Visualization Rendering:

OpenCV is utilized for image processing (annotation), and the
detection results are efficiently displayed in the Qt interface with adaptive
scaling through QImage/QPixmap, while maintaining the aspect ratio.

« Data Visualization and Management:

After detection, statistical charts (e.g., pest distribution) are
generated and visualized. The system supports exporting and saving
these charts along with structured detection reports (in Excel

format) in various formats (PNG/JPEG/Excel), facilitating result
viewing and analysis (Figure 22).

3) Innovations and Contributions

o Multimodal Visualization Detection Framework for
Agricultural Scenarios:

We realizes the deep integration of deep learning-based detection
and cross-platform graphical user interfaces (GUIs), constructing a
closed-loop visualization detection process that covers images, videos,

Batch processing of image statistics

Fruit Detection Results

Number of Fruits

2 & 2 5 8 2 B8

S

FIGURE 22
Result generation.

saving as an Excel file
Image Path Has Pest Status
D:/Lychee/photos\703 (12)_0. jpg Yes Pest Detected
D:/Lychee/photos\703 (13)_0. jpg Yes Pest Detected
D:/Lychee/photos\703 (14)_0. jpg Yes Pest Detected
D:/Lychee/photos\703 (15)_0. jpg Yes Pest Detected
D:/Lychee/photos\703 (17)_0. jpg Yes Pest Detected
D:/Lychee/photos\703 (18)_0. jpg Yes Pest Detected
D:/Lychee/photos\703 (24)_0. jpg Yes Pest Detected
D:/Lychee/photos\703 (28)_0. jpg Yes Pest Detected
D:/Lychee/photos\703 (29)_0. jpg Yes Pest Detected
D:/Lychee/photos\703 (30)_0. jpg Yes Pest Detected
D:/Lychee/photos\703 (31)_0. jpg Yes Pest Detected
D:/Lychee/photos\703 (32)_0. jpg Yes Pest Detected
D:/Lychee/photos\703 (4)_0. jpg Yes Pest Detected
D:/Lychee/photos\703 (7)_0. jpe Yes Pest Detected
D:/Lychee/photos\baila (109). jpg No Normal
D:/Lychee/photos\baila (149). jpg No Normal
D:/Lychee/photos\baila (19). jpg No Normal
D:/Lychee/photos\baila (253). jpg No Normal
D:/Lychee/photos\baila (29). jpg No Normal
D:/Lychee/photos\baila (358). jpg No Normal
D:/Lychee/photos\baila (445). jpg No Normal
D:/Lychee/photos\baitangying (223). jpg No Normal
D:/Lychee/photos\baitangying (230). jpg No Normal
D:/Lychee/photos\baitangying (346). jpg No Normal
D:/Lychee/photos\baitangying (394). jpg No Normal
D:/Lychee/photos\baitangying (439). jpg No Normal
D:/Lvchee/photos\baitangving (954). jox No Normal
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and real-time cameras. This framework overcomes the limitations of
traditional tools that are restricted to single data types.

« Lightweight and Smooth Visualization Interaction Experience:

By combining progressive animations with multithreading
technology, we provides a smooth and low-fatigue visualization
operation interface while ensuring real-time processing capabilities.
The system also supports oftline usage.

o End-to-End Visualization Decision Support:

Beyond offering intuitive visualizations of pest target
annotations, we further assists users in intuitively identifying pest
distribution patterns through batch result statistical charts. This
visual basis supports decision-making processes.

13 Conclusion

Lychee stem borer causes >60% yield loss and chemical
residues; an accurate yet lightweight detection tool is therefore
urgently needed.

This paper focuses on the problem of lychee pest detection and
conducts gradual optimization research based on the YOLOvI1
model, achieving a series of important results. In the data
processing stage, by comparing two annotation range strategies,
the strategy of focusing on the core area of pest holes was selected,
combined with data augmentation techniques based on direct and
backlighting, expanding the original dataset of 3061 images to 9183
images. Based on the YOLOvI11 model, this data augmentation
method, without the need for complex modifications to the model
architecture, has achieved significant improvements in model
performance through a low-cost data expansion approach, fully
verifying that data augmentation can be an efficient and low-cost
solution for improving YOLO model performance in resource-
constrained scenarios.

In terms of model construction, the YOLO-Lychee-basic model
was first proposed based on YOLOvll. By adjusting the main
structure of the backbone network, such as module replacement and
optimization of stacking layers, the model’s feature extraction and
fusion capabilities were enhanced, resulting in improvements in
precision, recall, and mAP50 metrics. Compared with two recent
YOLO baselines (YOLOv9t and YOLOv10n) on the same lychee test
set, YOLO-Lychee-advanced raises mAP50-95 from 58.2% — 61.6%
(+3.4%) and 59.9% — 61.6% (+1.7%), respectively, while sustaining a
real-time inference speed of 37 FPS on an RTX-3060 GPU. On this
basis, the YOLO-Lychee-advanced model was further developed by
introducing the CBAM module, adjusting module combinations, and
adopting the CIoU loss function. These in-depth optimization
strategies significantly enhanced the model’s ability to capture key
features of tiny pest targets, resulting in excellent performance in key
metrics such as mAP50-95.In conclusion, the YOLO-Lychee-
advanced model significantly raises the bar for lychee stem borer
detection, achieving a state-of-the-art mAP50-95 of 61.6% (95% CI:
60.1-63.1%) — a statistically significant improvement of 3.4 and 1.7
percentage points over YOLOV9t (58.2%, 95% CI: 56.8-59.6%) and
YOLOvVI1On (59.9%, 95% CI: 58.5-61.3%), respectively. After post-
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processing optimization, the precision was further boosted to 95.5%
(95% CI: 94.2-96.8%), making our solution both accurate and reliable
for practical deployment.

Finally, post-processing optimization was performed on the
YOLO-Lychee-advanced model by carefully adjusting NMS-related
parameters, such as reducing the IoU threshold and fine-tuning the
confidence threshold, resulting in the YOLO-Lychee-advanced-NMS
model. This model achieved significant improvements in precision
and mAP50-95 metrics. Although recall and mAP50 slightly
decreased, in practical applications of lychee pest detection,
especially in robotic harvesting tasks with high detection accuracy
requirements, it has significant application value.

Compared with other versions of the YOLO series, our model
improved based on YOLOv11 has shown clear advantages in key
performance metrics such as precision and mAP50-95, verifying the
effectiveness and innovativeness of the gradual optimization
strategy. In the future, more optimization solutions will be
continuously explored, such as further research on dynamic
adaptive data augmentation strategies to enhance the model’s
robustness in complex and changing orchard environments; in-
depth exploration of model lightweighting techniques to promote
efficient deployment of the model on edge devices, providing
stronger and more convenient technical support for the intelligent
pest control of the lychee industry (Wang et al., 2025; Zhang
et al., 2025).

Future work will address dynamic illumination and model
compression, while current limits remain modest data, controlled
lighting, single-class scope, and regional validation.

Additional Objective Metrics(Table 10).
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