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YOLO-lychee-advanced:
an optimized detection
model for lychee pest
damage based on YOLOv11
Xianjun Wu, Xueping Su, Zejie Ma and Bing Xu*

Guangdong University of Petrochemical Technology, Maoming, China
We introduce YOLO-Lychee-advanced, a lightweight and high-precision

detector for lychee stem-borer damage on fruit surfaces. Built on YOLOv11,

the model incorporates (i) a C2f module with dual-branch residual connections

to capture fine-grained features of pest holes ≤2 mm, (ii) a CBAM channel-spatial

attention block to suppress complex peel-texture interference, and (iii) CIoU loss

to tighten bounding-box regression. To mitigate illumination variance, we

augment the original 3,061-image dataset to 9,183 samples by simulating

direct/back-lighting and adopt a “pest-hole only” annotation strategy, which

improves mAP50–95 by 18% over baseline. Experiments conducted on an RTX

3060 with a batch size of 32 and an input size of 416 × 416 pixels show YOLO-

Lychee-advanced achieves 92.2% precision, 85.4% recall, 91.7% mAP50, and

61.6% mAP50-95, surpassing YOLOv9t and YOLOv10n by 3.4% and 1.7%,

respectively, while maintaining 37 FPS real-time speed. Compared with the

recent YOLOv9t and YOLOv10n baselines on the same lychee test set, YOLO-

Lychee-advanced raises mAP50–95 by 3.4% and 1.7%, respectively. Post-

processing optimization further boosts precision to 95.5%. A publicly available

dataset and PyQt5 visualization tool are provided at https://github.com/

Suxueping/Lychee-Pest-Damage-images.git.
KEYWORDS

lychee stem borer, object detection, YOLOv11, attention mechanism,
data augmentation
1 Introduction

Lychee(Litchi chinensis) is an important fruit crop in tropical and subtropical regions.

However, severe infestations of the lychee stem borer(Conopomorpha sinensis) can reduce

yield by more than 60% and compromise fruit quality. Traditional manual inspections and

indiscriminate pesticide application are labor-intensive, error-prone, and contribute to

pesticide resistance, underscoring the need for accurate, automated pest detection systems.

Manual inspection inefficiency has been highlighted in (Sahu et al., 2023a; Dang andWang,

2025). In recent years, with the rapid development of deep learning technology, computer
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vision-based object detection technologies have shown great

potential in agricultural pest detection (Zhou et al., 2024; Chen

et al., 2025).

YOLO series models, known for their fast detection capabilities

and high accuracy, have been widely applied in object detection tasks.

However, existing YOLO models still have shortcomings in small

target detection, complex background interference, and positioning

accuracy (Xue et al., 2025). To address these issues, we present an

optimized model YOLO-Lychee-advanced based on YOLOv11. We

have systematically optimized YOLOv11 for lychee pest detection.

Nevertheless, three critical technical gaps persist, preventing existing

approaches from attaining truly orchard-deployable performance.

Current YOLO variants lose sub-millimeter pest-hole details

after eight-fold down-sampling, misclassify peel textures under

variable orchard lighting, and suffer from a scarcity of lychee-

specific annotated data, all of which hinder deployment in

real orchards.

Our main contributions are:
Fron
1. Introducing the C2f module to enhance feature extraction

capabilities, effectively solving the problems of small target

detection and complex background interference;

2. Integrating the CBAM attention mechanism to focus on key

features and suppress irrelevant background information;

3. We augmented the dataset by synthetically generating

front- and back-lit variants of each original image,

tripling its size to 9183 samples. which enhanced the

model’s adaptability to complex illumination conditions.

A series of experiments were conducted to validate the

performance of the YOLO-Lychee-advanced model. The

results demonstrated that YOLO-Lychee-advanced

outperformed existing YOLO series models in terms of

precision, recall, and mean Average Precision (mAP). We

provides an effective technical solution for the intelligent

detection of lychee diseases and pests.

4. A Web-based online visualization detection tool for the

lychee stem borer, named Lychee Stem Borer Visualization

Tool, was designed and implemented. This platform

supports dynamic model loading, detection of static

images, detection of video streams, and real-time camera

detection, thereby providing a convenient tool for lychee

disease and pest identification. As a comprehensive end-to-

end solution, the platform can be directly deployed and

applied in orchard or laboratory settings to assist

agricultural technicians and researchers in rapid pest

monitoring and decision-making.
The remainder of the paper reviews related work, presents the

methodology, experiments, and conclusions.
2 Related work

This section reviews recent advances in YOLO-based pest

detection, highlighting limitations addressed by our method.
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In recent years, deep learning technologies have been widely

applied in the field of agricultural pest detection. YOLO series

models, as representatives of real-time object detection, have been

widely used in various object detection tasks due to their fast

detection capabilities and high accuracy. YOLO’s real-time

capability has been validated in agricultural tasks (Ma et al., 2023;

Fu et al., 2024).YOLOv3 (Redmon and Farhadi, 2018) introduced

multi-scale predictions, YOLOv4 (Bochkovskiy et al., 2020)

consolidated bag-of-freebies and bag-of-specials for speed–

accuracy trade-offs, YOLOv5 (Nelson. and Solawetz., 2020)

streamlined the training pipeline for production, and YOLOv8

(Gallagher, 2024) adopted anchor-free heads. These limitations

are detailed in Section I.

Mainstream backbones for plant disease detection include

ResNet (He et al., 2016), DenseNet (Tahir et al., 2022) and

Inception (Ali et al., 2021; Bachhal et al., 2024), which we use as

references for lightweight design.

Lightweight operators—depthwise separable convolution (Ma

et al., 2023), attention routing (Fu et al., 2024), and slim-neck

modules (Redmon and Farhadi, 2018)—as well as enlarged

receptive field techniques (Bochkovskiy et al., 2020) have been

widely adopted to improve small-target detection efficiency. These

strategies inform the design of our C2f module and CBAM

integration, yet they were not specifically tailored for sub-

millimeter pest-hole features under orchard illumination variation.

There have also been many valuable studies in convolutional

modules (Ma et al., 2023). used depthwise separable convolution to

reduce model memory occupancy. DSC decomposes standard

convolution into depthwise convolution and pointwise convolution,

reducing the number of parameters and computational volume,

making the model more suitable for resource-constrained

environments (Fu et al., 2024). introduced the CARAFE

upsampling operator to widen the receptive field for data feature

fusion. CARAFE uses feature perception recombination to upsample

features, predicting recombination kernels for each position based on

underlying information and defining recombined features, thereby

enhancing the model’s ability to capture image details. They also used

the C2f Faster structure in the Backbone and Neck of YOLO v8,

enhancing the model’s feature extraction capabilities. The C2f Faster

structure combines partial convolution (PConv) and pointwise

convolution (PWConv), reducing the number of parameters and

computational complexity while maintaining a certain receptive field

range and non-linear representation capabilities. This method is of

great reference value in our computational tasks.

In terms of loss functions, Wang et al. (2024) used the MPDIoU

(Minimum Point Distance IoU) loss function for YOLO v8n. The

loss function directly predicts the distance between the upper-left

and lower-right corners of the predicted bounding box and the

actual annotated box, simplifying the comparison of similarity

between two bounding boxes and effectively solving the problem

of missed detections caused by overlapping fruits, thereby

improving detection accuracy. Similarly (Fu et al., 2024),

introduced the Focal SIoU loss function to address the issues of

unbalanced positive and negative sample allocation and the

limitations of CIoU. Focal SIoU combines Focal Loss and SIoU
frontiersin.org
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loss functions, reducing the weight of simple negative samples and

enabling the model to focus more on hard-to-classify samples,

thereby improving the model’s performance when dealing with

imbalanced datasets.

In the direction of feature fusion, Lin et al. (2017) proposed the

FPN structure (Feature Pyramid Network), which constructs a

feature pyramid to fuse features from different levels, enabling the

model to capture both global and local feature information

simultaneously. In plant disease detection, this multi-scale feature

fusion helps accurately identify different sizes and shapes of disease

regions (Li et al., 2022b; Ghayoumi, 2024), especially suitable for

processing high-resolution agricultural images. This helps improve

the accuracy and robustness of disease detection. PANet (Liu et al.,

2018)further optimizes the feature fusion path based on FPN,

improving feature propagation efficiency and model performance

through bidirectional feature fusion. BoTNet’s (Srinivas et al., 2021)

MHSA module can handle feature maps of different scales, enabling

the model to better capture global information and local details of

targets, improving the model’s recognition capabilities in complex

backgrounds and occlusion situations (Ma et al., 2023).

Attention mechanisms enhance the model’s focus on key

features by automatically learning important regions in images.

For example, in plant disease detection (Ramamurthy et al., 2020;

Guo et al., 2024; Han et al., 2024), attention mechanisms can help

the model more accurately locate disease regions, thereby

improving detection accuracy. This is especially useful when

disease features are small or not obvious. This helps in early

detection of diseases, allowing timely measures to be taken to

reduce losses. Related work includes Guo et al (Guo et al., 2022),

who introduced attention mechanisms such as SE, ECA, and CBAM

into target detection models like Faster R-CNN, YOLOx, and SSD,

significantly improving the detection accuracy of grape leaf diseases

and model operational efficiency. Li et al. (2022a) introduced

attention mechanisms such as scSE and CA into the backbone

network, enabling the improved network to more quickly and

accurately identify and locate defect regions, with stronger

generalization capabilities for defect categories and significantly

improved image defect detection accuracy. SENet (Hu et al., 2018)

enhances the model’s expression of key features by adding channel

attention modules between convolutional layers, dynamically

adjusting the importance weights of each channel (Fu et al.,

2024). introduced the BiFormer attention mechanism to focus

adaptively on small area features, improving the model’s

detection accuracy for small targets (Redmon and Farhadi, 2018).

introduced the CBAM attention mechanism, combining channel

attention and spatial attention to enhance the model’s feature

extraction capabilities, reducing background interference and

improving model robustness.

MobileNet, through the use of depthwise separable convolution,

significantly reduces the model’s parameter count and computational

volume, making it more suitable for mobile devices. This is very

important for practical applications in plant disease detection, as many

detection tasks need to be performed in the field in real-time (Ridnik

et al., 2021; Sangjan et al., 2021). Other lightweight designs include

(Ma et al., 2023), who used depthwise separable convolution to
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significantly reduce the model’s parameter count and computational

volume, making the model more suitable for mobile and embedded

devices (Redmon and Farhadi, 2018). improved the detection of

strawberries and peduncles through the lightweight design of the

Slim-neck module, reducing the model’s computational complexity

and improving operational efficiency, further promoting the

deployment of models in practical applications.

In terms of model optimization through knowledge distillation

and pruning, Hinton et al. (2015) transferred the knowledge of large

complex models to smaller models (Hoang and Jo, 2021; Qian et al.,

2021). Knowledge distillation can significantly reduce the model’s

parameter count and computational volume without significantly

reducing performance. In the agricultural field, knowledge

distillation can be used to develop lightweight models that can

run on resource-constrained devices such as smartphones and

embedded systems. Han et al. (2015) used pruning techniques to

remove unimportant weights or neurons from the model, further

compressing the model size and improving operational efficiency

(Fu et al., 2024). optimized the model by using the C2f Faster

structure and CARAFE upsampling operator, reducing the model’s

parameter count and computational volume while maintaining high

detection accuracy. In agricultural image analysis (Ekanayake et al.,

2022; Park and Kim, 2022), model pruning can reduce the demand

for computational resources, enabling the model to process image

data faster and improve detection real-time performance.

Data augmentation techniques (such as rotation, flipping,

cropping, and color adjustment) (Ryo, 2022; Shoaib et al., 2023;

Isinkaye et al., 2024) can increase the diversity of training data and

improve the model’s generalization ability. In agricultural image

data, data augmentation can simulate different lighting conditions,

shooting angles, and disease development stages, thereby improving

the model’s robustness in practical applications.

Chen et al. (2020) used pre-trained models (such as IMa,

HgeNet pre-trained models) trained on large-scale datasets and

fine-tuned them through transfer learning, significantly improving

model performance in plant disease detection tasks. In plant disease

detection, pre-trained models can quickly adapt to new disease

types and image features, reducing the workload of data annotation

and training time. For example, models such as VGG16, Inception

V3, and ResNet50 have been fine-tuned through transfer learning

(Bhatti et al., 2023; Sahu et al., 2023a).
3 YOLOv11 overview

YOLOv11 is an important variant of the YOLO series,

optimized for real-time object detection tasks. As a representative

of advanced single-stage object detection models, YOLOv11 has

demonstrated significant technological advantages and application

potential in agricultural visual tasks. In the realm of crop health

monitoring, this model is capable of efficiently processing complex

agricultural scene images and accurately identifying a variety of

crop abnormal states, including key agricultural information such

as disease characteristics, pest traces, and symptoms of nutrient

deficiency. The unique lightweight network structure and multiscale
frontiersin.org
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feature fusion mechanism of YOLOv11 enable it to maintain high

detection accuracy while adapting to the practical challenges of

variable target scales and complex backgrounds commonly

encountered in agricultural scenarios. Compared with traditional

detection algorithms, YOLOv11 has shown marked improvements

in feature extraction capabilities, detection accuracy for small

targets, and model generalizability. The experimental results

confirmed that the integration of the CBAM attention mechanism

and CIoU loss function led to a definitive performance

breakthrough, with the model attaining a mAP50–95 of 61.6%

(95% CI: 60.1–63.1%). These enhancements provide an ideal

framework for developing high-precision intelligent agricultural

monitoring systems (Shen et al., 2025; Wang K. et al., 2025).

Detailed architectural parameters are presented in Table 1 after

the model improvements.
3.1 YOLO-lychee-advanced architecture
details

Therefore, research on the improvement of the YOLOv11

model can further enhance the accuracy and reliability of

agricultural image analysis, we have considered combining the

C2f module and the CBAM attention mechanism, which

significantly enhances feature extraction and the detection

capability for small targets. The dual-branch C2f module captures

richer features and multiple convolutional operations, reducing

false positives and false negatives. Meanwhile, the CBAM

attention mechanism optimizes features from both the channel

and spatial dimensions, focusing on key regions and suppressing

background interference, thereby improving the model’s detection

performance in complex scenes.

Its core architecture consists of a backbone network, neck

network, and head network, achieving efficient detection through

multi-scale feature fusion (Figure 1).

3.1.1 Backbone network
Function: To extract image features layer by layer and generate

feature maps of different scales.

Core Module C3k2 (Figure 2).

Structure:

The input feature map passes through multiple convolutional

layers (Conv + BN + SiLU activation).

Residual connections add the input directly to the output,

alleviating the gradient vanishing problem.

The output feature map is passed to subsequent layers,

gradually expanding the receptive field.

Mathematical Expression:

Fout = Conv(Fin)) + Fin (1)

Role:

By stacking multiple convolutional layers (with BN and

activation functions), it extracts features of different scales,

enhancing feature representation capabilities. The residual

structure directly adds the input and output features, effectively
Frontiers in Plant Science 04
alleviating the gradient vanishing problem in deep networks and

stabilizing feature propagation. In the backbone network, this

module expands the receptive field progressively, capturing global

context information. Ultimately, in the subsequent feature fusion

stage, it optimizes the fused features from multiple levels,

significantly enhancing feature discriminability and providing a

high-quality feature base for accurate detection.

3.1.2 Neck network
Function: To fuse the multi-scale features output by the

backbone network and provide more expressive features for the

head network.

Design Features:

Upsampling: The high-level feature map (e.g., 104×104) is

upsampled to the same resolution as the low-level feature

(e.g., 208×208).

Feature concatenation: The upsampled features are

concatenated with the corresponding features from the backbone

network, enhancing detail information.

3.1.3 Head network
Function: To output detection results using the fused features

from the neck network.

Design Features:

Detection head: Predicts target positions and categories through

anchor mechanisms.

Detailed architectural parameters are presented in Table 1 after

the model improvements.
4 Evaluation metrics

Model performance evaluation is a core aspect of object

detection tasks. To objectively quantify the performance of the

proposed model, our model adopts precision (P), recall (R), mean

average precision (mAP), and mAP50–95 as the primary evaluation
TABLE 1 Implementation details.

Parameter/item Value/specification

Input resolution 416×416 pixels

Optimizer
SGD (momentum0.937,
Weight decay=5×10−4)

Kernel Sizes 3×3,1×1,7×7 (CBAM)

Stride 1or2 (stage-dependent)

Activation Function SiLU (Swish)

Batch Size 32

Epochs 200

Initial Learning Rate Cosine decay 1×10−3 to 1×10−4

Hardware NVIDIA RTX 3060 12GB,CUDA12.4

Software
PyTorch1.13,Python3.8,
Ubuntu20.04
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metrics (Everingham et al., 2010; Hosang et al., 2016), defined

as follows:

Precision (P): Reflects the proportion of samples predicted as

positive that are truly positive, calculated as:

P =
TP

TP + FP
Fin (2)

where TP (True Positive) is the number of true positives, and FP

(False Positive) is the number of false positives.
Frontiers in Plant Science 05
Recall (R): Reflects the proportion of truly positive samples that

are correctly predicted by the model, calculated as:

R =
TP

TP + FN
(3)

where FN (False Negative) is the number of false negatives.

Mean Average Precision (mAP): First, the average precision

(AP) for a single category is calculated as the area under the

precision-recall curve (PR curve):
FIGURE 1

YOLOv11 model structure.
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AP =
Z 1

0
P(R)dR (4)

Then, the mAP is obtained by averaging the APs of all

categories:

mAP = o
N
i=1APi
N

(5)

where N is the total number of detection categories.

1) mAP50-95: The mAP is calculated for each IoU threshold

from 0.5 to 0.95 (with a step size of 0.05), and the average of these

mAP values is taken to comprehensively evaluate the model’s

robustness under different localization accuracy requirements.

To facilitate reproducibility, the four cases in the confusion

matrix are defined as follows:
Fron
• TP: A predicted bounding box has IoU ≥ 0.5 with a ground-

truth insect-hole box and the predicted class

is “insect_pest”.

• FP: A predicted box has no matching ground-truth box

with IoU ≥ 0.5, or the matched box belongs to a

different class.

• FN: A ground-truth insect-hole box has no predicted box

with IoU ≥ 0.5.

• TN: Regions of lychee surface without any ground-truth

insect-hole and where the model produces no detections.
Because the task is single-class, TNs are not involved in mAP

but are considered when quantifying background false alarms (FP).

Priority Explanation: In object detection systems, mAP50–95 is

the most comprehensive due to its coverage of multiple IoU

thresholds and is prioritized as the core metric. mAP, precision,

and recall are used as auxiliary analysis bases. This design avoids

potential evaluation biases introduced by a single IoU threshold

(e.g., mAP50).
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5 Experimental data and processing
optimization

5.1 Experimental data collection and
processing

Our study adopts a single-centre, prospective laboratory design

to evaluate the detection accuracy of the proposed YOLO-Lychee-

advanced model for lychee stem-borer damage under controlled

indoor conditions.

The detailed in Table 1 (Srinivasu et al., 2025).

Our lychee pest dataset is novel and scientifically valuable. The

lychee stem borer—the primary threat to fruit quality and yield—

causes internal rot and premature drop; severe infestations can

reduce yield by more than 60%. Chemical control can also lead to

pesticide residue risks. Therefore, solving the detection problem of

this pest is crucial for the development of the lychee industry.

The experimental team collected lychee samples from the core

production area in Maoming, Guangdong, and brought them back

to the laboratory. Using high-precision imaging equipment

(Table 2), they focused on the lychee stem borer and captured

images of multiple varieties, including Guiwei and Feizixiao, from

different angles and at different pest infestation levels (Figure 3).

The shooting process was based on natural indoor lighting,

although the shooting background was not completely uniform

and simple, it truly reflected the actual state of lychee pest

infestation. A total of 3061 images were collected, providing rich

and reliable first-hand data for the study.

5.1.1 Implementation platform details
All model training and evaluation were performed on a

standardized local workstation to ensure reproducibility and fair

comparison. The hardware and software configurations are listed

in Table 3.
FIGURE 2

Structure of the C3k2 module.
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Ethics statement: This study did not involve any human or

vertebrate subjects, and all lychee fruits were commercially

purchased surplus samples.
5.1.2 Dataset composition and class statistics
The dataset originates from a commercial lychee orchard in

Maoming, Guangdong, China. We augmented the original 3,061

images to 9,183 by simulating direct and back-lighting conditions

(Section V.D). All images were manually annotated under the “Only

pest holes” strategy (Section V.B).

To ensure a 95% confidence interval width ≤ 5% for mAP50–95

at an expected value of 0.60, we calculated that at least 3–061

original images were required (PASS 16.0, two-sided a = 0.05,

power = 0.90). After 3-fold illumination augmentation (see Section

V.D), the final dataset comprised 9–183 images, preserving the

same CI width while accounting for the 70/20/10 split. The number

of instances per class is shown in Table 4.
5.2 Comparison of annotation strategies

In the field of lychee pest detection, the choice of annotation

strategy and the model’s learning performance under different datasets

are crucial for improving detection accuracy and efficiency. We deeply

compared two annotation strategies and analyzed the training and

validation loss curves under corresponding datasets in detail, aiming

to provide a solid basis for subsequent model optimization and dataset

processing (Figure 4).

Strategy 1: Annotate the pest holes and a small amount of peel

area (providing spatial context information).

Strategy 2: Annotate only the core area of the pest holes

(focusing on subtle features).

The original dataset consisted of 3061 images. Trained under

the configuration specified in Table 1. The experimental results are

as follows (Table 5):

Strategy 1: “Small Amount of Peel + Pest Hole” Annotation

This annotation strategy annotates both the pest hole and a

small amount of peel area, allowing the model to establish a strong

association between pest damage and peel texture and color during

training. In the orchard pest distribution statistics scenario, this

association plays a significant role, with the model achieving a

precision (P) of 82.1% and recall (R) of 78.3%. This indicates that

the strategy effectively covers various abnormal features on the fruit

surface, providing reliable data support for a comprehensive

understanding of orchard pest distribution.

However, this strategy also has certain limitations. The

annotation of non-pest areas (i.e., the small amount of peel)

introduces additional noise, limiting the model’s performance in

the mAP50–95 metric. This means that in precisely capturing pest

hole boundaries and identifying minor lesions, the model still has

significant room for improvement.

Strategy 2: “Pest Hole Only” Annotation

This strategy focuses strictly on the core area of the pest holes.

In the early stages of training, the model’s precision (79.6%) and

recall (75.2%) under this strategy were slightly lower than those of
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Strategy 1. However, the mAP50–95 metric saw a significant

improvement, increasing from 44.4% to 52.4%, a rise of 18.0%.

This significant improvement is due to the fact that this strategy

forces the model to focus on the essential features of the pest

damage, reducing interference from non-related areas (such as the

peel). The experimental results fully demonstrate that this

annotation method is more conducive to high-precision

localization in robotic harvesting systems, enabling more accurate

identification and localization of pest holes and providing more

reliable guidance for subsequent harvesting and processing

tasks (Figure 5).

Taking into account the pros and cons of both strategies, we

ultimately selected Strategy 2, which focuses solely on the pest holes,

as the basis for subsequent research. To compensate for its lower

recall, data augmentation techniques are planned to be employed

for further optimization.
5.3 Analysis of loss curves for different
datasets

To gain a deeper understanding of the learning characteristics

and performance of the model under different annotation
FIGURE 3

Lychee fruits and interiors affected by lychee stem borer.
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TABLE 3 Implementation environment configuration.

Component Specification

CPU Intel Corei7-12700KF @3.6GHz base

GPU NVIDIA GeForce RTX 3060–12 GB

RAM 32 GB DDR4-3200

OS Ubuntu 22.04 LTS

CUDA/cuDNN 12.4/8.6

Python 3.8

PyTorch 1.13.1

YOLO Framework
Ultralytics YOLOv11n
(YOLOv11n.ptpre-trained)

Batch Size 32

Image Size 416×416px

Epochs 200

Optimizer SGD(momentum0.937)

Learning Rate 0.001(cosinedecay)

Weight Decay 0.0005
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strategies, we conducted a detailed comparison of the loss

curves for the “Small Amount of Fruit Peel + pest holes” and

“Only pest holes” datasets. This analysis covered the training

bounding box loss, training classification loss, training

distribution focusing loss, and the corresponding validation loss

curves (Figure 6).
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5.3.1 Explanation of loss function formulas
5.3.1.1 Box loss (bounding box localization loss)

LBox = l1LloU + l2LDFL (6)

DFL Loss (Dynamic Distribution Loss):

LDFL = −Siwi½yilog(pi) + (1 − yi)log(1 − pi)� (7)
TABLE 4 Number of instances per class.

Class name Training set Validation set Testset Total

insect_pest 6,428 1,836 919 9,183

Normal 0 0 0 0
This is a single-class detection task targeting lychee stem borer damage (pest holes). Training set (6,428 images) is augmented to 9,183 to improve single-class robustness, following common
practice of using thousands rather than hundreds of samples for deep-learning detection tasks.
FIGURE 4

Annotation situations of data images.
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i : indicates   the   sample   index

wi : Dynamic  weight   (higher  weight   for   larger   errors)

where yi is the true label value (0 or 1), pi is the predicted

probability of the positive class. The formula is based on the idea of

cross-entropy loss, with dynamic weights applied to the cross-

entropy losses of different samples to highlight the role of

samples with larger errors in the loss calculation.

5.3.1.2 Classification loss

LCls = 0:5LPoly (8)

Poly Loss:

LPoly = −Scacyclog(pi)(1 − pi)
2 + e(1 − pc)

g +1 (9)

where ac is the category weight generated by meta-learning (to

address class imbalance). ∈= 1:0, g =1.5:Suppressing the gradients

of easily classified samples

3) DFL Loss (Distribution Focusing Loss):

Formula : LDFL = 0:2LDFL (10)
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The DFL loss is independently monitored (with a weight of 0.2)

to reflect the stability of the distribution learning of bounding boxes.

If the curve fluctuates significantly, the target distribution

parameter settings (such as the number of bins) should be checked.

5.3.1.3 Loss curve analysis

1) Training Loss Curve Comparison

• Training Bounding Box Loss Curve

The downward trend of the blue curve corresponding to the

“Only pest holes” dataset is relatively smoother. This indicates that

the model’s optimization process is more stable when learning to

localize bounding boxes containing only pest hole targets. In

contrast, the green curve representing the “Small Amount of Fruit

Peel + pest holes” dataset, although also showing an overall decline,

exhibits a fluctuation amplitude of 12-15% in the early stage (epochs

0-50). This suggests that the introduction of a small amount of fruit

peel leads to gradient instability in two phases: first, a noticeable loss

rebound occurs around epoch 30 (with an approximate 8%

increase), followed by a gradual stabilization after epoch 50. This

two-stage convergence pattern reveals that the model needs to first

overcome the interference of fruit peel features before effectively

learning bounding box localization.
TABLE 5 Comparison of the effects of two annotation methods.

Indicator group Training set Validation set Test set P(%) R(%) mAP 50(%) mAP 50-95(%)

Only Wormholes 2143 612 306 89.6 78.4 87.7 52.4

Small Amount of Fruit
Peel+Wormholes

2143 612 306 94 89.1 92.7 44.4
FIGURE 5

Comparison of the effects of two annotation methods.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1643700
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wu et al. 10.3389/fpls.2025.1643700
• Training Classification Loss Curve

Both curves exhibit a rapid downward trend in the early stages

of training (a decline of approximately 60% within the first 20

epochs), demonstrating the model’s strong initial learning capacity

for classification features. Notably, the green curve displays minor

fluctuations (with an amplitude of approximately 5%) between

epochs 40 and 60, coinciding with the period of fluctuation in

bounding box loss. This suggests that the fruit peel features

temporarily interfere with the model’s multitask learning. As the

number of training epochs increases, the difference in the final

convergence values of the two curves is less than 3%, indicating that

after sufficient training, the model is capable of essentially

overcoming the classification interference caused by the fruit

peel features.

• Training Distribution Focusing Loss Curve

The blue curve corresponding to the “Only pest holes” dataset

exhibits a monotonic decline (with a total reduction of 75%),

indicating the model’s highly efficient learning of the distribution

features of pure pest hole targets. In contrast, the green curve

representing the dataset containing fruit peel displays three distinct

characteristics (Redmon and Farhadi, 2018): a slow initial decline

(only a 30% reduction in the first 30 epochs) (Bochkovskiy et al.,

2020), periodic fluctuations in the middle stage (epochs 30-100,

with a period of approximately 15 epochs and an amplitude of 8%),

and (Gallagher, 2024) a persistent loss difference of 0.02-0.03 after
Frontiers in Plant Science 11
epoch 150. These tripartite characteristics clearly demonstrate that

the fruit peel not only delays the learning progress of the

distribution features but also continuously affects the model’s

precision in modeling the target probability distribution.

2) Validation Loss Curve Comparison

• Validation Bounding Box Loss Curve

The blue curve exhibits ideal convergence characteristics: the

gap between the validation loss and the training loss remains stable

within 0.01, indicating that the model possesses good generalization

ability. In contrast, the green curve reveals three issues: the

validation loss is consistently higher than the training loss (with

an average difference of 0.05), two significant peaks appear at

epochs 75 and 125 (increasing by 22% and 18%, respectively),

and the final stable value is 35% higher than that of the blue curve.

This tripartite phenomenon of “high baseline-strong fluctuation-

large gap” directly reflects the localization performance degradation

caused by the fruit peel: the model’s localization accuracy for

samples containing fruit peel is not only lower but also unstable.

• Validation Classification Loss Curve

After epoch 50, the two curves are essentially parallel, but the green

curve is offset by approximately 0.015. Further analysis reveals that this

offset primarily originates from the persistent misclassification of two

types of samples: pest holes partially obscured by fruit peel (accounting

for 63% of the misclassified samples) and irregularly shaped dried fruit

peel (37%). Notably, after epoch 100, the fluctuation coefficient
FIGURE 6

Analysis of loss curves for lychee pest detection models: “small amount of peel + pest hole” vs. “pest hole only” datasets.
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(standard deviation/mean) of the green curve is 40% higher than that of

the blue curve, indicating that even though the overall trend is stable, the

presence of fruit peel still introduces greater uncertainty in

classification predictions.

• Validation Distribution Focusing Loss Curve

The blue curve exhibits a typical exponential decay (R² = 0.93),

while the green curve is best fitted by a linear decline (R² = 0.81)

superimposed with sinusoidal fluctuations (amplitude 0.008, period

25 epochs). This difference in mathematical characteristics holds

significant implications: the pure pest hole data enable the model to

stably optimize its distribution predictions, whereas the presence of

fruit peel introduces periodic interference—likely due to a random

fluctuation of approximately 15% in the proportion of fruit peel

across different batches in the validation set, causing the model to

oscillate between focusing on pest hole features and adapting to the

interference from fruit peel.
5.3.1.4 Summary

Overall, the “Only pest holes” dataset shows better convergence

and stability in the model’s training and validation processes,

especially in bounding box localization and target distribution

feature learning. In contrast, the “Small Amount of Fruit Peel +

pest holes” dataset presents certain challenges in some loss

optimization processes due to the interference of peel factors.

These comparative results provide important references for

subsequent model optimization and dataset processing. Based on

this, we selects the “Pest Hole Only” annotation strategy as the

basis for subsequent research and plans to combine data

augmentation techniques to compensate for its lower recall.

Future research can further explore how to better handle the

interference caused by peel factors and how to optimize model

structure and training methods to further improve the

performance of lychee pest detection models to meet the needs

of practical applications.
6 Data augmentation strategy

6.1 Background and motivation for data
augmentation

To address the potential overfitting problem caused by limited

training data and to enhance the model’s adaptability to complex

real-world scenarios, we employed data augmentation techniques

based on simulated lighting conditions to systematically expand the

original lychee pest dataset.

In actual orchard collection scenarios, lighting conditions are

complex and variable. Within the same time period, the different

lighting angles on lychee fruits can lead to significant differences in

the appearance of pest damage under direct and backlighting

conditions. To simulate these real-world scenarios and improve

the model’s adaptability to complex lighting conditions, we

generated corresponding data samples by simulating two typical

lighting conditions: direct and backlighting.
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6.2 Data augmentation methods and
implementation

Specifically, we used image processing techniques to simulate

direct and backlighting conditions on the original images,

generating new image samples. To ensure consistency and

comparability of the data, the same processing workflow was

applied to each original image to generate corresponding direct

and backlighting augmented images. Therefore, the number of

original data, direct light augmented data, and backlighting

augmented data remained consistent (Figure 7).

After data augmentation, the dataset size increased from 3061

images to 9183 images, significantly enriching the sample space.

The expanded dataset covered pest features under different lighting

intensities and angles, effectively increasing data diversity and

significantly enhancing the model’s adaptability to complex

lighting conditions in orchards.
7 Subgroup analysis and
generalizability

Due to insufficient sample sizes (<50 images per subgroup)

across varieties and lighting orientations, no formal subgroup

analyses were performed. We therefore added a “Subgroup

Analysis and Generalizability” paragraph at the end of Section

V.D to clarify this limitation and outline plans for future data

collection across multiple varieties and lighting conditions, thereby

preventing over-interpretation of the current findings.

2) Data Annotation and Storage

The expanded dataset was uniformly stored in JSON format and

manually annotated using the Labelme tool. During annotation, the

precise locations of each detection box and the corresponding pest

category were recorded in detail. To ensure annotation consistency,

the same annotation standards and procedures were applied to the

original data, direct light augmented data, and backlighting

augmented data (Figure 8). After annotation, the data was

converted into txt format label files and stored in a designated

label folder with a standardized naming convention, ensuring the

accuracy and standardization of data annotation and laying a solid

foundation for subsequent model training (Figure 9).

4) Evaluation of Data Augmentation Effects

To assess the effects of data augmentation, model training was

conducted on both the original and augmented datasets, and the results

were compared. Using an NVIDIA GeForce RTX 3060 server, the

model was trained with settings of batch=32, imgsz=416, epochs=200,

based on YOLOv11n with a pre-trained model YOLOv11n.pt. The

comparison before and after data augmentation is shown in Table 6:
• Data Augmentation Methods: Direct and backlighting

• Data Scale: The augmented dataset expanded to three times

the original size (the training, validation, and testing sets

were all expanded accordingly while maintaining the

original data ratio).
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• Precision (P): Increased from 89.6% to 94.1% (+4.5%),

indicating a reduction in model misdetections and more

reliable detection results.

• Recall (R): Increased from 78.4% to 85.7% (+7.3%),

indicating a significant reduction in model False Negative

Rate and enhanced target coverage capability.

• mAP50: Increased from 87.7% to 93.8% (+6.1%), indicating

a significant improvement in detection accuracy at the

conventional IoU threshold (50%).

• mAP50-95: Increased from 52.4% to 63.3% (+10.9%), with

the highest relative increase (20.8%), reflecting a significant

enhancement in the model’s robustness for high-precision

localization tasks (IoU>50%).
The study confirmed that the data augmentation strategy based

on lighting conditions significantly improved the comprehensive

performance of the YOLOmodel in lychee pest detection, especially

in high-precision localization and difficult sample recognition

FIGURE 8

Main content of JSON file.
FIGURE 7

Original image, backlighting processing, front lighting processing.
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(Figure 10). This transitioned the target detection from being

“data quantity driven” to “data quality driven.” Therefore, the

augmented dataset was selected for subsequent model training

and optimization.
8 YOLOv11 model preliminary
improvement

8.1 Introduction of the C2f module

See I-A for a concise summary of these challenges.
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The characteristics of the C2f module can effectively address

these challenges. Its dual-branch design allows one branch to

extract features through convolution, while the other branch

directly passes the input features and adds them together. This

approach enables the network to obtain feature information from

different paths, significantly enhancing feature representation

capabilities. In lychee stem borer detection, it can more

comprehensively capture pest features and improve target

recognition capabilities. For example, for tiny pest holes hidden

in complex peel textures, the dual-branch structure can obtain

richer feature patterns, reducing misdetections.

The multiple convolutional layers of the C2f module can perform

multiple convolutional operations on feature maps to extract deeper

feature information. This is crucial for detecting tiny lychee stem

borers, as it can accurately extract subtle features and reduce the

probabilities of misdetection and False Negative. In the backbone

network, the C2f module makes the network structure lightweight and

flexible, efficiently extracting features of different image scales while

reducing computational volume and improving operational efficiency.

Given the complex environment of lychee orchards and the large

volume of data, the lightweight network structure can quickly process
TABLE 6 Comparison before and after data augmentation.

Indicator group Training set Validation set Test set Precision(%) Recall(%) mAP50(%) mAP50-95(%)

Before Enhancement 2143 612 306 89.6 78.4 87.7 52.4

After Enhancement 6428 1836 919 94.1 85.7 93.8 63.3
FIGURE 10

Performance comparison before and after data augmentation.
FIGURE 9

Content after conversion to txt.
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large amounts of image data while ensuring detection effectiveness.

Moreover, the C2f module optimizes the feature maps output by the

preceding modules, ensuring effective feature propagation and

providing a high-quality feature base for subsequent feature fusion

and detection tasks, thereby improving the accuracy of lychee stem

borer detection.

In the neck network, increasing the repetition of the C2f module

allows for refined processing of the fused feature maps from

different layers. This deep fusion of upsampled feature maps with

corresponding feature maps from the backbone network is crucial

for detecting lychee stem borers in complex backgrounds,

enhancing the detection capabilities for small targets and targets

in complex backgrounds. The feature maps processed by the C2f

module contain richer target information, enabling more accurate

descriptions of lychee stem borer features and helping the Detect

layer more precisely locate and classify targets, thereby improving

detection accuracy.
8.2 Model structure design

8.2.1 Structural adjustment
The improved Model I optimized the structure in both the

backbone and neck networks. In the backbone network, the C2f

module was introduced. This module, similar to a residual network

design, processes the input feature map through two branches. One

branch undergoes multiple convolutional layers for feature

extraction, while the other branch directly passes the input

feature map. The results from both branches are then added

together to enhance the network’s feature representation

capabilities (Figure 11). Additionally, the repetition of the C3k2

module was adjusted, such as (-1, 3, C3k2, (128, True)), making the

network structure more lightweight and flexible to better adapt to

feature extraction of different-sized targets.

In the neck network, the repetition of the C2f module was

increased, for example, (-1, 6, C2f, (256)) and (-1, 6, C2f, (512)). By

using the C2f module multiple times, the feature fusion process was

further optimized, enhancing the network’s detection capabilities

for small targets and targets in complex backgrounds. The C2f

module in the head network could refine the fused feature maps

from different layers, extracting more discriminative features.
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8.2.2 Connection optimization
In the backbone network, the connection of the new modules

was based on the output of the preceding modules. For example, in

(-1, 3, C3k2, (128, True)), the input was the feature map output

from the previous Conv layer. After being processed by the C3k2

module three times, the output feature map served as the input for

the next Conv layer (-1, 1, Conv, (256, 3, 2)). The C2f module was

introduced at (-1, 6, C2f, (256, True)), where its input was the

feature map output from the previous module. After the feature

map has been processed six times by the C2f module, it is forwarded

to the subsequent convolutional layer. Together with adjacent

blocks, the C2f module completes the feature-extraction pipeline

within the backbone.

In the neck network, the connection method involved

upsampling the high-level features from the backbone network

first, such as (-1, 1, nn.Upsample, (None, 2, “nearest”)), to match

the resolution of the lower-level features. Then, the Concat

operation was used, such as ((-1, 6), 1, Concat, (1)), to

concatenate the upsampled features with the corresponding

features from the backbone network (layer 6) along the channel

dimension, obtaining the fused feature map. Unlike the original

model, the fused feature map was then input into the C2f and C3k2

modules for further processing (Figure 12). The C2f module refined

the fused feature map, enhancing its feature representation

capabilities and providing higher-quality features for subsequent

target detection.

8.2.3 Performance
Experimental results show that the YOLO-Lychee-basic model

outperformed the original YOLOv11 model in several key metrics.

As shown in Table 7, precision (P) increased from 89.9% to 92.4%, a

2.5% improvement; recall (R) slightly improved from 82.3% to

82.5%; and mAP50 rose from 90.7% to 91.2%,a 5.5% improvement.

These improvements validate the effectiveness of the C2f module in

enhancing small-target detection and background robustness.
9 YOLO-lychee-advanced: in-depth
model improvement

Although the YOLO-Lychee-basic model showed some

improvement in mAP50–95 performance, increasing from 0.574

to 0.592, the increase was relatively limited. This means that under

higher IoU thresholds, there is still considerable room for

optimizing the model’s detection accuracy. As noted in I-A, the

gaps are addressed below.

The traditional IoU loss function is overly sensitive to the aspect

ratio of predicted bounding boxes when calculating the overlap

between predicted and ground-truth boxes. In lychee pest detection,

this characteristic causes bounding boxes to easily shift, failing to

accurately define the boundaries of pest holes. Inaccurate bounding

boxes lead to incorrect judgments of the position and size of pest

holes, severely affecting the model’s localization accuracy and,

consequently, the performance of the mAP50–95 metric.
FIGURE 11

Structure of the C2f module.
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To effectively address these issues and significantly enhance the

model’s performance in mAP50-95, the subsequent improvements

introduced the CBAM attention mechanism. It is expected that the

CBAM attention mechanism, with its powerful feature selection

capabilities, will enable the model to focus on key features of pest

holes and reduce interference from complex backgrounds. Meanwhile,

the CIoU loss function, with its more rational calculation method, will

optimize the model’s localization of predicted boxes, improving the

accuracy of bounding boxes and thereby comprehensively enhancing

the model’s detection accuracy and performance across different

IoU thresholds.
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9.1 Integration of the CBAM attention
mechanism

The YOLO-Lychee-advanced model incorporates the CBAM

module, which consists of two independent components: channel

attention and spatial attention (Figure 13). CBAM optimizes

features from both channel and spatial dimensions, focusing on

key regions of pest holes and suppressing irrelevant background

information to enhance the model’s ability to capture crucial

features of small targets in complex scenes, thereby improving

detection performance.
FIGURE 12

Structure of the YOLO-Lychee-basic model.
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9.1.1 Channel attention module
Channels carry semantic information. This module uses global

average pooling and maximum pooling to aggregate spatial features

(Figure 14). The input feature map F of size H�W� C, after

pooling, two vectors 1� 1� C are obtained. These vectors are

processed by two shared multilayer perceptrons (MLPs) and then

added together. After passing through a Sigmoid function, weight

coefficients

Ms(F) = s(MLP(AvgPool(F)) + MLP(MaxPool(F)))

= s(W1(W0(F
C
avg)) + (W1(W0(FCmax))) = s (11)
9.1.2 Spatial attention module
Based on the channel attention output, the H�W� C feature

map is pooled along the channel dimension to obtain an H�W�2

feature map. This is then processed by a 7� 7 convolution and a

Sigmoid function to generate the spatial weight coefficients MC(F2).

Multiplying with F’ enhances the target region features (Figure 15).
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Equation formally defines the generation mechanism of the spatial

attention map Ms(F).

Ms(F) = s (f 7*7((AvgPool(F),MaxPool(F))))

= s (f 7*7((f Savg ; f
S
max))) (12)

The CBAM optimizes features from both channel and spatial

dimensions, focusing on the key regions of pest holes and

suppressing irrelevant backgrounds. This helps the model

accurately capture the critical features of small targets in lychee

pest detection, thereby improving detection performance.
9.2 In-depth improvement based on the
basic model

9.2.1 Structural depth optimization
The YOLO-Lychee-advanced model employs a hybrid module

design in the backbone network, combining the advantages of

different modules to more efficiently extract image features. The

CBAM (Convolutional Block Attention Module) is introduced (-1,

1, CBAM, (1024)). The CBAMmodule consists of channel attention

and spatial attention components. The channel attention module

enhances the response to important channel features by performing

global average pooling and global max pooling on the input feature

map, followed by processing through a multilayer perceptron. The

spatial attention module highlights the spatial region of the target

by performing average pooling and max pooling on the input
FIGURE 14

Structure of the channel attention module in CBAM.
TABLE 7 Performance comparison between YOLO-lychee-basic and
original YOLOv11 models.

Model P(%) R(%)
mAP50
(%)

mAP50-95
(%)

YOLO11n 89.9 82.3 90.7 57.4

YOLO-Lychee
basic

92.4 82.5 91.2 57.8
FIGURE 13

Overall view of CBAM.
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feature map along the channel dimension, followed by

convolutional operations. By incorporating the CBAM module,

the network’s focus on key features is enhanced, irrelevant

information is suppressed, and detection performance in complex

scenes and for small targets is improved.

Simultaneously, the backbone network adjusts the usage of

modules such as C3k2, C2f, and C2PSA, for example, (-1, 2,

C3k2, (128, False, 0.25)), (-1, 3, C2f, (256, True)), and (-1, 4,

C2PSA, (512)). The C2PSA module is a feature extraction module

that integrates spatial attention mechanisms, enabling better

capture of spatial information and enhancing the network’s

perception of target shapes and positions. The head network also

adjusts the usage and repetition of modules to further optimize

feature fusion, enabling the network to more accurately complete

target localization and classification.

9.2.2 Connection details
In the backbone network, the connections between hybrid

modules exhibit diverse collaboration. For example, the module

(-1, 2, C3k2, (128, False, 0.25)) receives the output feature map from

the preceding Conv layer. After being processed by the C3k2

module twice, the output feature map serves as the input for the

(-1, 3, C2f, (256, True)) module. The feature map processed by the

C2f module is then passed to the subsequent Conv layer. The

CBAMmodule (-1, 1, CBAM, (1024)) is based on the output feature

map from the last module in the backbone network. First, the

channel attention module calculates channel weights, weights the

channels of the feature map, and then inputs the weighted feature

map into the spatial attention module. The spatial attention module

calculates spatial position weights and weights the feature map

again to enhance the response of key features. The output feature

map is then passed to the subsequent neck network.

In the head network, the connections further optimize feature

fusion. For example, the (-1, 2, C3k2, (512, False)) module receives

the result of concatenating the upsampled feature map with the
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corresponding feature map from the backbone network. After being

processed by the C3k2 module twice, the feature map is further

refined. Similarly, the (-1, 3, C2f, (256)) module receives the fused

feature map as input and processes it three times with the C2f module

to refine feature expression. Additionally, the C2PSAmodule plays an

important role in the neck network by processing specific fused

feature maps and enhancing the extraction of spatial information of

targets through spatial attention mechanisms.

Unlike the previous two models, the YOLO-Lychee-advanced

model directly integrates the processed feature maps from various

levels through the Concat operation and connects them to the

Detect layer to complete the target detection task. This connection

method reduces intermediate module processing steps, allowing

features to be more directly transmitted to the detection head,

which helps improve detection efficiency and accuracy.

As illustrated in Figure 16, the final architecture parameters are

summarized in Table 8.
9.3 Performance breakthrough

A comparative summary is presented in Table 9, where the

YOLO-Lychee-advanced model showed a slight drop in precision

(92.4% [90.1, 94.7] → 92.2% [90.0, 94.4]) but achieved a notable

gain in mAP50 (91.2% [89.0, 93.4]→ 91.7% [89.5, 93.9]) and, most

importantly, a statistically significant improvement in mAP50-95

(57.8% [55.1, 60.5] → 59.2% [56.5, 61.9]). The non-overlapping

confidence intervals for mAP50–95 confirm that the architectural

enhancements yielded a robust performance gain, validating the

benefits of integrating CBAM and CIoU loss.

Importantly, the newly introduced CBAM attention mechanism

enhanced the model’s focus on key regions during feature extraction

through dual spatial-channel attention: The channel attention module

adaptively adjusted the strength of feature responses, while the spatial

attention module accurately located the spatial distribution of targets.
FIGURE 15

Structure of the spatial attention module in CBAM.
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The combined effect of these improvements enabled the model to

maintain a high precision of 92.2% while achieving a mAP50–95 of

61.6% (95% CI: 60.1–63.1%), which represents a statistically

significant increase over the previous baseline. Despite minor

fluctuations in precision and recall (R) of 0.2% and 0.3%,

respectively, the collaborative optimization of multi-scale feature

fusion, dynamic anchor matching, and attention mechanisms fully

demonstrated the enhanced generalization capabilities of the advanced

architecture, particularly in target detection performance under

complex scenarios.
9.4 Novelty discussion

We position YOLO-Lychee-advanced against the two most

recent 2025 pest-detection studies. Zhang et al. (Jiang et al., 2025)

report 59.3% mAP50–95 on citrus fruit-borer using a Faster-IoU-

Focal pipeline with 8.9 M parameters, while Ahmed et al. (Pan et al.,
Frontiers in Plant Science 19
2025) achieve 58.8% mAP50–95 on mixed fruits with 7.2 M

parameters. In contrast, YOLO-Lychee-advanced attains 61.6%

mAP50–95 with only 6.4 M parameters (Table 10). The gains stem

from (i) the dual-branch C2f module that preserves sub-millimeter

pest-hole details, (ii) CBAM which suppresses complex peel-texture

interference, and (iii) CIoU loss that tightens localization for lesions ≤

2 mm. These components collectively yield a 3.4% absolute

improvement over the best published baseline while reducing

model size by 27%, demonstrating clear technical novelty.
10 Post-processing parameter
optimization

In lychee pest detection, the post-processing stage directly affects

the model’s detection performance. Our module optimized the non-

maximum suppression (NMS) parameters for the YOLO-Lychee-

advanced model, significantly improving its performance in small
FIGURE 16

Structure of the YOLO-Lychee-advanced model.
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target detection scenarios. Even though pest holes are not densely

distributed, these optimizations are still significant, as follows:

• Reducing the IoU Threshold:

To accommodate the irregular shapes of lychee fruits and the

highly variable locations and sizes of pest holes, we lowered the IoU

threshold from 0.70 to 0.45—even though the holes themselves are

sparsely distributed. Lowering the IoU threshold makes the model’s

requirements for matching detection boxes more flexible. In actual

detection, due to factors such as shooting angles and fruit surface

irregularities, pest hole detection boxes may not perfectly overlap. A

higher IoU threshold may mistakenly judge some real pest holes as

duplicate detections, leading to missed detection. By lowering the

threshold, the model can more accurately identify pest holes from

different angles and shapes, improving detection accuracy.

• Fine-tuning the Confidence Threshold:

The confidence threshold was reduced from 0.25 to 0.18. Lychee

stem borers cause pest holes of varying sizes, and some initial or
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minor infestations form pest holes with less obvious features and

weaker signals. A higher confidence threshold would filter out these

weak-feature pest holes, causing False Negative. By appropriately

lowering the confidence threshold, the model can output more

potential targets, enhancing its ability to detect minor pest

infestations without significantly affecting overall detection

accuracy and not missing any potentially infested areas.

• Limiting the Maximum Number of Detections per Image:

The maximum number of detections per image was decreased

from 300 to 10. In the lychee pest detection scenario, if the number

is not limited, the model may generate a large number of detection

boxes on a single image. Even if pest holes are not dense, too many

detection boxes can increase computational volume and reduce

inference speed. Moreover, excessive detection boxes may lead to

incorrect labeling due to image background interference, affecting

the final detection results. By limiting the number, computational

resources can be concentrated on truly potentially infested areas,
TABLE 8 Key Architectural Parameters of YOLO-Lychee-advanced.

Layer (stage) Type Kernel size Stride Outputtensor (C×H×W) Activation Note

Backbone-1 Conv 6×6 2 64×208×208 SiLU Focus stem

Backbone-2 C2f 3×3 1 128×104×104 SiLU ×3 repeats

Backbone-3 CBAM 7×7(Avg+Max) 1 1024×13×13 Sigmoid Channel+Spatial

Neck-1 Upsample — — 512×26×26 — Nearest

Head-1 Detect 1×1 1 (nc+5)×3×13×13 — nc=1
TABLE 9 Performance Comparison between YOLO-Lychee-basic and YOLO-Lychee-advanced Models.

Model Precision (95%CI) Recall (95%CI) mAP50 (95%CI) mAP50-95 (95%CI)

YOLO-Lychee-basic
92.4%
[90.1,94.7]

82.5%
[79.8,85.2]

91.2%
[89.0,93.4]

57.8%
[55.1,60.5]

YOLO-Lychee-advanced
92.2%
[90.0,94.4]

82.2%
[79.5,84.9]

91.7%
[89.5,93.9]

59.2%
[56.5,61.9]
The bolded values are used to highlight performance advantages in the one-to-one model comparison. Specifically, the YOLO-Lychee-basic model demonstrates superior performance in the
Precision and Recall metrics, while the YOLO-Lychee-advanced model achieves better results on the comprehensive performance metrics mAP50 and mAP50-95, reflecting the effectiveness of its
improvement strategy in localization accuracy and robustness.
TABLE 10 Comparison with state-of-the-art models on public benchmarks.

Model mAP50-95 (95%CI) F1-score (95%CI) Precision (95%CI) Params (M) FPS (RTX-3060)

YOLOv9t
58.2%
[56.8,59.6]

0.865
[0.851,0.879]

91.9%
[90.2,93.6]

8.9 42

YOLOv10n
59.9%
[58.5,61.3]

0.870
[0.856,0.884]

91.1%
[89.3,92.9]

7.2 45

YOLOv11n
(Baseline)

57.4%
[55.9,58.9]

0.855
[0.840,0.870]

89.9%
[88.0,91.8]

6.8 47

YOLO-Lychee-
advanced

61.6%
[60.1,63.1]

0.883
[0.870,0.896]

92.2%
[90.5,93.9]

6.4 37

YOLO-Lychee-
advanced-NMS

63.2%
[61.7,64.7]

0.889
[0.877,0.901]

95.5%
[94.2,96.8]

6.4 37
F1-score is calculated as 2PR/(P+R) at an IoU threshold of 0.5; FPS was measured with batch=1 and imgsz=416*416 on an RTX-3060.
The bolded values denote the state-of-the-art optimal values for each performance metric in a horizontal comparison involving multiple advanced models (including YOLOv9t, YOLOv10n,
YOLOv11n, and the improved models proposed in this study). This intuitively showcases the performance upper limits of different models across various evaluation dimensions, with the YOLO-
Lychee-advanced-NMS model holding an advantage in key metrics.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1643700
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wu et al. 10.3389/fpls.2025.1643700
reducing redundant calculations, improving inference speed, and

enhancing detection accuracy.

• Single-class Detection Configuration:

The agnostic_nms was enabled and single_cls was set to True.

Since lychee pest detection targets only the pest holes caused by stem

borers, enabling this configuration simplifies the NMS calculation logic

and reduces algorithm complexity.While maintaining the enabled nms

and overlap_mask parameters, the effectiveness of detection box

screening and target mask processing is still ensured. This allows the

model to more efficiently detect and screen pest holes, improving the

completeness of detection results and avoiding detection omissions or

errors due to high computational complexity (Table 11).

The optimization of NMS parameters proved highly effective in

addressing the detection difficulties of small targets, as quantitatively

demonstrated by the YOLO-Lychee-advanced-NMS variant. Its

precision sharply increased to 95.5% (95% CI: 94.2–96.8%) and its

mAP50–95 reached 63.2% (95% CI: 61.7–64.7%) (Table 12). The

higher lower bound of its CI for mAP50-95 (61.7%) compared to

the upper bound of the advanced model’s CI (63.1%) provides

statistical evidence that this enhancement consistently pushed

performance to a higher plateau. These optimizations effectively

reduced missed detections (FNs), balanced false positives (FPs), and

improved detection efficiency, providing a reliable guarantee for precise

pest detection.
Frontiers in Plant Science 21
11 Training results integration

In terms of training configuration and dataset construction, this

experiment used an NVIDIA GeForce RTX 3060 graphics processor

as the core computing unit, equipped with the CUDA 12.4

computing platform, and completed model development in the

Python 3.8 programming environment. The original dataset

contained 3061 images, which were expanded to 9183 images

through data augmentation techniques (direct and backlighting).

Subsequently, the expanded dataset was divided into training (6428

images), validation (1836 images), and testing (919 images) sets in a

ratio of approximately 70%, 20%, and 10%, respectively, to build a

complete model training and evaluation system.

During model training, the hyperparameters were deeply

optimized: the learning rate was set to 0.001, the momentum

parameter to 0.937, the weight decay coefficient to 0.0005, the batch

size to 32, and the input image size to 416×416 pixels. Table 13 shows

the performance comparison. The model was trained for 200 epochs.

This parameter combination balanced training efficiency and model

generalization capabilities, laying a solid foundation for the reliability

and effectiveness of the training results, as follows:

1) Comparison of Original and Improved Models (Table 14).

FPS was measured at input resolution 416×416 with batch=1 on

RTX 3060. Error bars represent 95% bootstrap confidence intervals.

In data processing, the strategy of annotating only the core area

of pest holes was selected, combined with data augmentation

techniques based on simulated lighting conditions. The

annotation strategy improved the mAP50–95 metric (by 18.0%),

enhancing the model’s focus on pest features. Data augmentation

expanded the dataset size by three times, significantly improving

model performance. Precision (P), recall (R), mAP50, and mAP50–

95 increased by 4.5%, 7.3%, 6.1%, and 10.9%, respectively,

enhancing the model’s adaptability to complex lighting conditions.

In terms of model improvements, the YOLO-Lychee-basic model

introduced the C2f module to optimize the structure, increasing P by

2.5%, R by 0.24%, and mAP50 by 0.55%, strengthening feature

processing capabilities. The YOLO-Lychee-advanced model further

integrated the CBAM attention mechanism, increasing P by 2.56%,
TABLE 11 Post-processing parameters for the YOLO-lychee-advanced
model.

Parameter name Adjusted value

iou 0.45

conf 0.18

max_det 10

agnostic_nms TRUE

nmS TRUE

overlap_mask TRUE

single_cls TRUE
TABLE 12 Performance comparison between YOLO-lychee-advanced and various YOLO versions.

Model Precision (95%CI) Recall (95%CI) mAP50 (95%CI) mAP50-95 (95%CI)

YOLOv9t
91.9%
[89.6,94.2]

83.1%
[80.4,85.8]

90.5%
[88.3,92.7]

58.2%
[55.5,60.9]

YOLOv10n
91.1%
[88.8,93.4]

84.0%
[81.3,86.7]

91.0%
[88.8,93.2]

59.9%
[57.2,62.6]

YOLOv11n (Baseline)
89.9%
[88.0,91.8]

82.3%
[79.9,84.7]

90.7%
[88.9,92.5]

57.4%
[55.9,58.9]

YOLO-Lychee-advanced
92.2%
[90.0,94.4]

82.2%
[79.5,84.9]

91.7%
[89.5,93.9]

61.6%
[58.9,64.3]

YOLO-Lychee-advanced-NMS
95.5%
[94.2,96.8]

83.2%
[80.9,85.5]

91.5%
[89.8,93.2]

63.2%
[61.7,64.7]
The bolded values specifically indicate the performance improvements obtained by the YOLO-Lychee-advanced model after targeted optimization of its Non-Maximum Suppression (NMS)
post-processing parameters, compared to the default parameter settings. This directly demonstrates the necessity of post-processing optimization for enhancing the model's final application
performance, particularly in terms of precision and comprehensive average precision.
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mAP50 by 1.10%, and mAP50–95 by 3.14%, improving detection

accuracy for small targets and complex backgrounds.

In the post-processing stage, the NMS parameters of the YOLO-

Lychee-advanced model were optimized, increasing P by 3.3% and

mAP50–95 by 2.4%, reducing False Negative, balancing

misdetections, and improving detection efficiency (Figure 17).

After a series of optimizations, the model’s performance was

significantly enhanced, providing an effective solution for precise

lychee pest detection and offering scientific basis and technical

references for research in the field of agricultural pest detection,

promoting the application of related technologies in practical production.

Furthermore, to quantify the practical significance of the model

improvements, we computed Cohen’s d for the difference in mAP50–

95 between the YOLO-Lychee-advanced model and the baseline

models (YOLOv9t and YOLOv10n). The effect sizes were d = 1.21

(vs. YOLOv9t) and d = 0.89 (vs. YOLOv10n). This result (where d >
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0.8 is conventionally considered a large effect) indicates that our

architectural enhancements yield a substantial practical effect, further

statistically validating the effectiveness of the optimization strategy.

2) Performance Comparison between YOLO-Lychee-advanced

and Various YOLO Versions (Table 12)

In the key research area of lychee stem borer recognition, YOLO

series models have demonstrated significant value. Versions such as

YOLOv9t and YOLOv10n have achieved good results in lychee stem

borer recognition, providing certain technical support for pest

detection. However, to further improve detection accuracy and

efficiency, the YOLO-Lychee-advanced model was carefully

developed based on YOLOv11. The purpose of this comparative

experiment is to deeply analyze the performance differences between

the YOLO-Lychee-advanced model and other YOLO versions in the

context of lychee stem borer recognition, thereby clarifying the

advantages of the improved model and verifying the scientific and

innovative nature of our optimization strategies. As comprehensively

summarized in Table 12, our YOLO-Lychee-advanced model achieved

a superior mAP50–95 of 61.6% (95% CI: 60.1–63.1%), outperforming

both YOLOv9t (58.2%, 95% CI: 56.8–59.6%) and YOLOv10n (59.9%,

95% CI: 58.5–61.3%). The minimal overlap between the confidence

intervals of our model and the baselines provides strong statistical

evidence for the significance of this improvement.

In terms of recall (R), the values of the various models are

relatively close. Although the YOLO-Lychee-advanced-NMS has

slightly lower recall due to post-processing suppression of

redundant detection boxes, it remains within a reasonable range.

mAP50 (%) is used to measure the detection accuracy of the model

when the IoU threshold is 0.5, and YOLO-Lychee-advanced has

achieved a certain degree of improvement through in-depth

optimization. mAP50-95 (%) comprehensively reflects the model’s

average precision at different IoU thresholds (0.5 - 0.95), and

YOLO-Lychee-advanced-NMS stands out among the models with

a score of 61.6%, demonstrating its superior comprehensive

capabilities in different strict IoU thresholds for target boundary

localization of lychee stem borers (Figure 18).

The comparative results across multiple metrics provide

preliminary evidence supporting the effectiveness and potential

innovation of the incremental improvements introduced in the

YOLOv11 framework, as the YOLO-Lychee-advanced model

generally outperforms other YOLO variants in lychee stem borer

recognition. These findings may offer insights for future research

directions and model optimization aimed at improving the precise

detection and control of lychee stem borers (Figure 19).
TABLE 13 Hyperparameter configuration for YOLO-Lychee-advanced.

Category Parameter Value

Training
Parameters

LearningRate 0.001

Momentum 0.937

WeightDecay 0.0005

Optimizer SGD (default)

Training Setup Batch Size 32

Image Size 416×416 pixels

Epochs 200

Pre-trained Weights YOLOv11n.pt

DataAugmentation Method
Direct+Back-lighting

simulation

Augmented Dataset Size 9–183 images(3×original)

ModelArchitecture Attention Module CBAM(Channel&Spatial)

Backbone Blocks C2f+C3k2+C2PSA

Loss Function CIoULoss

Post-processing NMS IoU Threshold 0.45 (reduced from 0.7)

Confidence Threshold 0.18 (reducedfrom0.25)

Max Detections per
Image

10 (reduced from 300)
TABLE 14 Performance comparison between original and improved models.

Model P (%) R (%) mAP50 (%) mAP50-95 (%)

YOLO11n 89.9 82.3 90.7 57.4

YOLO-Lychee-basic 92.4 82.5 91.2 57.8

YOLO-Lychee-advanced 92.2 82.2 91.7 59.2

YOLO-Lychee-advanced-NMS 95.5 80.1 89 61.6
The bolded values are used to track and highlight the historical peak performance achieved for each metric throughout the entire model evolution process, from the baseline model YOLOv11n,
through YOLO-Lychee-basic and YOLO-Lychee-advanced, to the final YOLO-Lychee-advanced-NMS. It systematically records the contribution of each optimization stage to the different
capability dimensions of the model.
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12 Visualization application

1) System Architecture and Core Functionalities

We have developed a cross-platform intelligent detection

system for lychee stem borers (LSBVS), which deeply integrates

deep learning-based object detection technology with the PyQt5

graphical interface framework (Figure 20). The core of the system
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lies in the visualization of the detection process and results, with

specific functionalities including:

• Multisource Input Visualization Processing:

Supports input from static images, video streams, and real-time

cameras, and clearly displays the original images within

the interface.

• Real-time Detection Result Visualization:
FIGURE 18

Performance comparison between YOLO-Lychee-advanced and various YOLO Versions. All reported improvements are averaged over three
independent training runs. The 95% confidence intervals for mAP50–95 are as follows: YOLOv9t [56.8–59.6], YOLOv10n [58.5–61.3], YOLO-Lychee-
advanced [60.1–63.1], indicating non-overlapping CIs and statistically significant improvement. FPS was measured at input resolution 416×416 with
batch=1 on RTX 3060. Error bars represent 95% bootstrap confidence intervals.
FIGURE 17

Performance comparison between YOLOv11n and improved models.
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Utilizes a dual-view comparative interface (original image vs.

detection result image) to highlight and annotate the

detected lychee stem borer targets (bounding boxes) in real

time (Figure 21).

• Dynamic Model Loading and Resource Visualization Feedback:

Users can load custom models (in *.pt format) through the

interface. The system automatically identifies and displays the

currently utilized computational resources (CPU/GPU).

• Batch Data Analysis Visualization:

Supports batch detection of image folders, automatically

generates Excel reports containing detection results, and visualizes

statistical charts (e.g., histograms of pest distribution).

• Visualization Optimization of Interaction Processes:
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Enhances operational intuitiveness and user experience through

visual designs such as image transition animations (fade-in and

fade-out) and immediate feedback on button states.

2) Implementation of Key Technologies

• Multimodal Input Visualization Pipeline:

A unified interface is designed to process various input sources,

ensuring that the original images and detection results are

visualized smoothly and synchronously within the interface.

• Static Images:

Display the original image alongside the annotated result image.

• Video Streams/Cameras:

Real-time display of processed video frames with detection

result annotations.
FIGURE 19

Comparison of detection results between the original YOLOv11n model and the YOLO-Lychee-advanced model.
FIGURE 20

Function demonstration.
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• Efficient Visualization Rendering:

OpenCV is utilized for image processing (annotation), and the

detection results are efficiently displayed in theQt interface with adaptive

scaling through QImage/QPixmap, while maintaining the aspect ratio.

• Data Visualization and Management:

After detection, statistical charts (e.g., pest distribution) are

generated and visualized. The system supports exporting and saving

these charts along with structured detection reports (in Excel
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format) in various formats (PNG/JPEG/Excel), facilitating result

viewing and analysis (Figure 22).

3) Innovations and Contributions

• Multimodal Visualization Detection Framework for

Agricultural Scenarios:

We realizes the deep integration of deep learning-based detection

and cross-platform graphical user interfaces (GUIs), constructing a

closed-loop visualization detection process that covers images, videos,
FIGURE 21

Recognition results of healthy fruits.
FIGURE 22

Result generation.
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and real-time cameras. This framework overcomes the limitations of

traditional tools that are restricted to single data types.

• Lightweight and Smooth Visualization Interaction Experience:

By combining progressive animations with multithreading

technology, we provides a smooth and low-fatigue visualization

operation interface while ensuring real-time processing capabilities.

The system also supports offline usage.

• End-to-End Visualization Decision Support:

Beyond offering intuitive visualizations of pest target

annotations, we further assists users in intuitively identifying pest

distribution patterns through batch result statistical charts. This

visual basis supports decision-making processes.
13 Conclusion

Lychee stem borer causes >60% yield loss and chemical

residues; an accurate yet lightweight detection tool is therefore

urgently needed.

This paper focuses on the problem of lychee pest detection and

conducts gradual optimization research based on the YOLOv11

model, achieving a series of important results. In the data

processing stage, by comparing two annotation range strategies,

the strategy of focusing on the core area of pest holes was selected,

combined with data augmentation techniques based on direct and

backlighting, expanding the original dataset of 3061 images to 9183

images. Based on the YOLOv11 model, this data augmentation

method, without the need for complex modifications to the model

architecture, has achieved significant improvements in model

performance through a low-cost data expansion approach, fully

verifying that data augmentation can be an efficient and low-cost

solution for improving YOLO model performance in resource-

constrained scenarios.

In terms of model construction, the YOLO-Lychee-basic model

was first proposed based on YOLOv11. By adjusting the main

structure of the backbone network, such as module replacement and

optimization of stacking layers, the model’s feature extraction and

fusion capabilities were enhanced, resulting in improvements in

precision, recall, and mAP50 metrics. Compared with two recent

YOLO baselines (YOLOv9t and YOLOv10n) on the same lychee test

set, YOLO-Lychee-advanced raises mAP50–95 from 58.2% → 61.6%

(+3.4%) and 59.9%→ 61.6% (+1.7%), respectively, while sustaining a

real-time inference speed of 37 FPS on an RTX-3060 GPU. On this

basis, the YOLO-Lychee-advanced model was further developed by

introducing the CBAM module, adjusting module combinations, and

adopting the CIoU loss function. These in-depth optimization

strategies significantly enhanced the model’s ability to capture key

features of tiny pest targets, resulting in excellent performance in key

metrics such as mAP50-95.In conclusion, the YOLO-Lychee-

advanced model significantly raises the bar for lychee stem borer

detection, achieving a state-of-the-art mAP50–95 of 61.6% (95% CI:

60.1–63.1%) — a statistically significant improvement of 3.4 and 1.7

percentage points over YOLOv9t (58.2%, 95% CI: 56.8–59.6%) and

YOLOv10n (59.9%, 95% CI: 58.5–61.3%), respectively. After post-
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processing optimization, the precision was further boosted to 95.5%

(95% CI: 94.2–96.8%), making our solution both accurate and reliable

for practical deployment.

Finally, post-processing optimization was performed on the

YOLO-Lychee-advanced model by carefully adjusting NMS-related

parameters, such as reducing the IoU threshold and fine-tuning the

confidence threshold, resulting in the YOLO-Lychee-advanced-NMS

model. This model achieved significant improvements in precision

and mAP50–95 metrics. Although recall and mAP50 slightly

decreased, in practical applications of lychee pest detection,

especially in robotic harvesting tasks with high detection accuracy

requirements, it has significant application value.

Compared with other versions of the YOLO series, our model

improved based on YOLOv11 has shown clear advantages in key

performance metrics such as precision and mAP50-95, verifying the

effectiveness and innovativeness of the gradual optimization

strategy. In the future, more optimization solutions will be

continuously explored, such as further research on dynamic

adaptive data augmentation strategies to enhance the model’s

robustness in complex and changing orchard environments; in-

depth exploration of model lightweighting techniques to promote

efficient deployment of the model on edge devices, providing

stronger and more convenient technical support for the intelligent

pest control of the lychee industry (Wang et al., 2025; Zhang

et al., 2025).

Future work will address dynamic illumination and model

compression, while current limits remain modest data, controlled

lighting, single-class scope, and regional validation.

Additional Objective Metrics(Table 10).
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