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Accurate detection of sugarcane nodes in complex field environments is a critical

prerequisite for intelligent seed cutting and automated planting. However,

existing detection methods often suffer from large model sizes and suboptimal

performance, limiting their applicability on resource-constrained edge devices.

To address these challenges, we propose Slim-Sugarcane, a lightweight and

high-precision node detection framework optimized for real-time deployment in

natural agricultural settings. Built upon YOLOv8, our model integrates GSConv, a

hybrid convolution module combining group and spatial convolutions, to

significantly reduce computational overhead while maintaining detection

accuracy. We further introduce a Cross-Stage Local Network module featuring

a single-stage aggregation strategy, which effectively minimizes structural

redundancy and enhances feature representation. The proposed framework is

optimized with TensorRT and deployed using FP16 quantization on the NVIDIA

Jetson Orin NX platform to ensure real-time performance under limited

hardware conditions. Experimental results demonstrate that Slim-Sugarcane

achieves a precision of 0.922, recall of 0.802, and mean average precision of

0.852, with an inference latency of only 60.1 ms and a GPU memory footprint of

1434 MB. The proposed method exhibits superior accuracy and computational

efficiency compared to existing approaches, offering a promising solution for

precision agriculture and intelligent sugarcane cultivation.
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1 Introduction

Sugarcane is an important sugar crop and a promising renewable

energy resource. China has become the world’s third-largest producer

of sugarcane, following Brazil and India. The annual sugarcane

planting area exceeds 1.3 million hectares, with a yield of over 100

million tons (Li et al., 2024). As public awareness of food safety and

quality continues to grow, traditional agricultural practices can no

longer meet market demands. As a result, technological innovation in

agriculture has become a key driver in the modernization of the

sugarcane industry (Wan and Hu, 2023). At present, many field

operations in sugarcane farming, such as seed cutting and planting,

still rely heavily on manual labor. This leads to low operational

efficiency and poor accuracy and uniformity in planting. With the

advancement of smart agriculture, computer technologies have

gradually been introduced into sugarcane cultivation and

harvesting. These technologies help alleviate labor shortages and

significantly improve productivity (Li, 2023; Dai et al., 2024b).

However, current sugarcane nodes detection methods still suffer

from low accuracy and poor efficiency. Such limitations hinder the

progress of intelligent operations in sugarcane planting and

harvesting. Therefore, developing a lightweight and accurate nodes

detection system is a critical issue for achieving intelligent

management in sugarcane fields.

At present, many researchers in China and abroad are engaged in

the study of sugarcane node detection. These efforts can mainly be

classified into two categories: traditional machine learning and deep

learning methods. Moshashai et al. (2008) conducted a preliminary

study on sugarcane node identification using a threshold

segmentation method based on grayscale images. Chen et al. (2020)

proposed a sugarcane nodes detection method based on the extreme

points of a vertical projection function. Their method achieved

recognition rates of 100%, 98%, and 95% for single, double, and

triple nodes, respectively, with standard deviations of less than 1.1

mm, 1.7 mm, and 2.2 mm. Later, Chen et al. (2021b) introduced an

algorithm that uses the local pixel sum at the minimum points of a

vertical projection function. This method yielded recognition rates of

100% for single nodes and 98.5% for double nodes, with average

processing times of 0.15 s and 0.21 s, respectively. Zhou et al. (2020)

developed a machine vision-based sugarcane node cutting system.

They computed gradient feature vectors and designed a positional

search algorithm to locate nodes. The method achieved an average

recognition rate of 93.00%, but only 17.00% for sugarcane with small

internodal differences. Wang (2022) applied filtering, color space

conversion, and image fusion to obtain binarized data. Then, using

morphological segmentation and pixel distribution statistics, the

method identified and located nodes. It achieved a 100%

recognition rate for single-node sugarcane and over 80% for multi-

node cases, with an execution time of 0.518 s. Shi et al. (2019)

proposed a machine vision-based nodes detection method suitable

for various sugarcane types. Their approach involved target

extraction and correction, wavelet transform decomposition and

reconstruction, and feature analysis. The recognition rate reached

92%. Huang et al. (2017) used a local mean-based method to segment

the H component in the HVS color space and located nodes based on
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the maximum gray value. This method achieved a recognition rate of

90.77% with an average processing time of 0.481539 s. Zhang et al.

(2016) used hyperspectral imaging to collect data through a

spectrometer mounted above the image acquisition system. They

extracted spectral bands representing nodes features to build a

detection model. Lu et al. (2010) explored nodes feature extraction

and detection using machine vision. They processed the S and H

components of sugarcane images in the HSV color space and applied

support vector machines to distinguish nodes and nodes. After

clustering analysis, the average recognition rates for the number

and location of nodes were 94.118% and 91.522%, respectively.

Subsequently, Lu et al. (2012) analyzed grayscale image

characteristics and used prior knowledge to statistically assess the

gray values in RGB and HSV color spaces. Using gradient features,

they identified nodes and found that the R component produced the

best results, with a recognition accuracy of 88%. Although these

traditional machine learning methods have achieved some progress

in sugarcane node detection, they often rely on manually selected

features. This limits their robustness and real-time performance

under complex field conditions, reducing their practical applicability.

In recent years, with the rise and development of deep learning,

it has gradually replaced traditional learning methods (Zheng and

Xiong, 2021, 2023, Zheng et al., 2024a, 2024b, 2024c). Zheng et al.

(2024a) optimized sugarcane nodes detection based on the YOLOv8

framework, achieving a mean average precision (mAP) of 0.974 and

an inference time of 19.80 ms. Dai JX et al. (2024) improved the

YOLOv5 network by introducing the CBAM attention mechanism

and VarifocalNet, which increased the recognition accuracy of

sugarcane nodes to 89.89%. He (2023) incorporated a multi-scale

prediction structure and optimized bounding boxes using the K-

means algorithm, raising the mAP of the improved YOLOv5 model

to 93.8%. Zhao et al. (2023) further enhanced the YOLOv5 network,

achieving a recognition accuracy of 97.1%. Chen (2022) proposed a

hybrid detection model combining MobileNet and YOLOv4-t,

which maintained detection accuracy while reducing model size.

Li et al. (2022) improved the LeNet-5 architecture to enhance bud

detection and positioning accuracy, reaching a recognition rate of

92% with a per-image detection time of 1.2 seconds. Tang (2021)

optimized the YOLOv4 model by feeding valid feature layers

directly into the enhanced feature extraction network and refining

the path aggregation strategy. This reduced the recognition time per

image to 6 ms, with accuracy reaching 98.68%. Li et al. (2019)

simplified the YOLOv3 architecture by reducing the number of

convolutional layers in residual blocks, resulting in a detection

accuracy of 90.38% and an average detection time of 28.7 ms. Pan

et al. (2024) combined MobileNetV3, U-Net, and an improved

YOLOX to perform nodes contour segmentation and detection,

achieving an MIoU of 91.68% and AP of 96.19%. Hu et al. (2025)

proposed a lightweight network based on YOLOv8n-ghost for

sugarcane nodes detection. By introducing Ghost modules to

reduce redundancy, the model surpassed 90% AP and achieved

real-time performance of nearly 30 frames per second after

TensorRT acceleration. Dai et al. (2024a) developed an improved

YOLOv5s-KCV model integrating K-means clustering, the CBAM

module, and the VarifocalNet mechanism. The model achieved a
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precision of 89.89%, a recall of 89.95%, and a mAP of 92.16%. Xie

et al. (2024) introduced the G-YOLOv5s-SS lightweight model,

which integrated Ghost modules and the SimAM mechanism. This

approach achieved a recognition accuracy of 97.6%. Wen et al.

(2023) proposed an improved sugarcane nodes detection model

based on YOLOv7. It incorporated the SimAM attention

mechanism, deformable convolutions, and WIoU loss to improve

both accuracy and robustness. The resulting model achieved a mAP

of 94.53% and an F1 score of 92.41%. Yu et al. (2023) proposed a

lightweight MobileNetv2-YOLOv5s model for real-time detection

of sugarcane nodes in complex natural environments. By replacing

the YOLOv5s backbone with MobileNet, model complexity was

reduced by 40%, with only a 0.8% drop in AP and a detection speed

of 4.4 ms. Wang et al. (2022) enhanced YOLOv4-Tiny by

integrating an SPP module and 1×1 convolution layers,

improving both localization accuracy and speed. Their model

achieved a mAP of 99.11%, a precision of 97.07%, and a frame

rate of 30 fps. Zhou et al. (2022) proposed an algorithm combining

YOLOv3 and traditional computer vision techniques. They used

affine transformation for posture correction, YOLOv3 for initial

detection, and gradient operators with local thresholding for precise

localization. The method achieved a recognition accuracy of 99.68%

and a recall rate of 100%. Zhu et al. (2022) introduced an improved

YOLOv4-based method for nodes detection, reaching an AP of

94.4%. Chen et al. (2021a) developed a YOLOv4-based detection

algorithm that achieved 95.17% AP and a speed of 69 frames per

second. Despite the progress in improving model accuracy, most of

these studies rely on high-performance computing equipment. This

makes them unsuitable for deployment in practical agricultural

scenarios, where low cost and high efficiency are critical.

Unlike previous studies, this paper proposes a high-precision and

lightweight method for sugarcane nodes detection, aiming to address

key challenges of large model size, limited deployability, and

insufficient performance in existing approaches. By improving

critical components of the detection system, we ultimately present

an end-to-end, low-cost solution for sugarcane nodes recognition. To

the best of our knowledge, this is among the first studies to achieve

robust sugarcane node detection with real-time performance on edge

devices under complex natural environments. The main

contributions are summarized as follows:
Fron
(1) We propose a lightweight sugarcane node detection model,

Slim-Sugarcane, which integrates GSConv to replace

standard convolution and introduces a Cross-Stage Local

Network module to reduce model redundancy and

computational complexity.

(2) The model is quantized and accelerated using the

TensorRT framework, and an FP16-based deployment

scheme is proposed. This approach enhances deployment

performance and response speed while maintaining

detection accuracy. Furthermore, comparative evaluations

are conducted across different deployment platforms to

assess performance variations.

(3) The optimized model is deployed on the Nvidia Orin NX

edge device, and field experiments are conducted in a
tiers in Plant Science 03
sugarcane plantation to evaluate the model’s performance

and re source consumpt ion under r ea l -wor ld

deployment conditions.
2 Materials and methods

2.1 Image acquisition method

This study utilized a dataset collected from a sugarcane field at

the Agricultural Mechanization Research Institute of the Chinese

Academy of Tropical Agricultural Sciences, located in Zhanjiang,

Guangdong Province, China (21°10′N, 110°16′E). Image

acquisition experiments were conducted in November 2023 and

October 2024. During the experiments, RGB images were captured

using an iPhone 13 and a HUAWEI Mate 60 Pro under automatic

camera settings. All images were recorded at a resolution of

4032×3024 pixels and saved in JPG format. A total of 550 images

were collected, including 314 images taken on a mechanical cutting

machine and 236 images captured in natural field conditions after

machine planting. Each image contained 3 to 5 sugarcane nodes,

resulting in approximately 2,100 annotated nodes across the

dataset. The combination of controlled and real-field conditions

ensures variability in lighting, occlusion, and background

complexity, contributing to better generalization during

model training.
2.2 Image data preprocessing

The quality of the dataset plays a decisive role in the accuracy of

the trained recognition model and its performance in practical

applications. To ensure data clarity and representativeness, 500

sugarcane images were carefully selected. At the same time, to

improve the reliability of model training and validation, these

images were divided into training, validation, and test sets in a

ratio of 7:1.5:1.5. Specifically, 350 images were used for training, 75

for validation, and the remaining 75 for testing. The detailed dataset

split is shown in Table 1.In this study, the widely used annotation

tool in the object detection field, LabelImg (https://github.com/

tzutalin/labelImg), was employed to label the sugarcane dataset. The

generated label files contain class information for each sugarcane

nodes as well as its normalized position within the images.
3 Methodology

3.1 Lightweight sugarcane nodes detection
network

3.1.1 Yolov8
Accurate sugarcane node identification is essential for intelligent

planting and harvesting, especially under variable outdoor conditions.

YOLOv8 has been widely adopted in agricultural detection tasks due to
frontiersin.org
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its strong balance between accuracy and speed. The model features a

streamlined architecture with a lightweight backbone composed of

Conv, C2f, and SPPF modules. It employs a Feature Pyramid Network

(FPN) and Path Aggregation Network (PAN) in the neck to fuse multi-

scale features, and utilizes a decoupled detection head for classification

and localization, as illustrated in Figure 1. This design significantly

enhances detection performance while ensuring efficient computation.

Moreover, YOLOv8 supports deployment on edge devices without

requiring high-performance GPUs, making it suitable for practical

agricultural applications. Given these advantages, YOLOv8-l was

selected as the baseline framework for this study. Nonetheless, to

meet the strict constraints of edge deployment in real-world

agricultural environments, further architectural optimization is

necessary to reduce redundancy, minimize computational cost, and

enhance robustness.

3.1.2 Slim-sugarcane
To address the limitations of the traditional YOLOv8 model—

such as redundant convolutions, excessive parameter count, and

suboptimal adaptability to edge hardware—this study proposes a

novel detection model named Slim-Sugarcane. The model is

designed to improve both the accuracy and efficiency of node

detection while meeting the deployment requirements of edge

computing environments, thereby facilitating its application in

real-world agricultural scenarios. Considering the limited

computational resources in sugarcane fields and the practical

constraints of deploying models on edge devices, we constructed

a simple and efficient neck module, introducing grouped shuffle

convolution and a custom-designed Slim-Neck architecture. A
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Slim-Neck-based feature fusion module is proposed to better

aggregate multi-scale information. To accelerate inference speed,

the input images are passed through a series of transformations in

the backbone network, gradually projecting spatial information into

the channel dimension. As the width and height of spatial features

decrease, the number of feature channels correspondingly increases.

However, this process inevitably leads to the loss of some semantic

information. While dense convolutions help preserve these

connections, sparse convolutions may disrupt them. To retain

feature diversity while improving computational efficiency, we

adopt a channel shuffling strategy to allow features generated by

standard convolution (SC) to permeate through those generated by

depthwise separable convolution (DSC). This results in the

implementation of a lightweight GSConv module, as shown in

Figure 2, which replaces the standard convolutional block CBS. On

top of GSConv, we introduce a GSBottleneck module, a lightweight

bottleneck structure that further reduces computational cost while

maintaining detection accuracy, as illustrated in Figure 3.

The C2f module in YOLOv8 consists of multiple standard

convolutions and bottleneck structures, extracting multi-scale

features through residual connections. However, this design

introduces additional parameters and computational overhead,

increasing reliance on computing resources. Moreover, as the

network depth grows, the C2f module’s ability to represent

complex semantic information gradually declines, making it less

effective in handling varying object scales and complex background

interference in sugarcane images. To address these issues, we adopt a

one-shot aggregation strategy to design a cross-stage partial network

module, referred to as VoV-GSCSP, illustrated in Figure 4. This
FIGURE 1

YOLOv8 network architecture diagram.
TABLE 1 Details of the dataset.

Scene
Dataset Training set Validation set Test set Number of nodes

Indoor 210 45 45 1196

Outdoor 140 30 30 929
frontiersin.org
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approach reduces both computational and structural complexity

while maintaining sufficient detection accuracy.

Therefore, this study replaces the standard CBS convolution

blocks and the original C2f modules in the neck of the model with

the GSConv convolution module and the VoV-GSCSP module for

feature processing. This substitution effectively reduces

computational load and accelerates inference speed. The

improved Slim-Sugarcane model enhances detection accuracy in

complex environments and is well-suited for deployment in edge

computing scenarios, making it more applicable to intelligent

sugarcane farming.

3.1.3 TensorRT-based quantization acceleration
Existing detection models typically feature large-scale architectures

and demand significant computational resources, posing challenges for

real-time execution on embedded devices. To meet the dual

requirements of real-time performance and low power consumption

for sugarcane node detection in field operations, it is essential to

optimize the trained model for deployment. In this study, we adopted

TensorRT, a deep learning inference optimizer developed by NVIDIA.

TensorRT enhances deployment performance and response speed of

the sugarcane node detection model in real agricultural environments

by optimizing computational workflows and accelerating the inference

process. The inference workflow is illustrated in Figure 5.
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TensorRT provides five primary optimization techniques,

including precision calibration for weights and activations, layer

and tensor fusion, automatic kernel selection, dynamic tensor

memory allocation, and multi-stream execution. In this study, we

focus on precision calibration for weights and activations, using

Int8 quantization as an example. In deep learning frameworks,

neural network training typically relies on 32-bit floating-point

(FP32) computations. However, during the inference phase, as

backpropagation is not required, precision can be reduced

appropriately. Int8 quantization converts FP32 parameters into 8-

bit integers, which significantly compresses model size, reduces

memory usage and power consumption, and improves inference

speed and overall performance—thereby lowering the operational

cost of the model. The Int8 quantization method linearly maps

activation values and weights from FP32 to INT8. Convolution

operations are then performed using INT8 weights and activations,

producing INT32 outputs, which are subsequently re-quantized

back to INT8 and used as inputs for the next layer. For the final

layer of the network, a dequantization step converts the INT8

outputs back to FP32. The complete workflow is illustrated

in Figure 6.

Through the aforementioned process, the improved model

achieves enhanced real-time performance while maintaining

detection accuracy. By integrating the proposed Slim-Sugarcane
FIGURE 3

The structures of the GSbottleneck module.
FIGURE 2

The structure of the GSConv.
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network, the system can accurately detect sugarcane nodes even under

complex natural conditions. This effectively meets the practical

demands of intelligent sugarcane cultivation and harvesting.
4 Experimental results and analysis

4.1 Experimental setup and parameters

To ensure a fair evaluation of algorithm performance, all models

were trained and tested under a unified experimental platform with

consistent hyperparameter settings. The experimental environment

consisted of a 13th-generation Intel Core i9-13900K processor (3

GHz, 24 physical cores, 32 threads), an NVIDIA GeForce RTX 4090

GPU, Ubuntu 18.04 operating system, CUDA version 11.1.74,

OpenCV 4.8.0, and the PyTorch version 2.0.1.
Fron
(1) Parameter settings: The YOLOv6-l and YOLOv8-l official

pretrained model was selected as the initial model. The

image size of the dataset was set to 640×640 pixels, and the

maximum number of training epochs (Max_epoch) was set

to 500. The batch size (Batch_size) was configured to 24,

with an initial learning rate of 0.01, a momentum factor of

0.90, and a weight decay coefficient of 0.0005.

(2) Training strategy: During the training process, the K-means

clustering algorithm was employed to accurately determine

the optimal aspect ratios of anchor boxes. To enhance the
tiers in Plant Science 06
model’s generalization ability and robustness, various

image augmentation techniques were applied. Firstly, the

Mosaic data augmentation was used to increase the

diversity of training samples and the complexity of

backgrounds. Secondly, the Mixup method was adopted

to generate new training samples by linearly interpolating

both images and labels. Additionally, the Exponential

Moving Average (EMA) technique was introduced to

smooth the model parameters and improve stability. In

terms of color space augmentation, HSV color space

enhancement was applied by adjusting image saturation

and brightness to accommodate different lighting and color

variations. Finally, horizontal flipping was performed to

enhance the model’s symmetry recognition capability. To

prevent overfitting, an EarlyStopping mechanism was

implemented to automatically terminate training when

the validation loss stopped improving.
4.2 Evaluation metrics

To comprehensively evaluate the performance of the model,

this study employs precision, recall, mean Average Precision

(mAP), F1 score, single-frame inference time, and model size as

the evaluation metrics for the sugarcane node detection network.

The calculation formulas are as follows (Equations 1–4):
FIGURE 5

Reasoning process.
FIGURE 4

The structures of the VoV-GSCSP module.
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P =
Tp

Tp + Fp
(1)

R =
Tp

Tp + FN
(2)

mAP =oC
i=1

APi
C

(3)

F1 =
2� P � R
P + R

(4)

Here, TP denotes true positives, where the actual samples are

positive and predicted as positive; FP denotes false positives, where

the actual samples are negative but predicted as positive; FN denotes

false negatives, where the actual samples are positive but predicted as

negative, representing the number of undetected sugarcane nodes. P

and R stand for precision and recall, respectively, which are crucial

metrics for evaluating the performance of detection models. AP

(Average Precision) corresponds to the area under the precision-

recall curve, reflecting the overall model performance. Inference time

refers to the time required to detect sugarcane nodes in a single

image, serving as a measure of the model’s efficiency. Model size

indicates the scale of the model, with the number of network

parameters playing a key role in practical deployment, significantly

impacting the model’s running speed and overall performance.
4.3 Field experiments on sugarcane node
detection

4.3.1 Comparative experiments of different
network models

To verify the effectiveness of the proposed method, a

comprehensive comparison was conducted between the Slim-
Frontiers in Plant Science 07
Sugarcane model and several state-of-the-art models including

YOLOv6, YOLOv8, and its variants (YOLOv8-ConvNeXtV2,

YOLOv8-LSKNet, YOLOv8-FasterNet, YOLOv8-C2f-DBB) on the

test set. Table 2 presents the testing results of our model alongside

these advanced models for the sugarcane node detection task. The

evaluation metrics used include precision, recall, F1-score, mAP,

inference time, and model size.

As shown in Table 2, the Slim-Sugarcane network achieved a

precision of 0.91, recall of 0.79, F1-score of 0.85, mAP of 0.86,

inference time of 12.2 ms per image, and a model size of 70.9 MB on

the test set. Compared to the unmodified YOLOv6 and YOLOv8

models, the F1-score of Slim-Sugarcane improved by 3.0% and

1.0%, respectively. Moreover, the mAP increased by 5.0% over

YOLOv6, while the per-frame inference time was reduced by 6.0 ms

and 7.4 ms, respectively. The model size was also reduced by 16.7

MB compared to YOLOv8.When compared with other YOLOv8

variants, the proposed model improved detection precision by 2.0%

to 14.0% and F1-score by 1.0% to 11.0%. These results indicate that

the Slim-Sugarcane network is more effective in detecting targets,

with reduced false negatives and false positives. The results

demonstrate that the proposed sugarcane node detection network

offers significant advantages in both detection accuracy and

inference speed. These improvements stem from the adoption of

GSConv, which replaces conventional standard convolutions (CBS),

enabling a more efficient combination of grouped and spatial

convolutions to reduce computational cost while maintaining

strong detection performance. Additionally, the model

incorporates a single-stage aggregation strategy to construct a

cross-stage local perception module (GSCSP), which further

reduces computational complexity and structural redundancy

without sacrificing accuracy, thereby accelerating inference speed.

Furthermore, the lightweight nature of the Slim-Sugarcane model

enhances its deployability on edge devices.

As illustrated in Figure 7, under indoor conditions with the

seed-cutting machine in operation, both the Slim-Sugarcane and
FIGURE 6

Quantization process.
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YOLOv8 networks are capable of accurately detecting sugarcane

nodes in the images. Compared to YOLOv8, the Slim-Sugarcane

network effectively reduces the occurrence of missed and false

positives. In contrast, during actual mechanized planting

operations in outdoor sugarcane fields, environmental factors

such as mud occlusion, airborne dust, and variable natural

lighting frequently degrade image quality, introducing substantial

challenges for robust node detection. These real-world disturbances

can lead to blurry visuals, partial occlusions, and inconsistent

contrast, which may significantly affect model performance.

Figure 8 presents the detection results of the Slim-Sugarcane

network under such challenging field conditions. The Slim-

Sugarcane network maintains high detection accuracy, effectively

avoiding missed detections, false positives, and redundant bounding

boxes that are more commonly observed in the YOLOv8 results.

These findings highlight the model’s robustness and generalization
Frontiers in Plant Science 08
capability in complex, variable outdoor agricultural environments,

reinforcing its suitability for real-time deployment in practical

sugarcane production scenarios.

4.3.2 Comparative experiments on different
quantization methods

To enable real-time deployment of the proposed network on

edge devices with reduced computational overhead and shorter

inference latency, we applied TensorRT-based quantization

acceleration to enhance the deployment efficiency and response

speed of the sugarcane node detection model. In this study, we

evaluated and compared three quantization precision

configurations: FP32, FP16, and INT8. By comparing the

inference speed and detection accuracy under these three weight

precision settings, we aimed to assess the model’s effectiveness in

practical edge computing scenarios.
FIGURE 7

Comparison of two algorithms in an indoor seed cutter operating environment.
TABLE 2 Comparison of detection performance of different networks.

Model P R F1 mAP Inference time Model size

YOLOv6 0.87 0.77 0.82 0.81 19.6 52.7

YOLOv8 0.90 0.78 0.84 0.86 18.2 87.6

YOLOv8-convnextv2 0.77 0.72 0.74 0.75 13.6 55.7

YOLOv8-LSKNet 0.84 0.76 0.80 0.79 12.4 56.2

YOLOv8-Fasternet 0.89 0.77 0.83 0.82 7.8 52.7

YOLOv8-c2f-dbb 0.91 0.77 0.83 0.84 10.9 163.7

Slim-Sugarcane 0.91 0.79 0.85 0.86 12.2 70.9
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As shown in Table 3, the FP16 model significantly reduces the

inference time per image from 12.2 ms to 8.4 ms, achieving a 1.45×

increase in inference speed while maintaining nearly the same

accuracy and recall as the original FP32 model. This

enhancement markedly improves the system’s real-time

processing capability. Although the INT8 quantized model

demonstrates faster inference, it suffers from a considerable loss

in detection accuracy, rendering it unsuitable for the high-precision

requirements of sugarcane node detection in field operations. In

contrast, the FP16 model preserves the robustness and stability of

the original model without requiring complex quantization-aware

training, and it offers excellent hardware compatibility.

Experimental results confirm that the TensorRT-FP16

deployment scheme provides millisecond-level response times

suitable for real-time field applications. Furthermore, its high

recognition accuracy effectively addresses challenges posed by

outdoor environments, minimizing missed and false detections.

This solution offers strong support for the intelligent automation of

sugarcane planting and harvesting operations.
Frontiers in Plant Science 09
4.3.3 Field experiment
In actual sugarcane fields, the implementation of real-time node

recognition and processing faces challenges due to limited device

resources and unstable network conditions. To address these

constraints, deploying the model on edge computing devices enables

end-to-end sugarcane node recognition and localization, ensuring

accurate detection even under resource-limited conditions and

thereby enhancing the overall system reliability. To evaluate

detection performance across different platforms and deployment

schemes, this study conducts a comparative analysis of the Slim-

Sugarcane model and its TensorRT-FP16 optimized version on both

the RTX 4090 and NVIDIA Orin NX platforms, aiming to assess the

model’s effectiveness in real-world sugarcane field scenarios. All

inference tests were conducted using an input resolution of 640×640

pixels and a batch size of 1. The deployment on the NVIDIA Orin NX

edge device was implemented using TensorRT v8.5.2.2, CUDA v11.4,

cuDNN v8.6.0.166, and JetPack v5.1.

As shown in Table 4, the Slim-Sugarcane model achieved a

precision of 0.916, a recall of 0.794, and a mAP of 0.860 on the RTX
TABLE 3 Comparison of model performance under different quantization precisions.

Model P R Preprocess Inference Postprocess

FP32 0.916 0.794 0.3ms 8.9ms 3.0ms

FP16 0.916 0.794 0.7ms 4.7ms 3.0ms

INT8 0.393 0.190 0.8ms 4.1ms 4.2ms
FIGURE 8

Comparison of two algorithms in a field grower operating environment.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1643967
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wei et al. 10.3389/fpls.2025.1643967
4090 platform. When deployed on the NVIDIA Orin NX without

optimization, the inference time increased to 151.9 ms, reflecting

the performance impact under limited computational resources.

After applying TensorRT-FP16 acceleration on the Orin NX, the

inference time was reduced to 60.1 ms, and the preprocessing and

postprocessing times also decreased. In terms of GPU memory

usage, the optimized model occupied 1434 MB, compared to 1536

MB for the unoptimized version. The precision and recall remained

consistent after optimization, indicating that inference speed

improvements were achieved without compromising detection

accuracy. These results demonstrate that the Slim-Sugarcane

model can operate within the hardware constraints of the Orin

NX device and maintain stable performance under field conditions.
5 Discussion

To address the key issues of large model size, deployment

difficulty, and limited performance in existing sugarcane node

detection methods, this paper proposes a lightweight sugarcane

node detection and localization system named Slim-Sugarcane. By

replacing the standard CBS convolution blocks and the original

neck’s C2f module in the YOLOv8 architecture with GSConv

convolution modules and VoV-GSCSP modules, the model reduces

computational complexity and accelerates inference speed.

Furthermore, an FP16 precision TensorRT acceleration deployment

strategy is employed to realize end-to-end deployment on the Nvidia

Orin NX edge device. The system’s performance, including inference

speed and resource consumption, is evaluated in real-world

sugarcane field environments.

Existing methods, such as those by Chen et al. (2020); Zhou

et al. (2020); Huang et al. (2017), and Lu et al. (2010), mainly rely on

manually selected and designed features. Although these

approaches demonstrate certain recognition capabilities in specific
Frontiers in Plant Science 10
scenarios, they generally suffer from insufficient real-time

performance and poor robustness to environmental changes. In

recent years, deep learning-based methods like those proposed by

Zheng et al. (2024); Hu et al. (2025); Yu et al. (2023), and Zhu et al.

(2022) have significantly improved detection efficiency. However,

these models typically require high-performance hardware for

operation, which does not meet the low-cost and high-efficiency

demands of practical agricultural applications, and their

performance remains vulnerable to environmental factors. In

contrast, the Slim-Sugarcane network proposed in this paper not

only improves recognition accuracy but also accelerates detection

speed. Moreover, it significantly reduces missed detections and

duplicate detections, even under challenging conditions where

image quality is degraded by complex field environments.

The innovation of this study lies in achieving both lightweight and

efficient detection, with deployment on a low-cost Nvidia Orin NX

edge device accelerated by TensorRT. Field experiments validate the

model’s robustness under complex environmental conditions.

Compared to traditional cloud-based solutions, this approach

significantly reduces computational resource consumption and

latency while maintaining detection accuracy. Although the system

performs well in terms of precision, speed, and efficiency, the

experiments also reveal certain limitations. Firstly, when dense

sugarcane leaves occlude the node areas, the model may mistakenly

identify leaf edges as node boundaries due to their similar texture

features. Secondly, under strongmidday sunlight, intense reflections on

the node surface can create bright spots that interfere with feature

extraction, causing the model to generate multiple overlapping

detection boxes at the same node location. Future work will focus on

addressing these issues and continuously optimizing the detection

algorithm to promote its practical application in intelligent sugarcane

cutting and precision planting equipment.
6 Conclusions

This study proposes the Slim-Sugarcane lightweight sugarcane

node detection network, an improved version based on YOLOv8.

Themodel integrates TensorRT acceleration and is ultimately deployed

on the Nvidia Orin NX edge computing device. The main conclusions

are summarized as follows:
(1) This paper presents the Slim-Sugarcane model, which

effectively reduces computational overhead and improves

inference speed by introducing modules such as SlimNeck

and GSConv. Compared with the original model, Slim-

Sugarcane maintains the same mAP while reducing the

inference time per frame by 6 ms and the model size by 16.7

MB. Comparative experiments with YOLOv6, YOLOv8,

and its variants demonstrate that the Slim-Sugarcane model

significantly enhances both the accuracy and efficiency of

sugarcane node detection tasks.

(2) By integrating TensorRT acceleration, this paper proposes an

FP16 quantization-based deployment optimization scheme.
TABLE 4 Comparison of model performance before and
after deployment.

Data

Metrics Slim-Sugar-
cane-

TensorRT-
FP16 on
RTX 4090

Slim-Sugar-
cane

on ORIN

Slim-Sugar-
cane-

TensorRT-
FP16

on ORIN

P 0.916 0.922 0.922

R 0.794 0.802 0.802

mAP 0.86 0.852 0.852

Inference
time/ms

4.7 151.9 60.1

Preprocessing
time/ms

0.7 2.8 1.2

Postprocessing
time/ms

3.0 6.2 3.4

Gpu
memory/MB

990 1536 1434
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Fron
Without compromising the original model’s accuracy, the

total processing time per frame is reduced from 12.2 ms to

8.4 ms, achieving a speedup of approximately 1.45×.

Experimental results demonstrate that the TensorRT-FP16

solution achieves a balanced trade-off between accuracy and

speed while offering strong adaptability and robustness,

making it well-suited for fast sugarcane node detection

tasks in complex field environments.

(3) The Slim-Sugarcane model was deployed on the Nvidia Orin

NX edge device, and field experiments were conducted in an

actual sugarcane plantation to evaluate the model’s

performance and resource consumption under real-world

conditions. The study further compares the runtime

performance of different model versions on both high-

performance and edge computing platforms. Experimental

results show that the Slim-Sugarcane-TensorRT-FP16 model

achieves a mean Average Precision of 85.2% on the edge

device, with an inference time of approximately 60.1ms, a total

preprocessing and postprocessing time of 4.6 ms, and GPU

memory usage of 1434 MB. These results indicate that the

proposed model maintains stable accuracy and fast response

under the resource constraints of edge computing,

demonstrating its practicality and reliability for real-time

sugarcane node detection in complex field environments.
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