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Secondary metabolites are low-molecular-weight organic compounds

produced by plants under specific conditions. While they are not directly

involved in fundamental growth and developmental processes, they play

crucial roles in plant defense, protection, and regulation. These compounds

mainly include phenolics, terpenoids, alkaloids, flavonoids, and others. Light, as a

key environmental factor regulating the synthesis of plant secondary metabolites,

influences their production and accumulation through multidimensional

regulatory mechanisms. Different light qualities activate or suppress specific

metabolic pathways via signal transduction networks mediated by specialized

photoreceptors. Light intensity dynamically modulates secondary metabolite

accumulation by affecting photosynthetic efficiency, while photoperiod

coordinates metabolic rhythms through circadian clock genes. These light

responsive mechanisms constitute a chemical defense strategy that enables

plants to adapt to their environment, while also providing critical targets for the

directed regulation of medicinal components and functional nutrients. This study

provides a review of recent research on the effects of light on plant secondary

metabolites, aiming to deepen the understanding of the molecular mechanisms

underlying light-regulated secondary metabolism. The findings may offer an

insight for enhancing bioactive compounds in medicinal plants and developing

functional agricultural products.
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1 Introduction

During the long evolutionary process, plants have developed a

series of secondary metabolites with unique physiological functions,

primarily including flavonoid (Ma et al., 2024), terpenoid

(Pichersky and Raguso, 2018), alkaloid (Gu et al., 2025) and

phenolic (Sheteiwy et al., 2023) compounds. These specialized

metabolites not only help plants cope with environmental stresses

but also play pivotal roles in fields such as medicine and health,

nutritional food, and agricultural production (Brosset and Blande,

2022; Ahmed et al., 2024; Jahan et al., 2025). Among various

environmental factors affecting plant growth, the light

environment - with its unique spatial distribution, spectral

properties, irradiation intensity, photoperiod, and circadian

rhythms - elicits distinct physiological responses in plants and

profoundly influences the biosynthesis and accumulation of

secondary metabolites (Morales et al., 2025). Breakthroughs in

modern photobiological research and metabolomics analysis

techniques have increasingly elucidated the molecular

mechanisms by which light signals regulate plant secondary

metabolism, paving innovative pathways for using optical

regulation technologies to enhance the content of functional

plant compounds.

The regulatory effects of light environment on plant secondary

metabolism exhibit multi-dimensional characteristics. From the

perspective of spectral properties, specific wavelengths of light can

achieve differential biological regulation through specialized

photoreceptor systems. UV, for instance, activates the HY5

transcription factor signaling pathway via the UVR8 receptor,

enhancing the biosynthesis efficiency of phenolics, flavonoids, and

anthocyanins (Shamala et al., 2020; Morales et al., 2025). Blue light,

mediated by cryptochrome and phototropin protein complexes,

influences the phenylpropanoid metabolism process by acting on

transcriptional regulatory networks such as HY5 and MYB (Rai

et al., 2019; Wang et al., 2020a; Zhang et al., 2025b). Red light, on

the other hand, modulates the production of terpenoids through

phytochrome mediated hormonal signaling pathways, altering the

levels of endogenous hormones (Holalu et al., 2020; Escobar-Bravo

et al., 2024). The interactions between these specific light

wavelengths and photoreceptors elucidate the response

mechanisms of photoreceptors to light signals. In terms of light

intensity, it regulates the expression of metabolism-related genes by

modifying photosynthetic efficiency, energy allocation, and stress

responses, ultimately affecting the accumulation of metabolic

products (Borbély et al., 2022; Zhu et al., 2024). However,

excessive light may induce photoinhibition, disrupting normal

metabolic activities (Alsharafa et al., 2014). On the temporal scale,

the circadian rhythm system coordinates the synthesis of plant

secondary metabolites by perceiving changes in photoperiod

(Hoffman et al., 2010). Thus, Understanding the molecular

regulatory mechanisms of light signals on plant secondary

metabolism holds significant scientific importance and practical

value. On one hand, it can reveal the molecular regulatory networks

by which plants adapt to their external environment; on the other

hand, it provides theoretical support for developing light-based
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technologies to improve crop quality (Zhang et al., 2024c). This

review summarizes the effects of different light characteristics (light

quality, intensity, and photoperiod) on plant secondary metabolites

and their underlying mechanisms, highlights the progress in the

application of light-control technologies in agriculture and

medicine, and explores future research directions in this field.

The aim is to provide insights for both fundamental research and

industrial applications of light-mediated regulation in plant

secondary metabolism.
2 Effects of light quality on plant
secondary metabolites

Light quality, as a crucial parameter of the light environment,

exerts multidimensional regulatory effects on plant growth,

development, and physiological metabolism through specific

wavelength combinations. In plant physiology and facility

agriculture, light sources can be categorized into visible light,

infrared light, and ultraviolet light based on their wavelengths.

Among these, visible light can be further divided into various colors

such as red, orange, yellow, green, blue, indigo, and violet, which

play a regulatory role in plant growth, development, and the

accumulation of metabolic products. As illustrated in Figure 1,

different wavelengths of light signals are selectively recognized by

the plant photoreceptor system, triggering distinct physiological

responses that regulate the synthesis of secondary metabolites. As

shown in Table 1, differential light treatments influence the

expression of different genes.
2.1 UV light

UV radiation, as a significant component of the solar spectrum,

can be classified into three primary bands based on wavelength

range: UV-A (315–400 nm), UV-B (280–315 nm), and UV-C (200–

280 nm). When plants are exposed to UV radiation, they activate a

series of defense mechanisms, primarily manifested through the

enhanced biosynthesis of specific secondary metabolites, including

flavonoids, phenolics, and terpenoids. These substances play crucial

roles in plant responses to environmental stresses (Vanhaelewyn

et al., 2020; Kivimäenpä et al., 2022). As illustrated in Figure 2, at

the molecular level, UV radiation can specifically activate

photoreceptor system in plants, promoting the combination of

UVR8 photoreceptors with COP1, activating HY5 transcription

factor. This subsequently induces the expression of key enzymes in

the phenylpropanoid pathway, such as PAL and CHS, thereby

enhancing the synthesis and accumulation of anthocyanins and

flavonoids. These biochemical responses significantly improve the

plant’s resistance to oxidative stress (Shamala et al., 2020; Jaiswal

and Agrawal, 2021). Moreover, the terpenoid biosynthetic gene

network is dynamically regulated through both the MEP and MVA

pathways, ultimately modulating terpenoid diversity and yield

(Contreras-Avilés et al., 2024; Zha et al., 2024). Regarding signal

transduction, ultraviolet radiation influences the biosynthesis of
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defensive compounds such as phenolic acids by regulating

phytohormone JA and SA pathways (Gai et al., 2022; Sun et al.,

2024; Zhou et al., 2025).

Different UV treatments can improve the nutritional quality of

agricultural products and the component content of medicinal

plants, while their light signals also vary in regulating the

biosynthetic genes and hormonal signaling mechanisms in plants.

UV-A treatment of Ocimum basilicum upregulates PAL enzyme

activity, increasing total phenolic concentration and antioxidant

capacity (Kang et al., 2022). UV-A significantly enhances the

content of gallotannins and ellagitannins in Eucalyptus

camaldulensis by altering the expression of phenolic compounds

(Khanal et al., 2025). Under UV-A exposure, the shikimate and

MEP pathways are modulated to promote the synthesis of

flavonoids and phenolic acids in Lactuca sativa, while the MVA

pathway is suppressed, reducing the biosynthesis of sesquiterpenes

and triterpenes (Zha et al., 2024). Under UV-B exposure, the total

flavonoid and phenolic content is increased in Mangifera indica

(Yang et al., 2024), Stevia rebaudiana (Semenova et al., 2024),

Lactuca sativa (Skowron et al., 2024), Pelargonium graveolens

(Jadidi et al., 2023), Eucommia ulmoides (Xiao et al., 2023), and

Oryza sativa (Aimvijarn et al., 2023), enhancing their antioxidant

activity. In Vitis vinifera, in addition to boosting secondary

metabolite levels, also improves flavor (Narra et al., 2023). UV-B

acts on Pennisetum glaucum to increase the content of phytosterols

and triterpenoids (Singh and Choudhary, 2025).

Furthermore, UV-B treatment modulates the gene expression

involved in plant secondary metabolism. For instance, upon UV-B

irradiation, genes such as PAL, C4H, 4CL, CHS, and CHI in

Brassica napus are rapidly upregulated within 24 hours,

promoting the accumulation of phenylpropanoids, flavonoids,

and anthocyanins (Lee et al., 2022). After 48 hours of UV-B
Frontiers in Plant Science 03
exposure in Taxus wallichiana, the expression of Bapt and Dbtnbt

genes is upregulated, while CoA, Ts, and Dbat genes are

downregulated, leading to increased synthesis of paclitaxel and

cephalomannine (Zhong et al., 2024). Through the shikimate and

MEP pathways, genes including HY5, bHLH25, bHLH18,

bHLH148, MYB114, MYB12, and MYB111 in Artemisia argyi are

upregulated, enhancing the production of terpenoid and phenolic

compounds (Gu et al., 2024). A 15-minute UV-B irradiation

followed by 36 hours of dark incubation upregulates PAL, CHI,

and LAR gene expression in Morus alba, promoting the

accumulation of proanthocyanins, moracin N, and chalcomaricin,

which indicated that appropriate dark incubation under stress

conditions facilitates secondary metabolite biosynthesis (Takshak

and Agrawal, 2019; Li et al., 2022b). Additionally, in Salicornia

europaea, the ABA pathway under UV-B is regulated by ROS,

resulting in reduced ABA levels and increased carotenoid content,

thereby improving nutritional quality (Fitzner et al., 2023).

Regarding UV-C, it upregulates the expression of genes such as

PAL, POD, MYB, bHLH, COI1, JAR1, and MYC2 by modulating

flavonoid and phenylpropanoid biosynthetic pathways and

activating phytohormones, thereby enhancing the accumulation

of alkaloids, flavonoids, and phenolics in Musa nana (Chen et al.,

2022). Plant responses to UV radiation exhibit significant species-

specificity and developmental stage-dependence. Tolerance

thresholds to UV radiation vary markedly across plant families

and even within the same species at different growth stages (Kang

et al., 2022). This characteristic holds crucial implications for

modern agricultural practices, particularly in controlled-

environment agriculture systems where precise light quality

management must be tailored to crop varieties and growth

phases. Notably, UV intensities exceeding plant tolerance

thresholds can cause photosystem damage and inhibit normal
FIGURE 1

Mechanism of different light quality regulating plant secondary metabolites.
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TABLE 1 Effect of light quality on accumulation of secondary metabolites in plants.

Species Light quality Treatment time Regulated genes/proteins Secondary
metabolites

References

Ocimum
basilicum

supplement UV-B
TL, 311nm

4 days up-regulating CHS total flavonoid↑ (Skowron et al., 2025)

Oryza sativa blue lamp 10 h d-1 for 9 days up-regulating PAL, 4CL, CHS, CHI, F3H, FLS flavonoid↑ (Zhang et al., 2025b)

Atropa belladonna red LED,
620-660nm

16 h d-1 for 35 days up-regulating GDHA, At2g42690, PAO5 hyoscyamine,
scopolamine↑

(Gu et al., 2025)

Scots Pine red/far-red LED,
660/720 nm

14 h d-1 for 40 days up-regulating CHS, JAZa proanthocyanidins,
catechins↑

(Pashkovskiy
et al., 2024)

Mangifera indica UV-B/white LED,
312 nm

24 h d-1 for 14 days up-regulating MYB, C2H2, HSF,
C3H, bHLH

anthocyanins,
flavonoids, phenolics↑

(Yang et al., 2024)

Oryza sativa blue lamp 14 days up-regulating PAL, 4CL, CCR, POD, CHS,
CHI, FLS, ANR

JA, flavonoids↑ (Zhang et al., 2024b)

Wheat Sprouts red LED,
660-665nm

18.2 h d-1 for 4 days up-regulating PAL, C4H, 4CL total phenolic↑ (Zhang et al., 2024a)

Taxus wallichiana UV-B FL,
280-320nm

48 h up-regulating Bapt, Dbtnbt;down-regulating
CoA, Ts, Dbat

cephalomannine,
paclitaxel↑

(Zhong et al., 2024)

Artemisia argyi UV-B, 280-315nm 6 days up-regulating HY5, bHLH25, bHLH18,
bHLH148,MYB114, MYB12, MYB111

terpenoids, phenolic↑ (Gu et al., 2024)

Sage bulleyana red LED,
660/730nm

18 h d-1 for 35 days up-regulating PAL, TAT, RAS total polyphenol↑ (Grzegorczyk-Karolak
et al., 2025)

Brassica oleracea white
LED,450-660nm

16 h d-1 for 10 days up-regulating BoPDS, BoZDS carotenoid↑ (Lee et al., 2023)

Rhododendron
chrysanthum

UV-B TL, 295nm 8 h d-1 for 2 days up-regulating DHD, SDH total phenolic ↑ (Sun et al., 2024)

Scots Pine red LED, 660nm 16 h d-1 for 42 days up-regulating 4CL, LAR, PR1, PR5, JAZa,
JAZb, MYC

proanthocyanidins,
flavonoids catechins↑

(Pashkovskiy et al., 2023)

Musa nana UV-C TL 18 days up-regulating PAL, POD, MYB, bHLH,
COI1, JAR1, MYC2

total phenols,
flavonoids, alkaloid↑

(Chen et al., 2022)

Ocimum
basilicum

UV-A LED,
365-399nm

16 h d-1 for 14 days up-regulating PAL phenolic ↑ (Kang et al., 2022)

Morus alba UV-B mercury
vapor lamp,
280-320nm

15 mins up-regulating PAL,CHI, LAR proanthocyanins,
moracin
N, chalcomaricin↑

(Li et al., 2022b)

Melissa officinalis 70%R/30%B LED,
650/460nm

16 h d-1 for 49 days up-regulating DAHPS, TAT, RAS total phenolics,
rosmarinic acid↑

(Ahmadi et al., 2022)

Brassica napus supplement UV-B
TL, 280-315nm

3 days up-regulating PAL, C4H, 4CL, CHS, CHI,
F3H, FLS, F3`H, DFR

phenylpropanoid,
flavonoid,
anthocyanin↑

(Lee et al., 2022)

Cajanus cajan UV-B lamp, 313nm 42 days up-regulating CHS, STS phenolic↑ (Gai et al., 2022)

Brassica
alboglabra

UV-A LED,
370-390nm

12 h d-1 for 12 days up-regulating DOF1.1, MYB41, MYB28,
MYB34, BCATs, MAMs, CYP79s,
CYP83s, AOPs

glucosinolates↑ (He et al., 2021)

Artemisia annua UV-B LED,
275-320nm

16 h d-1 for 28 days up-regulating ADS, MYB, NAC artemisinin↑ (Ma et al., 2020)

Prunus persica blue LED, 445nm 8 days up-regulating PpPSY; down-regulating
PpCCD4, PpNCED1, PpNCED2

carotenoid↑ (Zhang et al., 2025c)

Salvia miltiorrhiza UV-B lamp, 313nm 16 h up-regulating NAC1, PAL3, TAT3 salvianolic acid↑ (Yin et al., 2020)

Vitis amurensis UV-C lamp, 254 nm 10 mins up-regulating STS resveratrol↑ (Yin et al., 2016)

Salvia miltiorrhiza blue LED, 450nm 16 h d-1 for 21 days down-regulating HMGR, DXS2, DXR,
GGPPS, CPS, CYP76AH1

tanshinone IIA↓ (Chen et al., 2018)
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growth, exemplifying the biphasic “low-dose stimulation, high-dose

inhibition” response typical of UV-induced physiological effects.
2.2 Blue light

As a vital component of the visible spectrum, blue light plays a

crucial regulatory role in plant growth and development. As shown

in Figure 3, this specific wavelength activates the plant

photoreceptor system, including cryptochromes and phototropins,

to mediate photomorphogenesis-inhibiting hypocotyl elongation

while promoting leaf expansion and stomatal opening (Wang et al.,

2017; Gao et al., 2022; Li et al., 2022a). At the metabolic level, blue

light upregulates the expression of transcription factors such as

HY5 and MYB, which specifically activated the expression of key

enzymes of phenylpropanoid pathway PAL, CHS and 4CL,

promoted the accumulation of flavonoids, anthocyanins and

phenolics, and enhanced the antioxidant capacity of plants (Wang

et al., 2020a; Zhang et al., 2025b). Additionally, blue light modulates

the activity of DXS and DXR rate-limiting enzymes by regulating

MEP pathway, influencing terpenoid biosynthesis (Lopes et al.,

2020; Xie et al., 2021; Cheng et al., 2023). Molecular studies reveal

that blue light stabilizes COP1 protein, altering the expression

patterns of secondary metabolism-related genes (Liu et al., 2011;

Wang et al., 2017; Miao et al., 2022). Optimizing blue light exposure

can thus enhance bioactive compound production in medicinal

plants and improve the nutritional quality of fruits and vegetables.

Empirical studies demonstrate that blue light increases total

flavonoids and phenolics in Ocimum basilicum (Fayezizadeh

et al., 2024a), Artemisia argyi (Su et al., 2024), Capsicum annuum

(Darko et al., 2022), Rhodiola imbricata (Kapoor et al., 2018), and

Brassica oleracea (Lee et al., 2023), alongside elevated antioxidant
Frontiers in Plant Science 05
activity. It also promotes JA (Zhang et al., 2023), terpenoid (Morello

et al., 2022; Le et al., 2023), and alkaloid (Moranska et al., 2023)

accumulation. In Oryza sativa, blue light upregulates PAL, 4CL,

CHS, CHI, F3H, and FLS genes, enhancing enzyme activity and

flavonoid biosynthesis (Zhang et al., 2025b).

In addition, blue light can interact with selenium nanoparticles

(SeNPs) through specific photoreceptors, and the interaction

between nano-materials and light environment can be used to

regulate plant physiological and biochemical processes. For

instance, Mazhar et al. (2024) treated Santalum album with

SeNPs under blue LED light, significantly increasing total

phenolics, saponins, terpenoids, and flavan-3-ols. In modern

controlled-environment agriculture, blue LED lighting is widely

adopted for tissue culture, leafy vegetable quality enhancement, and

medicinal plant cultivation. However, optimal spectral parameters

must be tailored to crop species and growth stages to maximize

efficacy while avoiding photoinhibition.
2.3 Red light

Phytochrome, as a light-sensitive protein complex, is widely

distributed in plant cells. Red light can regulate physiological

processes in plants through the phytochrome system, triggering a

series of complex signal transduction pathways (De Wit et al., 2016;

Holalu et al., 2020). As shown in Figure 4, When plants are exposed

to red light, photoreceptors such as phytochromes are activated,

and these signals are transmitted to the nucleus, triggering a cascade

of molecular responses (Viczián et al., 2017; Kwon et al., 2024; Péter

et al., 2024). First, the activated Pfr form can interfere with the

function of the COP1/SPA protein complex, thereby stabilizing the

expression of the HY5 transcription factor (Sweere et al., 2001; Oh
FIGURE 2

Mechanism of UV light regulating plant secondary metabolites.
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et al., 2020). Second, red light upregulates PAL and CHS key

enzyme genes in the phenylpropanoid metabolic pathway,

promoting the synthesis of antioxidant compounds such as

anthocyanins, flavonoids, and phenolics (Pashkovskiy et al., 2024;

Zhang et al., 2024a). Within the MEP/MVA metabolic pathways,

red light enhances the expression of the DXR gene, increasing

terpenoid production (Lopes et al., 2020; Sankhuan et al., 2022b;

Mokhtari et al., 2025). Additionally, red light signaling can

synergize with plant hormone systems, particularly the JA and SA

pathways, to coordinately regulate the biosynthesis of various

defensive secondary metabolites, including anthocyanins and

alkaloids (Li et al., 2014; Zhang et al., 2023).

These physiological changes collectively enhance the plant’s

ability to cope with environmental stress. Pashkovskiy et al. (2023)

demonstrated that under red and far-red light, the content of

proanthocyanidins and catechins in Scots Pine are increased and

the possible mechanism is to promote the expression of CHS gene. In

Triticum aestivum treated with red light for four days, the activity and

relative gene expression levels of PAL, C4H, and 4CL were

upregulated, effectively stimulating the synthesis of total phenolics

and enhancing antioxidant capacity (Zhang et al., 2024a). Under red

light, polyphenol accumulation in sage shoot was promoted,

accompanied by upregulated PAL, TAT, and RAS gene expression,

leading to increased rosmarinic acid content (Grzegorczyk-Karolak

et al., 2025). Red light also stimulated the accumulation of catechins,

flavonoids, and proanthocyanidins in Scots Pine, likely by promoting

the expression of 4CL and LAR genes, as well as the biosynthesis of

PR1 and PR5 genes in the SA pathway and the relative expression of

JA biosynthesis JAZa, JAZb, and MYC genes (Pashkovskiy et al.,

2023). The putrescine biosynthesis pathway is an important

precursor for the synthesis of tropane alkaloids, while red light

enhances nitrogen metabolism and precursor synthesis in Atropa
Frontiers in Plant Science 06
belladonna by regulating the expression of GDHA, At2g42690, and

PAO5 genes, thus promoting the accumulation of tropane alkaloids

(Gu et al., 2025). Therefore, red light can specifically activate plant

photoreceptors and downstream metabolic pathways, directionally

increase the content of plant secondary metabolites, and provide

sustainable light regulation strategies for medicinal plant cultivation

and agricultural development.
2.4 Green light

Green light, as an essential component of the visible spectrum,

plays significant regulatory roles in plant physiology despite its low

absorption efficiency by chlorophyll and other photosynthetic

pigments. Through cryptochrome-mediated signaling pathways

and other photoreceptors, green light not only influences

photomorphogenesis and developmental processes but also

modulates the biosynthesis and accumulation of secondary

metabolites, serving crucial functions in environmental adaptation

and defense mechanisms. At the molecular level, green light alters

metabolic pathway activity by regulating the expression of PAL and

CHS enzyme genes, thereby promoting or suppressing specific

secondary metabolite production (Liu et al., 2018). Research

demonstrates that green light at appropriate intensities can

mitigate photo-oxidative damage while enhancing volatile

compound accumulation (Lopes et al., 2020). Notably, green light

counteracts blue light-induced suppression of HvNCED gene

expression, thereby stimulating secondary metabolic processes

(Hoang et al., 2014). Mechanistic studies reveal that green light

promotes the accumulation of procyanidin B2/B3 and L-ascorbic

acid in Camellia sinensis through downregulation of CRY2/3 and

PHOT2 expression (Zheng et al., 2019). Furthermore, synergistic
FIGURE 3

Mechanism of blue light regulating plant secondary metabolites.
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effects emerge when green light is combined with UV irradiation,

significantly inducing the accumulation of phenolic compounds

and phytohormones (Palma et al., 2022). These findings provide

novel insights for light-quality regulation in controlled environment

agriculture, particularly for enhancing medicinal compound

production through optimized spectral combinations. Future

research should focus on elucidating the interaction mechanisms

between green light signaling and metabolic networks to facilitate

its application in precision agriculture.
2.5 Multiple light qualities

Combined light quality application refers to the use of light with

different wavelengths in specific ratios to collectively influence plant

growth and development. In terms of the mechanism, different light

qualities are perceived by plants through their specific

photoreceptors, activating downstream signal transduction

networks. This composite light environment, through synergistic

regulation, can significantly affect the synthesis and accumulation of

plant secondary metabolites, often yielding better results than

single-light treatments. For example, in Stevia rebaudiana, the

synthesis of phenolic compounds such as neochlorogenic acid,

chlorogenic acid, and caffeic acid was significantly enhanced

under two light combinations: 50% UV + 35% red + 15% blue

and 50% far-red + 35% red + 15% blue (Ptak et al., 2024). After 24

days of red and blue light exposure, the levels of total anthocyanins,

flavonoids, and phenolics increased in Brassica rapa (Bungala et al.,

2024). Similarly, when Cannabis sativa was exposed to a light

combination of 90% red, 8% blue, and 1% far-red for 43 days, the

contents of 9-tetrahydrocannabinol and cannabidiol were increased

(Carranza-Ramıŕez et al., 2025). Palma et al. (2022) showed that
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when Cucumis sativus was grown under green light for 9 days

followed by UV supplementation for an additional 14 days,

phenolic compounds increased, however, plants exposed to UV

under a blue light background exhibited reduced metabolites

associated with the hydrocinnamate or flavonoid pathway. Under

mixed red-blue light (70% red + 30% blue), the accumulation of

total phenolics and rosmarinic acid in Melissa officinalis was

increased, which may be due to the up-regulation of genes related

to primary metabolism (e.g., DAHPS for aromatic amino acids) and

secondary metabolism (e.g., TAT, RAS for phenylpropanoid

biosynthesis) (Ahmadi et al., 2022). Therefore, light quality

combination technology enables targeted improvement of crop

quality, offering new strategies for developing functional plant

products and natural medicines. This multi-light synergistic

regulation not only enhances the yield of secondary metabolites

but also precisely modifies their compositional ratios,

demonstrating broad prospects for future applications.
3 Effects of light intensity on plant
secondary metabolites

Light intensity is one of the key environmental factors

influencing the biosynthesis of plant secondary metabolites. As

shown in Table 2, the effects of different light intensity treatments

on the secondary metabolites of plants varied. While different light

intensities regulate the production and accumulation of various

secondary metabolites by altering plant physiological states and

metabolic pathways (Formisano et al., 2022). As illustrated in the

Figure 5, under low light stress, carbon source accumulation in

plants is suppressed, thereby inhibiting secondary metabolite

biosynthesis (Shi et al., 2015). Within optimal light ranges, plants
FIGURE 4

Mechanism of red light regulating plant secondary metabolites.
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achieve peak photosynthetic efficiency, providing sufficient carbon

sources and energy to support secondary metabolism (Wang et al.,

2020b; An et al., 2022). Under these conditions, plants activate

multiple metabolic pathways: they enhance phenylpropanoid

metabolism to increase synthesis of antioxidant compounds like

flavonoids and phenolics (Liu et al., 2019), while simultaneously

stimulating production of terpenoids including volatile

monoterpenes and sesquiterpenes (Reichel et al., 2022). However,

under high-light stress, the burst of ROS in plants damages the

photosynthetic apparatus, reducing ATP/NADPH supply (Borbély

et al., 2022). In response to stress signals, plants initiate protective

responses (Zhang et al., 2025a). At this time, photosystem II

activates defense mechanisms through signal transduction

pathways that induce synthesis of protective compounds (Wu

et al., 2016). This process leads to significant accumulation of

photoprotective pigments such as anthocyanins and carotenoids,

along with increased production of defensive secondary metabolites

like alkaloids (Zhang et al., 2019). Alternatively, when

photoprotection fails, photoinhibition occurs, negatively

impacting secondary metabolite biosynthesis (Huang et al.,

2022a). Studies demonstrate that high-intensity light stress

induces photo-oxidation in etiolated Camellia sinensis, which

upregulates the expression of CHI and F3’H genes through the

dihydroxy flavonoids and xanthophyll cycle pathways. This

metabolic response enhances the accumulation of flavonoid

antioxidants such as quercetin, thereby establishing a

photoprotective mechanism via ROS scavenging to mitigate light

stress tolerance (Zhang et al., 2017). Cao et al. (2024) compared

different light intensities in Anoectochilus roxburghii cultivation and

measured anthocyanin content. The results demonstrated that

under 75% transmittance (80 mmol·m2·s1), the expression levels of
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CHS, FLS, and F3’H genes were significantly upregulated, leading to

increased anthocyanin accumulation. High-intensity light

irradiation promotes both a higher net photosynthetic rate and

upregulation of PAL, 4CL, and C4H enzyme expression in Asarum

heterotropoides, consequently enhancing essential oil biosynthesis

(Wang et al., 2020b). Under high light intensity (400 mmol·m2·s1),

the gene expression of CsCHIa, CsCHIb, CsF3’Hb, CsF3’Hc,

CsDFRb2, and CsLARd in Camellia sinensis was downregulated,

leading to reduced accumulation of naringenin, dihydroquercetin,

leucocyanidin, and catechin (Zhang et al., 2025a). As a key gene of

nicotine biosynthesis in Nicotiana attenuata, NaABI4 activates the

gene expression of NaJAT1/2 and NaHY5 under the light intensity

of 300 mmol·m-2·s-1, increases the accumulation of nicotine and

promotes nicotine biosynthesis (Lei et al., 2025).

Conversely, under low light stress, plants prioritize energy

allocation to essential metabolic processes, often reducing

synthesis of complex secondary metabolites while maintaining

certain specific compounds at elevated levels (Huang et al., 2022b;

Kamal et al., 2022). Yamawo and Tomlinson (2023) showed that the

total phenolic content in Aralia elata decreased under low light

conditions. In Bletilla striata, 50% shading (transmitting 50%

natural sunlight) for 60 days downregulates genes involved in

phenylpropanoidand and flavonoid(C4H, HCT, CSE, F5H, CHS)

biosynthesis, as well as the terpenoid pathway gene DXS, reducing

corresponding metabolite levels (Xu et al., 2024). Mangifera indica

bagging treatments upregulate LAR expression while suppressing

proanthocyanidin accumulation in fruit peel, with additional

modulation of flavonoid biosynthesis through MYB, bHLH, ERF,

WRKY and bZIP gene regulation (Qian et al., 2023). In Angelica

dahurica, Huang et al. (2022b) observed that 90% shading

downregulates 4CL and COTM to inhibit coumarin biosynthesis,
TABLE 2 Effect of light intensity on accumulation of secondary metabolites in plants.

Species Light
environment

Regulated genes Secondary metabolites References

Nicotiana
attenuata

300 mmol·m-2·s-1 up-regulating NaJAT1/2, NaHY5 nicotine↑ (Lei et al., 2025)

Bletilla striata 50% shading for
60 days

down-regulating C4H, HCT, CSE, F5H,
CHS, DXS

cinnamic acid, chlorogenic acid, naringenin,
daidzein, carvone and gossypol ↓

(Xu et al., 2024)

Syringa oblata 40% ~ 50%
shading for
4 months

up-regulating 4CL1, CYP73A, CYP75B1 rutin and flavonoids↑ (Liu et al., 2019)

Origanum
majorana

30% shading for
60 days

up-regulating DXR, CYP771D179, CYP71D178 essential oil↑ (Hashemifar et al., 2024)

Catharanthus
roseus

80 mmol·m-2·s-1

for 23 days
up-regulating LAR fraxin, quercetin↓ (Gholizadeh et al., 2023)

Angelica
dahurica

90% shading for
60 days

down-regulating 4CL, COTM coumarin↓ (Huang et al., 2022b)

Anoectochilus
roxburghii

80 mmol·m-2·s-1

for 15 days
up-regulating CHS, FLS, F3′H anthocyanin↑ (Cao et al., 2024)

Vitis vinifera 150 mmol·m-2·s-1 up-regulating VvFLS1 flavonol↑ (Downey et al., 2003)

Camellia
sinensis

400 mmol·m-2·s-1

for 14 days
down-regulating CsCHIa, CsCHIb, CsF30 Hb,
CsF30Hc, CsDFRb2, CsLARd

naringenin, dihydroquercetin,
leucocyanidin, and catechin ↓

(Zhang et al., 2025a)
↑ represents increase, ↓ represents decrease.
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while 50% shading upregulates PAL to promote coumarin

accumulation. Compared to full sunlight (0% shading), 30%

shading increased the content of total phenolics, total flavonoids,

and chlorogenic acid in Ipomoea batatas (Jing et al., 2023). As a

shade-tolerant plant, Glechoma longituba exhibits increased

aboveground dry matter yield and enhanced accumulation of

ursolic acid and oleanolic acid under appropriate shading, thereby

improving its medicinal value (Zhang et al., 2015). Compared to

normal light intensity (1000 mmol·m2·s1), low-light stress (250

mmol·m2·s1) suppressed carotenoid and anthocyanin biosynthesis

in Brassica campestris, resulting in a phenotypic shift from purple to

green leaves (Zhu et al., 2017). Therefore, these findings

demonstrate that precise light intensity regulation represents a

powerful tool for targeted enrichment of valuable metabolites in

medicinal plant cultivation.
4 Effects of photoperiod on plant
secondary metabolites

Photoperiod is a crucial environmental signal regulating plant

physiological metabolism, which modulates the biosynthesis

dynamics of plant secondary metabolites through the circadian

clock system and light signal transduction network. The primary

mechanism involves plants perceiving changes in day length via

specific photoreceptors (e.g., phytochromes, cryptochromes) and

transmitting light signals to the central circadian clock, ultimately
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forming a cascade response system of light signal-circadian rhythm-

metabolic network (Flis et al., 2016; Djerrab et al., 2021; Liu et al.,

2023; Pérez-Llorca and Müller, 2024). At the metabolic regulation

level, the photoperiod effect is mainly reflected in regulating the

diurnal expression patterns of key enzymes PAL and TAL in the

phenylpropanoid pathway, influencing the synthesis rhythm of

flavonoids and phenolic compounds (Vazirifar et al., 2021;

Fukuda et al., 2022). Additionally, photoperiod affects the

periodic accumulation of terpenoids (Ali et al., 2018; D’aquino

et al., 2024) and the synthesis dynamics of nitrogen-containing

secondary metabolites (Campos-Tamayo et al., 2008; Akhgari et al.,

2015), which may be involved in the plant’s adaptation to light

environments. From an ecological perspective, photoperiod-

regulated metabolite changes reflect plant adaptation strategies to

seasonal environments. As shown in Table 3, photoperiodic

changes regulate the accumulation of plant secondary metabolites.

Long-day conditions promote the synthesis of pigments and

volatile compounds related to reproduction. In Litsea cubeba, dark

treatment significantly reduces monoterpene content in fruits and

suppresses gene expression in the MVA and MEP pathways (Yang

et al., 2025). Studies have shown that basil exhibits increased levels

of total phenolics, flavonoids, and anthocyanins under a 24-hour

photoperiod (Fayezizadeh et al., 2024b). Continuous white light (24

hours) for 28 days increases total phenolics and flavonoids (e.g.,

kaempferol, neochlorogenic acid, quercetin) in Moringa oleifera

(Bajwa et al., 2023). Moreover, the accumulation of anthocyanins,

carotenoids and flavonoids in plants is regulated by the circadian
FIGURE 5

Effects of light intensity on the accumulation of plant secondary metabolites.
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clock and adapts to photoperiod changes, thereby maintaining

circadian clock integrity (Covington et al., 2008; Hildreth et al.,

2022; Odgerel et al., 2022). When the photoperiod changes, the

regulation of circadian rhythm-related processes affects

phenylpropanoid biosynthesis in Populus tremula (Hoffman et al.,

2010). In Arabidopsis thaliana, light regulates the interaction

between the circadian transcription factors RVE8 and LNK,

thereby promoting anthocyanin accumulation (Pérez-Garcıá et al.,

2015). Studies demonstrate that extended photoperiods enhance the

accumulation of volatile compounds in Ocimum basilicum,

including linalool, eucalyptol, and eugenol (D’aquino et al., 2024).

Many genes in the phenylpropanoid biosynthesis pathway are

controlled by the circadian clock and phenylpropanoid-derived

secondary metabolites in Arabidopsis thaliana are synthesized to

protect cells from photoinhibition (Harmer et al., 2000). In

Arabidopsis thaliana, the expression of AtMYB genes is regulated

by the circadian clock and promotes anthocyanin biosynthesis in a

circadian clock-dependent manner (Nguyen and Lee, 2016). Light

promotes glucosinolate biosynthesis in Brassica rapa by modulating

the circadian clock gene BrGI (Kim et al., 2021). However, short-

day conditions induce the accumulation of stress-resistant

metabolites. Ali et al. (2023) cultivated Caralluma tuberculata in

complete darkness for 2 weeks with 100 mg/L SeNPs, then

transferring them to normal light until day 56, which showed

increased contents of coumarin, gallic acid, caffeic acid, ferulic

acid, catechin, quercetin, and rutin. Supplementing Solanum

lycopersicum with 3-hour morning light boosts phenolics

accumulation but reduces flavonoids, whereas 3-hour evening

light increases flavonoids without significantly affecting phenolics

(Wang et al., 2022). The studies showed that Begonia semperflorens

seedlings grown under short days accumulate more carbohydrates

and ABA, both of which induce anthocyanin biosynthesis (Zhang

et al., 2016). Thus, the core of these “time-dependent metabolic

regulation” mechanisms lies in the circadian clock system’s

integration and transduction of environmental signals, precisely

controlling secondary metabolic pathway activity to optimize plant

ecological adaptability (Seaton et al., 2018). This principle holds

significant application value in medicinal plant cultivation and

specialty agricultural production, providing a theoretical

foundation and technical pathway for the temporal precision

regulation of metabolites.
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5 Light-induced secondary
metabolism in plant organs and its
technical applications

Light exerts crucial effects on plant growth and development,

not only by providing energy for photosynthesis but also by

activating multiple signaling pathways to regulate secondary

metabolism. Plants perceive light signals through photoreceptors

such as phytochromes and cryptochromes, which collaborate with

transcription factors (e.g., HY5, PIFs) to form a sophisticated light-

signaling network, modulating the synthesis of metabolites in

different tissues. Due to structural and functional differentiation

among plant organs, leaves, flowers, fruits, and roots exhibit distinct

responses to light environments, which determines the distribution

patterns of various metabolites. Upon light signal perception by

photoreceptors, plants initiate tissue-specific response programs

that regulate secondary metabolism through hormonal signaling

and transcriptional networks. Taking leaves as an example, their

photosynthetic and defensive functions are closely light-dependent.

Blue or far-red light activates the leaf photoreceptor system, which

modulates MYB transcription factors to alter the phenylpropanoid

pathway, thereby enhancing antioxidant production (Zhou et al.,

2024). Different light radiation triggers intracellular signaling

through specific receptor systems, thereby regulating the synthesis

of secondary metabolites such as phenylpropanoids and terpenoids.

This process determines the accumulation patterns of defense-

related compounds, pigments, or pharmaceutically valuable

substances in leaves (Zhu et al., 2017). As crucial reproductive

structures in plants, flowers not only facilitate pollination but also

serve as biosynthesis sites for diverse secondary metabolites, with

their development and metabolic activities being light-regulated.

The photoreceptor systems distributed in flowers perceive and

transduce light signals, subsequently activating transcription

factors (e.g., HY5, MYBs) to modulate phenylpropanoid and

terpenoid metabolic pathways (Marzi et al., 2020). Physiologically,

light influences the synthesis of anthocyanins and other pigments

that determine floral coloration, while simultaneously regulating

the accumulation of volatile aromatic compounds and defensive

metabolites (Guo et al., 2018; Li et al., 2020). These light-mediated

changes carry significant ecological implications: floral
TABLE 3 Effect of photoperiod on accumulation of secondary metabolites in plants.

Species Class Light condition Metabolites References

Litsea cubeba terpenoid darkness treatment 18 h day-1 monoterpenes ↓ (Yang et al., 2025)

Ocimum
basilicum

polyphenols,
flavonoid

continuous light 24 h day-1 total phenolic, total flavonoid, anthocyanin ↑ (Fayezizadeh et al., 2024b)

Petunia hybrida flavonoid 12h/12h light/dark cycle for
14 days

anthocyanin ↑ (Pérez-Garcıá et al., 2015)

Caralluma
tuberculata

phenolic,
flavonoid

darkness treatment for 14 days coumarins, gallic acid, caffeic acid, ferulic acid, catechine,
quercetin, rutin ↑

(Ali et al., 2023)

Moringa oleifera phenolic,
flavonoid

continuous light 24 h day-1 for
28 days

kaempferol, neochlorogenic acid, quercetin ↑ (Bajwa et al., 2023)
↑ represents increase, ↓ represents decrease.
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pigmentation and fragrance attract pollinators, while defensive

compounds enhance reproductive success, thereby optimizing the

coordination between developmental processes and metabolic

homeostasis. As an essential component of plant reproductive

systems, fruits undergo light-regulated physiological processes

affecting pigmentation and ripening (Dzakovich et al., 2016). In

Solanum lycopersicum, UV-B radiation significantly enhances

carotenoid and anthocyanin biosynthesis through the HY5-

mediated signaling pathway (Abramova et al . , 2023).

Furthermore, under 150 µmol·m2·s1 light intensity, upregulated

expression of the VvFLS1 gene in Vitis vinifera promotes flavonol

production (Downey et al., 2003). Although plant roots do not

directly perform photosynthesis, their growth and metabolism

remain under photoregulation. This regulation primarily involves

light signal perception and response - root tips detect red light

signals through phytochromes to trigger negative phototropism,

forming characteristic skotomorphogenic growth patterns as

demonstrated by inhibited root elongation in Arabidopsis

thaliana (Van Gelderen et al., 2018; Spaninks and Offringa,

2023). Furthermore, shoot-to-root communication influences root

systems through photosynthetic assimilate al location,

phytohormone network regulation, and systemic signaling

transduction three pathways (Valbuena et al., 2018; Leschevin

et al., 2024).

The application of light-regulated plant secondary metabolites

refers to the targeted induction of functionally specific secondary

metabolite biosynthesis in plants through manipulation of light

parameters, enabling their industrial utilization in agriculture,

medicine, food production, and other fields. In enclosed

cultivation systems such as photobioreactors and artificial climate

chambers, spectral-tunable LED panels are used to optimize

metabolite production by selecting specific wavelength

combinations for different metabolites, employing photosensors

for real-time monitoring and automatic adjustment of light

intensity, and designing photoperiods according to plant

circadian rhythms, thereby maximizing the accumulation of

secondary metabolites (Hoffman et al., 2010). In vertical farming

systems, a stratified lighting strategy with three-dimensional

spectral recipes can be implemented: upper layers utilize UV-B to

enhance flavonoid production, middle layers employ blue-red light

combinations to increase fresh and dry weight, while lower layers

apply far-red light to stimulate the accumulation of root bioactive

compounds (Larsen et al., 2020; Yoon et al., 2021; Kim et al., 2025).

Greenhouse control systems can integrate natural sunlight with

LED supplemental lighting to automatically activate specific light

wavelengths during low-light seasons, ensuring stable metabolite

production. Additionally, stress-induction techniques can be

employed, such as short-term high-intensity illumination or UV

pulsed irradiation, to activate plant defense metabolic pathways.

During the postharvest storage of plants, light treatment technology

can effectively preserve and enhance functional components. For

example, blue light irradiation during Solanum lycopersicum storage

helps delay softening, reduce decay, and better maintain fruit

quality (Grzegorzewska et al., 2024). Brief UV-C irradiation

applied to postharvest Vigna radiata effectively reduces fresh
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weight loss, while increasing total phenolics, protein content, and

antioxidant capacity (Tripathi et al., 2024). Under 10°C storage

conditions, red-blue LED treatment extends the shelf life of Brassica

oleracea by 4 days (Liu et al., 2025). Based on these findings, an

integrated LED lighting and temperature-controlled storage system

was developed to achieve superior plant preservation, enhanced

quality, and maintained bioactivity.
6 Discussion

6.1 Light signaling regulates the production
of plant secondary metabolites

Light environment is a key ecological factor influencing plant

physiological processes, and its regulatory role in secondary

metabolites has become a research hotspot in the field of plant

science. Studies have shown that light quality, intensity, and

photoperiod can regulate the biosynthesis and accumulation of

plant secondary metabolites through complex photoreceptor

systems, such as phytochromes, cryptochromes, and UVR8

receptor proteins, and signal transduction networks (Ballaré,

2014; Taulavuori et al., 2017; Tossi et al., 2019). This light-

mediated regulation not only leads to quantitative changes in

end-product content but also affects the expression of key enzyme

genes in metabolic pathways (Hideg et al., 2013; Li et al., 2017). In-

depth exploration of this regulatory mechanism holds significant

value for understanding the evolutionary history of plant

photoadaptation and developing light-based strategies for crop

quality improvement. From a fundamental research perspective, it

provides new insights into the molecular mechanisms of plant

environmental adaptation and the regulatory principles of

metabolic networks. In practical applications, precise control of

light environment parameters can effectively optimize the active

compound profiles of medicinal plants and enhance the nutritional

and functional properties of agricultural products, which lays a

technological foundation for modern facility agriculture and

industrialized plant production systems. To leverage the potential

of light-regulated plant secondary metabolite accumulation, we can

utilize precisely tuned light wavelengths and intensities to achieve

targeted biosynthesis of desired metabolites. This integrated

approach combines plant photobiology, metabolic pathway

characteristics, and engineered control methods, featuring

dynamic multi-wavelength switching through tunable LED arrays

optimized for different metabolic stages, light intensity gradient

optimization with photosensor-enabled real-time adjustment to

prevent photoinhibition, and temporal light modulation

synchronized with circadian rhythms for enhanced pathway

efficiency. Currently, LED-based spectral modulation technology

has been widely applied in the commercial cultivation of various

medicinal crops, significantly improving the production efficiency

of target bioactive compounds (Sankhuan et al., 2022a; Dsouza

et al., 2024). These light-regulation technologies exhibit broad

application potential, including the production of high-value

therapeutics like paclitaxel in optically controlled bioreactor
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systems (Fernie et al., 2024). LED lighting technology enhances the

nutritional quality of Ocimum basilicum and Mentha canadensis

plants (Jakubczyk et al., 2024). Developing photo-optimized stress-

resistant crops to address climate change challenges in agricultural

production (Zhao et al., 2023). Furthermore, light environment

regulation has been successfully employed in the targeted

cultivation of specialty functional crops, such as glucosinolate-

rich Broccoli oleracea (Wang et al., 2021) and high-flavonoid-

content Eruca sativa (Veremeichik et al., 2023). Future research

must achieve breakthroughs in key technologies including

intelligent light-control systems and dynamic metabolic modeling,

while evaluating the adaptability between laboratory photic

conditions and natural environments, along with potential

ecological risks.
6.2 Integration of light signal transduction
with metabolic and genetic regulatory
networks

Elucidating the integration mechanism between the light signaling

system and the plant secondary metabolic network is a core scientific

question that urgently needs to be addressed in current research.

Although regulatory factors such as HY5 and MYB are involved in

light-responsive metabolic processes, the synergistic mechanisms

among these core transcriptional regulators and their dynamic

response patterns to different light environments still require in-

depth exploration (Jiang et al., 2012; Job and Datta, 2021; Chang

et al., 2025). In particular, there remain significant research gaps in

understanding how the interaction between light signals and abiotic

stress factors such as temperature, water, and salinity regulates

secondary metabolic pathways. Another key scientific question

worthy of further investigation is the species-specific differences in

light regulation observed among different plant groups. Studies have

shown that due to variations in evolutionary background and

ecological adaptation strategies, different plant species may exhibit

markedly distinct metabolic responses to the same light conditions

(Siatkowska et al., 2021; Jakubczyk et al., 2024). Taking light-adapted

plants as an example, sun-loving and shade-tolerant plants may have

fundamental differences in the molecular mechanisms of light

regulated secondary metabolism, posing challenges for developing

precise light regulation strategies in crops (Zhang et al., 2017;

Tavridou et al., 2020). From a technological application perspective,

integrating light environment control with metabolic engineering is

regarded an innovative strategy to improve the production of target

metabolites. In addition, by modifying light responsive elements or

optimizing key transcriptional regulators, it may be possible to achieve

precise regulation of plant secondary metabolic pathways (Riaz et al.,

2019; Shi et al., 2024). Current advances in genetic and metabolic

engineering focus on wavelength-specific photosensitive promoters

(e.g., UV-responsive synthetic elements) to enable spatiotemporal

control of metabolic pathways. AI-assisted photoreceptor engineering

enhances environmental adaptability, while integrated ROS-sensing

systems coordinate antioxidant defenses with secondary metabolite
Frontiers in Plant Science 12
production. Key challenges include:incorporation of extremophile-

derived resistance genes for improved stress tolerance, optimization

of non-photochemical quenching mechanisms, and dynamic balancing

between stress resilience and metabolic yield efficiency. However, such

modifications may interfere with normal plant physiological and

developmental processes, so it is necessary to find a balance between

metabolic regulation and plant growth.
6.3 Intelligent regulation of light
environment and multi-omics integrated
research

Building an intelligent light environment regulation system may

become a key research direction in the future. By leveraging artificial

intelligence technology, a real-time monitoring network for plant

physiological indicators and environmental parameters can be

established to dynamically optimize light parameters and achieve

precise regulation of secondary metabolites. This technological

framework holds broad application prospects in plant factories and

medicinal plant cultivation (Luna-Maldonado et al., 2016; Ren et al.,

2023). Additionally, understanding the synergistic regulation

mechanisms of multiple environmental factors is of significant

research value. Investigating the interactions between light and key

environmental variables such as CO2 concentration, temperature, and

humidity, and constructing a multi-dimensional environmental

regulation model will provide theoretical support for developing new

and efficient cultivation methods (Han et al., 2024; Tanigawa et al.,

2024). Against the backdrop of increasingly severe global climate

change, conducting such multi-factor coupling studies is particularly

urgent, offering critical implications for agricultural practices in

response to climate challenges.

With advancements in photobiology, metabolomics, and synthetic

biology, research on light mediated regulation of plant secondary

metabolism is in a rapid development phase, deepening our

understanding of complex regulatory systems (Bobrovskikh et al.,

2022; Liao et al., 2024; Bechtold et al., 2025). Looking forward to the

future, there is an urgent need to integrate multi-omics technologies,

including genomics, transcriptomics, proteomics, and metabolomics,

to systematically elucidate the molecular mechanisms of light-regulated

secondary metabolism and translate fundamental research into

practical applications, so as to give full unlock the potential of light-

regulation technology in agricultural upgrading, drug development,

and ecological conservation. In conclusion, light precisely regulates

plant secondary metabolism through wavelength specificity, intensity,

and duration. The core of these regulatory systems lies in

photoreceptor-mediated signal perception, which triggers cascade

reactions that activate specific transcription factors, thereby

modulating the expression and activity of key metabolic enzymes

(Qian et al., 2020). Based on this principle, optimizing crop quality

or medicinal components using artificial light sources provides an

innovative solution for replacing traditional chemical inducers with

optical fertilizers, and also opens up new possibilities for green

agriculture and sustainable development.
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Glossary

UV Ultraviolet light
Frontiers in Plant Scie
HY5 hypocotyl 5
UVR8 UV Resistance Locus 8
MYB myeloblastosis
COP1 constitutive photomorphogenic 1
CRY cryptochrome
PHOT phototropin
PHY phytochrome
MEP methylerythritol 4-phosphate
MVA mevalonic acid
JA jasmonic acid
SA salicylic acid
ABA abscisic acid
ROS reactive oxygen species
LED light emitting diodes
TL Tubular Luminescent
FL fluorescent lamp
CHS chalcone synthase
PAL phenylalanine ammonia-lyase
C4H cinnamate 4-hydroxylase
4CL 4-coumarate-CoA ligase
CHI chalcone isomerase
F3’H flavanone 3’-hydroxylase
FLS flavonol synthase
GDHA glutamate dehydrogenase A
PAO5 polyamine oxidase 5
JAZa jasmonate ZIM-domain protein a
HSF heat shock factor
C3H Cys3/His
nce 18
bHLH basic Helix-Loop-Helix
CCR cinnamoyl-CoA reductase
POD peroxidase
ANR anthocyanidin reductase
TAT tyrosine aminotransferase
RAS rosmarinic acid synthase
DHD dihydrodipicolinate
SDH shikimate dehydrogenase
LAR leucoanthocyanidin reductase
PR1 pathogenesis-related protein 1
PR5 pathogenesis-related protein 5
JAZb jasmonate ZIM-domain protein b
MYC myelocytomatosis
COI1 coronatine-insensitive protein 1
JAR1 JA-amino synthetase
DAHPS 3-deoxy-D-arabino-heptolusonate 7-phosphate synthase
DFR dihydroflavonol 4-reductase
STS stilbene synthase
ADS amorpha-4,11-dienesynthase
HMGR 3-hydroxy-3-methylglutaryl CoA reductase
DXS 1-deoxy-D-xylulose-5-phosphate synthase
DXR 1-deoxy-D-xylulose-5-phosphate reductoisomerase
GGPPS geranylgeranyl diphosphate synthase
CPS copalyl diphosphate synthase
HCT hydroxycinnamoyl-CoA transferase
CSE caffeoyl shikimate esterase
F5H ferulate 5-hydroxylase
COMT caffeic acid O-methyltransferase.
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