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Introduction: Microplastics (MPs), as emerging environmental contaminants, 
pose a significant threat to global food security. In order to rapidly screen and 
diagnosis rice seedling under MPs stress at an early stage, it is essential to develop 
efficient and non-destructive detection methods. 

Methods: In this study, rice seedlings exposed to different concentrations (0, 10, 
and 100 mg/L) of polyethylene terephthalate (PET), polystyrene (PS), and 
polyvinyl chloride (PVC) MPs stress were constructed. Two complementary 
spectroscopic techniques, visible/near-infrared hyperspectral imaging (VNIR­
HSI) and synchrotron radiation-based Fourier Transform Infrared spectroscopy 
(SR-FTIR), were employed to capture the biochemical changes of leaf 
organic molecules. 

Results: The spectral information of rice seedlings under MPs stress was obtained 
by using VNIR-HSI, and the low-dimensional clustering distribution analysis of 
the original spectra was conducted. An improved SE-LSTM  full-spectral
detection model was proposed, and the detection accuracy rate was greater 
than 93.88%. Characteristic wavelengths were extracted to build a simplified 
detection model, and the SHapley Additive exPlanations (SHAP) framework was 
applied to interpret the model by identifying the bands associated with 
chlorophyll, carotenoids, water content, and cellulose. Meanwhile, SR-FTIR 
spectroscopy was used to investigate compositional changes in both leaf 
lamina and veins, and two-dimensional correlation spectroscopy (2DCOS) was 
employed to reveal the sequential interactions among molecular components. 
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Discussion: In conclusion, the combination of spectral technology and deep 
learning to capture the physiological and biochemical reactions of leaves could 
provide a rapid and interpretable method for detecting rice seedlings under MPs 
stress. This method could provide a solution for the early detection of external 
stress on other crops. 
KEYWORDS 

microplastics, rice seedlings, visible/near-infrared hyperspectral imaging, synchrotron 
radiation-based Fourier transform infrared spectroscopy, deep learning 
1 Introduction 

Microplastics (MPs), as emerging environmental pollutants, have 
been continuously threatening the ecosystem along with the growth 
of the global plastic industry (Thompson et al., 2024). Studies have 
demonstrated that less than 10% of the approximately 360 million 
tons of plastics produced globally were recycled, with the remainder 
being gradually decomposed into MPs particles through photo-
oxidation, mechanical abrasion, and biodegradation to enter 
natural environment (Lwanga et al., 2022). Rice, a staple crop that 
supports nearly 60% of the global population, is vulnerable to MPs 
contamination (Kedzierski et al., 2023). Pathways such as polluted 
irrigation water, residual and fragmented agricultural plastic films, 
and atmospheric deposition could introduce MPs into rice paddies, 
thereby directly impairing crop growth and physiological functions 
(Kedzierski et al., 2023). MPs have been shown to physically block 
intercellular spaces in root epidermal cells, impeding water uptake, 
while also triggering reactive oxygen species (ROS) bursts and 
damaging chloroplast ultrastructure (Khan et al., 2024). These 
physiological disruptions lead to decreased chlorophyll content, 
reduced activity of key enzymes in the photosynthetic electron 
transport chain, and diminished plant biomass during the seedling 
stage (Yang et al., 2021). Additionally, the heavy metals and persistent 
organic pollutants adsorbed on their surfaces pose serious health risks 
by inducing metabolic disorders and organ damage through 
biomagnification (Lwanga et al., 2022). More notably, MPs can 
migrate and accumulate along the “soil-rice-human body” chain, 
having already been detected in human blood, lungs, and placentas 
(Tang et al., 2024). Therefore, establishment of early-stage MPs stress 
detection method in rice seedlings is not only fundamental for 
ensuring food production safety but also crucial in preventing 
pollutant transmission through the food chain, with far-reaching 
implications for both food security and public health. 

Currently, widely used detection methods, such as microscopy 
(Carr et al., 2016), spectroscopy (Xu et al., 2019), mass spectrometry 
(Lee and Chae, 2021) and  other emerging technologies, have 
demonstrated high recognition capabilities and are capable of in-
situ detection. However, these methods typically require destructive 
sampling, complex pretreatment procedures, and specialized 
technical expertise, rendering them unsuitable for non-destructive 
02 
and rapid detection in plants exposed to MPs. As an alternative, the 
physiological and biochemical responses of plant leaves under MPs 
stress offer a promising avenue for indirect detection (Yadav et al., 
2022). For instance, exposure of cucumber plants to polystyrene 
(PS) MPs has reduced the contents of chlorophyll a/b, carotene and 
soluble sugar (Li et al., 2020). Similarly, spinach exposure to MPs 
leads to a decline in protein levels and abnormal accumulation of 
nitrites (Wang et al., 2024). upon MPs exposure, other crops such as 
maize (Sun et al., 2021), Chinese cabbage (Yang et al., 2021), 
tomatoes (Hernández-Arenas et al., 2021), and wheat (Lian et al., 
2020) also exhibit marked biochemical alterations in leaf tissues, 
affecting pigments, enzyme activities, and biomass. Hyperspectral 
imaging (HSI) technology, by combining the spectral signatures of 
molecular vibrations with spatial imaging, provides a non-invasive 
method to assess biochemical changes (Lu et al., 2022). By capturing 
absorption features related to fundamental, harmonic, and 
combination vibrations of functional groups such as C–H, N–H, 
and O–H, HSI enables detailed exploration of alterations in plant 
organic constituents induced by MPs stress. Specifically, MPs are 
known to degrade photosynthetic pigments, producing 
characteristic absorption peaks for chlorophyll a at 680 nm 
(Zolotukhina et al., 2024) and for carotenoids at 470–500 nm 
(Sytar et al., 2017). Moreover, the stress-induced synthesis of 
phenolic compounds, such as ferulic acid, could result in broad 
fluorescence emission bands within the 640–660 nm range (Tran 
et al., 2022). Compared with traditional destructive techniques, HSI 
acquires molecular vibration data corresponding to the 
physiological responses of leaves, providing a feasible and effective 
tool for the monitoring of rice seedlings under MPs stress. 

To achieve accurate detection and enhance the interpretability 
of MPs stress in plants, this study integrates machine learning and 
deep learning to extract and analyze key characteristics from 
hyperspectral image. Given the presence of noise, baseline drift 
and scattering interference in original spectra, appropriate 
preprocessing techniques are employed to eliminate these artifacts 
and improve data reliability (Bonah et al., 2019). To address the 
redundancy and complexity inherent in high-dimensional spectral 
data, principal component analysis (PCA) is utilized for 
dimensionality  reduction  and  low-dimensional  feature  
visualization (Marukatat, 2023). Furthermore, the spectral data is 
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processed as sequence information to explore the intrinsic 
correlations. In this context, an attention-based long short-term 
memory (LSTM) network is constructed to address LSTM’s 
limitation in prioritizing critical spectral bands across long 
sequences, building a detection model that dynamically allocates 
weights to spectral features and thereby captures relevant sequence 
dependencies (Smagulova and James, 2019). However, a major 
challenge in applying deep learning lies in its black-box nature, 
which limits the model’s interpretability. To overcome this 
limitation, the SHapley Additive exPlanations (SHAP) framework 
is introduced to decode the model’s decision-making process by 
quantifying the contributions of individual wavelengths to the 
prediction outcome (Salih et al., 2025). This approach provides 
both predictive accuracy and explanatory transparency in assessing 
MPs induced stress in rice seedling. 

Fourier transform infrared (FTIR) spectroscopy, as a 
complementary technique to the macroscopic VNIR-HSI, 
chemically characterizes the functional groups in the infrared 
region at the microscopic scale (Bondu et al., 2024). FTIR has 
advantages in studying plant microstructures and tissue levels 
responses under environmental stress. For instance, FTIR 
spectroscopy has been employed to monitor changes in lipids, 
proteins, and carbohydrates in corn leaves, thereby elucidating 
the relationship between photosynthetic activity and the 
concentration of active biochemical agents in response to external 
stimuli (Tran et al., 2025). Similarly, in Arabidopsis eceriferum 
subjected to drought stress, alterations in cuticular structure were 
characterized by analyzing spectral peak areas associated with CH 
stretching, asymmetric and symmetric CH2 modes, ester carbonyl 
groups, and asymmetric vibrations of C=O and CH2, highlighting 
the plant’s physiological adaptation mechanisms (Liu et al., 2020). 
These findings collectively confirm the feasibility of FTIR to 
investigate stress responses in rice seedlings exposed to MPs. 
With the advancement of synchrotron radiation (SR) technology, 
synchrotron-based FTIR (SR-FTIR) microspectroscopy has 
significantly enhanced spatial resolution and brightness, while 
maintaining a high signal-to-noise ratio (Du et al., 2021). This 
technique allows for fine-scale mapping of functional groups and 
compound distributions within microstructures such as mesophyll 
tissues and leaf veins, enabling simultaneous structural analysis, 
spatial localization of chemical components, and real-time 
monitoring of subtle compositional changes. However, 
distinguishing fine and dynamic spectral variations, such as 
sequential changes in rice leaf components under microplastic­

induced stress, remains a significant challenge. Two-dimensional 
correlation spectroscopy (2DCOS) enhances spectral resolution and 
temporal sequencing of molecular responses, and has already 
proven effective in studies involving plant microstructural 
interactions and dynamic stress analysis (Park et al., 2015). 

This study aims to develop a rapid detection method for 
assessing MPs stress in rice seedling and to explore the associated 
micro-scale interaction mechanisms. At the macro level, VNIR-HSI 
was used to analyze spectral differences in rice leaves under MPs 
exposure, and high-dimensional spectra were visualized through 
dimensionality reduction techniques. An SE-LSTM model was 
Frontiers in Plant Science 03 
constructed to rapidly detect stress concentrations, and 
characteristic wavelengths were identified to build simplified 
models. The importance of each spectral band was further 
investigated using model interpretation methods. At the 
microscopic level, SR-FTIR combined with 2DCOS was employed 
to investigate the biochemical interactions between leaf veins and 
mesophyll tissues. To the best of our knowledge, this is the first 
report to assess MPs induced plant toxicity via spectral sensing of 
physiological and biochemical responses in leaves. The proposed 
approach may also be extended to assess the toxicity of other 
emerging environmental pollutants. 
2 Materials and methods 

2.1 Samples preparation 

MPs were purchased from HengfaSuhua (Guangdong, China). 
The MPs size was measured using a dynamic light scattering (DLS) 
particle size analyzer (Zetasizer Nano ZS90, UK), with PET, PS and 
PVC exhibiting primary size distributions of 4.7 ± 3.1 mm, 6.5 ± 3.5 
mm and 5.2 ± 2.7 mm, respectively. The cultivation of rice (Liangyou 
Y900) followed the method described by Xie et al (Xie et al., 2024). 
Fifty rice seeds were placed in each glass petri dish, and 5 mL of 10 
or 100 mg/L PET, PS, and PVC MPs suspensions were added to the 
dishes, with six replicates for each treatment. Rice cultivated with 
sterile water was used as the control group. Under dark conditions 
at a temperature of 30°C and a relative humidity of approximately 
60%, 5 mL of suspension or sterile water was added to each petri 
dish daily for seven days to promote germination. After the 
germination phase, the addition of MPs suspensions was stopped, 
and the petri dishes were transferred to alternating light and dark 
conditions for continued cultivation 35 days. The cultivation 
environment included a relative humidity of 60%, a daytime 
temperature of 28°C with a light intensity of 300–350 
mmol·m−2·s −1 for 14 hours, followed by a nighttime temperature 
of 20°C in complete darkness for 10 hours. Hoagland solution was 
added periodically to ensure adequate nutrients for rice growth. 
One or two leaves were collected from each rice seedling, 
amounting to 300 leaves per treatment group and 2100 leaves 
across all groups. 
2.2 VNIR-HSI acquisition 

The VNIR-HSI of leaves of rice seedling under MPs stress were 
acquired by self-built push-broom line-scan hyper-spectrometer 
system, which consisted of several components: a spectrometer 
(ImSpector V10E), a CCD detector (Bobcat2.0), a variable focal-
length lens (Schneider Xenoplen), a motorized translation stage, 
two 500 W tungsten-halogen lamps, and a computer for data 
acquisition. More detailed information about the system was 
provided in the previous research (Jiang et al., 2019). To obtain 
the VNIR-HSI spectra of entire leaves, the samples were placed on a 
white Teflon board measuring 15 × 30 cm, which was positioned on 
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a translation stage. Once the board entered the camera’s field of 
view, hyperspectral images were captured with line scanning. At the 
same time, to prevent leaves damage caused by prolonged exposure 
to the high temperatures of halogen lamps, each sample was 
scanned and completed within 20 s. The hyperspectral images 
contained 300 spectral bands ranging from 380 to 1013 nm, with 
a spectral resolution of 2.2 nm. To reduce noise interference at the 
spectral boundaries, 256 wavebands within the range of 425 to 965 
nm were retained. 

Due to the narrow and elongated shape of the rice leaves, ten 
leaves were placed on the Teflon board simultaneously during 
sample collection, resulting in the pseudo-color image shown in 
Figure 1a. The reflectance spectra (Figure 1b) of the background 
and the leaves exhibited significant differences, particularly at 655 
nm. Based on above features, the gray image (Figure 1c) at 655 nm 
was selected for background removal. A fixed threshold of 0.6 was 
applied to distinguish the leaves from the background, producing a 
mask image (Figure 1d) that clearly outlined the leaves contours 
without noise. The mask image was then overlaid onto the original 
image to remove the background, as shown in Figure 1e. Finally, the 
average spectral profile of each leaf was extracted (Figure 1f), and 
this process was repeated for all leaves to ensure comprehensive 
spectral data extraction. 
2.3 SR-FTIR microspectroscopy and 
2DCOS analysis 

In order to further investigate the potential microscopic 
interaction mechanisms of the composition and structure of rice 
seedlings exposed to MPs, the SR-FTIR measurement was 
Frontiers in Plant Science 04
performed at a BL01B beamline at the National Synchrotron 
Radiation Laboratory (NSRL, China). The SR-FTIR photon 
source  is  equipped  with  a  Bruker  Vertex  70v  Fourier  
transformation spectrometer and Bruker Hyperion 3000 
microscope. After being embedded and fixed with Optimal 
Cutting Temperature (OCT) compound, the leaves were sectioned 
into 10 um thick slices using a cryo-microtome (Leica CM1850, 
Nussloch, Germany) and then placed on a BaF2 substrate for 
infrared microscopic imaging. The spectral imaging was obtained 
by raster scanning across the regions of interest, 20 × 20 mm2 for leaf 
vein and mesophyll regions of rice leaves. The SR-FTIR data were 
acquired in a transmission mode from 4000 to 800 cm −1 at a 
resolution of 4 cm−1 spectral with 32 scans. All of the SR-FTIR 
spectra were acquired using Bruker OPUS 8.5 software. A 
background spectrum for each image was acquired on a portion 
of the pure BaF2 slide. To obtain high-quality spectra, the SR-FTIR 
spectra were subtracted from the background spectrum. The 
transmission spectra were then converted into reflection spectra 
based on the Lambert-Beer law, followed by baseline correction to 
remove baseline drift from the reflection spectra. 

Two-dimensional correlation spectroscopy (2DCOS) extends 
one-dimensional spectra to two-dimensional planes and provides 
the relationships between the absorption peaks of various molecular 
functional groups in complex samples through synchronous and 
asynchronous spectra (Park et al., 2015). Not only can the source of 
substances be confirmed, but also the sequence of vibration changes 
of each functional group can be clarified. Critically for fluorescent 
components, 2DCOS resolves emission sequence dynamics under 
perturbations: the signs (+/-) of asynchronous cross-peaks between 
distinct fluorophore bands determine the sequential order of 
quenching events and conformational rearrangements in light-
FIGURE 1 

The extraction process of macro VNIR spectra. (a) Original pseudo-color image; (b) spectra of the background and leaves; (c) Grayscale images at 
655nm; (d) Mask image; (e) Apply the original image to the mask image to remove the background; and (f) Mean spectra of each leaf. 
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responsive molecular systems. In the synchronous spectra, the 
intensity of the autocorrelation peak located on the main diagonal 
reflects the response to interference. The asynchronous spectral 
cross peaks are antisymmetric along the main diagonal and are 
composed only of the cross peaks on both sides of the diagonal. The 
cross peaks can be positive or negative, and the symbols of the cross 
peaks in the asynchronous spectrum diagram can be used to assist 
in determining the change order of the spectral bands during the 
external disturbance process. 
2.4 Model development, evaluation, and 
explanation 

The Squeeze-and-Excitation (SE) Block enhances the 
representational capacity of neural networks by exploring inter-
channel dependencies. Through global contextual learning, it 
dynamically emphasizes characteristic wavelengths and suppresses 
unreliable ones. On the other hand, Long Short-Term Memory 
(LSTM), a type of recurrent neural network (RNN), excel at 
capturing sequential data and establish dependencies, effectively 
addressing issues like vanishing and exploding gradients in long 
time-series data. In this study, spectral data is simulated as time-

series input to explore the relationships between spectral 
wavelengths. By combining the strengths of SE Block and LSTM, 
Frontiers in Plant Science 05 
the SE-LSTM model was proposed, which enhanced features 
extraction, improved the detection and identification of MPs 
stress in rice, and provided a powerful method for processing 
complex spectral information. 

The SE-LSTM model framework (Figure 2a) consists of three 
main components: the SE-Block, LSTM, and fully connected 
classification layers. Initially, the spectral data of length 256 is 
reshaped into a vector with 256 channels, followed by channel 
attention extraction using the SE Block (Figure 2b). Global average 
pooling (GAP) is applied to by the SE Block to capture global 
information, and then the features are excited through a lightweight 
fully connected network to reweight the channel-wise features. The 
LSTM network is composed of multiple sequential layers of LSTM 
cells (Figure 2c), each containing three main gating mechanisms: 
the input gate (it ), forget gate (ft ), and output gate (ot ). The forget 
gate determines which information from the previous cell state 
(Ct−1) is retained or discarded based on the current input spectra 
(Xt ) and previous output (ht−1), while the input gate controls how 
much of the current input (gt ) is written into the cell state. The 
output gate determines which information is output from the cell 
state, generating the new cell state (Ct ), which is used to produce the 
new output (ht ) for the next layer or prediction. By iterating 
through these cells, the LSTM effectively captures long-term 
dependencies in sequential data, enabling the model to selectively 
remember or forget information. Finally, a fully connected layer is 
FIGURE 2 

The framework of SE-LSTM model. (a) Overall structure of the model; (b) SE block attention mechanism structure; (c) LSTM cell structure. 
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used to predict the microplastic stress concentration. The detailed 
calculation of LSTM as shown in Equations 1–6. 

ft = s (WfxXt + Wfhht−1 + bf ) (1) 

it = s (WixXt + Wihht−1 + bi) (2) 

ot = s (WoxXt + Wohht−1 + bo) (3) 

gt = tanh(WgxXt + Wghht−1 + bg ) (4) 

ct = ft  ct−1 + it  gt (5) 

ht = ot  tanh(ct ) (6) 

Where Wfx , Wix , Wox , Wgx and Wfh, Wih, Woh, Wgh represent 
the weight matrices of the input spectra (Xt ), and the previous cell 
state (ht−1) passed to the gates ft , it , ot , and gt . bf , bi, bo, and bg are 
the biases for each gate, s (sigmoid) and tanh are the nonlinear 
activation functions. 

To evaluate the feasibility of the proposed SE-LSTM model, 
classical machine learning models (Partial least squares 
Discriminant Analysis, PLDA) and the unmodified LSTM were 
compared against it. Accuracy, loss value, and overfitting coefficient 
were adopted as evaluation criteria (Dhiman et al., 2023). To 
construct simplified models, characteristic wavelengths selection 
was performed using Successive Projections Algorithm (SPA), 
Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and 
Bootstrapping Soft Shrinkage (BOSS) (Saha and Manickavasagan, 
Frontiers in Plant Science 06
2021). SHAP, a game theory-based model interpretation framework, 
provides global and local interpretations by quantifying feature 
contributions to prediction outcomes (Salih et al., 2025). In this 
study, SHAP was employed to analyze the contribution of individual 
wavelengths to the model. All aforementioned algorithms were 
implemented in Python v3.8.20 with Scikit-learn v1.3.0 and 
PyTorch v2.2.0. 
3 Results and discussion 

3.1 Macro analysis based on VNIR-HSI 

3.1.1 Spectra analysis in VNIR band 
The leaf reflectance spectra of rice seedlings under normal 

growth conditions (control group) and exposed to microplastic 
(PET, PS, and PVC) stress at two concentrations (10 mg/L and 100 
mg/L) are shown in Figure 3. The overall spectral trends of different 
treatment were similar and spectral peaks overlapped, which might 
be attributed to the dominant influence of leaf characteristics. In the 
blue-violet absorption region (425–490 nm), the peak of 480 nm is 
associated with the absorption of blue-violet light by leaves and the 
promotion of chlorophyll synthesis. Within the yellow-green 
absorption band (490–570 nm), the reflectance was observed to 
first increase and then decrease, with higher reflectance recorded in 
the green light region near 540 nm. This phenomenon was 
correlated with chlorophyll content in leaves and simultaneously 
explains the green coloration of rice leaves. The descending region 
at 530–660 nm, referred to as the “green edge”, was identified as a 
FIGURE 3
 

Original and mean spectra of leaves of rice seedling under PET (a, d), PS  (b, e), PCV (c, f) MPs stress.
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crucial indicator of chlorophyll absorption characteristics. The 
rapid reflectance increase in the 660–770 nm range, termed the 
“red edge”, was recognized as a reflection of carotenoid-related 
properties (Zolotukhina et al., 2024). In the near-infrared band 
(770–965 nm), reflectance characteristics were primarily influenced 
by the internal cellular structure of plants. Physiological and 
biochemical differences in rice leaves caused by different 
microplastic stresses were captured by visible-near infrared 
spectroscopy, establishing a technical foundation for microplastic 
stress detection. 

3.1.2 Dimensionality reduction clustering analysis 
To investigate the clustering distribution of rice leaves under MPs 

stress, PCA was performed to analyze the spectral characteristics 
under gradient concentrations of PET, PS, and PVC MPs. The 
dimensionality reduction results and corresponding loading curves 
are presented in Figure 4. The cumulative contribution rates of the 
first three principal components reached 96.62%, 96.11%, and 96.93% 
for PET, PS, and PVC respectively, accounting for the majority of the 
variances in the original spectral data. The substantial overlap 
Frontiers in Plant Science 07 
observed under different microplastic stress levels may be attributed 
to the subtle spectral features induced by MPs. In the PC1 vs. PC3 

plots of PET MPs, the clustering distribution exhibited a trend of 
shifting from the upper right to the lower left as the stress 
concentration increased. Meanwhile, in the PC1 vs. PC2 plots of PS 
MPs, a clockwise rotation pattern was showed with increasing 
concentrations. In contrast, a counterclockwise rotational trend was 
exhibited as stress levels increased in the PC1 vs. PC2 plots of 
PVC MPs. 

The loading weights of the principal components reflect the 
relative importance of spectral features for clustering and indicate 
specific molecular and physiological changes in leaf tissues under 
microplastic stress. Under the three types of MPs stress, the loading 
curves exhibited generally consistent patterns. In the PC1 loadings, a 
trough at 660 nm corresponds to the strong absorption of 
chlorophyll a in the red spectral region (Zolotukhina et al., 2024). 
The increased reflectance may be related to chlorophyll 
degradation, potentially caused by MPs disrupting chloroplast 
membrane stability or inducing reactive oxygen species 
accumulation. The peak at 690 nm may reflect enhanced light 
FIGURE 4
 

The scatter and loading plot of PET (a–c), PS  (d–f) and PVC (g–i) stress on rice seedlings.
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scattering due to damage to the cell wall. The feature at 747 nm 
corresponds to the third overtone of the O–H bond, possibly 
indicating disruption of aquaporin formation in lipid membranes. 
In the PC2 loadings, the feature at 948 nm may arise from the third 
overtone of N–H bonds in proteins, suggesting that MPs stress may 
inhibit enzyme synthesis. In PC3, 505 nm is associated with 
absorption of carotenoids (Sytar et al., 2017), reflecting pigment 
changes induced by MPs. The features around 876 nm and 946 nm 
may be related to functional group interactions, such as the ester 
groups in PET or aromatic rings in PS, with polysaccharide O–H 
groups in plant cell walls. Although PCA provides a preliminary 
understanding of the clustering trends and associated spectral 
features, further methods development is needed to quantify 
stress levels more precisely. 
Frontiers in Plant Science 08
3.2 MPs stress models development 

3.2.1 Full wavelength models 

The appropriate neural network structure and parameter have a 
significant  impact  on  both  detection  performance  and  
computational efficiency. There, the number of hidden layers and 
units per layer in the SE-LSTM model were systematically 
optimized. Based on empirical knowledge, the learning rate was 
set to 0.01 and the optimizer to Adam. PET MPs spectral data were 
as input, grid search algorithm was to explore different hidden layer 
configurations. The accuracy rates and loss values of the calibration 
set and prediction set under different hidden layer structures are 
shown in Figure 5, and the hidden layers 1, 2, and 3, as well as the 
FIGURE 5 

Accuracy and loss value of SE-LSTM model with different hidden layer and sizes. 
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number of hidden layer nodes 16, 32, 64, and 128, are discussed in 
detail. When the model had a single hidden layer, increasing the 
number of nodes led to gradual improvements in accuracy and 
reductions in loss, with stable trends indicating enhanced 
performance. For models with two hidden layers, accuracy 
improved with more nodes, peaking at 64 units, but further 
increases caused accuracy to decline and calibration - prediction 
set gaps to widen—signs of overfitting. A similar overfitting trend 
was presented in models with three hidden layers as the number of 
units increased. Overall, the configuration with two hidden layers 
and 32 units was optimal, achieving high accuracy, maintaining low 
loss value, and offering a good trade-off between performance 
and generalization. 

Learning rates critically govern training stability and 
convergence dynamics, and loss functions  fundamentally

determine prediction-to-target fidelity. The compelling 
interdependence between these parameters necessitates dedicated 
research to strategically select optimizers and learning rates that 
maximize both convergence speed and final model accuracy. In this 
study, the performance of three commonly used optimizers (SGD, 
Adam, and RMSprop) was compared across five learning rates 
(0.001, 0.005, 0.01, 0.05, and 0.1), as illustrated in Figure 6. The 
performance of the SGD optimizer improved steadily with 
increasing learning rates, achieving a prediction set accuracy of 
77.23% and the lowest loss of 0.55 at learning rate of 0.1. For the 
Adam optimizer, model accuracy initially increased and then 
decreased as the learning rate rose, while the loss value showed 
the opposite trend—decreasing first and then increasing. The 
optimal performance was reached at a learning rate of 0.01, 
where the prediction accuracy reached a maximum of 93.88% and 
the loss dropped to a minimum of 0.33. RMSprop exhibited a 
performance pattern similar to Adam but reached its peak at a 
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learning rate of 0.005, with a validation accuracy of 84.5% and a loss 
of 0.53. Overall, the Adam optimizer combined with a learning rate 
of 0.01 demonstrated the best balance of accuracy and loss, which 
were selected for subsequent model training. 

To comprehensively evaluate model performance, the accuracy 
and overfitting degree of three models on the prediction set were 
compared, as shown in Figure 7. The PLSDA model achieved 
accuracies of 91.43%, 93.88%, and 94.33% across the three 
datasets, with corresponding overfitting values of 3.30%, 2.32%, 
and 2.57%. Although the PLSDA model exhibited relatively high 
accuracy, it also holed the highest overfitting values, indicating 
weaker model stability. The LSTM model yielded accuracies of 
86.19%, 84.27%, and 87.78%, with overfitting values of 2.45%, 
2.37%, and 1.71%, respectively. While its accuracy was slightly 
lower than that of PLSDA, the lower overfitting values suggest 
better generalization capability. The SE-LSTM model achieved 
accuracies of 93.88%, 96.38%, and 95.33%, with the lowest 
overfitting values of 2.13%, 1.55%, and 1.32%, respectively. The 
SE-LSTM model demonstrated a balanced performance in both 
accuracy and stability, indicating superior capability in predicting 
MPs stress levels. 

3.2.2 Characteristic wavelengths and simplified 
models 

Although the predicting effect based on full wavelength has 
achieved satisfactory results, the large number of bands poses 
challenges for rapid detection. To enhance detection efficiency, 
characteristic wavelength selection was performed, and the 
feasibility of four algorithms, including successive projection 
algorithm (SPA), genetic algorithm (GA), particle swarm 
optimization (PSO), and bootstrapping soft shrinkage (BOSS), 
was evaluated. The characteristic wavelengths selected by different 
FIGURE 6
 

Accuracy (a–c) and loss value (d–f) of the SE-LSTM model with different learning rates (0.001, 0.005, 0.01, 0.05, 0.1) and optimizers (SGD: a,d;
 
Adam: b,e; RMSprop: c,f).
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methods exhibited notable overlap (Figure 8). For example, under 
all three types of microplastic stress, wavelengths such as 425 nm, 
431 nm, 439 nm, and 550 nm were frequently identified, suggesting 
that MPs exposure influences pigment absorption characteristics in 
rice leaves (Zhao et al., 2023), particularly those related to 
chlorophyll and carotenoids. Regarding differences among the 
wavelength selection methods, SPA tended to select a smaller 
number of bands, which likely emphasized on minimizing 
spectral redundancy and maximizing band independence. In 
contrast, a substantially larger number of wavelengths converging 
VNIR region were selected by GA and PSO, which is likely due to 
their global search strategies for the identification of stress-related 
features. The BOSS algorithm showed a degree of stochasticity in 
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band selection; however, the wavelengths selected overlapped with 
those from others. This suggests that BOSS balances the retention of 
critical spectral information with greater selection flexibility. 

The accuracy of the calibration set, cross-validation set and 
validation set for stress concentration prediction with characteristic 
wavelengths were shown in Figure 9. Compared to full-wavelength 
models, the multi-wavelength model significantly reduces the 
number of inputs and maintains a relatively high classification 
accuracy rate. The optimal prediction accuracies for PET, PS, and 
PVC were 85.7%, 90.3%, and 94.5% in the multi-wavelength 
detection model, respectively. Regarding the unsatisfactory 
prediction of PET, the accuracy rate of full-wavelength model is 
93.88%, while that of multi-wavelength model is only 83.15%. In 
FIGURE 8 

Selection of characteristic wavelengths for rice seedling stressed under PET, PS and PVC. 
RE 7 FIGU

Accuracy (a) and overfitting index (b) of SE-LSTM model with different learning rates and loss function. 
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FIGURE 10
 

Importance distribution of characteristic wavelength based on SHAP values for (a) the overall dataset, (b) the control group, (c) the 10 mg/L group,
 
and (d) the 100 mg/L group.
 
FIGURE 9 

Performance for the classification models based on characteristic wavelengths. 
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contrast, PVC prediction by two models almost achieved the same 
prediction results, with full-wavelength and multi-wavelength 
models achieving 95.33% and 94.51%, which was almost 
comparable. Among the wavelength selection methods, the GA 
achieved the optimal results for PET and PS, whereas the BOSS 
algorithm performed optimally for PVC, which can be used for 
subsequent analysis. These findings suggest that multi-wavelength 
models significantly reduced data dimensionality and preserving 
critical spectral information, enabling efficient and rapid detection. 

3.2.3 Models explanation 
To explore the importance of characteristic wavelengths and their 

corresponding biochemical associations under MPs stress, the SHAP 
analysis was employed to enhance model interpretability. As shown 
in Figure 10, characteristic wavelengths contributing to stress 
detection in the spectral data were identified and their potential 
associated components were analyzed. The global importance of 
individual wavelengths was visualized in the bar chart (Figure 10a), 
and Figures 10b–d illustrates feature importance variations across 
stress levels (0, 10, and 100 mg/L) using bee swarm plots. From a 
global perspective, the top eight discriminative wavelengths for PET, 
PS, and PVC are as follows: PET: 445, 472, 536, 588, 623, 662, and 937 
nm; PS: 425, 435, 461, 502, 687, 736, 912, and 940 nm; PVC: 425, 451, 
488, 653, 689, 736, 760, and 939 nm. Notably, there is considerable 
overlap among the three groups in the 425–502 nm (blue light) range, 
potentially associated with chlorophyll a/b and carotenoid 
absorption; in the 687–760 nm (red-edge) region, likely related to 
chlorophyll fluorescence sensitivity; and in the 736–940 nm (near­
infrared) region, which may correspond to water or cellulose 
overtone vibrations (He et al., 2024). These findings suggest that 
stress-induced disruptions in pigment metabolism, cellular structure, 
and water transport may serve as effective indicators for 
distinguishing stress levels. In terms of differences, PET detection 
showed unique contributions at 445 nm (a chlorophyll absorption 
peak in the blue-violet region) and 937 nm (a third overtone of O–H 
bond vibrations). For PS, a strong contribution was observed at 912 
nm, corresponding to C–H stretching vibrations. Additionally, the 
feature at 760 nm exhibited heightened sensitivity for PVC, which 
attributed to the second overtone of O–H vibrations, indicating 
possible shifts in dominant physiological responses across different 
stress concentrations. 

The bee swarm plots further revealed the concentration 
dependence of feature contributions: from top to bottom is the 
distribution of wavelength importance, and each point in the map 
represents the SHAP value of the sample at each wavelength. The 
distribution of SHAP values reflects the contribution level through 
color mapping, with red representing high values and blue 
representing low values. The positions of the positive and 
negative half-axes respectively represent the promoting or 
inhibitory effects of the features on the model prediction. In PET 
detection, the distribution of SHAP values in the carotenoid 
absorption valley at 472 nm and the flavonoid sensitive zone at 
439 nm in the control group showed high synchrony, which might 
be related to the homeostasis of secondary metabolites. The strong 
negative contribution of the chlorophyll reflection peak at 540nm 
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and the water stress marker at 937nm in the 100 mg/L group 
suggests that high concentrations of microplastics may intensify the 
stress response by damaging photosynthetic organs and intensifying 
transpiration. Meanwhile, there are differences in the single weight 
distribution of different types and concentrations of MPs. This may 
be related to the dynamic differentiation of the SHAP contribution 
mode and the nonlinear weight distribution of the model for 
capturing physiological markers at different stress stages. 
3.3 Microscopic analysis base on SR-FTIR 

The  biochemical  response  character is t ics  such  as  
photosynthetic inhibition, osmotic stress and cellular structure 
damage of leaves caused by MPs stress had been explored in 
VNIR bands. However, limited by the characteristics of the 
molecular vibrational overtone region of the VNIR spectra, it can 
only capture the weak absorption signals of bonds such as C-H, O­
H and N-H, making it difficult to accurately detect the interaction 
mechanism of MPs particles on plant tissues. The introduction of 
SR-FTIR can break through the limitation of spatial resolution. 
Taking PET MPs stress as a typical representative, it can achieve the 
selective enrichment law in the vascular bundles of leaf veins and 
the thin-walled cells of mesophyll through high-sensitivity micro-

area imaging, as well as the characterization of molecular 
interaction interfaces and the verification of metabolic 
disturbance excitation. 

3.3.1 One dimensional spectral analysis 
The overall trends of the mid-infrared spectra in the vein and 

mesophyll regions of rice leaves under PET microplastic stress were 
similar (Figure 11), but different spectral trends were presented in 
the functional group region (4000–2800 cm-1) and the fingerprint 
region (1800–600 cm-1). The absorption peak intensities of the 
veins and mesophyll in the control group were generally low. 
However, multiple characteristic peaks showed with PET 
concentration increased, indicating that MPs triggered dynamic 
responses of the molecular structure at the subcellular scale. In the 
vein spectra (Figure 11a), the peak intensity of the O-H/N-H 
stretching vibration at 3352 cm -1 significantly increased with 
concentration increased, which might be related to the 
obstruction of water transport in the vascular bundle or the 
accumulation of woody fluid (Bunaciu et al., 2012). Combined 
with the PCA loading (Figure 11b), the synergistic enhancement of 
the peak at 1776 cm-1 in PC1 loading of leaf vein and the stretching 
vibration of C=O of the ester group at 1730 cm-1 in original spectra 
points to the physical adsorption and chemical hydrolysis process of 
the PET bulk or its degradation products on the inner wall of the 
fiber tube (Mecozzi and Nisini, 2019). Furthermore, the stretching 
vibration of C-O at 1248cm-1 in PC2 loading and the synchronous 
increase of the 1244 cm-1 peak in the original spectra indicate that 
PET induces enhanced lignification of the secondary wall of 
vascular bundle sheath cells through mechanical friction. 

The spectral response in the mesophyll region (Figure 11c) was 
dominated by membrane system damage and dynamic regulation of 
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the cell wall. The asymmetric stretching vibration of CH2 of lipid at 
2898 cm-1 reflects the accumulation of malonaldehyde in 
chloroplasts (Brandl, 2013), which is consistent with chlorophyll 
scattering at 690 nm in VNIR spectra. The C-H bending vibration 
of pectin methylation at 1469 cm-1 in PC1 loading suggests that a 
decrease in cell wall rigidity to alleviate PET induced stress. The 
stretching vibration of C=O of the ester group at 1730 cm-1 and the 
bending vibration of C-H of the benzene ring at 841 cm-1 are related 
to PET. The peak intensity increases with the increase of 
concentration in the vein, while only weakly appears or is 
completely absent in the mesophyll. In conclusion, PET MPs are 
more likely to be transported through the vascular bundle system 
and enriched on the inner walls of the vessels, while there are fewer 
mesophyll cells, which may be related to the rejection of large-sized 
particles by exocytosis. 

3.3.2 Two dimensional spectral analysis 
Due to the overlapping of multiple absorption peaks in SR-FTIR 

spectra and the unclear mechanism of biochemical changes in 
leaves. The 2DCOS technology was used to explore the 
biochemical change mechanism of leaf veins and leaves caused by 
external disturbances of rice under different concentrations of MPs. 
In addition, the absorption peaks in the functional group region 
(4000–2800 cm-1) and the fingerprint region (1800–800 cm-1) are of 
different complexities, so, they are explored in two regions. The 
automatic peak in the synchronous spectra represents the spectral 
intensity at the corresponding coordinate, while the asynchronous 
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spectra represent the sequence of component peak intensity 
changes caused by external disturbances. 

The 2DCOS spectra of the functional group regions of leaf veins 
under PET MPs stress were shown in Figures 12a, b. The two 
automatic peaks of 3433 cm-1 and 2918 cm-1 in the synchronous 
spectra correspond respectively to the stretching vibration of O-H/ 
N-H and the asymmetric stretching vibration of CH2, indicating 
that the change of water state and the disorder of membrane lipid 
metabolism are the response characteristics of leaf veins. The 
relationship of component changes was clarified from 3356 → 
2910 → 2863→ 3169 → 3506 cm-1 in the asynchronous spectra. 
The O-H vibration at 3356 cm-1 reflected the interference of PET 
MPs on the water transport of vascular bundles. Subsequently, CH2 

at 2910 cm-1 and 2863 cm-1 marked the initiation of membrane 
lipid peroxidation, and N-H vibration at 3169 cm-1 indicates the 
conformational change of membrane-binding proteins. The O-H 
vibration at 3506 cm-1 may reflect the increase in the hydroxylation 
degree of polysaccharides in the cell wall, which is the adaptive 
response of vascular bundle tissues to persistent stress. 

In the synchronous spectra of the leaf vein fingerprint region 
(Figure 12c), there are automatic peaks such as C-H curvature of the 
benzene ring of PET at 840 cm-1, the C-O of lignin at 1258cm-1, and 
the C=O of ester group of PET at 1724 cm-1. The accumulation of 
MPs in the vascular bundle and the defense responses it triggers are 
demonstrated. The asynchronous spectra (Figure 12d) revealed the 
dynamic change processes of the cell wall components and 
metabolites (1115→1439→1373→1252→1648 →975 cm -1). 
FIGURE 11 

One dimensional average spectra and PCA loading plots of leaf veins (a, b) and mesophyll (c, d). 
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Firstly, the cellulose vibration at 1115 cm-1 indicates the remodeling 
of polysaccharides in the cell wall. Subsequently, the methylation of 
pectin at 1439 cm-1 further regulates the performance of the cell 
wall. Then, the lignin-related vibrations at 1252 cm-1 revealed the 
strengthening process of the secondary cell wall. Finally, the protein 
denaturation at 1648 cm-1 and the PET benzene ring characteristics 
at 975 cm-1 suggested the enzyme function impairment and the 
accumulation  of  MPs  degradation  products  caused  by  
continuous stress. 

The responses of mesophyll tissue in the functional group 
regions (Figures 13a, b) differ from those in the veins. The 
automatic peaks of O-H stretching at 3400 cm -1 and CH2 

stretching at 2880 cm-1 in the synchronous spectrum indicate that 
the PET stress of mesophyll cells is mainly concentrated on the cell 
wall and membrane system. The sequence of peak changes in the 
asynchronous spectrum (3443→3187→3359→2887→3839 cm-1) 
reveals the response path: Firstly, it causes the rapid adjustment of 
free hydroxyl groups in the polysaccharide at 3443 cm-1. Secondly, 
it leads to the vibration of N-H of protein at 3187 cm-1, indicating 
that MPs causes cell wall damage in mesophyll tissue. Then, the 
vibration of membrane lipids at 2887cm-1 and hydroxyl groups at 
3839 cm-1 led to the damage of mesophyll cells under continuous 
stress, which contrasted with the vein tissue. 
Frontiers in Plant Science 14 
In the synchronous spectra (Figure 13c) of the mesophyll 
fingerprint region, the auto-peaks such as C-O-C of cellulose at 1040 
cm-1, CH2 bending of pectin at 1463 cm-1, and  C=O of ester  group at  
1730 cm-1 were associated with concentration dependence, reflecting 
the effect of PET stress on the mesophyll cell wall. The sequence of 
component changes in the asynchronous spectra (Figure 13d) is

1226→1087→1020→968→1158→1337→1738→1647→1463 cm-1. 
Firstly, the vibrations of lignin/phenolic acid at 1226 cm-1 and the 
cellulose at 1087 cm-1 indicate that secondary metabolic activation and 
cell wall enhancement are the initial defense strategies. Then, 1020 cm-1 

and 968 cm-1 suggested the remodeling of the carbon metabolism 
pathway, which might be a response to insufficient energy supply. 
Finally, the vibration of ester group at 1738 cm-1 and the protein 
denaturation at 1647 cm-1 revealed  the cumulative damage of PET

chemical toxicity to mesophyll cells. 
4 Conclusions 

In this study, an interpretable and rapid method for detecting 
rice seedlings under MPs stress was proposed by integrating macro-

scale VNIR-HSI, micro-scale SR-FTIR and deep learning. The 
specific physiological and biochemical reactions of rice leaves to 
FIGURE 12 

The synchronous (a, c) and asynchronous (b, d) 2DCOS maps generated from the SR-FTIR spectra of leaf veins in the functional group region and 
fingerprint region. 
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PET, PS and PVC MPs were revealed by VNIR-HSI. The subtle 
spectral changes of rice seedling leaves caused by MPs stress were 
explored by PCA, and chlorophyll degradation, pigment absorption 
changes and water transport interference were reflected in the 
loading curve. An improved SE-LSTM full-spectral model was 
developed to achieve rapid detection, with an accuracy rate of 
>93.88%. By extracting characteristic wavelengths using four 
feature selection algorithms, a simplified model was established 
to reduce the input dimension and maintaining robust 
performance. The interpretability framework of SHAP highlights 
the characteristic wavelengths related to chlorophyll, carotenoids, 
water and cellulose, and reveals the dynamic physiological damage 
under different stress levels. At the microstructure level, the 
combination of SR-FTIR spectroscopy and 2DCOS provides 
detailed insights into the molecular mechanism by MPs stress. 
The different stress responses of components in the mesophyll and 
vein tissues of leaves at the subcellular level have been revealed. In 
conclusion, the combination of VNIR-HSI, SR-FTIR and deep 
learning provides a feasible solution for the early detection of 
MPs stress in crops. This work has laid a technical foundation for 
the diagnosis of other plant stresses and provided a direction for the 
detection of emerging pollutants in agricultural sustainability and 
food safety. 
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