AUTHOR=Wei Chaojie , Xie Hongxin , Wang Wei , Li Yu-Feng , Wang Xiaorong , Song Ziwei , Chen Fajun TITLE=Detection of microplastics stress on rice seedling by visible/near-infrared hyperspectral imaging and synchrotron radiation Fourier transform infrared microspectroscopy JOURNAL=Frontiers in Plant Science VOLUME=Volume 16 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2025.1645490 DOI=10.3389/fpls.2025.1645490 ISSN=1664-462X ABSTRACT=IntroductionMicroplastics (MPs), as emerging environmental contaminants, pose a significant threat to global food security. In order to rapidly screen and diagnosis rice seedling under MPs stress at an early stage, it is essential to develop efficient and non-destructive detection methods.MethodsIn this study, rice seedlings exposed to different concentrations (0, 10, and 100 mg/L) of polyethylene terephthalate (PET), polystyrene (PS), and polyvinyl chloride (PVC) MPs stress were constructed. Two complementary spectroscopic techniques, visible/near-infrared hyperspectral imaging (VNIR-HSI) and synchrotron radiation-based Fourier Transform Infrared spectroscopy (SR-FTIR), were employed to capture the biochemical changes of leaf organic molecules.ResultsThe spectral information of rice seedlings under MPs stress was obtained by using VNIR-HSI, and the low-dimensional clustering distribution analysis of the original spectra was conducted. An improved SE-LSTM full-spectral detection model was proposed, and the detection accuracy rate was greater than 93.88%. Characteristic wavelengths were extracted to build a simplified detection model, and the SHapley Additive exPlanations (SHAP) framework was applied to interpret the model by identifying the bands associated with chlorophyll, carotenoids, water content, and cellulose. Meanwhile, SR-FTIR spectroscopy was used to investigate compositional changes in both leaf lamina and veins, and two-dimensional correlation spectroscopy (2DCOS) was employed to reveal the sequential interactions among molecular components.DiscussionIn conclusion, the combination of spectral technology and deep learning to capture the physiological and biochemical reactions of leaves could provide a rapid and interpretable method for detecting rice seedlings under MPs stress. This method could provide a solution for the early detection of external stress on other crops.