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The genus Oxytropis DC. comprises about 310 species distributed in Asia,

Europe, and North America. Previous studies based on evidences from

morphology or a few molecular markers are helpful for understanding the

classification and systematic evolution of Oxytropis. However, a scarcity of

chloroplast genomic resources for Oxytropis has hindered the understanding

of the genus’s systematic classification and chloroplast genome evolution. Here

comparative genomic analyses were conducted on chloroplast genomes of 24

Oxytropis species. Chloroplast genomes of Oxytropis species showed the triad

structure due to the loss of one copy of the IR, with the size range from 121854

bp to 125271 bp. The Oxytropis cp genomes encoded a total of 110 genes,

including 76 protein-coding genes (PCGs), 30 transfer RNA (tRNA) genes, and

four ribosomal RNA (rRNA) genes. It was found that the atpF intron, one clpP

intron, one rps12 intron, rpl22 gene, rps16 gene, and infA gene were lost in the

Oxytropis cp genomes. Seven regions (5’-rps12-clpP, clpP intron, psbM-petN,

rpl23-trnI-CAU, ndhJ-trnF-GAA,trnQ-UUG-accD, trnL-UAA-trnT-UGU) were

chosen as potential molecular markers, which will contribute to species

identification, population genetics and phylogenetic studies of Oxytropis. The

phylogenetic relationships amongOxytropis species provided some implications

for the classification of Oxytropis. Congruent with studies based on the

morphological evidence, the close relationships between O. neimonggolica

and O. diversifolia, as well as O. filiformis and O. coerulea were revealed. The

results supported the treatment of O. daqingshanica as a separate species and

refuted the inclusion of O. daqingshanica in O. ochrantha as conspecific taxa. In

addition, it was suggested thatO. chiliophylla should be considered as a separate
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species rather than its inclusion in O. microphylla. The 16 positively selected

genes (rps3, rps4, rps7, rps11, rps12, rpl2, rpl20, rpl32, rpoC2, psbC, rbcL, atpF,

clpP, accD, ycf1, ycf2) are related to important biological processes for instance

self-replication, photosynthesis and metabolite biosynthesis, which may

contribute to the adaptation of Oxytropis to its habitats. This study will lay a

solid foundation for further studies on species identification, taxonomy, and

systematic evolution of Oxytropis.
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1 Introduction

As the third largest flowering plant family after Asteraceae Bercht.

& J.Presl and Orchidaceae Juss., the Fabaceae Lindl. comprises about

751 genera and 19,500 species worldwide (LPWG (The Legume

Phylogeny Working Group), 2013). Combined with a series of

diagnostic characteristics, phylogenetic analyses based on matK

sequences supported the classification system with six monophyletic

subfamilies within the Fabaceae, with Papilionoideae DC. (503 genera,

ca. 14,000 species) and Caesalpinioideae DC. (148 genera, ca. 4400

species) as the largest two subfamilies, followed by Detarioideae

Burmeist. (84 genera, ca. 760 species), Cercidoideae LPWG (12

genera, ca. 335 species), Dialioideae LPWG (17 genera, ca. 85

species), and Duparquetioideae LPWG (one genus, one species)

(LPWG (The Legume Phylogeny Working Group), 2017).

Phylogenetic analyses based on plastomes and nuclear genes

strongly support the classification system of six Fabaceae subfamilies

(Zhang et al., 2020; Zhao et al., 2021), which has currently gained

widespread acceptance and consensus among scholars. Oxytropis DC.

belongs to the Astragalean clade under the inverted-repeat-lacking

clade (IRLC) of the subfamily Papillonoideae (LPWG (The Legume

Phylogeny Working Group), 2017; Zhao et al., 2021; Duan et al.,

2024). The genus Oxytropis has about 310 species distributed in Asia,

Europe, and North America, with a concentrated distribution in

Central Asia (Zhang, 1998; Zhu et al., 2010). Oxytropis is an

important component of the flora in the alpine and arid regions of

the Northern Hemisphere temperate zones, and is one of the common

groups in alpine, desert, and semi desert regions (Li and Ni, 1985). The

Oxytropis plants have certain feeding, medicinal, and ornamental

value (Kholina et al., 2021a; Sandanov et al., 2023; Wang B. et al.,

2024). Due to the extremely similar morphology between Astragalus

and Oxytropis, the Oxytropis species were included in Astragalus

defined by Linnaeus (1753). De Candolle (1802) first separated

Oxytropis from Astragalus based on the characteristics of keel petal

shape and pod septum shape. Delimitation of the subgenera and

sections were conducted by taxonomist since the establishment of

Oxytropis, and although there is a certain consensus, different

perspectives also exist (e.g., Bunge, 1874; Vasil’chenko et al., 1948;

Pavlov, 1961; Zhang, 1998; Zhu et al., 2010). Micromorphological
02
evidence has been applied to the classification of Oxytropis and some

insights have been gained (Karaman et al., 2009; Ceter et al., 2013;

Erkul et al., 2015; Zhao et al., 2022, 2023). With the development of

sequencing technology, molecular markers have been used to address

the questions on systematic evolution of Oxytropis, however, most

studies involved a few molecular markers and referred species

sampling with limited geographical ranges due to the focus on

regional treatments (e.g., Archambault and Strömvik, 2012;

Tekpinar et al., 2016a, 2016b; Kholina et al., 2016, 2021a, 2022). In

addition, the cp genome sequences of the Oxytropis that can be used

for study on systematic evolution are still scarce (Su et al., 2019; Liu

et al., 2021; Bei et al., 2022; Tavares et al., 2022). Some progress has

been achieved in the phylogenetic study ofOxytropis, but there is still a

long way to uncover the systematic evolutionary questions for this

complex taxonomic group with a large number of species, wide

distribution, diverse morphology, and a relatively recent

diversification history (Shavvon et al., 2017). The lack of effective

molecular markers has to some extent hindered the phylogenetic

study of Oxytropis, thus employing highly variable molecular markers

coupled with increased taxon sampling promise advances in the issues

on its taxonomy and evolution. The adaptation of Oxytropis species to

special habitats makes it an excellent model for studying adaptive

evolution, which is still an open issue for Oxytropis.

Chloroplast (cp) is a vital organelle in green plants, having a

crucial role in photosynthesis and a myriad of metabolic activities

(Neuhaus and Emes, 2000; Daniell et al., 2016; Wang J. et al., 2024).

In angiosperms, the cp genomes are mostly a quadripartite

structure: a large single-copy (LSC) region and a small single-

copy region (SSC) separated by two inverted repeats (IRs) (Wicke

et al., 2011), however, losses of the IR exist in a few angiosperm

families, such as Geraniaceae (Guisinger et al., 2011; Ruhlman et al.,

2017), Cactaceae (Sanderson et al., 2015), Arecaceae (Barrett et al.,

2016), Fabaceae (Choi et al., 2019), Lophopyxidaceae and

Putranjivaceae (Jin et al., 2020), and Passifloraceae (Cauz-Santos

et al., 2020). Chloroplast genome has been widely used in studies on

taxonomy, phylogeny and evolution of angiosperm (e.g., Kan et al.,

2024; Li et al., 2024a; Yan et al., 2024; Wang et al., 2025; Yan et al.,

2025), due to its own advantages such as uniparental inheritance,

small size, lack of recombination, and moderate nucleotide
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substitution rate (Palmer, 1985; Wicke et al., 2011; Mower and

Vickrey, 2018).

Through comparative genomics analyses of the cp genomes of

24 species of Oxytropis, this study aims to (1) explore the basic

characteristics of Oxytropis cp genomes, (2) screen the hotspot

regions as potential molecular markers of Oxytropis, (3) provide

preliminary insights into the current classification of some

Oxytropis species, and (4) understand the adaptation of Oxytropis

species to the environment at the molecular level. Our study will lay

a solid foundation for future studies on cp genome evolution,

species identification, genetic diversity, and systematic evolution

of Oxytropis.
2 Materials and methods

2.1 Plant material, DNA extraction and
sequencing

Materials for the 19 Oxytropis species in the present study were

collected during field trips, with the collected Oxytropis plants

pressed into herbarium specimens, and fresh and tender leaves

dried in silica gel without affecting identification. The collected

specimens were identified by referring to relevant reference books

(e.g., Li and Ni, 1985; Zhang, 1998; Zhu et al., 2010; Zhao et al.,

2019), and all the voucher specimens were preserved in the

herbarium of the Inner Mongolia Normal University (NMTC)

(Table 1). Total genomic DNA was isolated from the silica-dried

leaves according to the protocol of Doyle and Doyle (1987). The

extracted DNA was fragmented by sonication and then used for

construction of short-insert library (insert size, 300 bp) by

NEBNext® Ultra™ II DNA Library Prep Kit for Illumina®.

Finally, the pooled libraries were sequenced by the Illumina

NovoSeq platform in Novogene (Beijing, China).
2.2 Chloroplast genome assembly and
annotation

Trimomatic v. 0.33 (Bolger et al., 2014) was used to remove

adapters in the obtained raw sequencing data. The filtered raw reads

for each species were then used to assemble the cp whole genome

sequence by NOVOPlasty v. 4.3.1 (Dierckxsens et al., 2017), with

the cp genome sequence of O. bicolor (GenBank accession no.

MN255323) (Su et al., 2019) as the reference and its rbcL sequence

as the seed. The cp genome of O. myriophylla obtained from our

previous study (Niu et al., 2024) was used as the reference to

conduct annotations of the 19 Oxytropis cp genomes in the present

study. The brief procedure for annotating the cp genome of O.

myriophylla was as follows: following the annotation method of

Zhang et al. (2022), GeSeq (Tillich et al., 2017) and CPGAVAS2

(Shi et al., 2019) were used to annotate the cp genome of O.

myriophylla, with the cp genomes of O. bicolor (MN255323), O.

arctobia (MT409175) and O. spelendens (MT409174) designated as

custom reference genomes. The annotation results obtained from
Frontiers in Plant Science 03
GeSeq and CPGAVAS2 were imported into Geneious Prime

(Kearse et al., 2012) to check the intron/exon boundaries and the

start and stop codon positions. If necessary, manual corrections

were performed to obtain the elaborated annotated cp genome of O.

myriophylla. The brief workflow for annotations of the 19 Oxytropis

cp genomes was as follows: in Geneious Prime, MAFFT (Katoh and

Standley, 2013) alignment was performed between the cp genome

sequence of O. myriophylla with the complete annotation

information and the cp genome sequence of other Oxytropis

species. Based on the alignment results, transferring annotations

function in Geneious Prime was used for annotation, and the

annotation results were manually checked and proofread to

finally generate the complete annotated cp genome of other

Oxytropis species. The cp genome sequences of Oxytropis species

with annotation information in gb format were imported into

OrganellarGenomeDRAW (Greiner et al., 2019) to draw their cp

genome circular maps. Moreover, annotation of other cp genomes

obtained from GenBank were checked before being used

for analysis.
2.3 Comparative chloroplast genome
analyses

Comparative analysis was conducted on the basic characteristics

of cp genome lengths, GC contents, and gene quantities in 27 cp

genomes of 24 Oxytropis species using Geneious Prime (Table 1). The

27Oxytropis cp genomes were aligned inMAUVE ver. 2.4.0 under the

progressiveMauve algorithm (Darling et al., 2004, 2010). Due to cp

genomes of O. falcata and O. arctobia with inversion, the two cp

genome sequences were not used in molecular marker identification.

The coding and noncoding regions in 25 cp genomes of 22 Oxytropis

species were extracted by Geneious Prime, and all the homologous

sequences were aligned one by one in MAFFT v. 7.490 (Katoh and

Standley, 2013). The final aligned homologous sequences in fasta

format were imported into DnaSP v. 6.12.03 (Rozas et al., 2017) and

their nucleotide variability (Pi) values were calculated, and finally

candidate molecular markers were screened based on the Pi values and

sequence lengths.
2.4 Phylogenetic analyses

To reconstruct the phylogenetic relationships among Oxytropis

species under the phylogenetic background of the Astragaglean

clade, a total of 46 cp genome sequences from 43 species under the

IRLC of the subfamily Papilionoideae were selected for phylogenetic

analysis based on Zhao et al. (2021) (Supplementary Table S1).

Considering the phenomena of gene/intron loss and inversion in

the cp genomes of the IRLC of Papilionoideae (Jansen et al., 2008),

only protein coding genes (PCGs) were selected for phylogenetic

tree construction. Seventy-six PCGs were extracted from the cp

genomes by Geneious Prime and each PCG was aligned separately

using MAFFT v. 7.490 (Katoh and Standley, 2013). Alignments of

genes that were not common to all species and genes with
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TABLE 1 Summary of chloroplast genome features of Oxytropis species.

GenBank
Number of genes

GC content (%) References
ding tRNA rRNA

30 4 34.2 This article

30 4 34.3 Unpublished

30 4 34.0 Tavares et al. (2022)

30 4 34.2 This article

30 4 34.2 Su et al. (2019)

30 4 34.2 This article

30 4 34.2 This article

30 4 34.3 This article

30 4 34.3 This article

30 4 34.3 This article

30 4 34.2 Unpublished

30 4 34.3 Unpublished

30 4 34.2 This article

30 4 34.3 Liu et al. (2021)

30 4 34.2 This article

30 4 34.1 This article

30 4 34.3 This article

30 4 34.2 This article

30 4 34.2 This article

30 4 34.2 This article

30 4 34.2 This article

30 4 34.2 This article

30 4 34.3 This article

30 4 34.3 This article

30 4 34.3 This article

30 4 34.2 Tavares et al. (2022)

30 4 34.3 This article

Lie
t
al.

10
.3
3
8
9
/fp

ls.2
0
2
5
.16

4
5
5
8
2

Fro
n
tie

rs
in

P
lan

t
Scie

n
ce

fro
n
tie

rsin
.o
rg

0
4

Species Voucher
accession

Size (bp)
Total Protein-co

O. aciphylla Ledeb. 1 Li QQ 20230602057 (NMTC) PV684027 122411 110 76

O. aciphylla Ledeb. 2 MW794135 122173 110 76

O. arctobia Bunge MT409175 125271 110 76

O. bicolor Bunge 1 Li QQ 20230520004 (NMTC) PV684034 122387 110 76

O. bicolor Bunge 2 MN255323 122461 110 76

O. ciliata Turcz. Li QQ 20230620045 (NMTC) PV684026 122272 110 76

O. chiliophylla Royle ex Benth. Li QQ 20230720015 (NMTC) PV694277 122480 110 76

O. coerulea (Pall.) DC. Li QQ 20230807007 (NMTC) PV684031 122121 110 76

O. daqingshanica Y.Z.Zhao & Zong Y. Zhu Li QQ 20220820044 (NMTC) PV694279 122181 110 76

O. diversifolia E. Peter 1 Li QQ HLT001 (NMTC) PV684028 122012 110 76

O. diversifolia E. Peter 2 MT780271 122210 110 76

O. falcata Bunge OR491708 122781 110 76

O. filiformis DC. Li QQ 20230805042 (NMTC) PV684033 122321 110 76

O. glabra DC. MW349014 122094 110 76

O. hirta Bunge Li QQ 20230805058 (NMTC) PV684032 122356 110 76

O. holanshanensis H. C. Fu Li QQ 20230804029 (NMTC) PV694276 123621 110 76

O. latibracteata Jurtzev Li QQ 20230805031 (NMTC) PV694278 121854 110 76

O. microphylla (Pall.) DC. Li QQ 20230528014 (NMTC) PV684029 122453 110 76

O. myriophylla (Pall.) DC. Li QQ 20220830082 (NMTC) OR911498 122251 110 76

O. neimonggolica C. W. Chang & Y. Z. Zhao Li QQ 20230803032 (NMTC) PV684030 122195 110 76

O. ochrantha Turcz. Li QQ 20220828007 (NMTC) PV684024 122228 110 76

O. oxyphylla (Pall.) DC. Li QQ 20230807023 (NMTC) PV684036 122284 110 76

O. proboscidea Bunge Li QQ 20230718011 (NMTC) PV694280 122363 110 76

O. racemosa Turcz. Li QQ 20230531062 (NMTC) PV684037 122172 110 76

O. sericopetala Prain ex C. E. C. Fisch. Li QQ 20230718021 (NMTC) PV684035 122405 110 76

O. splendens Douglas MT409174 122318 110 76

O. squammulosa DC. Li QQ 20230620004 (NMTC) PV684025 122352 110 76
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significant length differences (accD, clpP, psbL, ycf1, and ycf2) were

removed. Finally, alignments of the remaining 71 PCGs were

concatenated to form the phylogenetic dataset. Bayesian inference

(BI) and the maximum likelihood (ML) methods were employed to

construct the phylogenetic trees. GTR+I+G was recommended as

best-fit model by PartitionFinder2 (Lanfear et al., 2017), and

MrBayes v. 3.2.7a (Ronquist et al., 2012) was then used to

construct BI tree based on the method of Zhang et al. (2022). The

ML tree was constructed by RAxML v. 8.2.12 (Stamatakis, 2014)

following the method of Li et al. (2024b). Finally, these two

phylogenetic trees were visualized using FigTree v. 1.4.4

(Rambaut, 2018), and Alhagi sparsifolia, Caragana arborescens,

Chesneya acaulis, Corethrodendron multijugum, and Tibetia

liangshanensis were designated as the outgroup to root the trees.
2.5 Adaptive evolution analyses

Based on the results of phylogenetic analyses, 31 cp genomes

involving 24 species of Oxytropis and its four related taxa

(Carmichaelia australis, Lessertia frutescens, Phyllolobium chinense,

and Sphaerophysa salsula) were selected for selection pressure

analyses. The CodeML program in the PAML software package

(Yang, 2007) is currently the most widely used bioinformatics tool

for selection pressure analyses. EasyCodeML (Gao et al., 2019) can

offer a user-friendly graphical interface for executing CodeML. Site

models from CodeML were performed in EasyCodeML with the

purpose of detecting positive selection sites of PCGs in Oxytropis cp

genomes. Seventy-six PCGs shared by Oxytropis and its related taxa

were firstly extracted from the cp genomes using Geneious Prime.

MAFFT (Katoh and Standley, 2013) was then employed to perform

multiple alignment of each PCG according to its codons and stop

codons were manually deleted in the final alignment matrix. The final

alignment of each PCG was concatenated into a supermatrix, which

was exported into fasta format as an input file for EasyCodeML. The

ML tree constructed based on the supermatrix by RAxML v. 8.2.12

(Stamatakis, 2014) was as an input tree in EasyCodeML

(Supplementary Figure S1). The likelihood ratio test (LRT) was

used to detect positive selection sites with four comparison models:

M0 vs. M3, M1a vs. M2a, M7 vs. M8, and M8a vs. M8. With LRT

threshold p<0.05, Bayesian empirical Bayes (BEB) (Yang et al., 2005)

or Naïve empirical Bayes (NEB) (Nielsen and Yang, 1998) analysis

was adopted to detect positive selection sites with posterior

probabilities ≥0.95.
3 Results and discussion

3.1 Features of Oxytropis chloroplast
genome

The size range of cp genomes of 24 Oxytropis species was from

121854 bp (O. latibracteata) to 125271 bp (O. Arctobia) (Table 1;

Figure 1). Compared with the cp genomes of some Papilionoideae

taxa such as Cyamopsis (Kaila et al., 2017), Ormosia (Liu et al., 2019),
Frontiers in Plant Science 05
and Campylotropis (Feng et al., 2022) with typical quadripartite

structure, the cp genomes of Oxytropis species showed the triad

structure due to the loss of approximately 25 kb IR. The cp genomes

of the IRLC groups in Papillonoideae have lost one IR copy and

exhibit the triad structure (Wojciechowski et al., 2004; Jansen et al.,

2008). The GC content in the cp genomes of 24 Oxytropis species

(34.0%–34.3%) was roughly equivalent to that in cp genomes of other

IRLC taxa such as Glycyrrhiza, Astragalus, and Galega (Duan et al.,

2020; Su et al., 2021; Feng et al., 2023). The cp genomes of Oxytropis

species encoded a total of 110 genes, including 76 protein-coding

genes (PCGs), 30 transfer RNA (tRNA) genes, and four ribosomal

RNA (rRNA) genes (Tables 1, 2). The 110 genes can be classified into

four categories according to their functions: 57 genes related to self-

replication, 46 associated with photosynthesis, five for other genes,

and two genes with unknown function. Moreover, 15 genes contained

one intron (ndhB, clpP, ndhA, rpl16, petB, rpoC1, rpl2, petD, rps12,

trnI-GAU, trnG-UCC, trnL-UAA, trnK-UUU, trnA-UGC, trnV-

UAC), while gene ycf3 possessed two introns. Gene rps12 had

trans-splicing in the Oxytropis cp genome, like in most

other angiosperms.

There are phenomena such as intron loss, gene loss, and

inversion in the cp genome evolution of Papilionoideae (Jansen

et al., 2008). Our study found the absence of the atpF intron, clpP

intron, and rps12 intron in the cp genomes of Oxytropis and its

closely related species. The atpF intron is lost in the cp genomes of

Oxytropis, Lessertia, and Phaerophysa species, while it is present in

Phyllopium, Carmichaelia, and Astragalus species. The absence or

presence of the atpF intron in the cp genome could be used as a

potential molecular marker for distinguishing the morphologically

highly similar genera Oxytropis and Astragalus. Loss of one clpP

intron was detected in the cp genomes of Oxytropis and its closely

related taxa, including Astragalus, Carmichaelia, Lessertia,

Phyllolobium, and Sphaerophysa species. The absence of clpP intron

has also occurred in other IRLC groups of Papillonoideae, for

example, one clpP intron was lost in Alhagi, Caragana, and Vicia

species; and two clpP introns were lost in Tibetia, Corethrodendron,

and Glycyrrhiza species (Jansen et al., 2008; Li et al., 2020; Lee et al.,

2021), while the two clpP introns are present in other angiosperms

genera such as Uncaria (Dai et al., 2023), Alisma (Lan et al., 2024),

and Argentina (Li et al., 2024b). The rps12-3′-end intron was lost in

the cp genomes of Oxytropis and its closely related taxa, and the loss

of rps12 intron is a common phenomenon in the IRLC group (Jansen

et al., 2008; Lee et al., 2021). Most angiosperm cp genomes contain

genes rpl22, rps16, and infA, all of which are lost in the Oxytropis cp

genomes. The gene rpl22 is absent in the cp genomes of all legumes

(Jansen et al., 2008). We detected that genes rps16 and infA are also

not present in the cp genomes of related taxa of the Oxytropis,

including Alhagi, Astragalus, Caragana, Carmichaelia, Chesneya,

Corethrodendron, Lessertia, Phyllolobium, Sphaerophysa, and

Tibetia species. Analysis by Mauve showed that among the 27 cp

genomes of Oxytropis, cp genomes of O. falcata and O. arctobia had

inversion, while the remaining 25 cp genomes have the same gene

order with no obvious reorganization (Supplementary Figure S2).

The gene order rearrangement did not affect the sequences of any of

the involving genes in cp genomes of O. falcata and O. arctobia.
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3.2 Divergence hotspots

DnaSP v. 6.12.03 (Rozas et al., 2017) was employed to calculate the

Pi values of a total of 253 regions of Oxytropis cp genome with the aim

to screen the highly divergent regions. The Pi values ranged from 0%-

4.244%, with a mean value of 0.436%, showing Oxytropis cp genomes

with a high level of similarity (Supplementary Table S2; Figure 2). As a

whole, 42 regions with Pi =0, 132 regions with 0%<Pi ≤ 0.5%, 50 regions

with 0.5%<Pi ≤ 1%, 20 regions with 1%<Pi ≤ 1.5% (petG-trnW-CCA,

atpF, trnT-GGU-trnE-UUC, rps8-rpl14, atpA-trnR-UCU, trnF-GAA-

trnL-UAA, trnQ-UUG-accD, rpl33-rps18, trnV-GAC-rrn16, rps11-

rpl36, rps4-trnS-GGA, atpH-atpF, trnL-UAA-trnT-UGU, rpoA-rps11,

trnR-ACG-trnN-GUU, psbK-trnQ-UUG, psaB-rps14, ycf1-rps15, trnH-
Frontiers in Plant Science 06
GUG-psbA, trnP-UGG-psaJ), and nine regions with Pi>1.5% (5’-rps12-

clpP, trnR-UCU-trnG-UCC, clpP intron, psbM-petN, trnfM-CAU-trnG-

GCC, trnI-CAU-ycf2, ndhI-ndhG, rpl23-trnI-CAU, ndhJ-trnF-GAA).

Among the 29 regions with Pi>1%, 27 regions (excluding clpP intron

and atpF) were located in the intergenic region, indicating that the non-

coding regions exhibited higher variation compared to the coding

regions, and regions located in the intergenic spacers (IGS) with

greater potential for development of molecular markers.

In order to screen molecular markers with potential for

development, 19 regions with Pi >1% and alignment lengths

>300bp were identified as candidate molecular markers for

Oxytropis, namely 5’-rps12-clpP, clpP intron, psbM-petN, ndhI-

ndhG, rpl23-trnI-CAU, ndhJ-trnF-GAA, atpF, trnT-GGU-trnE-
FIGURE 1

Chloroplast genome map of the 19 Oxytropis species generated in this study. Genes outside the circle are transcribed counterclockwise, and those
inside are transcribed clockwise.
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UUC, rps8-rpl14, trnQ-UUG-accD, rpl33-rps18, rps11-rpl36, atpH-

atpF, trnL-UAA-trnT-UGU, trnR-ACG-trnN-GUU, psbK-trnQ-

UUG, ycf1-rps15, trnH-GUG-psbA, and trnP-UGG-psaJ. Among

these 19 markers, taking into account both Pi value and sequence

alignment length, seven regions (5’-rps12-clpP, clpP intron, psbM-

petN, rpl23-trnI-CAU, ndhJ-trnF-GAA,trnQ-UUG-accD, trnL-UAA-

trnT-UGU) were selected as potential molecular markers for

Oxytropis . The cp molecular markers used in previous

phylogenetic studies of Oxytropis (Kulshreshtha et al., 2004;

Wojciechowski et al., 2004; Artyukova et al., 2011; Tekpinar et al.,

2016a, 2016b; Kholina et al., 2016, 2018a, 2018b, 2020, 2021a,

2021b, 2021c, 2022; Chen et al., 2020; Kozyrenko et al., 2020;

Sandanov et al., 2023) included matK, rpoC1, rpoC2, trnL intron,

trnV intron, trnL-trnF, trnH-psbA, petG-trnP, and trnS-trnG. All

other markers except trnH-psbA were not among the developed

candidate molecular markers for Oxytropis, which suggested the

significance of developing molecular markers for specific taxonomic

groups. Overall, our newly screened potential molecular markers

will contribute to species identification, population genetics and

phylogenetic studies of Oxytropis.
3.3 Phylogenetic analyses

Overall, compared to previous phylogenetic studies of Oxytropis

using several molecular markers obtained with Sanger sequencing (e.g.,
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Kholina et al., 2016; Tekpinar et al., 2016b; Shavvon et al., 2017),

relatively high phylogenetic resolution was obtained in our study by

utilizing the plastid genome data. Phylogenetic trees inferred from BI

and ML analyses were almost identical in topology, and the difference

mainly lied in the relative position of O. squammulosa versus O.

filiformis and O. coerulea (Figure 3; Supplementary Figures S3, S4).

Both the BI and ML trees showed that the outgroup species were

robustly separated from the Astragaglean clade (PP = 1.00, ML BS =

100%). Within the Astragaglean clade, there are three major clades,

namely Oxytropis, Astragalus, and Coluteoid clades. Phylogenetic tree

showed that Oxytropis species were well clustered together (PP = 1.00,

ML BS = 100%), which corroborated the previous studies thatOxytropis

was monophyletic (e.g., Archambault and Strömvik, 2012; Tekpinar

et al., 2016a; Kholina et al., 2016; Shavvon et al., 2017). Consistent with

studies of Su et al. (2021); Tian et al. (2021) and Moghaddam et al.

(2023) based on cp genome, our result indicated that Oxytropis was

sister to Coluteoid clade and Oxytropis+Coluteoid clade had a sister

relationship with Astragalus. However, studies of Moghaddam et al.

(2016) using ITS, matK and rpl32-trnL data and Zhao et al. (2021) based

on low-copy nuclear genes revealed thatOxytropis+Astragalus clade was

sisters to Coluteoid clade. The nuclear-cytoplasmic conflict on the

phylogenetic position of Oxytropis may reflect the complex

evolutionary history of this genus. Although the current taxon

sampling was still limited, the systematic relationships among

Oxytropis species showed in our study still provided some insights

into the classification of Oxytropis. In the phylogenetic trees, O.
TABLE 2 Genes contained in the Oxytropis chloroplast genomes.

Category of genes Group of genes Name of genes

Self-replication

Ribosomal RNAs rrn4.5, rrn5, rrn16, rrn23

Transfer RNAs

trnA-UGC*, trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnfM-CAU, trnG-GCC, trnG-
UCC*, trnH-GUG, trnI-CAU, trnI-GAU*, trnK-UUU*, trnL-CAA, trnL-UAA*, trnL-UAG,
trnM-CAU, trnN-GUU, trnP-UGG, trnQ-UUG, trnR-ACG, trnR-UCU, trnS-GCU, trnS-
GGA, trnS-UGA, trnT-GGU, trnT-UGU, trnV-GAC, trnV-UAC*, trnW-CCA, trnY-GUA

Small subunit of ribosome rps2, rps3, rps4, rps7, rps8, rps11, rps12*a, rps14, rps15, rps18, rps19

Large subunit of ribosome rpl2*, rpl14, rpl16*, rpl20, rpl23, rpl32, rpl33, rpl36

DNA dependent RNA polymerase rpoA, rpoB, rpoC1*, rpoC2

Photosynthesis

Subunits of ATP synthase atpA, atpB, atpE, atpF, atpH, atpI

Subunits of photosystem I psaA, psaB, psaC, psaI, psaJ, ycf3**, ycf4

Subunits of photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ

Subunits of cytochrome b/f complex petA, petB*, petD*, petG, petL, petN

Subunits of NADH-dehydrogenase ndhA*, ndhB*, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK

Subunit of Rubisco rbcL

Other genes

Subunit of Acetyl-CoA-carboxylase accD

C-type cytochrome synthesis ccsA

Envelop membrane protein cemA

Protease clpP*

Maturase matK

Unknown function Conserved open reading frame ycf1, ycf2
*Genes containing one intron, **genes containing two introns; atrans-splicing gene.
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neimonggolicawas clustered together withO. diversifolia (PP = 1.00, ML

BS = 100%), which supported their close relationship based on

morphological study (Zhu et al., 2010; Zhao et al., 2019). Oxytropis

ochrantha and O. myriophylla were clustered together and was sister to

O. daqingshanica, which supported the treatment ofO. daqingshanica as

a separate species (Zhao et al., 2019) and disapproved the inclusion ofO.

daqingshanica in O. ochrantha as conspecific taxa (Zhu et al., 2010).

Oxytropis filiformis was clustered with O. coerulea (PP = 1.00, ML BS =

99%), suggesting their close affinity, which was congruent with studies

based on the morphological evidences (Zhu et al., 2010; Zhao et al.,

2019). Oxytropis microphylla and O. ciliata grouped together and O.

chiliophylla was distantly related to these two species, which suggested

that O. chiliophylla should be considered as a separate species rather

than including it in O. microphylla. Further taxonomic treatments in

Oxytropis should be conducted by combining evidence from

morphology, anatomy, ecology and palynology.
3.4 Adaptive evolution

The p-values of LRTs for compared models M0 vs. M3, M1a vs.

M2a, M7 vs. M8, and M8a vs. M8 is below threshold 0.05,
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suggesting adaptation signatures within Oxytropis cp genomes

(Supplementary Tables S3, S4; Table 3). According to the manual

of PAML (Yang, 2007), M0 vs. M3 was not suggested as a test of

positive selection but as a test of variable w among sites. In addition,

M1a vs. M2a seems to be more stringent compared with M7 vs. M8

which has been confirmed in our results. Therefore, we relied on

result under model M8 to discuss positive selection sites in

Oxytropis cp genomes. Sixteen genes with positive selection sites

were detected according to BEB analysis under model M8. The

number of positive selection sites in these genes ranged from 1 to

47: nine genes (rps4, psbC, rpl20, rps12, rps11, rps3, rpl2, rps7, rpl32)

with one site, two genes (rpoC2, atpF) having two sites, clpP

possessing three sites, rbcL with five sites, ycf2 containing eight

sites, accD with 12 sites, and ycf1 harboring the largest number of

sites. According to their functional category, nine genes (rps3, rps4,

rps7, rps11, rps12, rpl2, rpl20, rpl32, rpoC2) were associated with

self-replication, three genes (psbC, rbcL, atpF) were responsible for

photosynthesis, genes clpP and accD belonged to other genes, and

genes ycf1 and ycf2 are functionally unknown.

The adaptive evolution of these 16 genes may help Oxytropis

species adapt to their habitats. Among them, rps3, rps4, rps7, rps11,

rps12, rpl2, rpl20, and rpl32 encoded ribosomal subunit proteins.
FIGURE 2

The nucleotide diversity (Pi) values of shared regions in 25 Oxytropis chloroplast genomes.
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Chloroplast ribosomal proteins are essential for cp ribosome

assembly, which plays an important role in plant survival,

acclimation and adaptation (Schmid et al., 2024). DNA

dependent RNA polymerase subunit beta’’ encoded by rpoC2, is

one of the components of the core of plastid-encoded polymerase

(PEP) which acts as the major transcription machinery of mature

chloroplasts (Zhelyazkova et al., 2012; Kindgren and Strand, 2015).

The 43-kDa chlorophyll a-binding protein (CP43) encoded by psbC,

together with CP47 encoded by psbB, binds chlorophyll, as an inner

light-harvesting complex of photosystem II (PSII) (Landi and

Guidi, 2022). The large subunit of Rubisco was encoded by rbcL

(Wicke et al., 2011). Rubisco mediates the fixation of inorganic

carbon from CO2 into organic compounds during photosynthesis

(Wilson and Hayer-Hartl, 2018). In most lineages of terrestrial land

plants, rbcL is under positive selection (Kapralov and Filatov, 2007).

ATP synthase CF0 B subunit encoded by atpF is one of the

important constituents of chloroplast ATP synthase, which using

the proton gradient produces ATP that is indispensable for

photosynthesis and plant growth (Hahn et al., 2018; Yamamoto

et al., 2023). Gene clpP in chloroplast is essential for plant

development, with an indispensable function for cell viability

(Shikanai et al., 2001; Kuroda and Maliga, 2003). The chloroplast

gene clpP together with a nuclear multi gene family encodes the Clp

protease that degrades damaged proteins during environmental

stresses (Clarke, 1999; Adam and Clarke, 2002). The key enzyme

acetyl-CoA carboxylase (ACCase) regulates de novo synthesis of

fatty acids in plants (Rawsthorne, 2002). The accD gene encodes one

of the four subunits of ACCase, which is essential for cell viability,
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leaf development, and seed development (Madoka et al., 2002; Kode

et al., 2005; Caroca et al., 2021). Products encoded by essential genes

ycf1 and ycf2 of higher plants are essential for plant cell survival

(Drescher et al., 2000).

Previous work suggested that Oxytropis arctobia accD gene was

under positive selection, which might be related to its adaptation to

the cold environment in the Arctic (Tavares et al., 2022). Positively

selected genes in Oxytropis detected in our study were also found

under positive selection in some other Fabaceae genera. For

example, rpl2, rpoC2 and accD were under positive selection in

Pueraria (Zhou et al., 2023), and so were rps11, clpP, accD and ycf1

in Astragalus (Moghaddam et al., 2023), rps4, rpl32, accD and ycf2

in Pterocarpus (Hong et al., 2020), rps4, rps7, rpl32 and clpP in Vicia

(Li et al., 2020), rps7, rpl20, atpF, ycf1 and ycf2 in Caragana (Cui

et al., 2024), and rps3, rps12, rpoC2, psbC, rbcL, clpP, accD, ycf1 and

ycf2 in Dalbergia (Li et al., 2022). Oxytropis species spread in

temperate and cold regions of the Northern Hemisphere in Asia,

Europe, and North America, usually thriving in harsh

environments such as the Arctic areas and alpine ecosystems

(Zhu et al., 2010; Archambault and Strömvik, 2012; Kholina et al.,

2016; Tavares et al., 2022). Oxytropis species grow in various

habitats such as mountains, steppes, prairies, meadows, deserts,

semi deserts, forest-steppes, and forests (Zhu et al., 2010; Sandanov

et al., 2023; Welsh, 2023). The origin of Oxytropis was dated to

about 5.6 million years ago, with 95% highest posterior density

intervals ranging from 3.61 to 8.07 Ma, which coincides with

climate modifications around the Miocene-Pliocene boundary

(Shavvon et al., 2017). It was inferred that Oxytropis experienced
FIGURE 3

Phylogenetic trees of Oxytropis and its related taxa based on the dataset of 71 concatenated protein-coding genes (PCGs) of the chloroplast
genomes. (A) Bayesian inference (BI) tree, (B) maximum likelihood (ML) tree. Values along branches indicate Bayesian posterior probabilities (only PP
< 1.00 are shown) and ML bootstrap percentages (only values < 100% are shown), respectively.
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a recent rapid radiation based on its recent age estimates, short

interior branch on gene tree, little genetic differences, and diverse

morphology and ecological habitats (Shavvon et al., 2017). The 16

positively selected genes in the Oxytropis cp genome are related to

important biological processes for instance self-replication,

photosynthesis and metabolite biosynthesis, which may

contribute to the adaptation of Oxytropis to diverse habitats,

especially under extreme arid and cold conditions. The adaptation

of Oxytropis to diverse habitats may have to some extent promoted

the rapid diversification of Oxytropis in its relatively recent

evolutionary history.
4 Conclusion

In this study, comparative analysis of cp genomes of 24

Oxytropis species revealed that their cp genomes exhibited a triad

structure, and the cp genome size, GC content, and gene content

were conserved. Seven highly divergent regions (5’-rps12-clpP, clpP
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intron, psbM-petN, rpl23-trnI-CAU, ndhJ-trnF-GAA,trnQ-UUG-

accD, trnL-UAA-trnT-UGU) identified in this study may be

potentially utilized as high-resolution DNA barcodes, which will

faci l i tate species identification and phylogenetic and

phylogeographic studies of Oxytropis. Phylogenetic analysis based

on the cp genome sequences supported the monophyly of Oxytropis

and provided some new insights into the classification of Oxytropis.

The results indicated that the cp genome can be utilized as an

informative molecular marker for enhancing our understandings of

evolutionary diversification in Oxytropis. Sixteen protein-coding

genes (rps3, rps4, rps7, rps11, rps12, rpl2, rpl20, rpl32, rpoC2, psbC,

rbcL, atpF, clpP, accD, ycf1, ycf2) showed evidence for positive

selection, which may contribute to the adaptation of Oxytropis to its

diverse habitats. Overall, our study improved the understanding of

cp genome features, phylogenetic relationships, and adaptive

evolution in Oxytropis. Employing single-copy nuclear genes

coupled with more detailed taxon sampling will facilitate future

work on the phylogeny, biogeography, and adaptive evolution

of Oxytropis.
TABLE 3 Positively selected sites (*: P>95%; **: P>99%) detected in the Oxytropis chloroplast genomes in comparisons of M7 vs. M8 and M8a vs. M8
under Bayes empirical Bayes (BEB) analysis.

Gene Positive selected sites Pr value(w>1) Number
of sites

rbcL 907 A/1091 A/1142 S/1303 E/1333 E 0.985*/0.988*/0.988*/0.959*/1.000** 5

rps4 2615 E 0.985* 1

psbC 4929 A 0.999** 1

rpoC2 7690 T/7830 R 0.968*/0.963* 2

atpF 9257 Q/9297 - 0.986*/0.978* 2

accD
9923 S/9968 D/10002 Y/10088 D/10089 E/10090 -/10092 -/10098 -/10106
-/10120 T/10129 E/10143 V

0.996**/0.952*/0.968*/0.996**/0.979*/0.969*/0.961*/0.953*/
0.971*/0.960*/0.965*/0.980*

12

rpl20 11836 L 0.952* 1

rps12 12017 - 0.967* 1

clpP 12031 V/12093 D/12155 G 0.986*/0.997**/0.995** 3

rps11 13670 A 0.967* 1

rps3 14240 K 0.990* 1

rpl2 14612 L 0.974* 1

ycf2 14838 Q/15489 L/15715 H/15790 F/15952 S/16027 Q/16074 R/16172 Q 0.990**/0.963*/0.992**/0.995**/0.962*/0.957*/0.988*/0.965* 8

rps7 17335 Q 0.958* 1

ycf1

17495 W/17683 H/17690 V/17693 S/17716 N/17747 -/17751 H/17760 Y/
17775 L/17797 N/18085 S/18087 V/18088 Q/18110 Y/18111 S/18115 K/
18116 P/18120 Y/18136 F/18141 Q/18142 D/18145 I/18176 F/18202 L/
18205 Y/18329 T/18364 K/18366 K/18375 N/18376 V/18377 K/18399 F/
18489 Y/18612 L/18974 D/19011 -/19033 S/19037 F/19042 G/19050 D/
19051 W/19052 A/19055 S/19075 Y/19103 R/19150 R/19155 T

0.967*/0.965*/0.999**/0.982*/0.989*/0.963*/0.996**/0.998**/
0.985*/0.981*/1.000**/0.991**/0.998**/0.967*/0.996**/1.000**/
0.980*/0.998**/0.996**/0.992**/0.990*/0.999**/0.992**/0.984*/
0.981*/0.999**/0.998**/0.986*/0.998**/1.000**/0.984*/0.964*/
0.992**/0.977*/0.976*/0.979*/0.954*/0.968*/0.951*/0.992**/
0.998**/0.982*/0.984*/1.000**/0.986*/1.000**/0.997**

47

rpl32 21547 T 0.980* 1
f

Amino acids refer to sequence of O. racemosa.
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