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Genomics-driven advances in crop productivity and stress resilience
Scaling up crop productivity in response to climate change is critical to sustainably

feeding the ever-growing population. The rate of genetic gain being achieved in recent

decades needs to be augmented to meet this demand (van Dijk et al., 2021; Hunter et al.,

2017). Genomic selection and gene editing strategies for de novo domestication, breaking

linkage drag, and overcoming genetic incompatibility barriers are genomics-driven tools

that have been demonstrated to enhance crop productivity and stress resilience. Strategies

such as landscape genomics, which also consider environmental variables, increase the

potential utilization of genebank collections, including crop wild relatives (CWRs) and

‘exotic genetic libraries’ through identification of appropriate accessions for utilization

(Bohra et al., 2022; Campbell et al., 2025; Shrestha et al., 2025). Genomics tools also help

gain novel insights into the genetic and epigenetic mechanisms associated with stress

resilience traits and the factors to target for enhanced crop productivity (Bailey-Serres et al.,

2019; Gupta, 2025; Lohani et al., 2025; Miryeganeh, 2025). Understanding the role of the

interplay of various components such as transposable elements (Tossolini et al., 2025)

secondary metabolites (Khan, 2025) and small peptides (Xiao et al., 2025) in influencing

stress resilience will help us devise strategies to utilize genomics tools to improve crop

plants and crop diversification (Wang et al., 2025).

Here, Krishnan et al. demonstrated the applicability of genomics-assisted tools in a

wide-hybridization program involving a heat-tolerant diploid wild wheat Aegilops

speltoides accession and a Triticum durum accession to derive a backcross introgression

line (BIL) population. Using this population for marker-assisted selection (MAS), the

research group identified 30 QTLs for heat stress tolerance using molecular breeding and

genotyping-by-sequencing (GBS) approaches involving both SSR and SNP markers to map

the QTLs. Linkage disequilibrium (LD) decay values calculated using Tassel v5.0 helped the

authors target 21 candidate genes associated with heat stress tolerance. The most

prominent targets based on functional annotation were: cytochrome P450, ABC

transporters, E3 ubiquitin-protein ligase, Alcohol dehydrogenase, the F-box family, and
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the MYB family. Similarly, in grapevine berries, Heinekamp et al.

used a mapping population (Calardis Musque x Villard Blanc) and

important cultivars such as ‘Calardis Blanc’ (a sunburn-resilient

cultivar), totaling a population of 150 for phenotypic evaluation for

sunburn resilience in addition to fungal resistance in grapevine

cultivars. Using the composite interval mapping (CIM) approach

with five years of phenotypic data, along with a genetic map of

grapevines, they successfully identified two QTLs that explain

approximately 40% of the phenotypic variance and were found to

be on chromosomes 10 and 11. With a greater number of heat

waves in recent years, climate-change-adapted cultivars that are

resistant to fungus and are sunburn resilient are required for

sustained viticulture to ensure high yields and wine quality.

Using a population genomics approach, Zhang et al.

demonstrated the influence of low temperature in exerting

selection pressure on various plant traits during the adaptation of

a Kandelia obovata population. To accomplish this, the team

introduced a population of K. obovata from Zhangzhou (ZZ) to

two different locations, Quanzhou (QZ, 2003) and Wenzhou (WZ,

2005). Morphological differences were observed at the two sites. To

understand the underlying genetics of this variation, the researchers

used a whole-genome resequencing approach and identified the

SNPs that varied between the original habitat and the introduced

habitat. The positive selection for genes associated with the SNPs

(from the northern province WZ) was analyzed to reveal candidate

genes linked especially to cold tolerance and glutathione

metabolism traits. Analysis of their promoter sequences (extracted

up to 2 kbp) showed enrichment of elements primarily linked to

stress tolerance, such as stress-, low temperature-, wound-, and

abscisic acid (ABA)-responsive elements.

To achieve drought stress resilience in tropical maize and

lettuce, de Pontes et al. and Medina-Lozano et al. utilized

different genomic tools to identify candidate genes in these crops.

Using 360 maize inbred lines, SNP-array genotype data from an

Affymetrix platform and GBS approaches, the researchers identified

drought-associated SNPs and in turn the underlying candidate

genes through genome-wide association studies (GWAS). The

candidate genes were found to be associated with key pathways

such as ethylene biosynthesis, jasmonic acid biosynthesis,

gibberellin biosynthesis, and ABA biosynthesis, along with

specific protein families such as the TPR, PPR, PR, and MYB

families. They were also found to be associated with genes such as

shoot gravitropism 5, and circadian clock genes. These findings will

contribute to improving maize cultivars tailored with drought

resilience for sustained yield improvement. For lettuce, the

authors used an RNA-seq approach to study differential

expression between the lettuce cultivar ‘Romired’ and the wild

lettuce relative Lactuca homblei. The latter is known to

significantly overexpress the anthocyanins during drought.

Through this study, the authors identified 36 genes, with

approximately 50% of them linked to the phenylpropanoid-

flavonoid pathway. The other genes were annotated as being

associated with stomatal closure, phospholipases, and

transcription factors such as MYB, NAC56, PRA1, HSC70, and

ZAT1. This provides insight into the regulation of the drought-
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mediated anthocyanin pathway for use in imparting drought

resilience from the wild species to cultivated lettuce.

In order to promote the molecular breeding and marker-

assisted development of novel cultivars of the ornamental plant

Cymbidium ensifolium, Shen et al. utilized the double-digest

restriction site-assisted DNA sequencing (ddRAD-seq) technique

to sequence 50 commercially available cultivars and identified

approximately 1.2 million high-quality SNPs. From these SNPs,

competitive allele-specific PCR (KASP) primers were designed and

used to screen the cultivars and found that 11 of the final 28 KASP

markers are sufficient to distinguish the 83 cultivars tested.

In an effort to generate a single circular mitochondrial genome

for the decaploid species Camellia hainanica (octaploids are also

available), Zhang et al. used Illumina short-read and Nanopore

long-read sequencing technologies to generate raw data. After initial

filters of the raw data using fastp v0.20.0 and filtlong v0.2.1, the data

were mapped against plant mitochondrial core genes using

Minimap2 to extract the mitochondrial sequences for assembly

using SPAdes v3.15.4, yielding a single circular mitochondrial

genome of 902,617 bp in length. The mitochondrial genome was

annotated for genes (protein-coding and non-coding) and

SSR markers.

The value of conserving germplasm is realized when it is

practically utilized in a breeding program to develop cultivars

introgressed with key desirable traits from germplasm that would

otherwise be difficult to introduce. He et al. evaluated 361 soybean

germplasm accessions, comprising six maturity groups, for

variability in 100-seed weight (100SW) and seed oil content

(SOC). Using a restricted two-stage multi-locus genome-wide

association study (RTM-GWAS) approach, LD blocks comprising

230 and 299 alleles, for 100SW and SOC, respectively, were

identified. Gene annotation studies revealed 87 and 132 candidate

genes for the 100SW and SOC traits, respectively. Promising 100SW

genes included vacuolar proton ATPase A3 and clathrin adaptor

complexes. The most promising gene for SOC was identified to be a

HAD superfamily phosphatase gene. Genomic selection models

using data from the 361 soybean germplasm helped predict the

recombination potential of the two studied traits, 100SW (up to

30.43 g) and SOC (up to 27.73%). A model based on priority traits

can be chosen for implementation in a breeding program to

improve oil yield. Zhernova et al. reviewed the genetic markers

available for the improvement of flax (Linum usitatissimum), which

is widely cultivated for its oil and fiber. Their review underscores the

markers identified for various traits of interest including biotic and

abiotic stress tolerance. This compiled information will be ready-to-

use for marker-assisted flax improvement.

In conclusion, the enormous growth in data generation and

computational power that drives accelerated crop improvement has

transformed genomics applications for innovations. Notable

advances include the move from single-reference to pan-genome

references (Ruperao et al., 2025), understanding the synergy of the

microbiome in crop improvement particularly in terms of yield and

stress resilience (Xu et al., 2025; Ge and Wang, 2025), identifying

susceptibility genes (Baruah et al., 2025), and de novo domestication

and rational redomestication (Wang et al., 2025). These advances
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will guide research in the coming decades as it addresses the

challenges of sustainable agriculture.
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