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With the development of smart agriculture, fruit picking robots have attracted

widespread attention as one of the key technologies to improve agricultural

productivity. Visual perception technology plays a crucial role in fruit picking

robots, involving precise fruit identification, localization, and grasping operations.

This paper reviews the research progress in the visual perception technology for

fruit picking robots, focusing on key technologies such as camera types used in

picking robots, object detection techniques, picking point recognition and

localization, active vision, and visual servoing. First, the paper introduces the

application characteristics and selection criteria of different camera types in the

fruit picking process. Then, it analyzes how object detection techniques help robots

accurately recognize fruits and achieve efficient fruit classification. Next, it discusses

the picking point recognition and localization technologies, including vision-based

3D reconstruction and depth sensing methods. Subsequently, it elaborates on the

adaptability of active vision technology in dynamic environments and how visual

servoing technology achieves precise localization. Additionally, the review explores

robot mobility perception technologies, focusing on V-SLAM, mobile path

planning, and task scheduling. These technologies enhance harvesting efficiency

across the entire orchard and facilitate better collaboration among multiple robots.

Finally, the paper summarizes the challenges in current research and the future

development trends, aiming to provide references for the optimization and

promotion of fruit picking robot technology.
KEYWORDS

intelligent fruit harvesting robots, agricultural robotics, visual perception, object
detection, visual servoing, V-SLAM
1 Introduction

With the continuous growth of the global population, agricultural production is facing

increasingly severe challenges. Rising labor costs, increased labor intensity for farmers, and

low agricultural productivity have become key factors limiting the development of modern

agriculture (Zhang et al., 2024). To address these issues, agricultural automation
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technologies have emerged, with intelligent harvesting robots

receiving widespread attention and research as an efficient and

automated solution (Chunjiang et al., 2023). With the rapid

advancements in artificial intelligence, robotics, and computer

vision technologies, fruit harvesting robots have gradually become

a focal point of research.

In order to provide a comprehensive understanding of the

research trends in this field, we conducted a statistical analysis of

related research articles from 2005 to 2024 based on the Web of

Science database, as show in Figure 1. The results show a significant

increase in the number of publications in the field of “Fruit

Harvesting,” rising from 732 articles in 2005 to 2130 in 2024.

This indicates that, with the rapid development of smart agriculture

technologies, the research interest in this field has continued to

grow, with visual perception and robotics technologies gradually

becoming the core focus of research.
1.1 Development status of intelligent fruit
harvesting robots

In 1968, the United States pioneered the study of fruit harvesting

using mechanical or pneumatic vibration methods. Although these

methods could perform basic harvesting tasks, vibration and

pneumatics often caused significant damage to the fruit (Schertz

and Brown, 1968). With the development of computer and control

technologies, agricultural robots began to be applied in tasks such as

harvesting, spraying, and weeding from the 1990s onward, assisted

by computer vision. In particular, some robotic arms were able to

simulate manual harvesting actions. However, due to the limitations

of robot and sensor technologies at the time, automated harvesting
Frontiers in Plant Science 02
robots still faced challenges such as high costs, low precision, and

limited application scenarios. With the rapid development of

Industry 4.0, advancements in artificial intelligence, the Internet of

Things, and big data analysis have greatly propelled the progress

of agricultural harvesting robots, especially in the precision of

perception, autonomous decision-making, control, and execution

(Oliveira et al., 2021). In particular, the continuous innovation of

visual perception systems has provided harvesting robots with more

powerful sensing capabilities. Modern intelligent fruit harvesting

robots are now able to obtain real-time environmental information

through devices such as cameras, LiDAR, and depth sensors, and

identify the type, location, and status of fruits using image processing

and pattern recognition technologies.

Harvesting robots can be divided into bulk harvesting robots

and selective harvesting robots (Zhou et al., 2022). As shown in

Figures 2a-c, bulk harvesting robots are typically large and perform

one-time harvesting by applying vibration or forced separation to

the fruit trees. Examples include apple harvesting by vibrating

branches (De Kleine and Karkee, 2015), cherry harvesting by

vibration (Zhou et al., 2016), and bulk grape harvesting for

industrial use (Yan et al., 2023). Although bulk harvesting

methods are efficient, they cause significant damage to the fruits

and are difficult to distinguish based on ripeness, making them

suitable only for industrial fruit, not for those intended for

market sales.

Selective harvesting robots typically install the end effector on a

robotic arm and use computer vision to identify ripe fruits, guiding

the robotic arm and end effector to perform the harvesting task, as

shown in Figures 2d-f. These devices are usually smaller in size and

can move freely in agricultural environments. Since their harvesting

method is the closest to human picking, they have already been
FIGURE 1

Statistics of article counts by keywords in web of science.
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applied in harvesting fruits such as apples (Jia et al., 2020), peppers

(Arad et al., 2020), tomatoes (Rapado-Rincón et al., 2023), yellow

peaches (Wang et al., 2023), and strawberries (Tafuro et al., 2022).

Although selective harvesting robots have lower work efficiency,

they support batch harvesting and effectively reduce fruit damage,

thus preserving the commercial value of the fruits. This method is

considered the most likely to fully replace human harvesters, which

has led to widespread attention to selective harvesting robots in

both academia and industry (Sanders, 2005).
1.2 The importance of visual perception
technology in fruit harvesting

Visual perception technology plays a pivotal role in intelligent

fruit harvesting robots, serving as one of the core technologies

enabling automated picking. It facilitates the accurate identification

and localization of target fruits through image processing and object

detection, ensuring the efficient and precise execution of harvesting

tasks. The visual system must adapt to varying lighting conditions,

diverse fruit types, and complex background environments. The

application of deep learning, 3D reconstruction, and image

segmentation techniques enhances its robustness and accuracy.

Furthermore, visual perception supports dynamic decision-

making for the robot, allowing real-time adjustments to

harvesting strategies in response to fruit displacement or

occlusion, thereby ensuring operational continuity and stability.

With technological advancements, the introduction of visual servo

systems and closed-loop control has further improved

manipulation precision and minimized fruit damage.
Frontiers in Plant Science 03
Scholars have developed models for detecting picking points

using image analysis and deep learning techniques to guide robotic

manipulators in the intelligent harvesting of fruits such as pepper

(Arad et al., 2020; Babellahi et al., 2020), tomato (Jun et al., 2021;

Wu et al., 2021), apple (Jia et al., 2020; Li C. et al., 2023), and grape

(Yan et al., 2023; Wang J. et al., 2024). In intricate field settings,

factors such as fluctuating illumination, fruit overlap, variations in

fruit maturity, accurate peduncle/stem recognition, and precise

localization of the picking point significantly impact the

operational efficiency and harvesting accuracy of robots.

Concurrently, when fruits are occluded, determining the optimal

viewing angle for observation and planning effective manipulator

trajectories become critical challenges for enhancing harvesting

performance. Therefore, a thorough examination of the latest

advancements, existing challenges, and future trends in visual

perception technology for fruit harvesting robots holds substantial

academic significance and practical value for advancing the field.
2 Common camera types for
harvesting robots

Efficient visual perception systems are fundamental to

intelligent fruit harvesting robots, with cameras serving as core

components whose performance is determined by sensor type and

design. Driven by advancements in computer vision, deep learning,

and sensor technology, traditional RGB cameras are increasingly

being supplemented or replaced by various advanced sensors.

Combining different sensors proves particularly effective in

complex agricultural environments, significantly enhancing
FIGURE 2

Various types of harvesting robots. (a) Olive Shaking Bulk Harvesting Equipment (Sola-Guirado et al., 2023), (b) Apple Vibration Harvesting Robot (De
Kleine and Karkee, 2015), (c) Apple Selective Harvesting Large-Scale Equipment (Jia et al., 2020), (d) Sweet Pepper Harvesting Robot (Arad et al.,
2020), (e) Tomato Harvesting Robot (Rapado-Rincón et al., 2023), (f) Cucumber harvesting robot (Park et al., 2023).
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system robustness and accuracy. Common vision sensors include

monocular cameras, binocular (stereo) cameras, RGB-D cameras

and event cameras, each possessing distinct advantages and suitable

application scenarios. Table 1 presents a performance comparison

of different types of cameras. The following will provide a detailed

analysis of these camera types and explore their specific applications

in fruit harvesting tasks.
2.1 Monocular camera

Monocular cameras, capturing color images through a single

lens, are widely utilized for image acquisition in deep learning

applications due to their simple structure and low cost, as shown in

Figure 3a. However, they are incapable of directly capturing depth

information, providing only two-dimensional scene data, and are

primarily used for tasks like object detection and yield estimation.

To address this limitation, researchers employ deep learning and

other methods to process monocular images and estimate fruit

positions (Khan et al., 2020; Cheng et al., 2021; Yin et al., 2023). For

instance, Yang et al. proposed a self-supervised monocular depth
Frontiers in Plant Science 04
estimation network (Yang et al., 2020), while Ban et al. tackled

depth estimation in defocused images using Markov random fields

and geometric constraints (Ban et al., 2022). Despite these efforts,

the lack of inherent depth data means monocular depth estimation

still relies on computationally intensive methods and achieves

limited accuracy. This challenge is particularly pronounced in

unstructured agricultural scenes, where environmental complexity

and indistinct object features further complicate depth estimation.
2.2 Stereo camera

Binocular cameras, as shown in Figures 3b, c, also referred to as

stereo cameras, capture images of a scene using two lenses from

different viewpoints. They compute object depth by leveraging the

principle of parallax (Chao et al., 2023). By mimicking the human

binocular vision system to acquire three-dimensional (3D)

information, binocular cameras provide depth data more directly

compared to monocular cameras. Consequently, they are widely

adopted in agricultural robotics and automated harvesting scenarios

due to their ability to deliver more accurate spatial localization in
TABLE 1 Comparison of different depth sensing technologies.

Technology Monocular
(Baeten

et al., 2008)

Binocular stereo
(Wu et al., 2021)

Structured light
camera (Wang J.

et al., 2024)

Time of flight
camera (Li Z.
et al., 2022)

Event camera
(Rebecq

et al., 2018)

Technology
Principle

Captures 2D images
using a single camera

Calculates depth
information using the
principle of disparity

Projects a light pattern
and analyzes

its
deformation

to acquire depth

Measures depth by the time
difference of

infrared light reflection

Pixel-level asynchronous
brightness

change detection

Depth Range Estimated
via algorithm

0.5–10 meters 0.2–5 meters 0.2–10 meters Wide-range

Accuracy Dependent on
algorithm,

low accuracy

Moderate High Moderate High accuracy

Dynamic
Scene

Performance

Dependent on
algorithm,

performance is poor

Moderate Good for
static scenes,
moderate for

dynamic scenes

Excellent, suitable for
dynamic scenes

Excellent, suitable for
dynamic scenes

Advantages Lowest cost,
highest resolution

Provides direct depth
information,
moderate cost

High
precision depth
perception,
suitable for

near-field object
recognition, good
light adaptability

High
precision,
suitable for
long-range,

relatively stable

Ultra-low latency,
ultra-high
dynamic

range and low
power consumption

Disadvantages Difficult to obtain
depth information,

highly
affected by

external light

Requires good scene
texture,
limited in

poor lighting conditions

Sensitive to ambient light,
higher cost

Affected by strong
ambient light, accuracy

decreases at longer distances

There is no texture
information,

so a dedicated algorithm
is needed.

Providers MOKOSE,
HIKRobot, etc.

ZED, Intel
RealSense

D400 Series, etc.

Microsoft
Kinect 1, Intel
RealSense
LR200,

Orbbec Astra, etc.

Microsoft
Kinect 2, Intel
RealSense
L515,

SEERsense, etc.

Pixel-level asynchronous
brightness

change detection.
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complex environments (Ling et al., 2019; Wu et al., 2021; Wen et al.,

2022). However, binocular cameras also exhibit certain limitations.

For instance, they exhibit a high dependency on texture features

within the scene; depth estimation performance may degrade in

texture-poor regions or under suboptimal lighting conditions.

Furthermore, the hardware configuration of binocular cameras is

inherently more complex than that of monocular cameras,

demanding precise calibration and stringent synchronization

between the two lenses.
2.3 RGB-D camera

To overcome the limitations of monocular and binocular

cameras, RGB-D cameras have emerged as a solution. RGB-D

cameras integrate an RGB color camera with a depth sensor,

enabling simultaneous capture of color information and depth

data from the scene, making them an increasingly popular choice

for diverse applications. Beyond stereo vision, commonmethods for

acquiring depth information with RGB-D cameras include

structured light technology and Time of Flight (ToF) (Zhou et al.,

2021) (as shown in Figures 3d, e). Structured light technology

typically projects a known light pattern (e.g., stripes, dot arrays)

onto object surfaces and captures the resulting deformation of this

pattern using a camera to infer depth. Cameras employing this

method offer high accuracy at close range and rapid depth

acquisition, but depth measurement accuracy may decrease for

objects with low reflectivity or lacking texture. Common structured

light cameras include the Intel RealSense series, and the Intel

RealSense D435 camera, valued for its compact size and high

precision, is widely utilized in fruit harvesting tasks (Liu

et al., 2024).
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ToF calculates distance by emitting light pulses and measuring

the time difference for the light to travel from the camera to the

object and back. ToF can operate effectively under low-light

conditions or significant illumination variations and provides

rapid depth acquisition. However, its resolution is generally lower

than that of structured light cameras, making it difficult to capture

sufficiently detailed depth information in complex, close-

range environments.
2.4 Event camera

In addition to conventional frame-based cameras, emerging

vision sensors—such as event cameras—have demonstrated

significant potential in agricultural applications, particularly in

complex environments with high dynamic lighting conditions, as

shown in Figure 3f. Unlike traditional cameras that capture entire

images at fixed frame rates, event cameras operate using an

asynchronous imaging mechanism that records data only when

changes in pixel brightness occur (Gallego et al., 2021). Each event

contains a timestamp, pixel location, and the polarity of brightness

change, enabling ultra-high temporal resolution at the microsecond

level, extremely low latency, and substantially reduced data

redundancy. One of the most prominent advantages of event

cameras is their exceptionally high dynamic range, often

exceeding 120 dB, making them particularly effective in

agricultural scenarios (Wan et al., 2024). For instance, event

cameras can produce stable outputs under highly variable lighting

conditions, such as when sunlight filters through foliage or when

transitions occur rapidly between shaded and sunlit areas.

Furthermore, their low power consumption and compact size

make event cameras well-suited for integration into embedded
FIGURE 3

Representatives of cameras from different technology types. (a) MOKOSE monocular camera, (b) ZED stereo camera, (c) Intel T265 stereo camera.
(d) ORBBEC structured light camera, (e) SEERSENSE ToF (Time of Flight) camera. (f) iniVation event camera.
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s y s t em s a n d v a r i o u s fi e l d - d e p l o y e d a g r i c u l t u r a l

automation platforms.

In the context of precision agriculture, event cameras offer

potential for a variety of tasks, including crop monitoring, where

subtle structural changes in plants can be more effectively detected;

real-time navigation of agricultural robots and UAVs in

dynamically lit environments; and high-speed target detection

(Gehrig and Scaramuzza, 2023), such as rapid identification of

field animals, tracking of pest movements (Pohle-Fröhlich et al.,

2024), or detection of fruit maturity status.

Compared to the aforementioned camera types, RGB-D

cameras offer more stable depth perception in complex

environments and exhibit reduced dependency on scene texture.

They demonstrate superior performance in localization accuracy

and computational efficiency (Zhou et al., 2022), making them well-

suited for scenarios demanding high-precision depth information,

such as agricultural robotics and autonomous driving. Given these

advantages, RGB-D cameras have been successfully applied to the

harvesting of various fruits (Yoshida et al., 2022).
2.5 Camera installation position

The installation position of the camera directly determines the

perception ability of the picking robot toward the fruits. A reasonable

installation position can maximize the coverage of the visual

perception system, enhance the ability to capture image details,

and reduce the interference of external factors on recognition

accuracy. Generally, the camera installation positions on a picking

robot can be divided into Eye-To-Hand and Eye-In-Hand. Eye-To-

Hand means the camera is installed at a fixed position on the robotic

arm, typically on the robot’s base, workbench, or another location
Frontiers in Plant Science 06
that does not change with the movement of the robotic arm. For

example, Birrell et al. (2020) fixed the camera on a bracket in their

lettuce harvesting system, as shown in Figure 4. This method

provides stable visual information, but the fixed camera may fail to

detect all the fruits due to occlusion. Eye-In-Hand refers to the

camera being directly installed at the end of the robotic arm, where

each movement of the arm directly affects the camera’s view. For

example, Junge et al. (2023) installed an RGB-D camera at the end of

the robotic arm in their strawberry picking robot design, with the

camera moving along with the arm, as shown in Figure 5. This

method is better at handling target localization and manipulation

tasks in complex or confined spaces. However, its drawbacks include

a larger computational load and a higher risk of the camera being

damaged due to accidental collisions.
3 Object detection technology in fruit
picking

Objective detection technology is the core technology in

intelligent fruit harvesting (Xiao et al., 2024). Due to the vast

variety of fruits, which exhibit significant variations in

morphology, size, and color, object detection enables the training

and optimization of recognition capabilities for different fruit types.

Within harvesting tasks, object detection must first precisely locate

fruit positions, assess maturity levels, evaluate occlusion conditions,

and identify pickable points. Furthermore, it determines the picking

sequence by analyzing fruit clustering before robotic arm execution,

thereby enhancing harvesting efficiency and accuracy. Object

detection techniques are typically categorized into traditional

feature-based machine learning methods and deep learning-

based approaches.
FIGURE 4

Eye-To-Hand robot.
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3.1 Traditional object detection technology

Traditional object detection methods primarily rely on the

sliding window strategy and manual feature extraction. These

include color features (such as threshold segmentation in HSV,

Lab, and other color spaces), texture features (e.g., Gray-Level Co-

occurrence Matrix - GLCM and Local Binary Patterns - LBP), and

shape features (e.g., edge detection and Hough transform). Due to

their distinctiveness and stability, color features are widely

employed in fruit recognition, particularly in scenarios with

simple backgrounds and high contrast between the fruit and its

surroundings. For instance, Arefi et al. achieved an accuracy of

96.36% by combining features extracted from the RGB, HIS, and

YIQ color spaces for tomato recognition (Arefi et al., 2011). Tian

et al. utilized components of the HIS and LAB color spaces for

tomato leaf segmentation (Tian et al., 2019), while Yamamoto et al.

implemented target identification for strawberry harvesting

through color threshold analysis, achieving a harvest rate of 67%

(Yamamoto et al., 2014). In complex agricultural environments,

OTSU adaptive thresholding is extensively applied to extract target

fruit locations based on color differences (Wei et al., 2014; Lv et al.,

2016). While color models prove effective in distinguishing fruits

from backgrounds, their performance deteriorates significantly in

complex backgrounds or when encountering objects with

similar colors.
Frontiers in Plant Science 07
Morphological characteristics also hold significant importance

in traditional methods. Features such as shape can be extracted

through edge detection (e.g., the Canny operator) and contour

detection (e.g., Hough transform), proving particularly effective for

regularly shaped fruits. For instance, Lv et al. achieved fruit

recognition by combining RGB color features with the Canny

operator and Hough transform (Lv et al., 2015), while Tan et al.

utilized Canny edge detection to extract edge features from apples,

lemons, and mangoes for subsequent classification using machine

learning (Tan et al., 2021). However, the robustness of these

traditional methods is often limited in complex scenarios or when

detecting occluded fruits. To enhance accuracy, Rabby et al.

successfully implemented fruit recognition and classification in

controlled background settings by integrating color and

morphological features (Rabby et al., 2018). Furthermore, texture

features, including but not limited to those derived from the Gray-

Level Co-occurrence Matrix (GLCM) and Local Binary Patterns

(LBP), play a crucial role in fruit object detection (Aygün and

Günes ̧, 2017; Gurubelli et al., 2020).
Furthermore, Haar-like features (Besnassi et al., 2020) and

Histogram of Oriented Gradients (HOG) features (Zhou and Yu,

2021) are also widely employed for image description and fruit

recognition. Haar-like features extract discriminative information

by computing differences in pixel intensities within rectangular

regions. While achieving notable success in facial recognition, this
FIGURE 5

Eye-In-Hand robot.
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approach has also been effectively applied to fruit detection within

the agricultural domain. Conversely, HOG features facilitate

classifier recognition of fruits by quantifying the distribution of

gradient orientations within localized image regions.

With the advancement of machine learning technologies,

traditional methods have progressively been integrated with

machine learning classifiers, forming feature-based + classifier

frameworks for object detection. These classifiers encompass

Support Vector Machines (SVM), Random Forests (RF),

KNearest Neighbors (KNN), and Naïve Bayes, among others. For

instance, Zhang et al. (Zhang and Wu, 2012) achieved the

classification of multiple fruit types using an SVM, achieving an

accuracy of 88.2%, while Lin et al. successfully identified six fruit

types employing the Hough transform combined with an SVM (Lin

et al., 2020). RF enhances classification stability by aggregating

predictions from multiple decision trees (Ramisetty et al., 2022),

whereas KNN classifies fruits such as apples and dragon fruit based

on sample similarity (Aulia et al., 2023). Naïve Bayes performs well

in relatively straightforward classification scenarios, demonstrating

effectiveness in non-destructive testing applications for apples

(Miriti, 2016; Yogesh et al., 2021).

Prior to the widespread adoption of deep learning, methods

based on handcrafted features and machine learning classifiers

constituted the mainstream approach in object detection.

Although demonstrating satisfactory performance in simple

scenarios, their heavy reliance on manually designed features

resulted in suboptimal effectiveness when confronted with

complex environments. However, the rise of deep learning has

precipitated a paradigm shift, with automated feature learning

progressively supplanting handcrafted feature engineering to

become the dominant technology in object detection.
3.2 Object detection technology based on
deep learning

Driven by the advancement of agricultural automation and

intelligence, the application of deep learning technologies in fruit

harvesting has emerged as a prominent research focus. Fruit

harvesting confronts multiple challenges, including object

recognition in complex environments, identification and

localization of diverse fruit types, maturity assessment, and

occlusion handling. Traditional manual or mechanical methods

are often characterized by low efficiency, high costs, and significant

environmental constraints. In contrast, deep learning techniques,

particularly Convolutional Neural Networks (CNNs) and their

extensions such as Faster R-CNN, DETR, and YOLO, have

significantly propelled the intelligence and automation of fruit

harvesting robots.

3.2.1 Two-stage object detection methods
Early object detection methods primarily relied on traditional

CNN architectures like LeNet and AlexNet. While successful in

image classification tasks, these networks inherently lacked the

capability to directly output positional information. To address
Frontiers in Plant Science 08
this limitation, the R-CNN approach proposed by Ross et al.

pioneered the two-stage object detection paradigm by combining

region proposal generation with deep feature extraction (Girshick,

2015). Subsequent advancements, namely Fast R-CNN and Faster

R-CNN, substantially improved detection speed and accuracy

through shared convolutional feature maps and the introduction

of a Region Proposal Network (RPN) (Ren et al., 2016). The Feature

Pyramid Network (FPN) further optimized Faster R-CNN by

constructing a pyramid structure on feature maps of different

scales, thereby enhancing multi-scale object detection capabilities

(Lin et al., 2017). For example, Wan et al. achieved multiclass fruit

detection using Faster R-CNN (Wan and Goudos, 2020), while

Parvathi et al. applied Faster R-CNN for the detection of coconut

maturity in complex backgrounds (Parvathi and Selvi, 2021).

Mask R-CNN is based on Faster R-CNN and achieves precise

segmentation and localization of each instance object by adding pixel-

level masks (He et al., 2017). This method has been applied to the

identification of pick-up points, such as López-Barrios et al. (2023)

who used Mask R-CNN to detect green bell peppers in greenhouses,

successfully locating pick-up points. Despite the accuracy advantage

of two-stage networks, they are computationally expensive and slow.

Therefore, with the increasing demand for real-time performance,

researchers have gradually shifted toward more efficient one-stage

object detection methods.

3.2.2 One-stage object detection methods
The YOLO (You Only Look Once) family represents a

milestone in one-stage object detection models by transforming

object localization into a regression problem through a fully

convolutional architecture, achieving high detection speed

(Redmon, 2016). With successive iterations, YOLO models have

steadily improved in both accuracy and efficiency. Among earlier

versions, YOLOv5 gained widespread adoption in agricultural

scenarios due to its streamlined architecture and training

efficiency (Wang et al., 2022; Hou et al., 2022). For instance, Sozzi

et al. (2022) validated YOLOv5’s reliability in grape cluster

detection across YOLOv3, YOLOv4, and YOLOv5 models.

Recent versions have introduced more advanced designs

tailored for real-time and complex environments. YOLOv6

incorporates cross-layer feature fusion strategies to enhance

real-time performance in industrial contexts (Li C. et al., 2022),

while YOLOv8 significantly improves multi-scale object detection

and feature extraction (Hussain, 2024). In agricultural

applications, Wang et al. (2025) proposed a customized YOLO-

ALW model based on YOLOv8, achieving 99.1% mAP in pepper

detection tasks.

Further developments from YOLOv9 to YOLOv12 introduced

architectural innovations such as reversible branches, the GELAN

backbone, and modules like C2f-faster and Area Attention,

improving detection precision while reducing inference latency

(Khanam and Hussain, 2024; Wang A. et al., 2024; Wang CY.

et al., 2024; Tian et al., 2025). Figure 6 presents a comparison of

latency (left) and computational complexity (FLOPs, right) against

mAP on the MS COCO dataset. YOLOv12 achieves superior mAP

while maintaining low latency and FLOPs, demonstrating
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outstanding overall efficiency. However, Sapkota et al. conducted a

comprehensive evaluation of YOLOv8 through YOLOv12 in

complex orchard environments and found that YOLOv9 delivered

the best performance for green apple detection and counting

(Sapkota and Karkee, 2025). Most recently, YOLOv13 introduced

HyperACE (Hypergraph Adaptive Correlation Enhancement) and

the FullPAD mechanism, further boosting detection performance

(Lei et al., 2025). These advances suggest strong potential for future

application in intelligent fruit harvesting.

In summary, while newer YOLO variants offer enhanced

accuracy and speed, their effectiveness in agricultural environments

depends on task-specific factors such as target size, occlusion level,

and real-time requirements. Selecting the most suitable version

requires careful consideration of these variables.

3.2.3 Transformer-based object detection
methods

Originally achieving remarkable success in natural language

processing, Transformer architectures have recently been

introduced into the field of object detection due to their ability to

model global dependencies via self-attention mechanisms.

Representative models include DETR (Zhao et al., 2024),

Deformable DETR (Zhu et al., 2020), Swin Transformer (Liu

et al., 2022), and Vision Transformer (ViT) (Huang et al., 2022).

Compared with convolutional neural networks (CNNs),

Transformer-based models enable end-to-end training without

relying on predefined anchor boxes and offer strong global

modeling capabilities, making them particularly suitable for

complex agricultural environments with background clutter

or occlusion.

Despite these advantages, Transformers still face several

challenges in practical applications, including high computational

cost, slow convergence, and a strong dependence on large-scale

labeled datasets. To address these limitations, Guo et al. proposed a

Transformer-based fruit detection framework, which effectively
FIGURE 6

Performance comparison chart of YOLO series.
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TABLE 2 Part 1 of the research progress on various fruit harvesting
visual perception technologies.

Fruit types Technical solution Results Cycle
time

Strawberry (Tafuro
et al., 2022)

Detectron-2 AP50
= 94.19%

/

Tomato (Wu
et al., 2021)

Stereo matching algorithm / 13.2s

Grape (Luo
et al., 2016)

Binocular stereo
vision algorithm

Detection
accuracy=87%

/

Coconuts (Parvathi
and Selvi, 2021)

Improved Faster R-CNN
with ResNet-50

mAP50
= 89.4%

/

Lychee (Guo
et al., 2019)

Based on the CLAHE and
Hough circle methods

F1 = 87.07% /

Grape (Sozzi
et al., 2022)

YOLOv3,
YOLOv4, YOLOv5

F1 = 77% /

Green Pepper
(Wang F.
et al., 2022)

YOLOv5s-CFL mAP=95.46% /

Lychee (Zhong
et al., 2021)

MFBB F1 = 83.8% /

Citrus (Hou
et al., 2022)

Improved YOLOv5s F1 = 98.0% /

Citrus (Li C.
et al., 2023)

YOLOv5-CBAM F1 = 92.41% /

Zanthoxylum (Guo
et al., 2023)

CA-DCNv2-YOLOv5 mAP=69.5% /

Tomato (Chen W.
et al., 2024)

YOLO-DNA mAP=74% /

Apple (Li H.
et al., 2023)

BTC-YOLOv5s mAP=84.3% /

Green pepper
(Huang et al., 2024)

Pepper-YOLO mAP50
= 88.1%

/

fron
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captures long-range dependencies but still struggles with tasks such

as small object detection and fruit localization at boundaries (Guo

et al., 2024).

To provide a comparative view of detection performance across

different fruit types and detection models, Tables 2, 3 summarize

the results reported in recent studies. “Results” refers to the reported

detection accuracy under specific datasets or field conditions, while

“Cycle Time” indicates the average time to complete a full picking

cycle for each fruit, including perception, motion planning and

execution, and fruit placement. These comparisons help illustrate

the trade-offs between detection performance and overall harvesting

efficiency across various algorithms and application contexts. To

balance real-time performance and accuracy, recent research has

begun to explore hybrid models that integrate Transformer

modules into YOLO frameworks. Additionally, fusing

Transformer features with multi-modal sensor data—such as

RGB-Depth or thermal imagery—has emerged as a promising

direction for enhancing robustness and accuracy in agricultural

detection tasks.
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4 Data labeling methods and
localization techniques for fruit
picking

The localization of picking points determines whether the fruit

can be successfully harvested, making it one of the core aspects of the

fruit picking process. In recent years, many scholars have focused on

the labeling and research of fruit picking points. The methods for

data labeling of fruit picking points and their localization and

recognition are crucial elements in the research of intelligent

harvesting robots. The goal is to ensure the accurate identification

and localization of picking points through efficient and precise

labeling methods and localization technologies, thereby enhancing

the automation and intelligence of the harvesting machinery.

Selective picking methods are classified into two categories

based on the way the fruit is harvested: picking the fruit itself and

picking the fruit stem. The terminal operation methods differ

between these two categories, and there are also significant

differences in data labeling approaches. In recent years, many

researchers have noted variations in the labeling of data for

picking the same type of fruit, and these differences affect the

picking accuracy.

Wang et al. applied prior knowledge of apples and used the

Hough transform method and contour curvature to propose a

method for calculating the contours of occluded apples to enable

picking localization (Wang et al., 2016). This method struggles to

identify the fruit when they overlap. Yu et al. labeled the strawberry

body with a bounding box and used R-YOLO to predict the

rotational boundaries of the strawberry and the physical size

estimation of the picking point based on the strawberry’s rotation

angle to confirm the picking point (Yu et al., 2020), as shown in

Figure 7a. Tafuro used instance segmentation to label the

strawberry body and calculated the fruit stem position and

picking point localization by recognizing the boundary of the

strawberry (Figure 7b) (Tafuro et al., 2022). Zhong et al. in their

lychee picking labeling, only labeled the main fruit branch and took

the center point of the bounding box as the picking point (Zhong

et al., 2021), as shown in Figure 7c. If the center point is not exactly

on the branch or is blocked by leaves, it can cause significant errors.

Figure 7d shows the sweet pepper picking labeling, where both the

bounding box and the center point of the fruit are estimated to

confirm the picking position (Ning et al., 2022).

Lu et al. in their lotus pod picking used YOLOv5-based instance

segmentation to label both the fruit region and the fruit stem region

separately, and then calculated the key points from the segmented

regions, inferring the picking position from those key points, as

shown in Figure 7e (Lu et al., 2024). These various methods show

the diversity in approaches to fruit picking point labeling and

localization across different fruit types. The key challenge lies in

ensuring high accuracy despite differences in fruit shapes, growth

environments, and occlusions.

With the development of deep learning technologies, some

researchers have shifted the fruit picking point localization from

traditional geometric computations to regression-based

calculations. Zheng et al. (2021) applied a combination of fruit
TABLE 3 Part 2 of the research progress on various fruit harvesting
visual perception technologies.

Fruit types Technical
solution

Results Cycle
time

Strawberry (Yu
et al., 2020)

R-YOLO recognition
rate=94.43%

/

Grape (Chen J.
et al., 2024)

YOLOv8-GP mAP=89.7% /

Longan (Chen
et al., 2025)

Improved YOLOv8n AP50 = 74.3% /

Mango (Li et al., 2024) Improved YOLOv8 mPA=84.9% /

Strawberry (Xia, 2024) Improved
YOLOv8-Pose

mAP-kp=97.85% /

Tomato (Liu
et al., 2020)

YOLO-Tomato AP=96.4% /

Tomato (Lawal
MO., 2021)

YOLO-Tomato-B AP=99.3% /

Green Sweet Pepper
(Lopez-Barrios´
et al., 2023)

Mask R-CNN mAP50
= 72.64%

/

Mango (Zheng
et al., 2021)

Mask R-CNN AP=82.4% /

Strawberry (Mia
et al., 2023)

DANet mAP=78.27% /

Tomato (Lawal
OM., 2021)

YOLOMixNet AP=98.4% /

Apple (Li et al., 2023b) MARL Detection
accuracy:71.28%-

80.45%

5.8-6.7s

Lotus (Lu et al., 2024) Three-view depth
visual

positioning method

Detection
accuracy=98%

/

Sweet Pepper (Ning
et al., 2022)

AYDY Picking
Rate=90.04%

/
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instance segmentation and key point labeling for mango picking

point localization, as shown in Figure 7f. They used the Mask

RCNN model to simultaneously perform regression on the

instance regions and multiple key points, with the picking point

location ultimately determined by the key points. Chen et al (Chen

W. et al., 2024), in their grape picking labeling work, used a fruit

target bounding box and a fruit stem picking key point to label the

data, and directly applied the YOLOv8pose model for regression

calculations to achieve picking point localization, as shown in

Figure 7g. To address the issue of chili picking points being

occluded in complex scenarios, Huang et al. (2024) improved
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the YOLOv8-pose model by introducing a reversible network

structure and a feature fusion module to achieve the recognition

of multiple key points of the chili. The precise estimation of the

picking points is realized through these key points, with the

detection results shown in Figure 7h. Li et al (Li et al., 2024), in

their mango picking work, combined object detection and

instance segmentation. They first used two target bounding

boxes to separately label the mango body and fruit stem, then

applied instance segmentation to label the fruit stem region. After

detecting the fruit stem using object detection, they performed

instance segmentation on the stem region to obtain the skeleton
FIGURE 7

Labeling method for picking points of different fruits. (a) Strawberry picking point calculation (Yu et al., 2020), (b) Strawberry picking point calculation
(Tafuro et al., 2022), (c) Litchi picking point calculation (Zhong et al., 2021), (d) Sweet pepper picking point (Ning et al., 2022), (e) Viburnum picking
point calculation (Lu et al., 2024), (f) Mango picking point calculation (Zheng et al., 2021), (g) Grape picking point calculation (Chen W. et al., 2024),
(h) Pepper picking point calculation (Huang et al., 2024), (i) Mango picking point calculation (Li et al., 2024).
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line of the fruit stem, which was then used to calculate the picking

point, as shown in Figure 7i.

In summary, we can observe that in recent years, there have

been multiple labeling methods and picking point calculation

approaches for the same fruit or different fruits with similar

picking methods. The accuracy of the models trained or

computed with different labeling methods also varies. In complex

environments, how to develop a fruit labeling method that serves

fruit picking tasks becomes particularly crucial. One of the key

challenges in fruit picking work has always been how to minimize

the position error of the fruit picking points.
5 Robot mobility and global
environment perception technologies

5.1 Visual perception and navigation

Visual perception is one of the core technologies enabling fruit

harvesting robots to achieve autonomous navigation and

environmental understanding. By integrating Visual Simultaneous

Localization and Mapping (V-SLAM) systems, robots can construct

3D maps and localize themselves in complex orchard

environments, thereby enhancing their autonomous navigation

capabilities. Chen et al. (2021) proposed a framework combining

eye-in-hand stereo vision with SLAM, addressing the limitations of

traditional SLAM methods in orchard environments and providing

a solution for large-scale orchard harvesting that adapts to complex

terrain and varying lighting conditions. Maud et al. (2023) utilized

object detection and RTAB-Map algorithms to propose a real-time

3D mapping and localization system, optimizing the detection and

management of palm oil trees and improving tree localization

accuracy in large-scale plantations. Wang P. et al. (2025) based

their approach on visual SLAM combined with semantic

segmentation networks, improving the representation of point

clouds and enhancing real-time processing speed, thus enabling

more precise navigation and perception in greenhouse

environments. These studies show that the combination of stereo

vision with SLAM, particularly with the introduction of semantic

SLAM, significantly enhances the robot’s perception and navigation

accuracy in complex environments.
5.2 Path planning for mobile robots

Path planning is crucial for fruit harvesting robots to operate

efficiently, particularly in complex orchard environments where

optimizing paths to minimize time and energy consumption is

essential. Urvina et al. (2024) proposed a combined global and local

planning strategy, using the Traveling Salesman Problem (TSP) and

the Informed Rapidly-exploring Random Tree (IRRT*) algorithm

to optimize paths and avoid obstacles, improving navigation

efficiency in complex terrain. Wang L. et al. (2022) introduced a

full-coverage path planning method based on multi-objective
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constraints, which enhances the adaptability of path planning

algorithms in irregular terrains, ensuring complete coverage.

Wang et al. (2025a). developed a hybrid path planning approach,

combining inner spiral and improved nested methods, significantly

reducing non-work path length and improving operational

coverage. These studies highlight the progression of path

planning technologies toward combining global and local

strategies, addressing path optimization challenges in complex

agricultural environments.
5.3 Task scheduling

Task scheduling is vital for enhancing the efficiency of multi-

tasking harvesting robots, especially when multiple tasks are

performed simultaneously. Efficient task allocation and resource

optimization are key to improving robot performance. Li et al.

(2023a) proposed a Multi-Agent Reinforcement Learning (MARL)

based scheduling method that dynamically adjusts task allocation

based on real-time environment changes and task priorities,

boosting operational efficiency. Wang et al. (2025b) addressed

collaborative scheduling between harvesters and transport robots,

introducing a task allocation and path planning method based on

topological maps, significantly enhancing operational efficiency.

Zhu et al. (2025) developed a task scheduling method for dual-

arm robots using Mixed-Integer Linear Programming (MILP),

optimizing task coordination and substantially improving

strawberry harvesting throughput. These studies demonstrate that

incorporating multi-agent systems and optimization algorithms

into task scheduling can effectively enhance multi-task

coordination and improve overall operational efficiency.
6 Optimal viewpoint planning for fruit
picking

During the fruit picking process, environmental factors such as

exposure, backlighting, shadows, occlusions, and vibrations may

cause changes in the fruit’s position or lead to recognition failures.

These factors not only result in the loss of visual information but

may also prevent the accurate localization of picking points,

ultimately reducing picking efficiency (Suresh Kumar and Mohan,

2023). For example, under strong sunlight or backlighting

conditions, the camera may fail to clearly capture the fruit’s

outline, while shadowed areas may obscure parts of the fruit,

causing recognition errors. Vibration or mechanical movement

can also shift the fruit’s position in the visual sensor, further

affecting the accuracy and efficiency of the picking task. In

addition, different viewpoints may produce varying picking

outcomes. To address these issues, viewpoint planning, as an

important technical measure, aims to maximize the fruit’s

visibility and recognition rate by selecting the most appropriate

angle, thereby minimizing the impact of external factors on

recognition effectiveness (Yi et al., 2024). Viewpoint planning for
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fruit picking can be divided into four types based on the methods

used: geometry-based viewpoint planning, information-based

viewpoint planning, optimization-based viewpoint planning, and

learning-based viewpoint planning.
6.1 Geometry-based viewpoint planning
method

The geometric-based viewpoint planning method focuses on

selecting the optimal viewpoint by calculating the spatial

relationships between the environment and the target object. It

typically involves using depth cameras or LiDAR to create an

environmental model, which includes geometric shapes such as

tree structures, fruit positions, and the locations of branches and

leaves. The visual system then identifies the position of the target

fruit and analyzes the feasibility of viewpoint selection based on the

geometric relationship between the fruit and the environment.

Once the best viewpoint is selected, it notifies the robotic arm to

carry out the picking task. Menon et al. planned the optimal picking

viewpoint based on the completeness of the fruit’s shape, as shown

in Figure 8a (Menon et al., 2023). Hornung et al. proposed a 3D

point cloud mapping based on octrees to simulate the robot’s 3D

environment (Hornung et al., 2013). RVP constructed a voxel map

of the fruit region and used a utility function based on expected

information of the fruit region to evaluate candidate viewpoints

(Zaenker et al., 2021). Burusa et al. drove next-best-view (NBV)

planning through the tomato plant’s structural features and an

attention mechanism (Burusa et al., 2024).

These methods have high computational complexity, are

heavily dependent on equipment, and may become ineffective if
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the environment changes, such as when leaves or fruits sway,

making pre-computed optimal viewpoints unsuitable.
6.2 Information-based and optimization-
based viewpoint planning methods

Information-based and optimization-based viewpoint planning

methods evaluate the characteristics of different viewpoints to select

the ones that provide the maximum perceptual information or

optimize task execution. These methods are widely applied in

complex scenarios, such as fruit harvesting tasks. Yi et al.

generated viewpoints randomly and guided the robotic arm to

adjust its perspective by combining spatial coverage and motion

cost to optimize the scoring function, as shown in Figure 8b (Yi

et al., 2024); Menon et al. estimated missing information through

shape completion and used an NBV-SC planner to find the best

viewpoint (Menon et al., 2023); Akshay et al. made multi-viewpoint

semantic perception decisions to determine the best viewpoint in

tomato harvesting, achieving better results than active vision

strategies (Burusa et al., 2024); Zaenker et al. designed a

viewpoint motion planner to optimize the information gain for

pepper detection (Zaenker et al., 2023). These methods require

evaluating multiple viewpoints, resulting in a large computational

load that affects real-time performance. Optimization-based

viewpoint planning, on the other hand, uses optimization

algorithms to select viewpoints, with objectives typically focused

on minimizing occlusion, maximizing information gain, or

improving task efficiency. These methods evaluate the quality of

viewpoints by setting objective functions. For example, Li et al.

improved YOLOv5 and combined it with the ant colony algorithm
FIGURE 8

Different methods for calculating the optimal viewpoint. (a) Evaluate the picking point location through fruit shape completion, (b) Calculate the
unobstructed areas of grape picking points using a scoring function, (c) Identify the optimal viewpoint through deep learning.
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to optimize the harvesting sequence of citrus, addressing collision

issues (Li C. et al., 2023); Li et al. used reinforcement learning to

define a reward function for optimizing harvesting strategies in a

multi-arm system (Li et al., 2023b); Yi et al. generated candidate

viewpoints and scored them to select the best perspective (Yi et al.,

2024). Optimization-based methods also require evaluating

multiple viewpoints, which imposes a large computational

burden, especially in large-scale and dynamic environments,

affecting real-time performance.
6.3 Learning-based viewpoint planning
methods

Learning-based planning methods utilize machine learning and

deep learning techniques to train models that learn how to select the

optimal viewpoint based on occlusion conditions. These methods

offer high adaptability and flexibility, performing particularly well

in complex and dynamic environments. Learning-based viewpoint

planning works by automatically extracting features from a large

amount of training data and making predictions using learned

models. The models can include deep neural networks,

reinforcement learning models, and others. The learning process

typically involves using historical data to train the model, enabling it

to generate reasonable viewpoint selection strategies based on input

environmental information or task requirements. Zhang et al.

applied deep learning techniques for multiview fruit detection in

apple picking to determine the optimal picking location (Zhang

et al., 2022). Wang et al. used a few-shot reinforcement learning

approach to jointly train the Next Best View (NBV) and Next Best

Point (NBP), with the model continuously optimizing viewpoint

decisions through interaction with the environment (Wang G. et al.,

2024). Chen et al. employed YOLOv8 for real-time object detection

of longan fruits and guided a drone to perform fruit picking by

establishing the relationship between the target points and the

drone’s speed (Chen et al., 2025). Rehman et al. conducted

viewpoint data collection by rotating 30 degrees from left to right

around the target in a nighttime environment, using deep learning

techniques to identify occluded areas and guide the harvesting robot

in selecting the optimal viewpoint, as shown in Figure 8c (Rehman

and Miura, 2021).

Overal l , with the enhancement of perception and

computational capabilities, significant progress has been made in

fruit harvesting viewpoint planning technology. Geometric,

information-based, optimization, and learning methods each have

their advantages, adapting to different scenarios and requirements.

Geometric methods are precise but complex and dependent on

specific conditions; information-based methods optimize

viewpoints but are computationally intensive; optimization

methods are effective but burdensome in complex environments;

and learning methods are highly adaptable but rely on training data

and resources. Although existing research has improved recognition

and harvesting efficiency, real-time performance, robustness, and

accuracy in complex environments remain major challenges. Future
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research could explore the integration of multiple methods, such as

combining optimization with deep learning, to enhance efficiency,

reduce computational consumption, and improve the system’s

adaptability and real-time adjustment capabilities.
7 Discussion

The fruit-picking robot has made significant advancements in

visual perception technology, which is central to the automation of

fruit harvesting. However, despite continuous technological

progress, there are still many challenges when it comes to

applying these systems in real agricultural environments.
7.1 Technical challenges and limitations

Various advanced cameras, such as monocular, binocular, and

3D depth sensors, have enhanced the precision of fruit recognition

and localization for robots. Binocular cameras provide depth

information through disparity, but they have limitations in

calibration and adaptability. Complex depth sensors, such as

Time-of-Flight (ToF) cameras and structured light cameras, offer

excellent depth perception but are expensive and computationally

intensive. Deep learning algorithms, such as YOLO, have improved

fruit detection accuracy, but they require powerful computational

resources, large training datasets, and depth data fusion. Striking a

balance between computational efficiency and accuracy remains a

key challenge for large-scale applications.
7.2 Impact of environmental variations

Intelligent fruit-picking robots face challenges such as lighting

variations, plant positioning, and fruit occlusion in agricultural

environments. These factors complicate the visual system’s ability

to detect and localize fruits accurately. Even advanced sensors

struggle when confronted with real-world agricultural settings.

For instance, differences in the shape, color, and growth patterns

of various fruits increase the difficulty of segmentation and

classification. Ensuring high-precision recognition amidst these

variations remains an unsolved problem.
7.3 Picking accuracy and efficiency

Picking accuracy is crucial, particularly in minimizing damage

and improving fruit quality. Visual reconstruction and depth

perception technologies assist in pinpointing the picking location,

but the high computational cost remains a bottleneck in real-time

data processing. Enhancing operational precision and preventing

fruit damage are key considerations. Additionally, the introduction

of active vision technology, which adjusts the visual angle based on

real-time perception, can further improve picking accuracy.
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7.4 Future development directions

Despite the challenges, the future of intelligent fruit-picking

robots remains promising. Future research could explore sensor

fusion, integrating visual, tactile, and force data to enhance the

robot’s overall environmental perception. AI and machine learning,

particularly unsupervised learning, hold the potential to reduce the

reliance on large labeled datasets and improve the robot’s

adaptability to new environments. By combining deep learning-

based visual servoing techniques, path planning, and control

strategies can be optimized. In the future, intelligent fruit-picking

robots will achieve a better balance between real-time performance

and accuracy.
8 Conclusion

In this paper, we reviewed the research progress of visual

perception technology in intelligent fruit-picking robots. First, we

introduced the advantages and disadvantages of different types of

cameras: monocular cameras are suitable for simple scenarios,

binocular cameras provide depth information for moderately

complex environments, while structured light and ToF depth

cameras perform excellently in high-precision depth perception

and complex environments.

Next, we explored the application of object detection technology

in fruit picking, comparing traditional image processing methods

with modern deep learning methods such as YOLO and SSD. While

deep learning methods offer higher accuracy and better adaptability,

they require large amounts of training data and high-performance

hardware. Traditional methods still have advantages when

resources are limited.

Regarding the localization of picking points, we reviewed

vision-based 3D reconstruction and depth perception methods,

emphasizing the importance of accurate localization to improve

the picking success rate and reduce fruit damage. Additionally, we

explored technologies such as V-SLAM, mobile path planning, and

task scheduling, which contribute to enhancing the robot’s

operational efficiency throughout the entire orchard. We also

discussed the combination of active vision and visual servoing

techniques, showing that these two technologies can significantly

enhance the robot’s adaptability and precision in dynamic

environments. By adjusting the visual angle in real-time and

optimizing control strategies, robots can more accurately locate

and manipulate targets, especially when dealing with fruit occlusion

and complex backgrounds.

Finally, we summarized the current status and future

development directions of visual perception technology. Despite

significant progress, challenges such as poor environmental

adaptability, low system integration, and high costs still exist in

real agricultural environments. With the continuous development

of computer vision, deep learning, and sensor technologies, the
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future intelligent fruit-picking robots, combining active vision and

visual servoing techniques, will make greater breakthroughs in

efficiency and accuracy and will be capable of addressing more

complex application scenarios.
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