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Introduction: Timely detection of jute leaf diseases is vital for sustaining crop

health and farmer livelihoods. Existing deep learning approaches often rely on

large, annotated datasets, which are costly and time-consuming to produce.

Methods and results: To address this challenge, a lightweight convolutional neural

network integrated with a semi-supervised learning self-training framework was

proposed to enable accurate classification with minimal labeled data. The model

combines modified depthwise separable convolutions, an enhanced squeeze-

and-excite block, and a modified mobile inverted bottleneck convolution block,

achieving strong representational power with only 2.24M parameters (8.54 MB).

On a self-collected dataset of jute leaf images across three classes (Cescospora

leaf spot, golden mosaic, and healthy leaf), the proposed model achieved a best

accuracy of 98.95% under the supervised training with training, testing and

validation split of 80:10:10. Remarkably, the model also attained a best accuracy

of 97.89% in the semi-supervised learning (SSL) setting with only 10% labeled and

90% unlabeled data, demonstrating that near-supervised performance can be

maintained while substantially reducing the dependency on costly labeled

datasets. The application of explainable AI method such as Grad-CAM provided

interpretable visualizations of diseased regions, and deployment as a Flask-based

web application demonstrated practical, real-time usability in resource-

constrained agricultural environments.

Conclusion: These results highlight the novelty of combining SSL with a

lightweight CNN to deliver near-supervised performance, improved

interpretability, and real-world applicability while substantially reducing the

dependence on expert-labeled data.
KEYWORDS

deep learning, semi-supervised self-training, lightweight CNN, grouped convolution,
squeeze-and-excite, jute leaf disease
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1 Introduction

Jute, often known as the “golden fiber,” is a vital crop because of

its importance in the biodegradable and eco-friendly natural fiber

industry. It is cultivated primarily in parts of Bangladesh and India,

particularly in the Ganges Delta, where it thrives in the region’s

warm, humid climate and fertile alluvial soil. Other major

producers include China, Thailand, Myanmar, Indonesia, Brazil,

and Nepal, highlighting its global economic importance (Mahapatra

et al., 2009). Bangladesh is currently the world’s second-largest

producer of jute, accounting for 42% of global production, which

amounts to 1.33 million tons (Yasmin and Moniruzzaman, 2024).

One of its most notable advantages is its biodegradability and

renewability, making it a sustainable alternative to synthetic fibers

and a key player in efforts to reduce plastic pollution (Miah et al.,

2011). Widely used in industries such as textiles, packaging, and

agriculture, jute offers an eco-conscious substitute for plastic-based

materials, decomposing naturally without leaving harmful residues.

In addition to its environmental benefits, jute cultivation supports

millions of smallholder farmers, providing them with a stable

source of income while also generating employment opportunities

in processing, manufacturing, and trade. As a result, jute not only

contributes to sustainability but also strengthens rural economies,

reinforcing its status as a valuable global commodity.

However, the productivity and quality of jute are persistently

threatened by a spectrum of diseases, such as stem rot

(Macrophomina phaseolina (Ghosh et al., 2018)), root rot

(Rhizoctonia solani (Wadud and Ahmed, 1962)), Cercospora leaf

spot (Sarkar and Gawande, 2016), golden mosaic (Biswas et al.,

2013), and viral infections such as the jute mosaic virus (Hasan

et al., 2015). These diseases not only lead to major economic losses

for farmers but also exacerbate the hardships faced by smallholder

communities that rely on jute cultivation for their livelihood. The

impact of these infections can extend beyond the farm, affecting

industries dependent on jute-based products and disrupting supply

chains. The impact of jute mosaic disease on jute production has

been studied, and it is recognized as a major constraint to successful

jute cultivation (Ghosh et al., 2012). Therefore, timely detection and

accurate identification of these diseases are critical for

implementing effective management strategies, such as disease-

resistant crop varieties, improved farming practices, and targeted

biological or chemical treatments. Proactive measures and

continuous research on plant pathology and disease control are

essential for safeguarding jute production, ensuring both economic

stability for farmers and the long-term sustainability of this

vital crop.

Traditional methods for disease detection largely rely on

manual inspection and expert knowledge, which are often time-

consuming, subjective, and impractical for large-scale monitoring.

Moreover, limited access to expert pathologists in remote farming

regions hampers timely intervention. In this context, the advent of

machine learning (ML), Deep Learning (DL) and computer vision

offers a transformative avenue for automating and enhancing

disease detection processes (Ye et al., 2019; Wijethunga et al.,

2023). While supervised learning models, particularly CNNs
Frontiers in Plant Science 02
(Haque et al., 2024), have shown promise in plant disease

recognition, they demand extensive labeled datasets to achieve

high accuracy a luxury not always available for jute diseases

owing to insufficient annotated images and variability in

symptom expression. This scarcity of labeled data poses a

significant hurdle in developing robust diagnostic models (Zhao

et al., 2022).

To address these challenges, this research explores a semi-

supervised learning approach that leverages the abundance of

unlabeled jute plant images alongside a limited set of labeled

examples to enhance disease detection and classification (Learning,

2006). Semi-supervised learning techniques are particularly well-

suited for agricultural applications, where labeled data are often

scarce, expensive, and time-consuming to obtain. By effectively

utilizing both labeled and unlabeled data, these methods can

significantly improve learning accuracy and model generalizability.

The objectives of this research are threefold, each aimed at

advancing the field of jute disease detection through the integration

of cutting-edge ML and image processing techniques. First, the

study seeks to develop a Lightweight supervised CNN model for

detecting and classifying various jute diseases. Then, the same

model is applied in semi-supervised learning. This model

leverages both labeled and unlabeled image data to improve

learning efficiency, thereby addressing the critical challenge of

limited annotated datasets. By incorporating semi-supervised

techniques, this research aims to reduce the dependency on

extensive manual labeling while still achieving high-precision

classification of jute diseases. Second, the research aims to

increase the accuracy and efficiency of disease diagnosis by

integrating DL architectures with advanced image processing

techniques. The proposed approach employs state-of-the-art

CNN and feature extraction methods to refine disease

identification, ensuring early detection and timely intervention.

This enhancement will contribute to minimizing crop losses and

optimizing disease management strategies for farmers. Third, the

study intends to develop real time application to provide

agronomists and farmers with an easy solution to identify the jute

leaf diseases with higher confidence in an early stage. This

comprehensive evaluation ensures that the developed system is

not only highly accurate in controlled settings but also practical and

reliable for deployment in real agricultural environments.

This study contributes to the advancement of jute disease

detection by introducing a novel lightweight DL architecture and

leveraging semi-supervised learning to address the challenge of

limited labeled data. The main novel contributions of this study are

as follows:
1. A novel lightweight DL model was proposed using

modified depthwise separable convolutions, along with an

enhanced Squeeze and Excite (SE) block and a modified

mobile inverted bottleneck convolution (MBconv).

2. A high-quality dataset comprising 920 meticulously

categorized images of jute leaves, including three distinct

classes, namely, healthy, Cercospora leaf spot, and golden

mosaic, was developed for jute leaf disease classification.
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3. The proposed model incorporates a semi-supervised self-

training (ST) method to address the limitation of data

labeling towards building a more robust jute leaf disease

classification model.

4. Explainable AI tools such as Grad-CAM was used to

identify the region of interest to find the diseased area

more accurately.

5. A web application was developed to deploy the proposed

model in a real-time agricultural setting, demonstrating its

practical applicability and usability under field conditions.
The remainder of this manuscript is organized as follows:

Section 2 provides a comprehensive review of related works in

the domain of plant disease classification. Section 3 details the

methodology, including dataset preparation, preprocessing, the

proposed lightweight CNN architecture, semi-supervised self-

training framework, and deployment strategies. Section 4 presents

experimental results, performance analysis, complexity evaluation,

and Grad-CAM-based explainability outcomes. Section 5 presents

comparative analysis with the literature, the implications of the

findings, strengths and limitations, and outlines potential future

research directions. Finally, Section 6 concludes based on the key

findings of the study.
2 Related works

The identification of jute leaf diseases has been significantly

constrained by the limited availability of comprehensive disease-

related labeled datasets. Despite this challenge, researchers have

made efforts to detect diseases by existing data. To address this

limitation, they developed advanced and complex models designed

across various datasets to increase the accuracy and effectiveness of

several plants’ leaf disease detection techniques.

Salam et al. (2024) explored the effectiveness of various transfer

learning models, including MobileNetV3Small, ResNet50, VGG19

for mulberry leaf disease classification. The authors used four

additional convolutional layers added to each model for

modification. MobileNetV3Small outperformed the other models,

achieving an accuracy of 96.4% on a dataset comprising 6,000 images

across 3 mulberry leaf disease classes. This study uses explainable AI

such as Grad-CAM to highlight areas influencing the decision made

by the model. Additionally, the authors developed a mobile app to use

in real life application. However, the absence of a dedicated large-

scale dataset for mulberry leaf diseases limited the development and

validation of robust detection models.

Karim et al. (2024) proposed a modified MobileNetV3large

model to classify 4 types of grape leaf diseases using 27,122 leaf

images achieving a 99.66% accuracy. The authors used Grad-CAM

to highlight the model’s decision-making areas on the leaf images.

However, the authors did not develop any mobile application to use

in the real-life grape leaf disease detection.

Padhi et al. (2024) employed EfficientNetB4 with compound

scaling and Swish activation on a paddy leaf disease dataset

containing a total of 19,131 images with 10 classes of paddy leaf
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diseases. This method achieved the accuracy of 96.91%. The study

incorporated diverse data augmentation techniques and rigorous

evaluation metrics, providing valuable insights into model

optimization. However, the authors did not use any XAI

technique to display the model’s behavior to identify the diseased

area on leaf.

Khan et al. (2024) introduced a Bayesian optimized multimodal

deep hybrid learning approach for tomato leaf disease classification.

The authors employed a custom CNN model for feature extraction,

followed by seven classical machine learning classifiers including

Random Forest, XGBoost, GaussianNB, SVM, MLR, KNN, and a

stacking ensemble. Bayesian optimization and the Tree-structured

Parzen Estimator (TPE) were used for hyperparameter tuning, and

a Boruta feature selection layer was added to identify the most

relevant features. The CNN-Stacking model achieved the highest

performance, with 98.27% accuracy, 98.53% recall, and 98.53%

precision on a dataset of 18,159 images across 10 classes of

tomato leaf disease. However, the study lacks an actual mobile or

desktop application deployment, and its use of a single, well-curated

dataset raises concerns about generalizability to real-world,

heterogeneous field data. Additionally, despite high accuracies,

potential model overfitting and a need for interpretability and

explainability remain areas for further improvement.

Naresh Kumar and Sakthivel (2025) proposed a novel rice leaf

disease classification framework using a hybrid Fusion Vision

Boosted Classifier (FVBC) that combines the VGG19

convolutional neural network for feature extraction with the

LightGBM gradient boosting algorithm for classification. The

FVBC model achieved high performance with training, validation,

and testing accuracies of 97.78%, 97.5%, and 97.6%, respectively

using a dataset comprising 2,627 images divided across six classes.

Despite its strong classification results, the study does not

incorporate any explainable AI (XAI) techniques to interpret the

model’s decisions, nor does it include the development of a practical

application such as a mobile or web interface for end-

user deployment.

Bansal et al. (2024) proposed a federated CNN approach using

datasets from five different clients representing various jute-

growing environments. Their model classified five jute leaf disease

types using 4200 images and achieved classification accuracies

ranging between 79.87% to 83.67% across federated clients.

However, limitations in this study include the absence of real-

world deployment and explainability, which could hinder

farmer trust.

Kaushik and Khurana (2025) implemented a deep learning

model based on the ResNet50 architecture, fine-tuned using

transfer learning for binary classification of jute leaves as either

healthy or diseased. The dataset contained 1,820 images. After

preprocessing and data augmentation, the model achieved a

classification accuracy of 94%. While the model was

computationally efficient and demonstrated strong performance,

it was limited to only two classes, reducing its applicability in real-

world settings where multiple disease types coexist.

Rajput et al. (2024) proposed a federated CNN architecture

enhanced with decision tree support for classifying five distinct jute
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leaf diseases: anthracnose, stem rot, root rot, Macrophomina wilt,

and yellow mosaic virus. The dataset was sourced from five clients

representing various ecological regions. Performance evaluation

across clients showed macro, micro, and weighted averages

peaking at 94.27%, 94%, and 94.28%, respectively, with the best

classification accuracy observed at 98% for one client. Although the

integration of decision trees aimed to enhance interpretability, no

formal XAI methods were used to explain model decisions.

Additionally, there was no application interface proposed for

deployment, which limits its field adoption.

Tanny et al. (2025) introduced a deep ensemble learning based

model DERIENet where the features ere extracted using ResNet50,

InceptionV3 and EfficientNetB0 and then best features were

selected global maxpooling method and concatenated together.

Using a Kaggle dataset of 920 images divided in three classes

cercospora leaf spot, golden mosaic, healthy, expanded to 7,800

images via augmentation, the model achieved 99.95% accuracy with

near-perfect precision, recall, and AUC scores.

Uddin and Munsi (2023) developed a CNN model with four

convolutional layers, four max-pooling layers, and two fully

connected layers. The dataset comprises 4740 jute leaf images,

categorized into three classes: healthy, yellow mosaic, and

powdery mildew. The proposed CNN model achieved a high

classification accuracy of 96%, outperforming models like SVM

(83.28%) and GPDCNN (93.12%). While the model’s performance

is strong, the study lacks transparency in terms of model

interpretability and does not explore deployment strategies,

suggesting the need for further validation and explainability

enhancements in future research.

Most of the aforementioned techniques rely on complex model

architectures to address the challenges posed by limited labeled

data. However Benchallal et al. (2024) applied semi-supervised

learning to weed species classification, introducing the

ConvNeXt-Base-SSL model and evaluating it on the DeepWeeds

dataset with 8 classes, the 4-Weeds dataset with 4 classes, and the

CIFAR-10 dataset with 60,000 images and 10 classes. Their

approach achieved over 90% accuracy when using datasets where

only 20% of the images were labeled. Although this research has

focused primarily on weed species identification, its applicability to

other image classification tasks may be limited. The method relies

on a deep encoder-decoder architecture with many trainable

parameters, which could be computationally expensive.

Nonetheless, this work outperformed several state-of-the-art

supervised models, highlighting the potential of semisupervised

learning to achieve high accuracy with minimal labeled data and

offering a promising direction for more efficient annotation

strategies in future research.

Wang et al. (2024) presented a plant disease classification model

based on self-supervised learning (SSL), integrating a Masked

Autoencoder (MAE), a Convolutional Block Attention Module

(CBAM), and a Gated Recurrent Unit (GRU). The authors used

two datasets: a self-collected dataset consisting of 3256 images of

potato leaves categorized into three classes (early blight, late blight,
Frontiers in Plant Science 04
healthy), and the CCMT dataset with 88,010 images across 18

disease classes from crops such as tomato, maize, cassava, and

cashew. The proposed method achieved high classification

accuracies: 99.61% on the self-collected dataset and 95.35% on the

CCMT dataset. While the model utilized advanced attention

mechanisms (CBAM) and sequence processing (GRU), it did not

incorporate explainable AI (XAI) techniques, and no practical

application or mobile/desktop app was reported. Limitations of

the paper include the absence of XAI for interpretability and no

real-world deployment.

Ilsever and Baz (2024) explored consistency regularization-

based semi-supervised learning for plant disease recognition,

employing the Mean Teacher approach to address challenges

related to limited labeled data, dataset balance, batch size, and

fine-tuning strategies. Using datasets such as PlantVillage, Plant

Pathology 2021, and a newly created PP2021TS with 38 classes and

54,309 images, the study implemented three fine-tuning

strategies for ResNet: HeadOnly, HeadThenBody, and Mean-

Teacher. Among these methods, the Mean-Teacher method

achieved the highest accuracy of 88.50% when trained on just 5%

labeled data, outperforming conventional supervised learning

methods. Despite requiring two models (student and teacher),

this approach demonstrated the effectiveness of semi-supervised

learning in agricultural applications, highlighting its potential for

improving plant disease detection with minimal labeled data.

While numerous studies have demonstrated the potential of

supervised learning across different plant datasets, a significant gap

persists in addressing the jute leaf dataset classification, where labeled

data are very limited. Collecting and labeling large datasets is both

time-consuming and resource-intensive. Several studies have

demonstrated the efficacy of supervised learning approaches in the

classification of other leaf diseases, but there remains a notable gap in

the literature regarding classifying jute leaf disease via both supervised

and semi-supervised approaches. Although previous studies in plant

disease detection have made significant strides using deep learning

and self-supervised approaches, substantial gaps remain particularly

in the domain of XAI techniques such as Grad-CAM and real time

mobile or web app deployment. The absence of research on jute leaf

disease classification highlights an opportunity to explore methods

that leverage both labeled and unlabeled data, potentially improving

classification performance while reducing the burden of

manual annotation.
3 Methodology

The subsequent sections detail the methodology employed to

develop the lightweight custom CNN model for the classification of

jute leaf diseases utilizing both supervised and semi-supervised

learning methods. Specifically, the following section outlines the

proposed semi-supervised learning framework, the custom CNN

architecture developed for jute leaf disease classification, and the

experimental setup used to evaluate the model’s performance.
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3.1 Dataset description

The dataset used in this experiment consists of 920 high-quality

images that have been carefully organized into three classes:

Cescospora leaf spot, golden mosaic, and healthy leaf, containing

309, 347, and 264 images, respectively. These images were collected

through extensive fieldwork in Dinajpur and Brahmanbaria, two

significant agricultural regions in Bangladesh, with full

authorization and support from local agricultural officials. The

dataset was labeled with the help of agronomists who provided

expert annotations to ensure the accuracy and reliability of disease

classifications, thereby enhancing the overall quality and credibility

of the training data (Alam, 2024). As the previous studies did not

make the jute leaf datasets publicly available, a new dataset was

developed for providing greater accessibility by other researchers.

Furthermore, the disease classes in this dataset are different from

the classes reported in the literature contributing to unique data

resource development for future research.

In image classification tasks, data leakage occurs when

information from the validation or test set inadvertently becomes

available during training. This usually happens if augmented

versions of the same original image are distributed across

training, validation, and testing subsets. For example, if an

original leaf image is placed in the training set, but its rotated or

flipped version appears in the validation or test set, the model

indirectly exposed to the same information during both training

and evaluation. This leads to overly optimistic performance that do

not reflect true generalization ability of the model. To mitigate this

issue, for each class, the original non-augmented leaf images were

split using 80:10:10 ratio, where 80% of the labeled images were

used for training, 10% for validation, and the remaining 10% for

testing to evaluate the performance of the model. The training

images were augmented to increase the number of images needed to

make a large dataset. After the augmentation, 3,000 images were

selected for each class to create a balanced dataset, resulting in a

total of 9,000 training images. The validation and test sets remained

unaltered to provide unbiased evaluation. In Table 1, the data

distribution for the supervised method is shown. For the semi-

supervised method, 80% of the data allocated for training were

further divided into two subsets: 10% served as labeled data, while

the remaining 90% was treated as unlabeled. The same validation

and testing sets from the supervised approach were retained to

ensure consistent performance evaluation. From Table 2, the data

distribution can be easily understood, clearly illustrating the
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proportions of labeled, unlabeled, validation, and testing sets used

in both supervised and semi-supervised methods.
3.2 Dataset preprocessing and
augmentation

Owing to the varying sizes of the images in the original dataset,

uniform scaling was necessary as a preprocessing step. Every image

was resized to 224 × 224 pixels. Images typically show a wide range

of intensity levels. Normalization was used to convert the scale from

0–255 to 0–1. All the pixel values were divided by 255 to normalize

the intensity level. Moreover, to increase the size of the dataset,

several augmentation techniques were applied, including rotation

(± 90°), horizontal and vertical flips, combined horizontal and

vertical flips, brightness adjustments (increase/decrease), Gaussian

blur, shearing, zooming in/out, and perspective transformation.

Examples of these operations are shown in Figure 1.
3.3 Overall model architecture

The whole classification process is divided into three parts. First,

several well-established TL models were trained via supervised

learning methods and evaluated across different performance

metrics. Since the TL models did not perform as expected and

had more complex architectures, a new lightweight custom CNN

model was built using different components and compared with the

TL models. Figure 2 shows the workflow of jute leaf disease

classification via the supervised method. After some trial and

error, the final custom CNN model was found to outperform all

the TL models. This new lightweight custom CNN model was

subsequently utilized for the semi-supervised method. The model

was initially trained on a small set of labeled data. Using this trained

model, predictions were made on a large set of unlabeled data. The

most confidently predicted images were treated as pseudo-labeled

data. The model was then retrained on these pseudo-labeled images.

This process was repeated several times until no pseudo-labeled

images remained, ultimately resulting in the final, best-performing

model. Finally, a web application was developed to facilitate real-

time plant disease classification using the best-performing custom

CNN model, thereby assisting farmers in accurate and timely

diagnosis. Figure 3 shows the proposed workflow for jute leaf

disease classification using semi-supervised ST method. The
TABLE 1 Data distribution in each jute leaf disease class for supervised learning.

Class name Original Training
Training post
augmentation

Validation Testing

Cescospora
Leaf Spot

309 247 3000 30 32

Golden Mosaic 347 277 3000 34 36

Healthy
Leaf

264 212 3000 25 27
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feature extraction was done by the proposed model. Initially, the

model used modified depthwise separable convolutions, which

decomposed standard convolutions into depthwise and pointwise

components, reducing computational cost while preserving spatial

feature learning. To further enhance the sensitivity of the model to

important features, SE blocks were integrated, which adaptively
Frontiers in Plant Science 06
recalibrate channel-wise feature responses using global context. The

modified MBconv blocks expanded the input features, applied

grouped and depthwise convolutions, then compressed the

features back while incorporating residual connections, enabling

deeper and more efficient learning. Finally, the feature maps were

aggregated using Global Average Pooling, producing a compact
FIGURE 1

Augmented images: (a) rotate 90 degrees clockwise (b) rotate 90-degree counter-clockwise, (c)horizontal flip, (d) vertical flip, (e) horizontal–vertical
flip, (f) brightness decrease, (g) brightness increase, (h) Gaussian blur, (i) shearing, (j) zoom in, (k) zoom out, (l) perspective transform.
TABLE 2 Data distribution in each jute leaf disease class for semi-supervised learning.

Class name Original Training post augmentation
Training

Validation Testing
Labeled (10%) Unlabeled (90%)

Cescospora
Leaf Spot

309 3000 300

8100

31 31

Golden Mosaic 347 3000 300 35 35

Healthy
Leaf

264 3000 300 26 26
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FIGURE 2

Workflow of the proposed supervised jute leaf disease classification pipeline, showing preprocessing, data augmentation, train–validation–test split
(80:10:10), feature extraction using TL and the proposed CNN model, performance evaluation, and model saving.
FIGURE 3

Workflow of the proposed semi-supervised self-training (ST) approach for jute leaf disease classification. The model is first trained on a small labeled
subset (10%), predicts labels for unlabeled data (90%), selects high-confidence predictions as pseudo-labels, and iteratively retrains until
convergence.
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representation suitable for classification. This hierarchical structure

allowed the model to progressively extract rich, discriminative

features from raw input images.
3.4 Semi-supervised learning

The semi-supervised learning method handles partially labeled

data to achieve higher classification levels (Wang et al., 2016). In

semi-supervised learning, the collection of patterns is categorized

into two subsets of D: 1) labeled data DLf g = (xi, yi) i = 1,…, lj gf ,

where the pattern is denoted by x, y is the default label for x and the

number of labeled instances is l; and 2) unlabeled data DUf g =

(xj)
� ��j = l + 1,…, l + ug, where the pattern is denoted by x and the

number of unlabeled instances is u. Usually, ∥DU ∥ ≫ ∥DL ∥. One
advantage of semi-supervised learning is that it reduces the need for

a large amount of labeled data, particularly in domains where the

quantity of available labeled data is scarce. When no previously

labeled datasets are available, it is common for an expert to

manually classify the data in specific fields. The semi-supervised

learning method handles partially labeled data to achieve higher

classification levels. When an expert only recognizes a portion of the

patterns in a given dataset, it becomes very challenging for them to

categorize instances to increase the training set of data. This

highlights yet another advantage of this type of learning (Chapelle

et al., 2009). In the literature, ST is capable of handling semi-

supervised datasets (Yarowsky, 1995).

3.4.1 Self-training
Self-training is perhaps the earliest concept for categorizing

unlabeled data from a lower percentage of previously classified data.

The findings in the feature selection domain indicate that the
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wrapper algorithm uses a supervised approach to guide its

decision-making process (Van Engelen and Hoos, 2020). ST is a

wrapper algorithm that initiates training exclusively on labeled data

and subsequently applies a supervised learning technique

repeatedly. At each phase, the present decision function is

employed to label a portion of the unlabeled instances. The

supervised algorithm is once again retrained with its predictions

using the additional labeled cases (Chapelle et al., 2009). A classifier

is first developed that uses a limited amount of labeled data during

the ST process. The classifier is subsequently utilized for the

classification of unlabeled data. The training set comprises cases

identified with the highest confidence index along with their

expected labels. The classifier undergoes retraining until the

unlabeled dataset is fully utilized, at which point the entire

procedure is repeated. This method involves the classifier

acquiring knowledge through its own predictions, hence the term

ST (Zhu and Goldberg, 2009). A confidence parameter was

introduced to the ST algorithm in (Rodrigues et al., 2013) as an

extension, functioning as a threshold for incorporating new cases

into the labeled dataset. New examples are incorporated into the

labeled dataset when their prediction confidence meets or exceeds

the threshold, defined as the minimum confidence rate (0.9) for the

inclusion of new instances.

3.4.2 Confidence regularization self-training
Figure 4 represents the step-by-step process of the confidence

regularization ST process. A supervised classifier is initially

developed using the labeled dataset in the ST process. This

classifier is subsequently employed to classify the unlabeled data.

A new confidence threshold value is calculated and applied to select

additional cases for labeling. Cases with a prediction confidence

value that meets or exceeds the confidence threshold are selected
FIGURE 4

Block diagram of the confidence regularization self-training process. A supervised classifier trained on labeled data predicts unlabeled data, selects
high-confidence data above a threshold, assigns pseudo-labels, and adds them to the labeled set in iterative cycles until all unlabeled data are
processed.
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and labeled through a series of established procedures in the

subsequent phase. The procedure continues until the unlabeled

dataset is depleted, and the newly labeled dataset is utilized for

ongoing operations. Algorithm 1 presents the sequential procedure

of the newly developed ST version for this work.

Unlike the ST extension suggested in the literature (Rodrigues

et al., 2013), the ST proposed in this work allows changing the stated

value for each iteration, which does not change the confidence

threshold to account for new instances (Algorithm 1, Line 4).

The label predicted by the classifier is assigned immediately to

an unlabeled instance and then transferred to the pseudo-labeled

dataset. Various approaches to choose the appropriate label are

proposed in this study (Algorithm 1, Line 6).
Fron
1: Input: labeled data DLf g, unlabeled data DUf g;
2: Initially, we have DLf g = (xi ,yi) i = 1,…,lj g  f and DUf g =

(xj)
� ��j = l + 1,…,l + ug;
3: Train classifier C on DLf g;
4: Apply C on instances of DUf g;
5: Calculate a new value for confidence rate.

6: Remove a subset S = s1,s2,…,snf g from DUf g, so that the

confidence rate in C(x) is greater than or equal to the

minimum confidence rate for new instances to be

included; Use different strategies to choose the label

for every instance in subset S;

7: Add (x,  C(x)) x   ∈ Sj gf to set DLf g until DUf g = ∅

8: Output: Labeled data
Algorithm 1. Self-Training with Confidence Adjusting.
3.5 Proposed CNN architecture

3.5.1 Modified depthwise separable convolution
In conventional depthwise separable convolution, a standard

convolution is split into a depthwise convolution applying a single

filter per input channel and a 1×1 pointwise convolution that

combines these outputs, resulting in reduced computational cost

and improved efficiency. However, the computational cost can be

further reduced by using the principle of group convolutions, where

the input and output channels are divided into separate groups and

convolutions are performed independently within each group. This

reduces the number of parameters and operations compared with

standard convolutions while still maintaining representational power.

In standard depthwise separable convolution, depthwise and

pointwise operations are performed as shown in Equations 1 and 2:

Costdepthwise = Dk � Dk � H �W � Cin (1)

Costpo intwise = H �W � Cin � Cout (2)

where Dk � Dk represents the kernel dimension of the

depthwise convolution, H �W � C denotes the input feature

map, and Cin and Cout represent the total number of input and

output channels, respectively. To reduce the computational
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complexity while preserving the information, the pointwise

convolution is replaced with a grouped pointwise convolution

with a G number of groups. Equation 3 shows the cost

calculation of the grouped convolution.

Costgrouped =
H �W � Cin � Cout

G
(3)

In this study, a group count of G=4 was chosen, leading to a

significant reduction in the parameter count while still enabling

information flow between the groups of channels. The output of the

grouped pointwise convolution is normalized via group

normalization (GN), which stabilizes the training process by

normalizing the input within each group of channels, improving

generalization, and making the model less sensitive to the batch size.

Unlike Batch Normalization, which computes statistics across the

batch dimension, GN divides channels into groups and computes

normalization within each group, making normalization

independent of the batch size. The mathematical expression for

group normalization is shown in Equation 4.

GN =
x − mgffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2
g + e

q (4)

where x is the input to the activation function and s represents

the sigmoid activation function. Here, mg and s2
g are the mean and

variance computed over all the elements in the group. e is a small

constant added to avoid division by zero. Finally, a Swish activation

function is used to introduce smooth, non-linear transformations

after the modified depthwise separable convolution, which

enhances gradient flow and feature expressiveness. Equation 5

represents how the swish activation function works.

swish = x · s (x) (5)

The following expression shown in Equation 6 summarizes the

whole process of modified depthwise separable convolution:

MDwiseSepConvk�k = swish(GN(Conv2DG
1�1(DwiseConvk�k(X)))) (6)

where k� k is the dimension of the kernel and G is the number

of groups for grouped convolution. DwiseConv denotes the

depthwise convolution applied to the input tensor, and MDwiseSe

pConv i s t h e o u t p u t o f t h e m o d i fi e d d e p t h w i s e

separable convolution.

The modified depthwise separable convolution block shown in

Figure 5 is used in this model to significantly reduce the

computational cost while maintaining strong representational

power. By replacing the standard pointwise convolution with a

grouped pointwise convolution, the model benefits from a reduced

parameter count and fewer operations. Additionally, the use of

Group Normalization (GN) helps stabilize the training process by

normalizing the activations within each group, making the model

more robust and independent of the batch size. Unlike batch

normalization, which depends on the entire batch, the GN

operates on smal ler groups of channels , improving

generalizability. The final enhancement comes from the use of the

Swish activation function, which introduces smooth, non-linear
frontiersin.org

https://doi.org/10.3389/fpls.2025.1647177
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jannat et al. 10.3389/fpls.2025.1647177
transformations, leading to better gradient flow and richer feature

expressiveness. This combination of techniques optimizes the

efficiency and performance of the model, making it particularly

suitable for applications with limited computational resources, such

as mobile and embedded systems.

3.5.2 Modified squeeze and excite block
To enhance the squeeze and excite (SE) operation, GN was

incorporated with the SE block. Using GN after the SE operation

helps stabilize training and improve feature representation by

normalizing channel-wise activations within each group. GN was

chosen instead of Batch Normalization (BN) because it does not rely

on batch statistics and therefore remains stable when training with

small batch sizes, which were necessary in this study due to

hardware limitations. By normalizing across groups of channels,

GN reduces inter-channel variance and ensures consistent feature

scaling. This, in turn, improves the effectiveness of the SE block in

modeling long-channel dependencies. Specifically, GN ensures that

the recalibration performed by SE focuses on meaningful inter-

channel relationships rather than noise introduced by unstable

normalization statistics (Wu and He, 2018). Instead of using the

ReLU function in the excitation operation, Swish activation was

employed, which provides smoother gradients and improved

learning dynamics, ult imately enhancing the model ’s

performance. These modifications within the SE block improve

the conventional SE module with Batch Normalization and the

ReLU activation function. The modified SE block operation can be

described as follows:
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The squeeze operation using global average pooling converts

each channel to a single numerical value as shown in Equation 7:

y = GlobalAveragePooling2D(x) (7)

Then, the squeezed vector is passed through a fully connected

layer followed by the swish activation function. The activated

output was passed through another dense layer to restore the

original number of channels, followed by GN and the sigmoid

activation function as shown in Equation 8:

z = s (GN(W2(swish(W1(y))))) (8)

where W1 and W2 are the weights of the fully connected layer.

The attention weights are reshaped to match the input tensor’s

channel dimensions and broadcast across spatial dimensions.

Finally, these weights are multiplied element-wise with the input

tensor to recalibrate the feature maps as performed in Equation 9.

SE = x⊙ reshape(z) (9)

Where, the element-wise multiplication is denoted by ⊙ and

where SE is the final output of the SE block.

The modified SE block shown in Figure 6 is used in this model

to enhance feature recalibration and improve the model’s ability to

focus on the most informative features. It improves the traditional

SE module by providing more efficient and accurate channel-wise

attention, helping the model to better identify and emphasize

important features while suppressing less relevant ones. This

results in improved feature representation, more effective training,

and higher performance across a range of tasks.
FIGURE 5

Workflow of the proposed modified depthwise separable convolution block. The block consists of a 3×3 depthwise convolution, a 1×1 grouped
pointwise convolution, group normalization, and a Swish activation function. The tensor dimensions at each stage are indicated on the right,
showing how input size (Hin ,Win), stride (s), and filter count (F) affect the output feature maps.
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3.5.3 Modified mobile inverted bottleneck block
The proposed modified mobile inverted bottleneck convolution

(MBconv) block is inspired by the MobileNetV2 architecture

(Sandler et al., 2018). Several modifications have been made to

make the model more lightweight and efficient. Several

modifications were introduced to improve both the efficiency and

representational power while keeping the computational cost low.

Like MobileNetV2, the block starts with an expansion phase as

shown in Equation 10, where the input tensor X ∈ RH�W�Cin is

projected to a higher-dimensional space, expanding the channel

dimension by a factor of r, resulting in an intermediate tensor X1 ∈
RH�W�(r·Cin).

X1 = swish(Conv1�1(X)) (10)

This is followed by depthwise convolution as shown in Equation

11, which efficiently captures spatial relationships with minimal

parameter cost:

X2 = swish(DwiseConv3�3(X1)) (11)

Unlike the original MBConv, the projection phase in this

modified block uses a grouped pointwise convolution instead of a
Frontiers in Plant Science 11
standard 1� 1 convolution. This operation reduces the number of

output channels while also enforcing sparsity and group-wise

feature learning. To further enhance channel interdependencies,

the SE block is applied to adaptively recalibrate the feature maps as

the following Equation 12:

X3 = SE(GN(ConvG1�1(X2))) (12)

A residual connection is formed by applying the modified

depthwise separable convolution to the skip path as shown in

Equation 13, ensuring consistent feature alignment and

dimensionality regardless of input–output shape compatibility.

This replaces the conditional identity mapping used in traditional

residual blocks:

R = MDwiseSepConv1�1(X) (13)

This ensures that the skip path always undergoes a learnable

transformation, promoting better feature fusion and flexibility

across varying spatial or channel configurations. Finally, the

residual and transformed features are fused via element-wise

addition and passed through a non-linear activation as expressed

in Equation 14:
FIGURE 6

Structure of the proposed modified SE block. The block applies global average pooling, two dense layers with Swish activation, group normalization,
and a sigmoid function to generate channel-wise attention weights, which are reshaped and multiplied with the input feature maps to recalibrate
channel importance.
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Y = swish(X3 ⊕ R) (14)

where⊕ denotes element-wise addition. This modified MBConv

block combines the depthwise efficiency of MobileNetV2 with SE

attention mechanisms and grouped convolutional compression,

resulting in a lightweight yet expressive building block for modern

convolutional neural networks.

The MBConv Block shown in Figure 7 is utilized in this model to

achieve a balance between computational efficiency and

representational power. By leveraging depthwise convolution and

grouped pointwise convolution, this block significantly reduces the

number of parameters and operations, making it lightweight and well

suited for resource-constrained environments. The inclusion of the

Squeeze and Excite (SE) block enhances the channel-wise attention

mechanism, allowing the model to adaptively recalibrate feature maps

and emphasize important information. The residual connection with

modified depthwise separable convolution ensures that feature

alignment and dimensionality are maintained, even if the input–

output shape differs, while promoting better feature fusion. Overall,

this modifiedMBConv block provides a highly efficient and expressive

convolutional building block that can improve the model’s accuracy

and robustness without incurring a significant computational cost,

making it ideal for lightweight yet powerful neural network

architectures. Figure 8 represents the overall architecture, and the

modifications made to the proposed custom CNN model.
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3.6 Explainable AI

A DL visualization technique called Grad-CAM is used to

comprehend model choices, particularly in computer vision tasks.

The method creates a heatmap by using the target class’s gradients

in relation to the last convolutional layer. Class-specific details in

the input image can be visualized because the final convolutional

layers balance spatial information and high-level semantics

(Saranya and Subhashini, 2023).

Grad-CAM makes use of the rich information in the final layer

of data by highlighting areas where the model focuses its attention

to produce unique patterns. The algorithm effectively highlights

important regions in the input image that contribute to target class

prediction by computing gradients of the class score with respect to

feature maps, performing weighted combinations, and producing a

heatmap (Islam et al., 2022). Equation 15 summarizes the operation

done by Grad-CAM.

LCAMc =o
i
o
j
wk
cA

ij
k (15)

where LCAMc is the localization map for class c in Grad-CAM.

The association with the k-th feature map for class c is denoted by

wk
c . A

ij
k is the activation for the k-th feature map at a spatial location

(i, j). This equation represents the formulation of Grad-CAM for
FIGURE 7

Architecture of the proposed modified MBconv block. The block includes an expansion phase with 1×1 convolution, depthwise convolution,
grouped pointwise convolution, and a modified SE block. A skip connection with a modified depthwise separable convolution ensures feature
alignment, followed by element-wise addition and Swish activation for non-linearity.
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generating a class-specific localization map through the

combination of feature weights wk
c and activation Aij

k from

different spatial locations. After generating the heatmaps with the

help of Grad-CAM, the regions were marked with red bounding

boxes by mapping the color from the heatmap to indicate the

location of diseased area.
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3.7 Web application

A functional Android app prototype was developed to

demonstrate the real-world application and capabilities of the

established model using Flask-based web application. Flask is a

lightweight and flexible web application framework in Python that
FIGURE 8

Architecture of the proposed lightweight CNN for jute leaf disease classification. The model combines modified depthwise separable convolutions,
SE blocks, and MBconv blocks with grouped convolutions. Global average pooling, dense layers with Swish activation and L2 regularization, dropout,
and a softmax layer produce the final three-class output. Output dimensions at each stage are shown on the right.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1647177
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jannat et al. 10.3389/fpls.2025.1647177
simplifies the deployment of ML, DL and computer vision models

as interactive web applications. It integrates seamlessly with popular

Python libraries commonly used in these workflows, including

those for data processing, model inference, and visualization. This

compatibility enables developers to build responsive and user-

friendly interfaces for showcasing their DL models and results.

Flask’s minimalistic design and modular architecture also allow for

greater customization and control, making it a suitable choice for

developing tailored applications in real-world scenarios. The CNN

model, after training, was saved in a standard.h5 format and loaded

into the Flask backend for inference. Upon receiving an image from

the user, the server processed the input by resizing it to 224 × 224

pixels and normalizing the pixel values to match the model’s input

requirements. The preprocessed image was then passed through the

CNN model to perform inference. The Flask application returned

the classification results identifying whether the leaf is healthy or

affected by any disease classes.
3.8 Hyperparameter and system
configuration

To achieve a high level of accuracy with the suggested model, it

is necessary to carefully adjust and fine-tune its hyperparameters.

The values of these hyperparameters are presented in Table 3.

Empirical evidence suggests that the Adamax optimizer

outperforms other widely used optimizers in terms of achieving

higher rates of learning. In addition, batch normalization layers

were included to expedite the training of the model.

A balance between memory consumption and training speed

influences practical decisions regarding batch size. In this research,

a batch size of 16 was employed for normalization. Following

numerous experiments conducted with training data from the

combined dataset, the remaining hyperparameter values were

selected somewhat arbitrarily. A trial-and-error methodology was

employed to iteratively fine-tune the hyperparameters for optimal

performance. Table 4 represents the system configuration used in

this work.
3.9 Performance metrics

Several well-known evaluation metrics were computed to assess

the classification performance of the proposed CNN model. To

evaluate the model’s performance, a confusion matrix was

generated based on the model’s prediction on the test data.

Evaluation metrics such as accuracy, precision, recall, F1 score

and AUC were computed to differentiate between different models

(Hasan et al., 2024). The following metrics were derived via the

established methodologies. Equations 16–19 represent the

mathematical expressions for the metrics used to evaluate the

proposed model.

Accuracy =
TP + TN

TP + TN + FP + FN
(16)
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Recall =
TP

TP + FN
(17)

Precision =
TP

TP + FP
(18)

F1 − score =
2� precision� recall
precision + recall

(19)

Here, FP = false positive, TP = true positive, FN = false negative,

and TN = true negative. TP indicates when the model correctly

identifies a diseased leaf as diseased. FP indicates when the model

incorrectly predicts a healthy leaf as diseased. FN indicates when the

model incorrectly predicts a diseased leaf as healthy. TN indicates

when the model correctly identifies a healthy leaf as healthy.
4 Results

The following sections present a thorough analysis of the

experimental results, examining the performance of the proposed

methodology in comparison to established TL benchmarks. A

detailed discussion has been presented to contextualize these

findings, interpret their implications, and highlight the
TABLE 3 Hyperparameter configurations used in this work.

Hyperparameters Value

Batch size 16

Optimizer Adamax

Initial learning rate 0.001

Epochs 50

LR reduce factor 0.1

Loss function Sparse Categorical Crossentropy

Kernel regularizer L2=0.01
TABLE 4 System configuration used in this work.

Tools Configuration

Programming Language Python

Backend Keras with TensorFlow

GPU RAM 15 GB

Disk Space 78.2 GB

System RAM 12.72 GB

GPU Nvidia Tesla T4

Operating system windows 10

Input Jute Leaf

Input Size 224×224
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significance of the research outcomes in the broader context of jute

leaf disease detection.
4.1 Result analysis of the supervised and
semi supervised self-training method

A lightweight custom CNN model was developed for

deployment in both supervised and semi-supervised learning

frameworks, incorporating three key architectural enhancements:

Modified Depthwise Separable Convolution, Modified SE Block,

and Modified MBConv. Table 5 presents a comprehensive

evaluation of the model ’s performance across various

configurations, each designed to isolate the impact of individual

and combined modifications. Compared with conventional

convolution, the CNN network utilizing only modified depthwise

separable convolution (Custom 1) achieved an accuracy of 92.63%

while significantly reducing the number of parameters. It further

reduced the number of parameters by incorporating a grouped

convolution mechanism within the pointwise convolution,

enhancing computational efficiency. This resulted in less

computation and more efficient feature extraction without

compromising performance. After using the modified SE block

with the Custom 1 network (Custom 2), the results drastically

improved from 92.63% to 96.84%accuracy, indicating that the

dynamic channel-wise recalibration significantly enhanced feature

representation and overall model performance. This highlighted the

critical need for an attention mechanism to guide the network in

focusing on the most informative features, thereby improving

learning efficiency and overall performance. The modified

MBConv blocks were subsequently incorporated without the SE

block and without the modified depthwise separable convolution in

the skip connections to build the Custom 3 network, which

achieved an accuracy of 95.79%. Although this accuracy was

slightly lower than the 96.84% accuracy of Custom 2, it

significantly outperformed Custom 1, demonstrating the strength

of the mobile inverted bottleneck block in enhancing feature

extraction. Compared with a network relying solely on modified

depthwise separable convolutions, the use of MBConv blocks

provided deeper feature representation and better information

flow through efficient expansion, depthwise filtering, and
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compression mechanisms, leading to substantially improved

learning capacity. Integrating the modified SE block within the

modified MBConv structure (Custom 4) further improved the

accuracy to 97.89%, highlighting the effectiveness of the attention

mechanism in enhancing feature extraction and boosting overall

model performance. Finally, the proposed model, which combined

all three blocks in the suggested configuration, achieved the highest

accuracy of 98.95%, outperforming all the custom networks.

The results indicated that while each architectural enhancement

independently contributed to improved model performance, the

integration of all three yielded the best outcomes. Specifically, the

proposed model achieved the highest scores across all the

performance metrics, with an accuracy, precision, recall, and F1

score of 98.95%, 98.99%, 99.07% and 99.02% respectively,

underscoring the effectiveness of the combined architectural

improvements. This demonstrated the potential of the proposed

custom CNN design in achieving high performance while

maintaining computational efficiency.

To evaluate the effect of key design choices, an ablation study

was conducted by varying the group size, expansion ratio, and

activation function under the supervised learning method. After

achieving the best results from the final model architecture through

ablation study in the supervised learning was used for the semi-

supervised method without conducting any further ablation study.

The effect of grouped convolutions with various group sizes were

analyzed. The effect of expansion ratio of each modified MBConv

block and how the choice of activation function impacted the results

were also examined. From Table 6, it can be seen that when ReLU

was used as the activation function with group size = 4 and

expansions = (4, 4, 4, 4), the model achieved 93.33% accuracy,

93.99% precision, 93.99% recall, and 93.75% F1-score, indicating

relatively weaker performance. Replacing ReLU with Swish

activation under the same configuration significantly improved

the results to 98.89% accuracy, 99.02% precision, 98.92% recall,

and 98.96% F1-score, showing that Swish activation enhances

gradient flow and representational learning. Increasing the

expansions uniformly to (6, 6, 6, 6) while keeping Swish

activation reduced performance to 95.56% accuracy, 95.83%

precision, 95.95% recall, and 95.83% F1-score, suggesting that

overly high expansion introduced unnecessary complexity. A

mixed expansions of (4, 4, 6, 6) with Swish achieved the best
TABLE 5 Performance metric evaluation with different modifications of the proposed custom CNN model using supervised method.

Models

Customization elements Performance metrics

Modified depthwise separable
convolution

Modified SE
block

Modified
MBConv

Accuracy
(%)

Precision
(%)

Recall
(%)

F-1 Score
(%)

Custom 1 ✔ ✖ ✖ 92.63 93.30 92.67 92.91

Custom 2 ✔ ✔ ✖ 96.84 97.14 97.22 97.06

Custom 3 ✖ ✖ ✔ 95.79 95.81 96.18 95.95

Custom 4 ✖ ✔ ✔ 97.89 98.03 98.03 98.03

Proposed ✔ ✔ ✔ 98.95 98.99 99.07 99.02
Bold values indicate best results.
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performance, reaching 98.95% accuracy, 98.99% precision, 99.07%

recall, and 99.02% F1-score, confirming the effectiveness of

balanced expansion. Finally, increasing the group size to 8 or 16

with the (4, 4, 6, 6) expansion and Swish activation led to

performance drops (96.67% and 95.56% accuracy, respectively),

showing that larger group sizes reduce inter-channel feature

interaction and limit learning capacity. These results

demonstrated that the optimal combination was group size = 4,

expansions = (4, 4, 6, 6), and Swish activation, which maximized

accuracy and generalization while keeping the model lightweight.

The results reported in the Tables 5 and 6 represented the best

performance of the proposed model. However, to further verify the

stability and reliability of the model, multiple independent runs

were conducted under the same experimental setup. The average

results across these runs, along with their standard deviations, are

presented in Table 7. The model consistently achieved strong

performance, with accuracy ranging from 96.84% to 98.95% with

a mean accuracy of 98.32%. Similar consistency was observed in

precision (mean 98.41%), recall (mean 98.47%), and F1-score

(mean 98.43%). The relatively low standard deviations (≤0.84%)

indicated that the model’s performance was stable and not highly

sensitive to random initialization or variations across runs. These

results reinforced the robustness and generalization ability of the
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proposed lightweight CNN, supporting its suitability for practical

deployment in real-world agricultural settings.

To evaluate the effectiveness of the proposed model in scenarios

with limited labeled data, which is a common challenge in

agricultural settings, a confidence-based semi-supervised ST

approach was implemented. This method involved varying the

proportion of labeled data and adjusting the confidence threshold

for pseudo-label selection, as summarized in Table 8. The results

align with the overarching aim of the study, demonstrating the

model’s strong generalization capabilities even when trained on

minimal labeled data. At just 4% labeled data, the model achieved a

commendable accuracy of 93.68% at a 0.95 confidence threshold. As

the labeled portion increased to 7%, the performance improved

significantly, with the accuracy increasing to 95.79% and

corresponding gains in precision, recall, and the F1 score. When

10% labeled data were combined with 90% unlabeled data, the

model attained its highest performance under the semi-supervised

framework, achieving 97.89% accuracy along with equally strong

values across all other metrics. These findings confirm the

practicality and effectiveness of the proposed semi-supervised

strategy, reinforcing its relevance for real-world agricultural

applications where labeled data are often scarce and validating the

broader goal of achieving high performance with minimal

manual annotation.

Figure 9 shows that the proposed model achieves high training

and validation accuracy. Although the training and validation

curves showed minor fluctuations, they ultimately start plateauing

after approximately 40 epochs. The loss curves demonstrate a rapid

decrease in both training and validation loss in the initial epochs,

followed by a more gradual decline. This finding indicated that the

model learns effectively and generalizes well to the unseen data.

Figure 10 shows the confusion matrices for the proposed model

using the traditional supervised method and semi-supervised ST

method. In the supervised method, the model demonstrated high

accuracy across all three classes: Cescospora Leaf Spot, Golden

Mosaic, and Healthy Leaf, with minimal confusion between them.

The semi-supervised ST method also showed strong performance,

although there was a slight increase in confusion, particularly in

Golden Mosaic. Overall, both methods achieved good classification

accuracy, with the supervised method performing slightly better.
TABLE 7 Multiple independent runs by the proposed custom CNN
model using the supervised method.

Multiple
runs

Accuracy
(%)

Precision
(%)

Recall
(%)

F-1 Score
(%)

Run - 1 97.89 98.03 98.03 98.03

Run - 2 98.95 98.99 99.07 99.02

Run - 3 98.95 98.99 99.07 99.02

Run - 4 96.84 97.03 97.11 97.05

Run - 5 98.95 98.99 99.07 99.02

Mean 98.32 98.41 98.47 98.43

Standard
Deviation

0.84 0.78 0.79 0.78
TABLE 6 Performance comparison of the proposed CNN model under different group sizes, expansion ratios, and activation functions using the
supervised learning method.

Group
Size

Expansion s in four layers of Modified
MBConv Block

Activation
function

Accuracy
(%)

Precision
(%)

Recall
(%)

F-1 Score
(%)

4 4, 4, 4, 4 ReLU 93.33 93.99 93.99 93.75

4 4, 4, 4, 4 Swish 98.89 99.02 98.92 98.96

4 6, 6, 6, 6 Swish 95.56 95.83 95.95 95.83

4 4, 4, 6, 6 Swish 98.95 98.99 99.07 99.02

8 4, 4, 6, 6 Swish 96.67 96.97 97.06 96.87

16 4, 4, 6, 6 Swish 95.56 96.08 96.08 95.83
The results show the impact of architectural choices on accuracy, precision, recall, and F1-score.
Bold values indicate best results.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1647177
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jannat et al. 10.3389/fpls.2025.1647177
Figure 11 illustrates the Receiver Operating Characteristic

(ROC) curves for the proposed model, which compared the

performances of the traditional supervised method and the semi-

supervised ST method. The ROC curves plotted the true positive

rate against the false positive rate for different classification

thresholds. In the supervised method, the ROC curves for all

three classes (Cescospora Leaf Spot, Golden Mosaic, and Healthy

Leaf) reached an area under the curve (AUC) of 1.00, indicating

perfect classification. The semi-supervised ST method also

demonstrated strong performance, with AUC values of 1.00 for

all three leaf classes. This showed that both methods were

highly effective in distinguishing between different classes, with

the traditional supervised approach exhibiting slightly

superior performance.
4.2 Comparison with TLM

Table 9 presents a comparative performance analysis of several

TL models, including ResNet50, MobileNetV2, VGG19, Xception,

and EfficientNetB7, which were evaluated using a supervised

learning approach. Each model was selected based on its
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architectural strengths and relevance to the task. Among the

evaluated models, MobileNetV2 demonstrated the highest

classification accuracy, achieving 94.11%, thereby emerging as the

top-performing model. Xception and EfficientNetB7 closely

followed, attaining an accuracy of 93.68%. The performance of

ResNet50 and VGG19 were slightly lower, with accuracies of

87.37% and 85.26%, respectively.
4.3 Complexity analysis of the proposed
model

Conducting a complexity analysis of the lightweight custom

CNN model was crucial for assessing its efficiency in terms of

training time, computational requirements, and model size,

especially in comparison to conventional transfer learning

architectures. As shown in Table 10, the proposed lightweight

CNN model results in a markedly reduced number of trainable

parameters (2.24 million) and a compact model size of 8.54 MB,

which were significantly smaller than those of widely used models

such as ResNet50 and EfficientNetB7. These characteristics

highlighted the model’s computational efficiency, offering a
FIGURE 9

Proposed model (a) training accuracy and (b) loss curves for the traditional supervised learning method.
TABLE 8 Performance metric comparison of the proposed model using semi-supervised learning method with different confidence thresholds and
labeled data.

Labeled data proportion (%)
Confidence
threshold

Accuracy (%) Precision (%) Recall (%) F-1 Score (%)

4 0.8 91.58 94.74 92.75 92.15

4 0.9 92.63 92.48 93.40 93.14

4 0.95 93.68 94.74 94.44 94.11

7 0.8 94.74 95.25 94.86 94.96

7 0.9 94.74 95.50 95.37 95.10

7 0.95 95.79 96.30 96.30 96.08

10 0.8 96.84 97.03 97.11 97.05

10 0.9 96.84 97.14 97.22 97.06

10 0.95 97.89 97.80 98.15 97.93
frontiersin.org

https://doi.org/10.3389/fpls.2025.1647177
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jannat et al. 10.3389/fpls.2025.1647177
lightweight solution without compromising classification

performance. The reduced model complexity translated to faster

training and easier deployment, making it well suited for real-time

processing and deployment in resource-limited environments.
4.4 Grad-CAM visualization

Figure 12 presents the Grad-CAM visualizations generated

from three randomly selected jute leaf images from different

categories, highlighting the most influential regions in the model’s

decision-making process. These images are used to objectively

evaluate the model’s effectiveness. Grad-CAM highlights the

model’s ability to focus on the most relevant areas within an

image, aiding in the accurate classification of different leaf types.
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The red and yellow regions in the visualizations indicate the key

parts of the image that significantly influence the model’s

predictions. The figure clearly shows that the model focused on

diseased areas; notably, the regions highlighted by Grad-CAM

closely align with the visibly affected parts of the leaves,

demonstrating the model’s ability to distinguish and localize

disease symptoms that were clearly observable to the human eye.

The red bounding box drawn from the Grad-CAM heatmaps shows

the diseased area more clearly, which enhanced the interpretability

of the model by visually confirming that its predictions are based on

the actual symptomatic regions present on the leaf. The visual

evidence provided by Grad-CAM not only enhanced the

interpretability of the model’s predictions but also reinforced its

reliability for practical agricultural applications, where

understanding the focus of diagnostic tools is crucial for ensuring
FIGURE 11

ROC curves for proposed model using: (a) traditional supervised method and semi-supervised ST method.
FIGURE 10

Confusion matrices for the proposed model using: (a) supervised method and (b) semi-supervised ST method.
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effective disease management. Figure 13 presents the Grad-CAM

visualizations for images that were misclassified by the model. It

indicates that the model focused on irrelevant or misleading regions

of the image, which likely contributed to the incorrect predictions.
4.5 Web application results

Figure 14 illustrates the results obtained from the deployed web

application, highlighting its ability to perform real-time plant

disease detection through a user-friendly interface. The

application allows users, particularly farmers, to upload images of

jute leaves and receive immediate diagnostic feedback. This real-

time interaction demonstrates the practical utility of the

proposed system under field conditions, supporting timely

decision-making and promoting accessible, technology-driven

agricultural management.

The web application offers users the flexibility to either upload a

preexisting image or capture one in real time via the device’s

integrated camera. After selecting or capturing an image, users

can initiate the classification process by clicking the “classify image”

button, which activates the preloaded DL model to analyze the

input and produce a prediction. This user-friendly interface enables

smooth and effective evaluation of the model’s performance on both

static and live image data.
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5 Discussion

5.1 Comparative analysis

Table 11 shows the comparative analysis between previous works

on jute leaf disease classification and the method proposed in this

study. It should be noted that only leaf diseases are compared here as

jute pest and plant disease classifications are not within the scope of

this work. The supervised learning method utilizing the full 80-10–10

data split yielded the highest performance, achieving an accuracy of

98.95%. In contrast, when only 10% of the labeled data were used in a

supervised setting, the performance decreased significantly, with an

accuracy of 89.47%, highlighting the limitations of supervised models

in limited label scenarios. However, when the same 10% labeled data

were used in combination with 90% unlabeled data through the

proposed confidence regularization ST method, the model

remarkably achieved 97.89% accuracy.

Recent studies on jute leaf disease detection demonstrate a

range of methods, datasets, and outcomes. The accuracies of our

supervised and semi-supervised models are better than or closely

equal to all the past studies except Tanny et al. (2025) who used our

dataset and produced a model with an accuracy of 1% better than

our comparable supervised model and 2.05% better than the

proposed semi supervised model. The model by Tanny et al. had

much larger parameters (23 times) limiting its deployment

opportunities in real world scenarios and no XAI was used to

demonstrate the model was capable of correctly identifying the

disease affected regions. Furthermore, they split the data in training,

testing and validation sets after the augmentation, resulting in data

leakage which could be the reason for the higher accuracy they

obtained. On other hand, in this study, augmentation was carried

out after the data split to avoid any data leakage.

A major limitation of the previous approaches was their reliance

on large amounts of labeled data, which are often scarce in real-

world scenarios. Semi-supervised learning employed in this study

addressed this challenge by leveraging abundant unlabeled data

alongside limited labeled examples to improve model performance.

Also, the previous models had significantly large number of

parameters, making them computationally heavier and less

efficient for deployment in resource-constrained environments.

Furthermore the jute leaf disease classes used in this study were

not exactly the same classes available in the literature, which made it

difficult to conduct a direct comparison even with three jute leaf

disease classes (Uddin and Munsi, 2023; Haque et al., 2024).
5.2 Strengths, practical implication,
limitations, and future work

The proposed custom CNN model demonstrated strong

effectiveness in classifying jute leaf diseases using both supervised

and semi-supervised learning approaches. Notably, under a semi-

supervised framework utilizing only 10% labeled and 90% unlabeled

data through a confidence regularization (ST) method, the model still

achieved a high accuracy of 97.89%. The near-supervised
TABLE 9 Performance metric evaluation of the TL models using
supervised method.

TL
models

Accuracy Precision Recall
F-1

Score

ResNet50 87.37 89.01 87.85 87.98

MobileNetV2 94.11 94.72 95.14 94.78

VGG19 85.26 86.27 85.58 85.68

Xception 93.68 93.96 94.33 93.97

EfficientNetB7 93.68 93.60 94.33 93.77
TABLE 10 Comparison of the parameter count and size of different
models.

Model
Trainable
parameter
(million)

Total
parameter
(million)

Size
(MB)

ResNet50 25.64 25.69 98.0

MobileNetV2 3.54 3.57 13.63

VGG19 20.55 20.55 78.40

Xception 22.91 22.96 87.60

EfficientNetB7 66.41 66.72 254.53

Proposed 2.23 2.24 8.54
Bold values indicate best results.
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performance demonstrated the strength of the semi-supervised

approach in effectively leveraging unlabeled data to compensate for

the scarcity of labeled examples. Overall, the analysis confirmed that

the proposedmodel is not only capable of high-accuracy classification

with limited data but also outperforms traditional methods by

minimizing the dependency on costly labeled datasets, making it

particularly advantageous for real-world agricultural applications.

The model’s lightweight architecture comprising just 2.24 million

parameters and occupying only 8.54 MB of memory made it highly

suitable for deployment in resource-constrained environments such

as rural farms with limited computational infrastructure. Integrated

into a web application, the model allowed for real-time, accessible

disease detection, empowering farmers to take timely action and

implement smarter, data-driven crop management strategies. It also

incorporated explainable AI (XAI) techniques, specifically Grad-

CAM, to enhance interpretability by identifying regions of interest
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and accelerating disease localization critical for real-time field

analysis. Moreover, the model is uniquely combined with a semi-

supervised self-training framework and real-time web application

development for jute leaf disease detection, aspects not jointly

addressed in prior studies.

However, the use of custom layers in the proposed model such as

grouped convolutions and SE blocks, may introduce some overhead in

training time and deployment complexity on less optimized hardware.

The model’s performance can also be influenced by environmental

factors such as lighting, background variability, and image resolution,

which may limit generalizability across different real-world conditions.

Furthermore, while the model leveraged unlabeled data effectively, the

quality of that data remained a crucial factor in sustaining classification

performance. A major limitation of this study is that the proposed

model was evaluated only on a self-collected jute leaf dataset. While the

results demonstrate strong performance, additional validation on larger
FIGURE 12

Grad-CAM visualizations demonstrating model explainability for each jute leaf class are shown. The first row contains the original jute leaf images of
each class. The second row shows the corresponding Grad-CAM heatmaps, with warmer colors (red and yellow) indicating regions of greater model
focus. The third row indicates the diseased area with red bounding boxes drawn from the Grad-CAM heatmaps.
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and more diverse crop disease datasets is needed to fully establish

robustness and generalizability.

Future work could focus on improving robustness through

increasing the classification accuracy, domain adaptation

techniques to enhance generalization in varied environmental
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settings. Additionally, exploring self-supervised or active learning

strategies may further reduce reliance on labeled data. Optimizing

the model for real-time execution on edge devices would also

enhance its practical deployment, enabling efficient AI-driven

disease diagnosis directly in the field. Overall, this solution
FIGURE 13

Grad-CAM visualizations for misclassified images showing that the model’s attention focused on irrelevant or misleading regions, contributing to
incorrect predictions, without generating any bonding boxes.
FIGURE 14

Screenshots from the deployed Flask-based web application demonstrating real-time classification results for jute leaves: (a) Cercospora leaf spot,
(b) golden mosaic, (c) healthy leaf.
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TABLE 11 Performance comparison of the proposed model with previous state-of-the-art models on jute leaf disease classification.

Number
Semi-
supervised

Accuracy Precision Recall
Web
app

XAI
Number of
parameters
(Million)

No 94 83.90 83.89 No No 473.65

No 94 94 94 No No 24.77

n
No 98 94.28 94.26 No No 368.81

No 96 95.70 96.10 No No 36.84

No 99.95 99.89 99.89 No No 52.33

No 98.95 98.99 99.07 Yes Yes 2.24

No 89.47 90.20 90.28 Yes Yes 2.24

- Yes 97.89 97.80 98.15 Yes Yes 2.24
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Reference Data Classes
of images
in the
dataset

Dataset
availability

Method

Bansal et al.
(2024)

Federated learning
data distributed
among 5
geographical clients

anthracnose, stem rot,
leaf mosaic pattern,
macrophomina wilt
effect, and blight

4,200 No Federated CNN

Kaushik and
Khurana
(2025)

Traditional
supervised 80–20
data split

Diseased and healthy 1,820 No Fine-tuned ResNet50

Rajput et al.
(2024)

Distributed
federated learning
among 5 clients

anthracnose, stem rot,
root rot, Macrophomina
Wilt, and yellow mosaic
virus

4740 No
Federated CNN + Decisi
Tree

Uddin and
Munsi (2023)

Supervised 80-12–8
data split

healthy, yellow mosaic,
and powdery mildew

4140 No Custom CNN

Tanny et al.
(2025)

Supervised learning
Cescospora leaf spot,
golden mosaic, and
healthy leaf

920 Yes

DERIENet, a deep
ensemble learning mode
with ResNet50,
InceptionV3,
EfficientNetB0

Proposed
Supervised 80-10–
10 data split

Cescospora leaf spot,
golden mosaic, and
healthy leaf

920 Yes Proposed custom CNN

Proposed
Supervised with
10% labeled data

Cescospora leaf spot,
golden mosaic, and
healthy leaf

920 Yes Proposed custom CNN

Proposed

Semi-supervised
(10:90 labeled and
Unlabeled data
ratio)

Cescospora leaf spot,
golden mosaic, and
healthy leaf

920 Yes
Proposed custom CNN
with semi supervised self
training

Bold numbers and text indicate best results.
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advanced the goals of sustainable farming by supporting early

disease detection, minimizing yield loss, and contributing to more

resilient, precision-driven agriculture. Furthermore, as part of

future work, a structured usability study has been planned to

conduct in three phases: (i) expert validation with agronomists to

assess classification reliability, interface clarity, and consistency with

field diagnosis; (ii) pilot testing with farmers in smallholder

communities, where 20–30 participants will use the web

application on mobile devices under real farming conditions to

evaluate ease of use, clarity of results, and trust in the predictions;

and (iii) field-scale evaluation, involving integration of user

feedback to refine the interface, add local language support, and

test robustness under diverse environmental conditions. Metrics

such as task completion time, error rate, user satisfaction scores,

and adoption intent will be recorded to ensure a comprehensive

evaluation. This roadmap will provide actionable insights into end-

user needs, thereby enhancing the application’s usability,

accessibility, and practical adoption in real agricultural settings.
6 Conclusions

This study presents a lightweight custom CNN for the

classification of jute leaf diseases using both supervised and SSL

strategies. By incorporating grouped convolutions, modified

depthwise separable convolutions, enhanced SE blocks, and

MBconv layers, the model achieved high representational efficiency

with only 2.24M parameters (8.54 MB). The proposed architecture

attained a mean accuracy of 98.32% with precision, recall, and F1-

scores all above 98%, demonstrating strong stability and robustness.

In the supervised setup, the model achieved 98.95% accuracy, while

the semi-supervised confidence regularization self-training approach

achieved 97.89% accuracy with only 10% labeled and 90% unlabeled

data, confirming the model’s capability to deliver near-supervised

performance with minimal labeling effort. Beyond accuracy, the

integration of Grad-CAM added interpretability by highlighting

diseased regions, while the development of a Flask-based web

application demonstrated practical field applicability. These aspects

collectively bridge the gap between high-performing AI models and

their real-world usability in agriculture.

The findings highlight three key contributions: (i) reducing

reliance on costly labeled datasets through SSL, (ii) enabling

deployment in resource-constrained environments via a

lightweight architecture, and (iii) ensuring transparency and

usability through explainable AI and a functional application.

Nevertheless, the absence of usability testing with agronomists

and farmers is a current limitation.
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