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Introduction: Timely detection of jute leaf diseases is vital for sustaining crop
health and farmer livelihoods. Existing deep learning approaches often rely on
large, annotated datasets, which are costly and time-consuming to produce.
Methods and results: To address this challenge, a lightweight convolutional neural
network integrated with a semi-supervised learning self-training framework was
proposed to enable accurate classification with minimal labeled data. The model
combines modified depthwise separable convolutions, an enhanced squeeze-
and-excite block, and a modified mobile inverted bottleneck convolution block,
achieving strong representational power with only 2.24M parameters (8.54 MB).
On a self-collected dataset of jute leaf images across three classes (Cescospora
leaf spot, golden mosaic, and healthy leaf), the proposed model achieved a best
accuracy of 98.95% under the supervised training with training, testing and
validation split of 80:10:10. Remarkably, the model also attained a best accuracy
of 97.89% in the semi-supervised learning (SSL) setting with only 10% labeled and
90% unlabeled data, demonstrating that near-supervised performance can be
maintained while substantially reducing the dependency on costly labeled
datasets. The application of explainable Al method such as Grad-CAM provided
interpretable visualizations of diseased regions, and deployment as a Flask-based
web application demonstrated practical, real-time usability in resource-
constrained agricultural environments.

Conclusion: These results highlight the novelty of combining SSL with a
lightweight CNN to deliver near-supervised performance, improved
interpretability, and real-world applicability while substantially reducing the
dependence on expert-labeled data.

KEYWORDS

deep learning, semi-supervised self-training, lightweight CNN, grouped convolution,
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1 Introduction

Jute, often known as the “golden fiber,” is a vital crop because of
its importance in the biodegradable and eco-friendly natural fiber
industry. It is cultivated primarily in parts of Bangladesh and India,
particularly in the Ganges Delta, where it thrives in the region’s
warm, humid climate and fertile alluvial soil. Other major
producers include China, Thailand, Myanmar, Indonesia, Brazil,
and Nepal, highlighting its global economic importance (Mahapatra
et al, 2009). Bangladesh is currently the world’s second-largest
producer of jute, accounting for 42% of global production, which
amounts to 1.33 million tons (Yasmin and Moniruzzaman, 2024).
One of its most notable advantages is its biodegradability and
renewability, making it a sustainable alternative to synthetic fibers
and a key player in efforts to reduce plastic pollution (Miah et al.,
2011). Widely used in industries such as textiles, packaging, and
agriculture, jute offers an eco-conscious substitute for plastic-based
materials, decomposing naturally without leaving harmful residues.
In addition to its environmental benefits, jute cultivation supports
millions of smallholder farmers, providing them with a stable
source of income while also generating employment opportunities
in processing, manufacturing, and trade. As a result, jute not only
contributes to sustainability but also strengthens rural economies,
reinforcing its status as a valuable global commodity.

However, the productivity and quality of jute are persistently
threatened by a spectrum of diseases, such as stem rot
(Macrophomina phaseolina (Ghosh et al., 2018)), root rot
(Rhizoctonia solani (Wadud and Ahmed, 1962)), Cercospora leaf
spot (Sarkar and Gawande, 2016), golden mosaic (Biswas et al.,
2013), and viral infections such as the jute mosaic virus (Hasan
et al,, 2015). These diseases not only lead to major economic losses
for farmers but also exacerbate the hardships faced by smallholder
communities that rely on jute cultivation for their livelihood. The
impact of these infections can extend beyond the farm, affecting
industries dependent on jute-based products and disrupting supply
chains. The impact of jute mosaic disease on jute production has
been studied, and it is recognized as a major constraint to successful
jute cultivation (Ghosh et al., 2012). Therefore, timely detection and
accurate identification of these diseases are critical for
implementing effective management strategies, such as disease-
resistant crop varieties, improved farming practices, and targeted
biological or chemical treatments. Proactive measures and
continuous research on plant pathology and disease control are
essential for safeguarding jute production, ensuring both economic
stability for farmers and the long-term sustainability of this
vital crop.

Traditional methods for disease detection largely rely on
manual inspection and expert knowledge, which are often time-
consuming, subjective, and impractical for large-scale monitoring.
Moreover, limited access to expert pathologists in remote farming
regions hampers timely intervention. In this context, the advent of
machine learning (ML), Deep Learning (DL) and computer vision
offers a transformative avenue for automating and enhancing
disease detection processes (Ye et al, 2019; Wijethunga et al,
2023). While supervised learning models, particularly CNNs
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(Haque et al., 2024), have shown promise in plant disease
recognition, they demand extensive labeled datasets to achieve
high accuracy a luxury not always available for jute diseases
owing to insufficient annotated images and variability in
symptom expression. This scarcity of labeled data poses a
significant hurdle in developing robust diagnostic models (Zhao
et al.,, 2022).

To address these challenges, this research explores a semi-
supervised learning approach that leverages the abundance of
unlabeled jute plant images alongside a limited set of labeled
examples to enhance disease detection and classification (Learning,
2006). Semi-supervised learning techniques are particularly well-
suited for agricultural applications, where labeled data are often
scarce, expensive, and time-consuming to obtain. By effectively
utilizing both labeled and unlabeled data, these methods can
significantly improve learning accuracy and model generalizability.

The objectives of this research are threefold, each aimed at
advancing the field of jute disease detection through the integration
of cutting-edge ML and image processing techniques. First, the
study seeks to develop a Lightweight supervised CNN model for
detecting and classifying various jute diseases. Then, the same
model is applied in semi-supervised learning. This model
leverages both labeled and unlabeled image data to improve
learning efficiency, thereby addressing the critical challenge of
limited annotated datasets. By incorporating semi-supervised
techniques, this research aims to reduce the dependency on
extensive manual labeling while still achieving high-precision
classification of jute diseases. Second, the research aims to
increase the accuracy and efficiency of disease diagnosis by
integrating DL architectures with advanced image processing
techniques. The proposed approach employs state-of-the-art
CNN and feature extraction methods to refine disease
identification, ensuring early detection and timely intervention.
This enhancement will contribute to minimizing crop losses and
optimizing disease management strategies for farmers. Third, the
study intends to develop real time application to provide
agronomists and farmers with an easy solution to identify the jute
leaf diseases with higher confidence in an early stage. This
comprehensive evaluation ensures that the developed system is
not only highly accurate in controlled settings but also practical and
reliable for deployment in real agricultural environments.

This study contributes to the advancement of jute disease
detection by introducing a novel lightweight DL architecture and
leveraging semi-supervised learning to address the challenge of
limited labeled data. The main novel contributions of this study are
as follows:

1. A novel lightweight DL model was proposed using
modified depthwise separable convolutions, along with an
enhanced Squeeze and Excite (SE) block and a modified
mobile inverted bottleneck convolution (MBconv).

2. A high-quality dataset comprising 920 meticulously
categorized images of jute leaves, including three distinct
classes, namely, healthy, Cercospora leaf spot, and golden
mosaic, was developed for jute leaf disease classification.
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3. The proposed model incorporates a semi-supervised self-
training (ST) method to address the limitation of data
labeling towards building a more robust jute leaf disease
classification model.

4. Explainable AI tools such as Grad-CAM was used to
identify the region of interest to find the diseased area
more accurately.

5. A web application was developed to deploy the proposed
model in a real-time agricultural setting, demonstrating its
practical applicability and usability under field conditions.

The remainder of this manuscript is organized as follows:
Section 2 provides a comprehensive review of related works in
the domain of plant disease classification. Section 3 details the
methodology, including dataset preparation, preprocessing, the
proposed lightweight CNN architecture, semi-supervised self-
training framework, and deployment strategies. Section 4 presents
experimental results, performance analysis, complexity evaluation,
and Grad-CAM-based explainability outcomes. Section 5 presents
comparative analysis with the literature, the implications of the
findings, strengths and limitations, and outlines potential future
research directions. Finally, Section 6 concludes based on the key
findings of the study.

2 Related works

The identification of jute leaf diseases has been significantly
constrained by the limited availability of comprehensive disease-
related labeled datasets. Despite this challenge, researchers have
made efforts to detect diseases by existing data. To address this
limitation, they developed advanced and complex models designed
across various datasets to increase the accuracy and effectiveness of
several plants’ leaf disease detection techniques.

Salam et al. (2024) explored the effectiveness of various transfer
learning models, including MobileNetV3Small, ResNet50, VGG19
for mulberry leaf disease classification. The authors used four
additional convolutional layers added to each model for
modification. MobileNetV3Small outperformed the other models,
achieving an accuracy of 96.4% on a dataset comprising 6,000 images
across 3 mulberry leaf disease classes. This study uses explainable Al
such as Grad-CAM to highlight areas influencing the decision made
by the model. Additionally, the authors developed a mobile app to use
in real life application. However, the absence of a dedicated large-
scale dataset for mulberry leaf diseases limited the development and
validation of robust detection models.

Karim et al. (2024) proposed a modified MobileNetV3large
model to classify 4 types of grape leaf diseases using 27,122 leaf
images achieving a 99.66% accuracy. The authors used Grad-CAM
to highlight the model’s decision-making areas on the leaf images.
However, the authors did not develop any mobile application to use
in the real-life grape leaf disease detection.

Padhi et al. (2024) employed EfficientNetB4 with compound
scaling and Swish activation on a paddy leaf disease dataset
containing a total of 19,131 images with 10 classes of paddy leaf
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diseases. This method achieved the accuracy of 96.91%. The study
incorporated diverse data augmentation techniques and rigorous
evaluation metrics, providing valuable insights into model
optimization. However, the authors did not use any XAI
technique to display the model’s behavior to identify the diseased
area on leaf.

Khan et al. (2024) introduced a Bayesian optimized multimodal
deep hybrid learning approach for tomato leaf disease classification.
The authors employed a custom CNN model for feature extraction,
followed by seven classical machine learning classifiers including
Random Forest, XGBoost, GaussianNB, SVM, MLR, KNN, and a
stacking ensemble. Bayesian optimization and the Tree-structured
Parzen Estimator (TPE) were used for hyperparameter tuning, and
a Boruta feature selection layer was added to identify the most
relevant features. The CNN-Stacking model achieved the highest
performance, with 98.27% accuracy, 98.53% recall, and 98.53%
precision on a dataset of 18,159 images across 10 classes of
tomato leaf disease. However, the study lacks an actual mobile or
desktop application deployment, and its use of a single, well-curated
dataset raises concerns about generalizability to real-world,
heterogeneous field data. Additionally, despite high accuracies,
potential model overfitting and a need for interpretability and
explainability remain areas for further improvement.

Naresh Kumar and Sakthivel (2025) proposed a novel rice leaf
disease classification framework using a hybrid Fusion Vision
Boosted Classifier (FVBC) that combines the VGG19
convolutional neural network for feature extraction with the
LightGBM gradient boosting algorithm for classification. The
FVBC model achieved high performance with training, validation,
and testing accuracies of 97.78%, 97.5%, and 97.6%, respectively
using a dataset comprising 2,627 images divided across six classes.
Despite its strong classification results, the study does not
incorporate any explainable AI (XAI) techniques to interpret the
model’s decisions, nor does it include the development of a practical
application such as a mobile or web interface for end-
user deployment.

Bansal et al. (2024) proposed a federated CNN approach using
datasets from five different clients representing various jute-
growing environments. Their model classified five jute leaf disease
types using 4200 images and achieved classification accuracies
ranging between 79.87% to 83.67% across federated clients.
However, limitations in this study include the absence of real-
world deployment and explainability, which could hinder
farmer trust.

Kaushik and Khurana (2025) implemented a deep learning
model based on the ResNet50 architecture, fine-tuned using
transfer learning for binary classification of jute leaves as either
healthy or diseased. The dataset contained 1,820 images. After
preprocessing and data augmentation, the model achieved a
classification accuracy of 94%. While the model was
computationally efficient and demonstrated strong performance,
it was limited to only two classes, reducing its applicability in real-
world settings where multiple disease types coexist.

Rajput et al. (2024) proposed a federated CNN architecture
enhanced with decision tree support for classifying five distinct jute
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leaf diseases: anthracnose, stem rot, root rot, Macrophomina wilt,
and yellow mosaic virus. The dataset was sourced from five clients
representing various ecological regions. Performance evaluation
across clients showed macro, micro, and weighted averages
peaking at 94.27%, 94%, and 94.28%, respectively, with the best
classification accuracy observed at 98% for one client. Although the
integration of decision trees aimed to enhance interpretability, no
formal XAI methods were used to explain model decisions.
Additionally, there was no application interface proposed for
deployment, which limits its field adoption.

Tanny et al. (2025) introduced a deep ensemble learning based
model DERIENet where the features ere extracted using ResNet50,
InceptionV3 and EfficientNetBO and then best features were
selected global maxpooling method and concatenated together.
Using a Kaggle dataset of 920 images divided in three classes
cercospora leaf spot, golden mosaic, healthy, expanded to 7,800
images via augmentation, the model achieved 99.95% accuracy with
near-perfect precision, recall, and AUC scores.

Uddin and Munsi (2023) developed a CNN model with four
convolutional layers, four max-pooling layers, and two fully
connected layers. The dataset comprises 4740 jute leaf images,
categorized into three classes: healthy, yellow mosaic, and
powdery mildew. The proposed CNN model achieved a high
classification accuracy of 96%, outperforming models like SVM
(83.28%) and GPDCNN (93.12%). While the model’s performance
is strong, the study lacks transparency in terms of model
interpretability and does not explore deployment strategies,
suggesting the need for further validation and explainability
enhancements in future research.

Most of the aforementioned techniques rely on complex model
architectures to address the challenges posed by limited labeled
data. However Benchallal et al. (2024) applied semi-supervised
learning to weed species classification, introducing the
ConvNeXt-Base-SSL model and evaluating it on the DeepWeeds
dataset with 8 classes, the 4-Weeds dataset with 4 classes, and the
CIFAR-10 dataset with 60,000 images and 10 classes. Their
approach achieved over 90% accuracy when using datasets where
only 20% of the images were labeled. Although this research has
focused primarily on weed species identification, its applicability to
other image classification tasks may be limited. The method relies
on a deep encoder-decoder architecture with many trainable
parameters, which could be computationally expensive.
Nonetheless, this work outperformed several state-of-the-art
supervised models, highlighting the potential of semisupervised
learning to achieve high accuracy with minimal labeled data and
offering a promising direction for more efficient annotation
strategies in future research.

Wang et al. (2024) presented a plant disease classification model
based on self-supervised learning (SSL), integrating a Masked
Autoencoder (MAE), a Convolutional Block Attention Module
(CBAM), and a Gated Recurrent Unit (GRU). The authors used
two datasets: a self-collected dataset consisting of 3256 images of
potato leaves categorized into three classes (early blight, late blight,
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healthy), and the CCMT dataset with 88,010 images across 18
disease classes from crops such as tomato, maize, cassava, and
cashew. The proposed method achieved high classification
accuracies: 99.61% on the self-collected dataset and 95.35% on the
CCMT dataset. While the model utilized advanced attention
mechanisms (CBAM) and sequence processing (GRU), it did not
incorporate explainable AI (XAI) techniques, and no practical
application or mobile/desktop app was reported. Limitations of
the paper include the absence of XAI for interpretability and no
real-world deployment.

Ilsever and Baz (2024) explored consistency regularization-
based semi-supervised learning for plant disease recognition,
employing the Mean Teacher approach to address challenges
related to limited labeled data, dataset balance, batch size, and
fine-tuning strategies. Using datasets such as PlantVillage, Plant
Pathology 2021, and a newly created PP2021TS with 38 classes and
54,309 images, the study implemented three fine-tuning
strategies for ResNet: HeadOnly, HeadThenBody, and Mean-
Teacher. Among these methods, the Mean-Teacher method
achieved the highest accuracy of 88.50% when trained on just 5%
labeled data, outperforming conventional supervised learning
methods. Despite requiring two models (student and teacher),
this approach demonstrated the effectiveness of semi-supervised
learning in agricultural applications, highlighting its potential for
improving plant disease detection with minimal labeled data.

While numerous studies have demonstrated the potential of
supervised learning across different plant datasets, a significant gap
persists in addressing the jute leaf dataset classification, where labeled
data are very limited. Collecting and labeling large datasets is both
time-consuming and resource-intensive. Several studies have
demonstrated the efficacy of supervised learning approaches in the
classification of other leaf diseases, but there remains a notable gap in
the literature regarding classifying jute leaf disease via both supervised
and semi-supervised approaches. Although previous studies in plant
disease detection have made significant strides using deep learning
and self-supervised approaches, substantial gaps remain particularly
in the domain of XAI techniques such as Grad-CAM and real time
mobile or web app deployment. The absence of research on jute leaf
disease classification highlights an opportunity to explore methods
that leverage both labeled and unlabeled data, potentially improving
classification performance while reducing the burden of
manual annotation.

3 Methodology

The subsequent sections detail the methodology employed to
develop the lightweight custom CNN model for the classification of
jute leaf diseases utilizing both supervised and semi-supervised
learning methods. Specifically, the following section outlines the
proposed semi-supervised learning framework, the custom CNN
architecture developed for jute leaf disease classification, and the
experimental setup used to evaluate the model’s performance.
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3.1 Dataset description

The dataset used in this experiment consists of 920 high-quality
images that have been carefully organized into three classes:
Cescospora leaf spot, golden mosaic, and healthy leaf, containing
309, 347, and 264 images, respectively. These images were collected
through extensive fieldwork in Dinajpur and Brahmanbaria, two
significant agricultural regions in Bangladesh, with full
authorization and support from local agricultural officials. The
dataset was labeled with the help of agronomists who provided
expert annotations to ensure the accuracy and reliability of disease
classifications, thereby enhancing the overall quality and credibility
of the training data (Alam, 2024). As the previous studies did not
make the jute leaf datasets publicly available, a new dataset was
developed for providing greater accessibility by other researchers.
Furthermore, the disease classes in this dataset are different from
the classes reported in the literature contributing to unique data
resource development for future research.

In image classification tasks, data leakage occurs when
information from the validation or test set inadvertently becomes
available during training. This usually happens if augmented
versions of the same original image are distributed across
training, validation, and testing subsets. For example, if an
original leaf image is placed in the training set, but its rotated or
flipped version appears in the validation or test set, the model
indirectly exposed to the same information during both training
and evaluation. This leads to overly optimistic performance that do
not reflect true generalization ability of the model. To mitigate this
issue, for each class, the original non-augmented leaf images were
split using 80:10:10 ratio, where 80% of the labeled images were
used for training, 10% for validation, and the remaining 10% for
testing to evaluate the performance of the model. The training
images were augmented to increase the number of images needed to
make a large dataset. After the augmentation, 3,000 images were
selected for each class to create a balanced dataset, resulting in a
total of 9,000 training images. The validation and test sets remained
unaltered to provide unbiased evaluation. In Table 1, the data
distribution for the supervised method is shown. For the semi-
supervised method, 80% of the data allocated for training were
further divided into two subsets: 10% served as labeled data, while
the remaining 90% was treated as unlabeled. The same validation
and testing sets from the supervised approach were retained to
ensure consistent performance evaluation. From Table 2, the data
distribution can be easily understood, clearly illustrating the

10.3389/fpls.2025.1647177

proportions of labeled, unlabeled, validation, and testing sets used
in both supervised and semi-supervised methods.

3.2 Dataset preprocessing and
augmentation

Owing to the varying sizes of the images in the original dataset,
uniform scaling was necessary as a preprocessing step. Every image
was resized to 224 x 224 pixels. Images typically show a wide range
of intensity levels. Normalization was used to convert the scale from
0-255 to 0-1. All the pixel values were divided by 255 to normalize
the intensity level. Moreover, to increase the size of the dataset,
several augmentation techniques were applied, including rotation
(+ 90°), horizontal and vertical flips, combined horizontal and
vertical flips, brightness adjustments (increase/decrease), Gaussian
blur, shearing, zooming in/out, and perspective transformation.
Examples of these operations are shown in Figure 1.

3.3 Overall model architecture

The whole classification process is divided into three parts. First,
several well-established TL models were trained via supervised
learning methods and evaluated across different performance
metrics. Since the TL models did not perform as expected and
had more complex architectures, a new lightweight custom CNN
model was built using different components and compared with the
TL models. Figure 2 shows the workflow of jute leaf disease
classification via the supervised method. After some trial and
error, the final custom CNN model was found to outperform all
the TL models. This new lightweight custom CNN model was
subsequently utilized for the semi-supervised method. The model
was initially trained on a small set of labeled data. Using this trained
model, predictions were made on a large set of unlabeled data. The
most confidently predicted images were treated as pseudo-labeled
data. The model was then retrained on these pseudo-labeled images.
This process was repeated several times until no pseudo-labeled
images remained, ultimately resulting in the final, best-performing
model. Finally, a web application was developed to facilitate real-
time plant disease classification using the best-performing custom
CNN model, thereby assisting farmers in accurate and timely
diagnosis. Figure 3 shows the proposed workflow for jute leaf
disease classification using semi-supervised ST method. The

TABLE 1 Data distribution in each jute leaf disease class for supervised learning.

Training post

Class name Original Training
Cescospora
309 247
Leaf Spot
Golden Mosaic 347 277 ‘
Healthy 264 2
Leaf
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: Validation Testing
augmentation
3000 30 32
3000 ‘ 34 36

3000 25 27
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TABLE 2 Data distribution in each jute leaf disease class for semi-supervised learning.

Class name

Original

Training post augmentation

Labeled (10%)

Training

Unlabeled (90%)

Validation Testing

Cescospora 309 3000
Leaf Spot
Golden Mosaic 347 3000
Healthy
264 3000
Leaf

300 31 31
300 8100 35 35
300 26 26

feature extraction was done by the proposed model. Initially, the
model used modified depthwise separable convolutions, which
decomposed standard convolutions into depthwise and pointwise
components, reducing computational cost while preserving spatial
feature learning. To further enhance the sensitivity of the model to
important features, SE blocks were integrated, which adaptively
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FIGURE 1

recalibrate channel-wise feature responses using global context. The
modified MBconv blocks expanded the input features, applied
grouped and depthwise convolutions, then compressed the
features back while incorporating residual connections, enabling
deeper and more efficient learning. Finally, the feature maps were
aggregated using Global Average Pooling, producing a compact
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Augmented images: (a) rotate 90 degrees clockwise (b) rotate 90-degree counter-clockwise, (c)horizontal flip, (d) vertical flip, (e) horizontal-vertical
flip, (f) brightness decrease, (g) brightness increase, (h) Gaussian blur, (i) shearing, (j) zoom in, (k) zoom out, () perspective transform.
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Workflow of the proposed supervised jute leaf disease classification pipeline, showing preprocessing, data augmentation, train—validation—test split

(80:10:10), feature extraction using TL and the proposed CNN model, performance evaluation, and model saving.
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subset (10%), predicts labels for unlabeled data (90%), selects high-confidence predictions as pseudo-labels, and iteratively retrains until

convergence.
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representation suitable for classification. This hierarchical structure
allowed the model to progressively extract rich, discriminative
features from raw input images.

3.4 Semi-supervised learning

The semi-supervised learning method handles partially labeled
data to achieve higher classification levels (Wang et al., 2016). In
semi-supervised learning, the collection of patterns is categorized
into two subsets of D: 1) labeled data {D;} = {(x;,y)|i = 1,...,1},
where the pattern is denoted by x, y is the default label for x and the
number of labeled instances is /; and 2) unlabeled data {Dy} =
{(xj)’j =1+1,...,]+ u}, where the pattern is denoted by x and the
number of unlabeled instances is u. Usually, || Dy || > || Dy ||. One
advantage of semi-supervised learning is that it reduces the need for
a large amount of labeled data, particularly in domains where the
quantity of available labeled data is scarce. When no previously
labeled datasets are available, it is common for an expert to
manually classify the data in specific fields. The semi-supervised
learning method handles partially labeled data to achieve higher
classification levels. When an expert only recognizes a portion of the
patterns in a given dataset, it becomes very challenging for them to
categorize instances to increase the training set of data. This
highlights yet another advantage of this type of learning (Chapelle
et al, 2009). In the literature, ST is capable of handling semi-
supervised datasets (Yarowsky, 1995).

3.4.1 Self-training

Self-training is perhaps the earliest concept for categorizing
unlabeled data from a lower percentage of previously classified data.
The findings in the feature selection domain indicate that the

10.3389/fpls.2025.1647177

wrapper algorithm uses a supervised approach to guide its
decision-making process (Van Engelen and Hoos, 2020). ST is a
wrapper algorithm that initiates training exclusively on labeled data
and subsequently applies a supervised learning technique
repeatedly. At each phase, the present decision function is
employed to label a portion of the unlabeled instances. The
supervised algorithm is once again retrained with its predictions
using the additional labeled cases (Chapelle et al., 2009). A classifier
is first developed that uses a limited amount of labeled data during
the ST process. The classifier is subsequently utilized for the
classification of unlabeled data. The training set comprises cases
identified with the highest confidence index along with their
expected labels. The classifier undergoes retraining until the
unlabeled dataset is fully utilized, at which point the entire
procedure is repeated. This method involves the classifier
acquiring knowledge through its own predictions, hence the term
ST (Zhu and Goldberg, 2009). A confidence parameter was
introduced to the ST algorithm in (Rodrigues et al, 2013) as an
extension, functioning as a threshold for incorporating new cases
into the labeled dataset. New examples are incorporated into the
labeled dataset when their prediction confidence meets or exceeds
the threshold, defined as the minimum confidence rate (0.9) for the
inclusion of new instances.

3.4.2 Confidence regularization self-training

Figure 4 represents the step-by-step process of the confidence
regularization ST process. A supervised classifier is initially
developed using the labeled dataset in the ST process. This
classifier is subsequently employed to classify the unlabeled data.
A new confidence threshold value is calculated and applied to select
additional cases for labeling. Cases with a prediction confidence
value that meets or exceeds the confidence threshold are selected

/" First Classifier
(base model)

D

/J
>

y First Classifier N
trained on :
~ labeleddata

Small portion of )
1 data with human- {
' made labels -
d N
Lots of unlabeled o
2. e
o ————
" Original labeled P
[ data \
3. [ New ) [
dataset
Most confident \/
FIGURE 4

Pseudo-labels

A

~ Improved (
classifier ) Predictions
trained on new L
- dataset

Block diagram of the confidence regularization self-training process. A supervised classifier trained on labeled data predicts unlabeled data, selects
high-confidence data above a threshold, assigns pseudo-labels, and adds them to the labeled set in iterative cycles until all unlabeled data are

processed.
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and labeled through a series of established procedures in the
subsequent phase. The procedure continues until the unlabeled
dataset is depleted, and the newly labeled dataset is utilized for
ongoing operations. Algorithm 1 presents the sequential procedure
of the newly developed ST version for this work.

Unlike the ST extension suggested in the literature (Rodrigues
etal,, 2013), the ST proposed in this work allows changing the stated
value for each iteration, which does not change the confidence
threshold to account for new instances (Algorithm 1, Line 4).

The label predicted by the classifier is assigned immediately to
an unlabeled instance and then transferred to the pseudo-labeled
dataset. Various approaches to choose the appropriate label are
proposed in this study (Algorithm 1, Line 6).

1: Input: labeled data {D,}, unlabeled data {Dy};

2: Initially, we have {D,} ={(x;,y:)|i=1,.,1} and {Dy} =
{cpli=1+1,..1+u};

3: Train classifier Con {D,};

4: Apply Con instances of {Dy};

5: Calculate a new value for confidence rate.

6: Remove a subset S={s;,s,,.,s,} from {Dy}, so that the
confidence rate in C(x) is greater than or equal to the
minimum confidence rate for new instances to be
included; Use different strategies to choose the label
for every instance in subset S;

7 Add {(x, C(x))|x € S} toset {D } until {Dy} =0

8: Output: Labeled data

Algorithm 1. Self-Training with Confidence Adjusting.

3.5 Proposed CNN architecture

3.5.1 Modified depthwise separable convolution
In conventional depthwise separable convolution, a standard
convolution is split into a depthwise convolution applying a single
filter per input channel and a 1x1 pointwise convolution that
combines these outputs, resulting in reduced computational cost
and improved efficiency. However, the computational cost can be
further reduced by using the principle of group convolutions, where
the input and output channels are divided into separate groups and
convolutions are performed independently within each group. This
reduces the number of parameters and operations compared with
standard convolutions while still maintaining representational power.
In standard depthwise separable convolution, depthwise and
pointwise operations are performed as shown in Equations 1 and 2:

COStdepthwise = Dk X Dk X HxX W x Cin (1)

COStpointwise =Hx WX Cin X Caut (2)

where Dy x Dy represents the kernel dimension of the
depthwise convolution, H X W x C denotes the input feature
map, and C;, and C,,; represent the total number of input and
output channels, respectively. To reduce the computational
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complexity while preserving the information, the pointwise
convolution is replaced with a grouped pointwise convolution
with a G number of groups. Equation 3 shows the cost
calculation of the grouped convolution.

Hx W x G, xC,

ut
G A3)

Costyrouped =

In this study, a group count of G=4 was chosen, leading to a
significant reduction in the parameter count while still enabling
information flow between the groups of channels. The output of the
grouped pointwise convolution is normalized via group
normalization (GN), which stabilizes the training process by
normalizing the input within each group of channels, improving
generalization, and making the model less sensitive to the batch size.
Unlike Batch Normalization, which computes statistics across the
batch dimension, GN divides channels into groups and computes
normalization within each group, making normalization
independent of the batch size. The mathematical expression for
group normalization is shown in Equation 4.

x = Uy
2
\/ O +€

where x is the input to the activation function and o represents

GN = (4)

the sigmoid activation function. Here, U and 0'; are the mean and
variance computed over all the elements in the group. € is a small
constant added to avoid division by zero. Finally, a Swish activation
function is used to introduce smooth, non-linear transformations
after the modified depthwise separable convolution, which

enhances gradient flow and feature expressiveness. Equation 5
represents how the swish activation function works.

swish = x - o(x) (5)

The following expression shown in Equation 6 summarizes the
whole process of modified depthwise separable convolution:

MDuwiseSepConv . = swish(GN(Conv2DS,, (DwiseConvy, (X))  (6)

where k X k is the dimension of the kernel and G is the number
of groups for grouped convolution. DwiseConv denotes the
depthwise convolution applied to the input tensor, and MDwiseSe
pConv is the output of the modified depthwise
separable convolution.

The modified depthwise separable convolution block shown in
Figure 5 is used in this model to significantly reduce the
computational cost while maintaining strong representational
power. By replacing the standard pointwise convolution with a
grouped pointwise convolution, the model benefits from a reduced
parameter count and fewer operations. Additionally, the use of
Group Normalization (GN) helps stabilize the training process by
normalizing the activations within each group, making the model
more robust and independent of the batch size. Unlike batch
normalization, which depends on the entire batch, the GN
operates on smaller groups of channels, improving
generalizability. The final enhancement comes from the use of the
Swish activation function, which introduces smooth, non-linear
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FIGURE 5

Workflow of the proposed modified depthwise separable convolution block. The block consists of a 3x3 depthwise convolution, a 1x1 grouped
pointwise convolution, group normalization, and a Swish activation function. The tensor dimensions at each stage are indicated on the right,
showing how input size (H,,, W;,), stride (s), and filter count (F) affect the output feature maps.

transformations, leading to better gradient flow and richer feature
expressiveness. This combination of techniques optimizes the
efficiency and performance of the model, making it particularly
suitable for applications with limited computational resources, such
as mobile and embedded systems.

3.5.2 Modified squeeze and excite block

To enhance the squeeze and excite (SE) operation, GN was
incorporated with the SE block. Using GN after the SE operation
helps stabilize training and improve feature representation by
normalizing channel-wise activations within each group. GN was
chosen instead of Batch Normalization (BN) because it does not rely
on batch statistics and therefore remains stable when training with
small batch sizes, which were necessary in this study due to
hardware limitations. By normalizing across groups of channels,
GN reduces inter-channel variance and ensures consistent feature
scaling. This, in turn, improves the effectiveness of the SE block in
modeling long-channel dependencies. Specifically, GN ensures that
the recalibration performed by SE focuses on meaningful inter-
channel relationships rather than noise introduced by unstable
normalization statistics (Wu and He, 2018). Instead of using the
ReLU function in the excitation operation, Swish activation was
employed, which provides smoother gradients and improved
learning dynamics, ultimately enhancing the model’s
performance. These modifications within the SE block improve
the conventional SE module with Batch Normalization and the
ReLU activation function. The modified SE block operation can be
described as follows:
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The squeeze operation using global average pooling converts
each channel to a single numerical value as shown in Equation 7:

y = GlobalAveragePooling2D(x) (7)

Then, the squeezed vector is passed through a fully connected
layer followed by the swish activation function. The activated
output was passed through another dense layer to restore the
original number of channels, followed by GN and the sigmoid
activation function as shown in Equation 8:

z = 0(GN(W,(swish(W,(y))))) (8)

where W, and W, are the weights of the fully connected layer.
The attention weights are reshaped to match the input tensor’s
channel dimensions and broadcast across spatial dimensions.
Finally, these weights are multiplied element-wise with the input
tensor to recalibrate the feature maps as performed in Equation 9.

SE = x © reshape(z) )

Where, the element-wise multiplication is denoted by © and
where SE is the final output of the SE block.

The modified SE block shown in Figure 6 is used in this model
to enhance feature recalibration and improve the model’s ability to
focus on the most informative features. It improves the traditional
SE module by providing more efficient and accurate channel-wise
attention, helping the model to better identify and emphasize
important features while suppressing less relevant ones. This
results in improved feature representation, more effective training,
and higher performance across a range of tasks.
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FIGURE 6

Structure of the proposed modified SE block. The block applies global average pooling, two dense layers with Swish activation, group normalization,
and a sigmoid function to generate channel-wise attention weights, which are reshaped and multiplied with the input feature maps to recalibrate

channel importance

3.5.3 Modified mobile inverted bottleneck block
The proposed modified mobile inverted bottleneck convolution
(MBconv) block is inspired by the MobileNetV2 architecture
(Sandler et al,, 2018). Several modifications have been made to
make the model more lightweight and efficient. Several
modifications were introduced to improve both the efficiency and
representational power while keeping the computational cost low.
Like MobileNetV2, the block starts with an expansion phase as
shown in Equation 10, where the input tensor X € RHXWxCin jg
projected to a higher-dimensional space, expanding the channel

dimension by a factor of 7, resulting in an intermediate tensor X; €
RHX Wx(r-Cp,)

X, = swish(Conv, (X)) (10)

This is followed by depthwise convolution as shown in Equation
11, which efficiently captures spatial relationships with minimal

parameter cost:
X, = swish(DwiseConvs,5(X;)) (11)

Unlike the original MBConv, the projection phase in this
modified block uses a grouped pointwise convolution instead of a
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standard 1 x 1 convolution. This operation reduces the number of
output channels while also enforcing sparsity and group-wise
feature learning. To further enhance channel interdependencies,
the SE block is applied to adaptively recalibrate the feature maps as
the following Equation 12:

X5 = SE(GN(Conv{, ;(X,))) (12)

A residual connection is formed by applying the modified
depthwise separable convolution to the skip path as shown in
Equation 13, ensuring consistent feature alignment and
dimensionality regardless of input-output shape compatibility.
This replaces the conditional identity mapping used in traditional
residual blocks:

R = MDwiseSepConv 1 (X) (13)

This ensures that the skip path always undergoes a learnable
transformation, promoting better feature fusion and flexibility
across varying spatial or channel configurations. Finally, the
residual and transformed features are fused via element-wise
addition and passed through a non-linear activation as expressed
in Equation 14:
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Y = swish(X; @ R) (14)

where @ denotes element-wise addition. This modified MBConv
block combines the depthwise efficiency of MobileNetV2 with SE
attention mechanisms and grouped convolutional compression,
resulting in a lightweight yet expressive building block for modern
convolutional neural networks.

The MBConv Block shown in Figure 7 is utilized in this model to
achieve a balance between computational efficiency and
representational power. By leveraging depthwise convolution and
grouped pointwise convolution, this block significantly reduces the
number of parameters and operations, making it lightweight and well
suited for resource-constrained environments. The inclusion of the
Squeeze and Excite (SE) block enhances the channel-wise attention
mechanism, allowing the model to adaptively recalibrate feature maps
and emphasize important information. The residual connection with
modified depthwise separable convolution ensures that feature
alignment and dimensionality are maintained, even if the input-
output shape differs, while promoting better feature fusion. Overall,
this modified MBConv block provides a highly efficient and expressive
convolutional building block that can improve the model’s accuracy
and robustness without incurring a significant computational cost,
making it ideal for lightweight yet powerful neural network
architectures. Figure 8 represents the overall architecture, and the
modifications made to the proposed custom CNN model.

10.3389/fpls.2025.1647177

3.6 Explainable Al

A DL visualization technique called Grad-CAM is used to
comprehend model choices, particularly in computer vision tasks.
The method creates a heatmap by using the target class’s gradients
in relation to the last convolutional layer. Class-specific details in
the input image can be visualized because the final convolutional
layers balance spatial information and high-level semantics
(Saranya and Subhashini, 2023).

Grad-CAM makes use of the rich information in the final layer
of data by highlighting areas where the model focuses its attention
to produce unique patterns. The algorithm effectively highlights
important regions in the input image that contribute to target class
prediction by computing gradients of the class score with respect to
feature maps, performing weighted combinations, and producing a
heatmap (Islam et al., 2022). Equation 15 summarizes the operation
done by Grad-CAM.

LM = S wka] (15)
i

where LM

is the localization map for class ¢ in Grad-CAM.
The association with the k-th feature map for class ¢ is denoted by
wk. A is the activation for the k-th feature map at a spatial location

(i, j). This equation represents the formulation of Grad-CAM for

1x1 Conv2D
Channels: C; x Expansion

BatchNormalization

1x1 DepthwiseConv2D

1x1 Conv2D
(Grouped convolution)

Modified SE Block

Modified Depthwise
Separable Conv (1x1) ,
Groups =4

FIGURE 7

Architecture of the proposed modified MBconv block. The block includes an expansion phase with 1x1 convolution, depthwise convolution,
grouped pointwise convolution, and a modified SE block. A skip connection with a modified depthwise separable convolution ensures feature
alignment, followed by element-wise addition and Swish activation for non-linearity.
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FIGURE 8
Architecture of the proposed lightweight CNN for jute leaf disease classification. The model combines modified depthwise separable convolutions,
SE blocks, and MBconv blocks with grouped convolutions. Global average pooling, dense layers with Swish activation and L2 regularization, dropout,
and a softmax layer produce the final three-class output. Output dimensions at each stage are shown on the right.

generating a class-specific localization map through the
combination of feature weights wX and activation AZ from
different spatial locations. After generating the heatmaps with the
help of Grad-CAM, the regions were marked with red bounding
boxes by mapping the color from the heatmap to indicate the
location of diseased area.
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3.7 Web application

A functional Android app prototype was developed to
demonstrate the real-world application and capabilities of the
established model using Flask-based web application. Flask is a
lightweight and flexible web application framework in Python that
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simplifies the deployment of ML, DL and computer vision models
as interactive web applications. It integrates seamlessly with popular
Python libraries commonly used in these workflows, including
those for data processing, model inference, and visualization. This
compatibility enables developers to build responsive and user-
friendly interfaces for showcasing their DL models and results.
Flask’s minimalistic design and modular architecture also allow for
greater customization and control, making it a suitable choice for
developing tailored applications in real-world scenarios. The CNN
model, after training, was saved in a standard.h5 format and loaded
into the Flask backend for inference. Upon receiving an image from
the user, the server processed the input by resizing it to 224 x 224
pixels and normalizing the pixel values to match the model’s input
requirements. The preprocessed image was then passed through the
CNN model to perform inference. The Flask application returned
the classification results identifying whether the leaf is healthy or
affected by any disease classes.

3.8 Hyperparameter and system
configuration

To achieve a high level of accuracy with the suggested model, it
is necessary to carefully adjust and fine-tune its hyperparameters.
The values of these hyperparameters are presented in Table 3.
Empirical evidence suggests that the Adamax optimizer
outperforms other widely used optimizers in terms of achieving
higher rates of learning. In addition, batch normalization layers
were included to expedite the training of the model.

A balance between memory consumption and training speed
influences practical decisions regarding batch size. In this research,
a batch size of 16 was employed for normalization. Following
numerous experiments conducted with training data from the
combined dataset, the remaining hyperparameter values were
selected somewhat arbitrarily. A trial-and-error methodology was
employed to iteratively fine-tune the hyperparameters for optimal
performance. Table 4 represents the system configuration used in
this work.

3.9 Performance metrics

Several well-known evaluation metrics were computed to assess
the classification performance of the proposed CNN model. To
evaluate the model’s performance, a confusion matrix was
generated based on the model’s prediction on the test data.
Evaluation metrics such as accuracy, precision, recall, F1 score
and AUC were computed to differentiate between different models
(Hasan et al., 2024). The following metrics were derived via the
established methodologies. Equations 16-19 represent the
mathematical expressions for the metrics used to evaluate the
proposed model.

TP+ TN

A - 16
Uy = Tp { TN + FP + EN (16)
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TABLE 3 Hyperparameter configurations used in this work.

Hyperparameters Value

Batch size 16
Optimizer Adamax
Initial learning rate 0.001
Epochs 50
LR reduce factor 0.1

Loss function Sparse Categorical Crossentropy

Kernel regularizer 12=0.01

TP
R = 1
ecall T BN 17)
Precisi TP (18)
recision = ————
TP + FP
F1 — score = 2 X precision X recall (19)

precision + recall

Here, FP = false positive, TP = true positive, FN = false negative,
and TN = true negative. TP indicates when the model correctly
identifies a diseased leaf as diseased. FP indicates when the model
incorrectly predicts a healthy leaf as diseased. FN indicates when the
model incorrectly predicts a diseased leaf as healthy. TN indicates
when the model correctly identifies a healthy leaf as healthy.

4 Results

The following sections present a thorough analysis of the
experimental results, examining the performance of the proposed
methodology in comparison to established TL benchmarks. A
detailed discussion has been presented to contextualize these
findings, interpret their implications, and highlight the

TABLE 4 System configuration used in this work.

Tools Configuration

Programming Language Python

Backend Keras with TensorFlow
GPU RAM 15 GB
Disk Space 782 GB
System RAM 12.72 GB
GPU Nvidia Tesla T4
Operating system windows 10
Input Jute Leaf
Input Size 224x224
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significance of the research outcomes in the broader context of jute ~ compression mechanisms, leading to substantially improved
leaf disease detection. learning capacity. Integrating the modified SE block within the
modified MBConv structure (Custom 4) further improved the
accuracy to 97.89%, highlighting the effectiveness of the attention
4.1 Result analysis of the supervised and mechanism in enhancing feature extraction and boosting overall
semi su pe rvised self-training method model performance. Finally, the proposed model, which combined
all three blocks in the suggested configuration, achieved the highest
A lightweight custom CNN model was developed for  accuracy of 98.95%, outperforming all the custom networks.
deployment in both supervised and semi-supervised learning The results indicated that while each architectural enhancement
frameworks, incorporating three key architectural enhancements:  independently contributed to improved model performance, the
Modified Depthwise Separable Convolution, Modified SE Block,  integration of all three yielded the best outcomes. Specifically, the
and Modified MBConv. Table 5 presents a comprehensive  proposed model achieved the highest scores across all the
evaluation of the model’s performance across various  performance metrics, with an accuracy, precision, recall, and F1
configurations, each designed to isolate the impact of individual  score of 98.95%, 98.99%, 99.07% and 99.02% respectively,
and combined modifications. Compared with conventional  underscoring the effectiveness of the combined architectural
convolution, the CNN network utilizing only modified depthwise =~ improvements. This demonstrated the potential of the proposed
separable convolution (Custom 1) achieved an accuracy of 92.63%  custom CNN design in achieving high performance while
while significantly reducing the number of parameters. It further =~ maintaining computational efficiency.
reduced the number of parameters by incorporating a grouped To evaluate the effect of key design choices, an ablation study
convolution mechanism within the pointwise convolution, was conducted by varying the group size, expansion ratio, and
enhancing computational efficiency. This resulted in less  activation function under the supervised learning method. After
computation and more efficient feature extraction without  achieving the best results from the final model architecture through
compromising performance. After using the modified SE block  ablation study in the supervised learning was used for the semi-
with the Custom 1 network (Custom 2), the results drastically  supervised method without conducting any further ablation study.
improved from 92.63% to 96.84%accuracy, indicating that the  The effect of grouped convolutions with various group sizes were
dynamic channel-wise recalibration significantly enhanced feature  analyzed. The effect of expansion ratio of each modified MBConv
representation and overall model performance. This highlighted the =~ block and how the choice of activation function impacted the results
critical need for an attention mechanism to guide the network in  were also examined. From Table 6, it can be seen that when ReLU
focusing on the most informative features, thereby improving  was used as the activation function with group size = 4 and
learning efficiency and overall performance. The modified  expansions = (4, 4, 4, 4), the model achieved 93.33% accuracy,
MBConv blocks were subsequently incorporated without the SE  93.99% precision, 93.99% recall, and 93.75% F1-score, indicating
block and without the modified depthwise separable convolution in  relatively weaker performance. Replacing ReLU with Swish
the skip connections to build the Custom 3 network, which  activation under the same configuration significantly improved
achieved an accuracy of 95.79%. Although this accuracy was  the results to 98.89% accuracy, 99.02% precision, 98.92% recall,
slightly lower than the 96.84% accuracy of Custom 2, it and 98.96% Fl-score, showing that Swish activation enhances
significantly outperformed Custom 1, demonstrating the strength ~ gradient flow and representational learning. Increasing the
of the mobile inverted bottleneck block in enhancing feature  expansions uniformly to (6, 6, 6, 6) while keeping Swish
extraction. Compared with a network relying solely on modified  activation reduced performance to 95.56% accuracy, 95.83%
depthwise separable convolutions, the use of MBConv blocks  precision, 95.95% recall, and 95.83% F1-score, suggesting that
provided deeper feature representation and better information  overly high expansion introduced unnecessary complexity. A
flow through efficient expansion, depthwise filtering, and  mixed expansions of (4, 4, 6, 6) with Swish achieved the best

TABLE 5 Performance metric evaluation with different modifications of the proposed custom CNN model using supervised method.

Customization elements Performance metrics

Modified depthwise separable = Modified SE Modified Accuracy Precision Recall F-1Score

convolution block MBConv (%) (VA (VA (%)
Custom 1 v 3 3 92.63 93.30 92.67 9291
Custom 2 v v 3 96.84 97.14 97.22 97.06
Custom 3 x 3 v 95.79 95.81 96.18 95.95
Custom 4 v 97.89 98.03 98.03 98.03
Proposed v v 98.95 98.99 99.07 99.02

Bold values indicate best results.
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TABLE 6 Performance comparison of the proposed CNN model under different group sizes, expansion ratios, and activation functions using the
supervised learning method.

Group Expansion s in four layers of Modified Activation Accuracy Precision Recall F-1 Score
Size MBConv Block function (%) (%) (%) (%)

4 4,4,4,4 ReLU 93.33 93.99 93.99 93.75

4 4,4,4,4 Swish 98.89 99.02 98.92 98.96

4 6,6,6,6 Swish 95.56 95.83 95.95 95.83

4 4,4,6,6 Swish 98.95 98.99 99.07 99.02

8 4,4,6,6 Swish 96.67 96.97 97.06 96.87

16 4,4,6,6 Swish 95.56 96.08 96.08 95.83

The results show the impact of architectural choices on accuracy, precision, recall, and F1-score.

Bold values indicate best results.

performance, reaching 98.95% accuracy, 98.99% precision, 99.07%
recall, and 99.02% Fl-score, confirming the effectiveness of
balanced expansion. Finally, increasing the group size to 8 or 16
with the (4, 4, 6, 6) expansion and Swish activation led to
performance drops (96.67% and 95.56% accuracy, respectively),
showing that larger group sizes reduce inter-channel feature
interaction and limit learning capacity. These results
demonstrated that the optimal combination was group size = 4,
expansions = (4, 4, 6, 6), and Swish activation, which maximized
accuracy and generalization while keeping the model lightweight.
The results reported in the Tables 5 and 6 represented the best
performance of the proposed model. However, to further verify the
stability and reliability of the model, multiple independent runs
were conducted under the same experimental setup. The average
results across these runs, along with their standard deviations, are
presented in Table 7. The model consistently achieved strong
performance, with accuracy ranging from 96.84% to 98.95% with
a mean accuracy of 98.32%. Similar consistency was observed in
precision (mean 98.41%), recall (mean 98.47%), and Fl-score
(mean 98.43%). The relatively low standard deviations (<0.84%)
indicated that the model’s performance was stable and not highly
sensitive to random initialization or variations across runs. These
results reinforced the robustness and generalization ability of the

TABLE 7 Multiple independent runs by the proposed custom CNN
model using the supervised method.

Multiple = Accuracy Precision Recall F-1Score
runs (%) (%) (VA] (%)
Run - 1 97.89 98.03 98.03 98.03
Run - 2 98.95 98.99 99.07 99.02
Run - 3 98.95 98.99 99.07 99.02
Run - 4 96.84 97.03 97.11 97.05
Run - 5 98.95 98.99 99.07 99.02
Mean 98.32 98.41 98.47 98.43
Standard
o 0.84 0.78 0.79 0.78
Deviation
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proposed lightweight CNN, supporting its suitability for practical
deployment in real-world agricultural settings.

To evaluate the effectiveness of the proposed model in scenarios
with limited labeled data, which is a common challenge in
agricultural settings, a confidence-based semi-supervised ST
approach was implemented. This method involved varying the
proportion of labeled data and adjusting the confidence threshold
for pseudo-label selection, as summarized in Table 8. The results
align with the overarching aim of the study, demonstrating the
model’s strong generalization capabilities even when trained on
minimal labeled data. At just 4% labeled data, the model achieved a
commendable accuracy of 93.68% at a 0.95 confidence threshold. As
the labeled portion increased to 7%, the performance improved
significantly, with the accuracy increasing to 95.79% and
corresponding gains in precision, recall, and the F1 score. When
10% labeled data were combined with 90% unlabeled data, the
model attained its highest performance under the semi-supervised
framework, achieving 97.89% accuracy along with equally strong
values across all other metrics. These findings confirm the
practicality and effectiveness of the proposed semi-supervised
strategy, reinforcing its relevance for real-world agricultural
applications where labeled data are often scarce and validating the
broader goal of achieving high performance with minimal
manual annotation.

Figure 9 shows that the proposed model achieves high training
and validation accuracy. Although the training and validation
curves showed minor fluctuations, they ultimately start plateauing
after approximately 40 epochs. The loss curves demonstrate a rapid
decrease in both training and validation loss in the initial epochs,
followed by a more gradual decline. This finding indicated that the
model learns effectively and generalizes well to the unseen data.

Figure 10 shows the confusion matrices for the proposed model
using the traditional supervised method and semi-supervised ST
method. In the supervised method, the model demonstrated high
accuracy across all three classes: Cescospora Leaf Spot, Golden
Mosaic, and Healthy Leaf, with minimal confusion between them.
The semi-supervised ST method also showed strong performance,
although there was a slight increase in confusion, particularly in
Golden Mosaic. Overall, both methods achieved good classification
accuracy, with the supervised method performing slightly better.

frontiersin.org


https://doi.org/10.3389/fpls.2025.1647177
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Jannat et al.

10.3389/fpls.2025.1647177

TABLE 8 Performance metric comparison of the proposed model using semi-supervised learning method with different confidence thresholds and

labeled data.

Labeled data proportion (%) C,(?\?gghec?lge Accuracy (%) Precision (%) Recall (%) F-1 Score (%)
4 0.8 91.58 94.74 92.75 92.15
4 0.9 92.63 92.48 93.40 93.14
4 0.95 93.68 94.74 94.44 94.11
7 0.8 94.74 9525 94.86 94.96
7 0.9 94.74 95.50 95.37 95.10
7 0.95 95.79 96.30 96.30 96.08
10 0.8 96.84 97.03 97.11 97.05
10 0.9 96.84 97.14 97.22 97.06
10 0.95 97.89 97.80 98.15 97.93

Figure 11 illustrates the Receiver Operating Characteristic
(ROC) curves for the proposed model, which compared the
performances of the traditional supervised method and the semi-
supervised ST method. The ROC curves plotted the true positive
rate against the false positive rate for different classification
thresholds. In the supervised method, the ROC curves for all
three classes (Cescospora Leaf Spot, Golden Mosaic, and Healthy
Leaf) reached an area under the curve (AUC) of 1.00, indicating
perfect classification. The semi-supervised ST method also
demonstrated strong performance, with AUC values of 1.00 for
all three leaf classes. This showed that both methods were
highly effective in distinguishing between different classes, with
the traditional supervised approach exhibiting slightly
superior performance.

4.2 Comparison with TLM

Table 9 presents a comparative performance analysis of several
TL models, including ResNet50, MobileNetV2, VGG19, Xception,
and EfficientNetB7, which were evaluated using a supervised
learning approach. Each model was selected based on its

architectural strengths and relevance to the task. Among the
evaluated models, MobileNetV2 demonstrated the highest
classification accuracy, achieving 94.11%, thereby emerging as the
top-performing model. Xception and EfficientNetB7 closely
followed, attaining an accuracy of 93.68%. The performance of
ResNet50 and VGG19 were slightly lower, with accuracies of
87.37% and 85.26%, respectively.

4.3 Complexity analysis of the proposed
model

Conducting a complexity analysis of the lightweight custom
CNN model was crucial for assessing its efficiency in terms of
training time, computational requirements, and model size,
especially in comparison to conventional transfer learning
architectures. As shown in Table 10, the proposed lightweight
CNN model results in a markedly reduced number of trainable
parameters (2.24 million) and a compact model size of 8.54 MB,
which were significantly smaller than those of widely used models
such as ResNet50 and EfficientNetB7. These characteristics
highlighted the model’s computational efficiency, offering a
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Confusion matrices for the proposed model using: (a) supervised method and (b) semi-supervised ST method.

lightweight solution without compromising classification
performance. The reduced model complexity translated to faster
training and easier deployment, making it well suited for real-time
processing and deployment in resource-limited environments.

4.4 Grad-CAM visualization

Figure 12 presents the Grad-CAM visualizations generated
from three randomly selected jute leaf images from different
categories, highlighting the most influential regions in the model’s
decision-making process. These images are used to objectively
evaluate the model’s effectiveness. Grad-CAM highlights the
model’s ability to focus on the most relevant areas within an
image, aiding in the accurate classification of different leaf types.

The red and yellow regions in the visualizations indicate the key
parts of the image that significantly influence the model’s
predictions. The figure clearly shows that the model focused on
diseased areas; notably, the regions highlighted by Grad-CAM
closely align with the visibly affected parts of the leaves,
demonstrating the model’s ability to distinguish and localize
disease symptoms that were clearly observable to the human eye.
The red bounding box drawn from the Grad-CAM heatmaps shows
the diseased area more clearly, which enhanced the interpretability
of the model by visually confirming that its predictions are based on
the actual symptomatic regions present on the leaf. The visual
evidence provided by Grad-CAM not only enhanced the
interpretability of the model’s predictions but also reinforced its
reliability for practical agricultural applications, where
understanding the focus of diagnostic tools is crucial for ensuring

True Positive Rate
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ROC curves for proposed model using: (a) traditional supervised method and semi-supervised ST method.
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TABLE 9 Performance metric evaluation of the TL models using
supervised method.

TL o F-1
Accuracy Precision Recall

models Score
ResNet50 87.37 89.01 87.85 87.98
MobileNetV2 94.11 94.72 95.14 94.78
VGG19 85.26 86.27 85.58 85.68
Xception 93.68 93.96 94.33 93.97
EfficientNetB7 93.68 93.60 94.33 93.77

effective disease management. Figure 13 presents the Grad-CAM
visualizations for images that were misclassified by the model. It
indicates that the model focused on irrelevant or misleading regions
of the image, which likely contributed to the incorrect predictions.

4.5 Web application results

Figure 14 illustrates the results obtained from the deployed web
application, highlighting its ability to perform real-time plant
disease detection through a user-friendly interface. The
application allows users, particularly farmers, to upload images of
jute leaves and receive immediate diagnostic feedback. This real-
time interaction demonstrates the practical utility of the
proposed system under field conditions, supporting timely
decision-making and promoting accessible, technology-driven
agricultural management.

The web application offers users the flexibility to either upload a
preexisting image or capture one in real time via the device’s
integrated camera. After selecting or capturing an image, users
can initiate the classification process by clicking the “classify image”
button, which activates the preloaded DL model to analyze the
input and produce a prediction. This user-friendly interface enables
smooth and effective evaluation of the model’s performance on both
static and live image data.

TABLE 10 Comparison of the parameter count and size of different
models.

Trainable Total
parameter parameter
(million) (million)
ResNet50 25.64 25.69 98.0
MobileNetV2 3.54 3.57 13.63
VGG19 20.55 2055 78.40
Xception 2291 22.96 87.60
EfficientNetB7 66.41 66.72 254.53
Proposed 2.23 2.24 8.54

Bold values indicate best results.
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5 Discussion
5.1 Comparative analysis

Table 11 shows the comparative analysis between previous works
on jute leaf disease classification and the method proposed in this
study. It should be noted that only leaf diseases are compared here as
jute pest and plant disease classifications are not within the scope of
this work. The supervised learning method utilizing the full 80-10-10
data split yielded the highest performance, achieving an accuracy of
98.95%. In contrast, when only 10% of the labeled data were used in a
supervised setting, the performance decreased significantly, with an
accuracy of 89.47%, highlighting the limitations of supervised models
in limited label scenarios. However, when the same 10% labeled data
were used in combination with 90% unlabeled data through the
proposed confidence regularization ST method, the model
remarkably achieved 97.89% accuracy.

Recent studies on jute leaf disease detection demonstrate a
range of methods, datasets, and outcomes. The accuracies of our
supervised and semi-supervised models are better than or closely
equal to all the past studies except Tanny et al. (2025) who used our
dataset and produced a model with an accuracy of 1% better than
our comparable supervised model and 2.05% better than the
proposed semi supervised model. The model by Tanny et al. had
much larger parameters (23 times) limiting its deployment
opportunities in real world scenarios and no XAI was used to
demonstrate the model was capable of correctly identifying the
disease affected regions. Furthermore, they split the data in training,
testing and validation sets after the augmentation, resulting in data
leakage which could be the reason for the higher accuracy they
obtained. On other hand, in this study, augmentation was carried
out after the data split to avoid any data leakage.

A major limitation of the previous approaches was their reliance
on large amounts of labeled data, which are often scarce in real-
world scenarios. Semi-supervised learning employed in this study
addressed this challenge by leveraging abundant unlabeled data
alongside limited labeled examples to improve model performance.
Also, the previous models had significantly large number of
parameters, making them computationally heavier and less
efficient for deployment in resource-constrained environments.
Furthermore the jute leaf disease classes used in this study were
not exactly the same classes available in the literature, which made it
difficult to conduct a direct comparison even with three jute leaf
disease classes (Uddin and Munsi, 2023; Haque et al., 2024).

5.2 Strengths, practical implication,
limitations, and future work

The proposed custom CNN model demonstrated strong
effectiveness in classifying jute leaf diseases using both supervised
and semi-supervised learning approaches. Notably, under a semi-
supervised framework utilizing only 10% labeled and 90% unlabeled
data through a confidence regularization (ST) method, the model still
achieved a high accuracy of 97.89%. The near-supervised
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FIGURE 12

Healthy Leaf

Grad-CAM visualizations demonstrating model explainability for each jute leaf class are shown. The first row contains the original jute leaf images of
each class. The second row shows the corresponding Grad-CAM heatmaps, with warmer colors (red and yellow) indicating regions of greater model
focus. The third row indicates the diseased area with red bounding boxes drawn from the Grad-CAM heatmaps.

performance demonstrated the strength of the semi-supervised
approach in effectively leveraging unlabeled data to compensate for
the scarcity of labeled examples. Overall, the analysis confirmed that
the proposed model is not only capable of high-accuracy classification
with limited data but also outperforms traditional methods by
minimizing the dependency on costly labeled datasets, making it
particularly advantageous for real-world agricultural applications.
The model’s lightweight architecture comprising just 2.24 million
parameters and occupying only 8.54 MB of memory made it highly
suitable for deployment in resource-constrained environments such
as rural farms with limited computational infrastructure. Integrated
into a web application, the model allowed for real-time, accessible
disease detection, empowering farmers to take timely action and
implement smarter, data-driven crop management strategies. It also
incorporated explainable AI (XAI) techniques, specifically Grad-
CAM, to enhance interpretability by identifying regions of interest

Frontiers in Plant Science

and accelerating disease localization critical for real-time field
analysis. Moreover, the model is uniquely combined with a semi-
supervised self-training framework and real-time web application
development for jute leaf disease detection, aspects not jointly
addressed in prior studies.

However, the use of custom layers in the proposed model such as
grouped convolutions and SE blocks, may introduce some overhead in
training time and deployment complexity on less optimized hardware.
The model’s performance can also be influenced by environmental
factors such as lighting, background variability, and image resolution,
which may limit generalizability across different real-world conditions.
Furthermore, while the model leveraged unlabeled data effectively, the
quality of that data remained a crucial factor in sustaining classification
performance. A major limitation of this study is that the proposed
model was evaluated only on a self-collected jute leaf dataset. While the
results demonstrate strong performance, additional validation on larger
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FIGURE 13
Grad-CAM visualizations for misclassified images showing that the model's attention focused on irrelevant or misleading regions, contributing to
incorrect predictions, without generating any bonding boxes.

and more diverse crop disease datasets is needed to fully establish  settings. Additionally, exploring self-supervised or active learning
robustness and generalizability. strategies may further reduce reliance on labeled data. Optimizing

Future work could focus on improving robustness through  the model for real-time execution on edge devices would also
increasing the classification accuracy, domain adaptation enhance its practical deployment, enabling efficient AI-driven
techniques to enhance generalization in varied environmental  disease diagnosis directly in the field. Overall, this solution

(a) Leaf Disease Classifier (b) Leaf Disease Classifier (c) Leaf Disease Classifier

A Choose Image B Choose Image. B Choose Image.

@ Analysis Result @ Analysis Result @ Analysis Result
Prediction: Cescospora Leaf Spot Prediction: Golden Mosaic Prediction: Healthy Leaf
Confidence: 99.83% Confidence: 100.00% Confidence: 100.00%

FIGURE 14
Screenshots from the deployed Flask-based web application demonstrating real-time classification results for jute leaves: (a) Cercospora leaf spot,
(b) golden mosaic, (c) healthy leaf.
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TABLE 11 Performance comparison of the proposed model with previous state-of-the-art models on jute leaf disease classification.

Number
of images Dataset Semi- ATl
Reference Data Classes : 9 oo Method . Accuracy Precision Recall parameters
in the availability supervised L
(Million)
dataset
Federated learning anthracnose, stem rot,
B. g . M 1 1 s
ansal et al data distributed leaf mosaic I')atter'n 4200 No Federated CNN No o4 83.90 83.89 No No 473,65
(2024) among 5 macrophomina wilt
geographical clients | effect, and blight
Kaushik and Traditional
Khurana supervised 80-20 Diseased and healthy 1,820 No Fine-tuned ResNet50 No 94 94 94 No No 24.77
(2025) data split
anthracnose, stem rot,
Distributed
Rajput et al. , M homi F N Decisi
Hputets federated learning | 100+ "Ov Macrophomina 1, No ederated CNN + Decision 98 94.28 94.26 No No | 368.81
(2024) R Wilt, and yellow mosaic Tree
among 5 clients X
virus
vddinand Supervised §0-12-8 - healthy, yellow mosaic, - No Custom CNN No 9 95.70 9.10  No No | 36.84
Munsi (2023) data split and powdery mildew
DERIENet, a deep
T cal Cescospora leaf spot, ensemble learning model
anny et al.
(2025‘) Supervised learning | golden mosaic, and 920 Yes with ResNet50, No 99.95 99.89 99.89 No No 52.33
healthy leaf InceptionV3,
EfficientNetB0
Cescospora leaf spot,
N ised 80-10—
Proposed upervise R golden mosaic, and 920 Yes Proposed custom CNN No 98.95 98.99 99.07 Yes Yes 2.24
10 data split
healthy leaf
Supervised with Cescospora leaf spot,
Proposed P golden mosaic, and 920 Yes Proposed custom CNN No 89.47 90.20 90.28 Yes Yes 2.24
10% labeled data
healthy leaf
Semi-supervised
(10:90 labeled and Cescospora leaf spot, Proposed custom CNN
Proposed : golden mosaic, and 920 Yes with semi supervised self- Yes 97.89 97.80 98.15 Yes Yes 2.24
Unlabeled data .
. healthy leaf training
ratio)

Bold numbers and text indicate best results.
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advanced the goals of sustainable farming by supporting early
disease detection, minimizing yield loss, and contributing to more
resilient, precision-driven agriculture. Furthermore, as part of
future work, a structured usability study has been planned to
conduct in three phases: (i) expert validation with agronomists to
assess classification reliability, interface clarity, and consistency with
field diagnosis; (ii) pilot testing with farmers in smallholder
communities, where 20-30 participants will use the web
application on mobile devices under real farming conditions to
evaluate ease of use, clarity of results, and trust in the predictions;
and (iii) field-scale evaluation, involving integration of user
feedback to refine the interface, add local language support, and
test robustness under diverse environmental conditions. Metrics
such as task completion time, error rate, user satisfaction scores,
and adoption intent will be recorded to ensure a comprehensive
evaluation. This roadmap will provide actionable insights into end-
user needs, thereby enhancing the application’s usability,
accessibility, and practical adoption in real agricultural settings.

6 Conclusions

This study presents a lightweight custom CNN for the
classification of jute leaf diseases using both supervised and SSL
strategies. By incorporating grouped convolutions, modified
depthwise separable convolutions, enhanced SE blocks, and
MBconv layers, the model achieved high representational efficiency
with only 2.24M parameters (8.54 MB). The proposed architecture
attained a mean accuracy of 98.32% with precision, recall, and F1-
scores all above 98%, demonstrating strong stability and robustness.
In the supervised setup, the model achieved 98.95% accuracy, while
the semi-supervised confidence regularization self-training approach
achieved 97.89% accuracy with only 10% labeled and 90% unlabeled
data, confirming the model’s capability to deliver near-supervised
performance with minimal labeling effort. Beyond accuracy, the
integration of Grad-CAM added interpretability by highlighting
diseased regions, while the development of a Flask-based web
application demonstrated practical field applicability. These aspects
collectively bridge the gap between high-performing AT models and
their real-world usability in agriculture.

The findings highlight three key contributions: (i) reducing
reliance on costly labeled datasets through SSL, (ii) enabling
deployment in resource-constrained environments via a
lightweight architecture, and (iii) ensuring transparency and
usability through explainable AI and a functional application.
Nevertheless, the absence of usability testing with agronomists

and farmers is a current limitation.
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