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reduce N2O emissions in
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community modulation
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Guozhen Ma1, Qingsong Yuan1, Hongjing Zhao1, Shiliang Liu1,3,
Xiaolei Jie1,3 and Daichang Wang1,3*

1College of Resources and Environment, Henan Agricultural University, Zhengzhou, China, 2College of
Geography and Planning, Chizhou University, Chizhou, China, 3Key Laboratory of Arable Land Quality
Conservation in the Huanghuaihai Plain, Ministry of Agriculture and Rural Affairs, Zhengzhou, China
Delayed nitrogen (N) application increases N use efficiency in a broadacre

cropping system. However, its effect on N2O emissions and the underlying

microbial mechanisms remains poorly understood. A field-plot experiment was

carried out to examine the effects of biochar and a nitrification inhibitor (DMPP)

on soil N2O emissions with six treatments: without N application (control),

optimal N application (ON), farmer conventional N application (FN), biochar +

ON (ONB), DMPP +ON (OND), and biochar +OND (ONDB). In comparison to the

ON treatments, cumulative N2O emissions from the OND and ONDB treatments

were significantly reduced by 32% and 38%, respectively, whereas emissions from

the FN and ONB treatments exhibited increases of 38% and 4%, respectively. N

application or biochar amendment increased the abundance of AOA and AOB,

whereas DMPP amendment led to a reduction in AOB abundance. The OND and

ONDB treatments enhanced the relative proportion of Nitrospira in the AOB

community. The ONB treatment altered the most dominant genus of nirS and

nosZ communities. Correlation analysis revealed that AOB, nirK, and nirK/nosZ

were the predominant microorganism communities influencing soil N2O

emissions. Random forest analysis identified Nitrospira in AOB communities,

Cronobacter in nirK-containing communities, and Ramlibacter and

Methylobacillus in the nosZ-containing community as key microbial taxa

contributing to N2O emissions. We propose that the ONBD treatment provides

dual advantages by reducing N2O emissions and enhancing N use efficiency

under the delayed N application regime.
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1 Introduction

Nitrous oxide (N2O) contributes approximately 7% to the

overall global warming phenomenon (Li et al., 2020). Since 1975,

the atmospheric concentration of N2O has risen by 23%, reaching to

the current level of 332 ppb, the highest concentration documented

in more than 800,000 years (IPCC, 2023). Emissions of N2O from

agricultural systems are largely attributed to the application of

nitrogen (N) fertilizers, resulting in the annual release of more

than 4 Tg N2O-N (Yu et al., 2023). To address the escalating food

demands of the world population, the quantity of synthetic N

fertilizer applied in crop production continues to rise (Aryal et al.,

2022). Urea, a globally prevalent synthetic N fertilizer, exhibits

suboptimal utilization efficiency, resulting in significant N loss

(approximately 40%) through various pathways (Liu et al., 2010),

such as gaseous N emissions (e.g., N2O, NO) and nitrate-nitrogen

(NO3
−-N) (Klimczyk et al., 2021). From a sustainable development

perspective, agricultural modernization must achieve precise N

management to ensure food security and mitigate climate change.

The conventional approach to minimizing N2O emissions in

agricultural production involves optimizing N application regimes

and reducing the overall amount of N applied (Hartmann et al.,

2015). Several studies have assessed the effects of various N

application management strategies on mitigating N2O emissions,

including deep application of N fertilizer (Wu et al., 2021),

integration of urea and organic fertilizers (Wei et al., 2024),

optimization of agricultural practices (Ashiq et al., 2021), and

advances in irrigation techniques (Zhong et al., 2021). However, the

impact of the timing of crop N application on N2O emissions has been

largely overlooked in recent decades. Improvement of N use efficiency

(NUE) cannot be accomplished instantly owing to the complexity of N

uptake and utilization by crops (Qiao et al., 2015). Premature

application of N fails to consider appropriate matching of N supply

and N demand of winter wheat (Cui et al., 2010), resulting in

significant N loss (Ding et al., 2010). Indeed, the N requirements of

winter wheat differ among developmental stages, and soil N

mineralization can effectively meet the early N demands of wheat

(Sylvester-Bradley et al., 2001). Engel et al. (2017) considered that

deferral of N application until spring was more appropriate to fulfill the

N requirements of winter wheat. Application of a basic N fertilizer

during the tillering stage of winter wheat has been shown to

significantly enhance NUE (Wallace et al., 2020). Similarly, Yao et al.

(2024) reported that delayed application of fertilizers is beneficial for

increasing wheat yield. Thus, delaying N application until spring and

applying N fertilizer as a topdressing during the critical phase for N

demand by winter wheat may represent a viable approach to mitigate

N2O emissions. The combined application of N fertilizers and

synergistic agents represents a robust strategy for mitigating yield

losses in crops caused by diminished N application (Huang et al.,

2019). Nitrification inhibitors (NIs), serving as soil synergists, exhibit

remarkable advantages in mitigating N2O emissions and reducing N

losses (Liu C. et al., 2021; Dawar et al., 2021). Notably, 3,4-

dimethylpyrazole phosphate (DMPP) has been shown to effectively

reduce N2O emissions and NO3
−-N leaching in agricultural systems.

As a sustainable material for soil improvement, the potential
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environmental benefits of biochar are being increasingly validated. In

the North China Plain, biochar amendment at a rate of 15 t ha−1

represents an optimal strategy for achieving high grain yields while

substantially reducing N fertilizer inputs (Huang et al., 2022). He et al.

(2018) reported that the application of biochar at 15 t ha−1 markedly

reduced N2O emissions in wheat fields by 49.69%. Both positive and

negative impacts on N2O emissions of N fertilizer applied in

conjunction with synergistic agents have been reported (An et al.,

2022; Duan et al., 2019; Verhoeven and Six, 2014). The inconsistent

findings present a significant challenge to the predictive analysis of the

impact of synergistic agents on N2O emissions. To date, it remains

unclear how do DMPP and biochar interact under delayed N regimes

to shape microbial N2O pathways.

Production of N2O from agricultural soils is primarily driven by

microbial involvement in the nitrification and denitrification processes

(Pihlatie et al., 2004). The investigation of nitrifying and denitrifying

microorganisms provides vital insights into the mechanisms that

govern N2O emission (Wang et al., 2024). The nitrification pathway

contributes to N2O emissions from dryland soils (Shaaban, 2024).

Nitrification plays a crucial role in mediating N2O emissions,

particularly through ammonia oxidation and nitrifier denitrification,

which are predominantly regulated by ammonia-oxidizing

microorganisms (Martens-Habbena et al., 2015). An increasing body

of evidence indicates that DMPPmitigates N2O emissions primarily by

inhibiting nitrification, particularly through suppression of AOA and

AOB activities. Biochar application significantly enhances N2O

emission, which is attributable to biochar-stimulated increase in the

activity of AOB and AOA (Lin et al., 2017). Research on denitrifying

bacteria is crucial to elucidate the mechanisms of N2O emission under

various fertilization practices (Huang et al., 2021). The microbial genes

nirS, nirK, and nosZ play pivotal roles in denitrification (Shen et al.,

2021; Li et al., 2020). The reduction of nitrite to NO, primarily

mediated by nirS and nirK, is a rate-limiting step in the

denitrification pathway (Liang et al., 2021). The transformation of

N2O to dinitrogen is predominantly catalyzed by a N2O reductase

encoded by nosZ (Shaaban et al., 2023). However, the impacts of

DMPP and biochar application on N2O generation mediated by

denitrifying bacteria in dryland soils remain unclear. In addition, the

response of soil N2O emissions to DMPP and biochar application,

together with microbe-mediated mechanisms of N2O production in

dryland soils, under delayed N application is poorly understood.

The North China Plain is an important dryland agricultural

region in China and accounts for 66% of the total wheat production

area in the country. More than 70% of the farmland is subjected to

excessive N application, with the annual input of synthetic N at

550–600 kg N ha−1 (Song et al., 2018). The region has emerged as a

‘hot spot’ for N2O emissions in China. Given this context, we

investigated the effects of combined application of synergists on

N2O emission and its underlying microbial mechanisms under a

delayed N application regime. We hypothesized that: 1) delayed N

application may effectively reduce soil N2O emissions; 2) the

combined application of biochar and DMPP represents the most

effective strategy for mitigating N2O emissions; and 3) the

inhibitory mechanism of the combination of biochar and DMPP

on N2O emissions via microbial community modulation. The aims
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of the field-plot experiment were 1) to elucidate the impact of N

fertilizer application in combination with synergists on N2O

emission under delayed N application, and 2) to investigate the

influence of DMPP and biochar on the abundance and diversity of

microbial functional genes associated with N2O emission.
2 Materials and methods

2.1 Field site

The field-plot experiment was carried out in 2022–2024 at Anyang

(36°11’51’’N, 114°20’56’’E), Henan Province, China (Figure 1). The soil

type is classified as a Fluvisols. The study site has an average elevation

of 84.3 m above sea level, and the mean annual temperature and

rainfall is 14°C and 557mm, respectively. The soil pHwas 7.57, and the

contents of soil organic carbon (SOC), total N (TN), available

phosphorus, and available potassium were 11.22 g kg−1, 1.09 g kg−1,

12.9 mg kg−1, and 89.2 mg kg−1, respectively.
2.2 Experimental design

Six treatments were applied in the delayed N application

experiment during the 2022-2023 winter wheat growing season: a
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control group without N fertilizer application (CK); two rates of N

fertilizer application, namely, 180 kg N ha−1 (optimal N application;

ON) and 270 kg N ha−1 (farmer conventional N application; FN); ON

+ biochar at the rate of 15 t ha−1 (ONB); ON +DMPP (OND); and ON

+ biochar + DMPP (ONDB). Five treatments were applied in the

normal N application experiment during the 2023-2024 winter wheat

growing season. The experimental treatments included CK, ON, ONB,

OND, and ONDB. It is well established that elevated N application

rates lead to increased N2O emissions and higher emission factors, the

experimental results from the first wheat-growing season fully support

this conclusion. This study focuses on the environmental effects

resulting from the integration of optimal N application (ON) with

biochar or DMPP. Therefore, the FN treatment was excluded from the

normal N application regime.

Urea was utilized as the N fertilizer applied in two distinct

phases: 60% of the N fertilizer was applied during the first

fertilization, and the remaining 40% was applied as topdressing

(Table 1). In addition, phosphate and potassium fertilizers, together

with biochar, were applied on October 20, 2022 and October 16,

2023. Biochar was prepared from corn stalks at 450°C. The biochar

C and N contents were 507 g kg−1 and 2.1 g kg−1, respectively, and

the pH was 9.7. Each experimental plot has an area of 2 m × 2 m,

with three replicates per treatment. Wheat seeds were sown on

October 25, 2022, and October 16, 2023, while the mature grains

were harvested on June 10, 2023 and June 4, 2024, respectively.
FIGURE 1

Map of the study area.
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2.3 N2O gas sampling and measurements

Nitrous oxide gas was collected in a sealed chamber, following the

methodology described by Wu et al. (2024). Eighteen static opaque

chamber bottoms were inserted into the soil within the study plot at 8

cm depth until the harvest of winter wheat. The static chambers were

equipped with an electric fan and a thermometer on top. Gas samples

were extracted from the chamber at four time points (0, 15, 30, and 45

min) using a 50 ml plastic syringe following its closure. Simultaneously,

the temperature inside the static chambers was recorded. The electric

fan operated continuously throughout the sampling process to

maintain air homogeneity within the enclosed space. A total of 72

gas samples were collected each sampling day over a continuous 7-day

period following N application; thereafter, the sampling was conducted

at 7- to 10-day intervals.

N2O flux was determined using a GC-2010 Plus gas

chromatograph. The emission flux of N2O (f) was calculated with

the following formula:

f = r� (V=A)� (DC=DT)� 273=(273 + T) 

where r (kg m−3) is the N2O density, V is the volume of the

sealing chamber (m3), A is the bottom area of the chamber (m2),

DC/DT (mL L−1 h−1) is the temporal variation in N2O concentration

in the sealed chamber, and T (C) is the mean temperature inside the

chamber. The cumulative emission of nitrous oxide (CE-N2O) was

estimated by employing linear interpolation of N2O flux and time

(Allen et al., 2010).
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The N2O emission factor was calculated as follows:

EF = (CEN fertilizer − CEno N fertilizerÞ=Ninput

where CEN fertilizer and CEno N fertilizer represents CE-N2O from

treatments with N application and without, respectively. Ninput

represents the amount of N fertilizer applied.
2.4 Analysis of soil physicochemical
parameters

Fresh soil samples were collected subsequent to gas sampling for

determination of the ammonia-N (NH4
+-N) and Nitrate-N (NO3

−-

N) contents, which were extracted using 2 M L−1 KCl solution and

subsequently determined with a flow analyzer. Soil samples

collected at harvest were used to determine physicochemical

parameters. Dissolved organic N (DON) was measured by

subtracting NH4
+-N and NO3

−-N from the total soluble N (TSN)

content. Soil bulk density, pH, TSN, SOC), and TN were

determined following soil agricultural chemistry analysis (Lu,

2000). Each sample is analyzed in duplicate, and the relative

deviation between the duplicate samples must not exceed 5%. The

soil water-filled pore space (WFPS) was determined as follows.

WFPS = qv=(1 − =2:65)

Where, qv represents the volumetric water content, r represents
for soil bulk density.
TABLE 1 Experimental treatments of wheat under two N application regimes.

Fertilization
regime

Treatment
Urea

(kg N ha−1)
Phosphate

(kg P2O5 ha−1)
Potassium

(kg K2O ha−1)

First N
application

time

Topdressing
N application

time
Note

Delayed N
application

CK 0 60 45

ON 180 60 45

CN 270 60 45 February 8, 2023 April 17, 2023

ONB 180 60 45
Biochar: 15 kg

ha−1

OND 180 60 45
DNPP: 1.8 kg
ha−1 (1% of
urea-N)

Normal N
application

ONDB 180 60 45
Biochar: 15 kg
ha−1, DNPP: 1.8

kg ha−1

CK 0 60 45

ON 180 60 45

ONB 180 60 45
October 16,

2023
March 10, 2024

Biochar: 15 kg
ha−1

OND 180 60 45
DNPP: 1.8 kg

ha−1

ONDB 180 60 45
Biochar: 15 kg
ha−1, DNPP: 1.8

kg ha−1
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2.5 DNA extraction and qPCR

Total DNA from 0.5 g soil samples was extract by using the

E.Z.N.A.® Soil DNA Kit (Omega Bio-Tek, USA). The purified DNA

was stored at −80°C until analysis. Gene copy numbers were

determined using fluorescent qPCR (ABI 7500, USA) following

protocols described by Huang. Information on the primers used

and the parameters for the qPCR reactions are presented in

Supplementary Table S1.
2.6 Microbial diversity detection and
taxonomic analysis

The qPCR products were identified, purified, and quantified

using 2% agarose gel electrophoresis, the AxyPrep DNA Gel

Extraction Kit, and a Quantus™ Fluorometer, respectively. The

NEXTFLEX Rapid DNA-Seq Kit was used to construct a DNA

library, which was sequenced using an Illumina platform (NovaSeq

PE250). The initial sequences were subsequently refined and

concatenated to yield high-quality sequences. The UPARSE

software was employed for clustering of operational taxonomic

units (OTUs), following the clustering protocols and methodologies

outlined by Bi et al. (2023). The RDP Classifier was used to annotate

the species classification of the sequences, and the classification

information for each OTU was derived by comparison with the

Silva 16S rRNA database. The UCLUST algorithm was used for

further taxonomic analysis of the representative OTU sequences.
2.7 Statistical analysis

The data were analyzed statistically with SPSS version 25.0.

ANOVA was employed to assess the significance of differences

among the indexes, post hoc tests were executed using the LSD, with

a significance threshold of P < 0.05. Redundancy analysis was

conducted using canoco 5.0 to examine the relationships between

soil indicators and microbial communities. Correlation analysis was

conducted using Origin 2021 software. A random forest analysis

was conducted to identify microbial genera that significantly

influence N2O emission using the ‘rfPermute’ package for R.
3 Results

3.1 N2O flux

The temporal dynamics of N2O emission showed discernible

fluctuations. N fertilizer application greatly stimulated soil N2O

emission. A distinct difference in soil N2O emissions between the

first and second N applications was observed (Figure 2). The N2O

flux increased markedly following the second N application. The N

application treatments exhibited significantly higher N2O emissions

compared with those of the CK. Under the delayed N application

regime, the highest CE-N2O (1.96 kg ha−1) was observed under the
Frontiers in Plant Science 05
FN treatment. The ONB treatment (1.47 kg ha−1) led to a slightly

higher CE-N2O than in the ON treatment (1.42 kg ha−1)

(Figure 2A). Addition of DMPP resulted in significant reduction

of N2O emissions; the OND and ONDB treatments exhibited

reductions in CE-N2O of 32% and 38%, respectively, compared

with the CE-N2O of the ON treatment. The N2O emission factors

for different treatments under the delayed N application regime

ranged from 0.23% to 0.56%, which were substantially lower than

the factors ranging from 0.60% to 1.03% under the normal N

application regime (Figure 2B). These results indicate that

implementing a delayed N application strategy can effectively

mitigate N2O emissions.
3.2 Variation in soil characteristics

Soil NO3
−-N and NH4

+-N contents were significantly increased

following application of N. The NH4
+-N content under the ONB

treatment was lower than the ON treatment following N

fertilization. The NO3
−-N content in response to DMPP

application (the OND and ONDB treatments) was comparatively

low (Figures 3A, B). The WFPS ranged between 16.58% and

71.46%, exhibiting similar tendencies under the different

treatments (Figure 3C). According to the average inorganic-N

content of the soil from the initial N application until the wheat

harvesting period, the FN treatment resulted in the highest NH4
+-N

and NO3
−-N contents (Table 2). The ONB treatment decreased

NH4
+-N content and significantly increased NO3

−-N content,

whereas treatment with DMPP (OND and ONDB) led to a

significant increase in NH4
+-N content and a significant decrease

in NO3
−-N content. The NO3

−-N content differed significantly

among the treatments, except for OND and ONDB. Biochar

amendment significantly enhanced the soil pH and SOC content,

compared with the ON treatment; the ONB and ONDB treatments

increased pH by 3% and 5%, respectively, and SOC by 7% and 8%,

respectively. Application of DMPP led to slight, but non-significant,

increases in soil SOC and pH. The soil DON concentration

increased markedly with increase in the N application rate. The

ONB and ONDB treatments slightly enhanced the soil DON

concentration, whereas the OND treatment had the opposite effect.
3.3 Abundance of N functional genes

Ammonia-oxidizing and denitrifying bacteria exhibited distinct

variation in abundance among the treatments (Table 3), as

indicated by the copy numbers of microbial functional genes. The

CK, ON, and FN treatments exhibited significant elevation in AOB

gene copy numbers with increasing N input, whereas no notable

differences in AOA were observed. In comparison with the ON

treatment, the ONB treatment markedly enhanced the abundance

of AOB gene copies, whereas ONDB treatment had the most

pronounced effect in reducing AOB gene copy numbers. The

ONB treatment significantly enhanced the AOA abundance,

whereas the OND and ONDB treatments had no significant
frontiersin.org

https://doi.org/10.3389/fpls.2025.1647453
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wu et al. 10.3389/fpls.2025.1647453
effect. The ratio of AOA to AOB gene copy numbers was smallest

under the ON treatment (0.35) and largest under the ONB

treatment (0.69). The quantity of nirS, nirK, and nosZ gene copies

declined with increase in the N application rate. Relative to the ON

treatment, the ONB treatment substantially increased the nirS

abundance, whereas the OND treatment significantly increased

the abundance of nirK (Table 3). The highest number of gene

copies was observed for nirK, whereas the lowest number of copies

detected was for nirZ. The nirK/nosZ ratio varied between 1.27 and

1.53, with no statistically significant differences among

treatments detected.
3.4 Diversity and composition of N
functional genes

To graphically illustrate the effects of different treatments on the

N cycling microbial community, hierarchical clustering analysis of

OTUs was conducted across treatments (Figure 4). Based on the

OTU clustering results for AOB, OND and ONDB were initially

grouped before being clustered with CK, whereas ON and ONB

were preferentially grouped and then clustered with FN. The CK,
Frontiers in Plant Science 06
ON, and FN treatments were grouped into distinct clusters,

indicating that the different N fertilizer rates significantly

influenced the soil AOB community. It is noteworthy that the

cluster heatmaps for the AOA, AOB, and nirK-containing

communities revealed preferential combination of the OND and

ONDB treatments (Figures 4A–C), indicating that DMPP

application altered the composition of the amoA- and nirK-

containing communities. The ON and OND treatments were

initially grouped, suggesting that DMPP application alone had a

minimal impact on the nirS- and nosZ-containing communities

(Figures 4D, E). In contrast, the different N application treatments

(CK, ON, FN) were grouped into separate clusters, suggesting that

N application significantly influenced the nirS- and nosZ-

containing communities.

Based on the microbial communities at the genus level

(Figure 5), the AOA community structure was relatively simple,

with Candidatus Nitrosocosmicus identified as the dominant genus

(Figure 5A). The AOB community was primarily composed of the

genera Nitrosospira and Nitrospira at the genus level (Figure 5B),

with Nitrosospira exhibiting the highest relative abundance.

Application of N or biochar decreased the relative abundance of

Nitrospira, whereas DMPP had a stimulatory effect on Nitrospira
FIGURE 2

N2O emissions under delayed N application (2022–2023 wheat growing season) (A) and Normal N application (2023–2024 wheat growing season)
(B).The black arrows indicate the time points at which N fertilizer was applied. CK, control; ON, 180 kg N ha−1; FN, 270 kg N ha−1; ONB, ON +
biochar;OND, ON + DMPP; ONDB, ONB + biochar. Different letters indicate statistically significant differences among treatments (P < 0.05).
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abundance. Notably, combined application of DMPP and biochar

led to a more pronounced stimulation of Nitrospira abundance. The

composition of the nirK-, nirS-, and nosZ-containing communities

exhibited greater diversity at the genus level (Figures 5C–E). A high
Frontiers in Plant Science 07
rate of N input or biochar application resulted in a shift of the most

dominant nirS-containing genus from Bradyrhizobium to

Pseudomonas. The most dominant genus for the nirK- and nosZ-

containing communities was Bradyrhizobium. Biochar amendment
FIGURE 3

Temporal variations of NH4
+-N (A), nitrate (NO3

−-N) (B), and WFPS (C) of soil.
TABLE 2 Soil properties under different treatments following wheat harvest.

Treatment Ph BD TN (g/kg) SOC (g/kg) NH4
+-N (mg/kg) NO3

−-N (mg/kg) DON (mg/kg)

CK 7.67 ± 0.02c 1.35 ± 0.05a 1.08 ± 0.01a 11.65 ± 0.44b 5.49 ± 0.35d 9.63 ± 0.01e 11.07 ± 1.39c

ON 7.58 ± 0.04d 1.38 ± 0.04a 1.11 ± 0.00a 12.47 ± 0.08ab 42.06 ± 0.43c 28.85 ± 1.36c 16.82 ± 1.36bc

FN 7.57 ± 0.03d 1.39 ± 0.02a 1.09 ± 0.01a 12.02 ± 0.42b 67.9 ± 1.52a 40.96 ± 1.44a 28.25 ± 1.22a

ONB 7.78 ± 0.04b 1.21 ± 0.08b 1.14 ± 0.01a 13.17 ± 0.92a 39.52 ± 3.40c 35.78 ± 1.25b 25.99 ± 0.11b

OND 7.71 ± 0.03c 1.41 ± 0.05a 1.16 ± 0.02a 12.54 ± 0.28ab 58.86 ± 1.71b 20.16 ± 1.33d 19.02 ± 0.90c

ONDB 7.93 ± 0.01a 1.26 ± 0.01b 1.19 ± 0.01a 13.48 ± 0.74a 59.19 ± 0.87b 20.98 ± 0.51d 25.85 ± 4.56c
Different lowercase letters in the same column indicate significant differences.
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markedly enhanced the relative abundance of Ramlibacter in the

nosZ-containing community, resulting in a shift of the most

dominant genus to Ramlibacter under the ONB treatment.
3.5 Relationships among N2O emission, soil
properties, and microbial communities

Redundancy analysis was conducted to examine the inter-

relationships among N2O emission, soil physicochemical

properties, and microbial gene abundance. Axes 1 and 2
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accounted for 67.99% of the total variance (Figure 6). The ON,

ONB, and DMPP addition treatments were resolved as distinct on

axis 1 (49.80%). The contents of NO3
−-N and inorganic N, DOC,

pH, and TN were critical indicators that influenced the

experimental system. Correlation analysis indicated that NO3
−-N,

inorganic N, AOB, nirK, DON, and NH4
+-N were key indicators

that influenced soil N2O emission (Figure 7). Random forest

analysis further revealed that Nitrospira was the genus within the

AOB community that most significantly affected N2O emission,

Cronobacter was the dominant genus responsible for N2O emission

in the nirK-containing community, whereas Ramlibater and
TABLE 3 The gene copy numbers of amoA and denitrification-related functional genes.

Treatment
AOB

(106 copies/g)
AOA

(106 copies/g)
AOA/
AOB

Nirk
(106 copies/g)

Nirs
(106 copies/g)

Nosz
(106 copies/g)

Nirk/nosz

CK 19.54 ± 0.31c 9.44 ± 0.36b 0.48 ± 0.02ab 63.97 ± 3.46ab 5.48 ± 0.91b 44.56 ± 9.22ab 1.46 ± 0.21a

ON 25.89 ± 4.42b 8.82 ± 2.13b 0.35 ± 0.12b 51.65 ± 2.58cd 4.72 ± 0.82bc 40.57 ± 0.69ab 1.27 ± 0.04a

FN 32.54 ± 1.59a 13.56 ± 1.07b 0.42 ± 0.05b 41.81 ± 8.50e 4.16 ± 0.17c 32.53 ± 8.82b 1.32 ± 0.28a

ONB 32.11 ± 3.08a 22.13 ± 4.7a 0.69 ± 0.13a 43.4 ± 7.54de 6.93 ± 0.13a 32.5 ± 6.94b 1.34 ± 0.06a

OND 21.24 ± 5.28bc 13.59 ± 0.9b 0.67 ± 0.19a 71.99 ± 1.32a 4.62 ± 0.15bc 47.49 ± 7.07a 1.53 ± 0.19a

ONDB 17.26 ± 3.12c 9.28 ± 3.65b 0.53 ± 0.14ab 56.46 ± 4.01bc 4.58 ± 0.01bc 39.09 ± 4.51ab 1.45 ± 0.16a
Different lowercase letters in the same column indicate significant differences.
FIGURE 4

OTU clustering heatmap of AOA (A), AOB (B), nirK (C), nirS (D), nosZ (E).
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Methylobacillus in the nosZ-containing community were the

significantly predictors of N2O emission (Figure 8).
4 Discussion

4.1 Impacts of biochar and DMPP on N2O
emission

The N2O released from agricultural soils is a byproduct of

nitrification and denitrification. Carbon and N play crucial roles

influencing the emission of N2O (Cayuela et al., 2014; Li et al.,

2022). Our findings indicate that the co-application of biochar and

DMPP caused the most effective inhibition of N2O emission.

Compared with the ON treatment, the ONDB treatment led to a

38% reduction in CE-N2O. This effect is attributed to the substantial

decrease in content of the denitrification substrate (NO3
−-N) under

the ONDB treatment, which consequently inhibited the activity of

denitrifying bacteria. The regression analysis revealed a significant

negative correlation between pH and CE-N2O (P < 0.01,

Supplementary Figure S1). The ONDB treatment significantly

increased the soil pH, which may be an additional factor that

contributes to the synergistic effects of biochar and DMPP in

mitigating N2O emission. Therefore, we proposed that DMPP’s

inhibition of AOB combined with biochar’s pH modulation jointly

reduced N2O. Recent studies have demonstrated that biochar has a

markedly superior capacity for N2O adsorption compared with soil

and its mineral constituents (Xiao et al., 2018). Consequently, the

ONDB treatment may enhance the adsorption and stabilization of

specific N2O molecules within the biochar matrix. However, Li et al.

(2023) reported that combination of biochar and DMPP did not

lead to a significant reduction in N2O emissions in agricultural
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systems, which may be attributable to regional soil characteristics

and the intrinsic properties of biochar.

Biochar application alone resulted in an increase in soil CE-N2O

compared with that of the ON treatment. The ONB treatment

significantly enhanced the soil NO3
−-N content (Table 2), indicating

that biochar incorporation significantly enhanced soil nitrification,

consistent with the findings of Chen et al. (2019). Previous research

has demonstrated that biochar is abundant in various volatile

compounds and serves as an organic C source for denitrifying

bacteria (Fu et al., 2022), thereby stimulating N2O emission. The

present study revealed that the ONB treatment significantly

increased the DOC compared with the ON treatment, thereby

confirming that the incorporation of biochar (an exogenous source

of organic C) enhanced soil denitrification (Weldon et al., 2019).

Furthermore, biochar application significantly enhanced the SOM,

thereby increasing the availability of C and N within the soil (Chagas

et al., 2022). This enhancement fosters elevated diversity and activity of

soil microorganisms, leading to increased oxygen consumption (XuW.

et al., 2023), and as a result, localized anoxic conditions are more

conducive to denitrification.

Li et al. (2023) reported DMPP decreases N2O emissions by

disrupting the N conversion processes within the soil, ultimately

causing reduced availability of N for nitrification and

denitrification. A experiment conducted by Zhao on a wheat–

maize rotation system demonstrated that DMPP significantly

mitigated soil N2O emissions, consistent with the present

findings. The current study demonstrated that DMPP application

resulted in a significant 32% reduction in CE-N2O compared with

that of the ON treatment, which was largely consistent with the

results of a meta-analysis of agricultural systems conducted by

Ekwunife et al. (2022). Nevertheless, this reduction was markedly

less than in lab experiments (Fan et al., 2019).
FIGURE 5

Relative abundance of AOA (A), AOB (B), nirK (C), nirS (D), nosZ (E) at genus level.
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Fluctuations in air temperature and precipitation affect soil

aeration and oxygen concentrations, which subsequently impact on

N2O production (Yang Y. et al., 2021); in addition, the redox

environment of the soil plays a critical role (Xu P. et al., 2023). In

the present study, a notable increase in soil N2O flux emissions was

observed following the second N application. Fluctuations in soil

moisture, in combination with optimal surface-soil temperatures

ranging from 19 to 27°C, resulted in frequent cycles of drying and

wetting within the soil environment (Supplementary Figure S2). This

dynamic created alternating conditions of oxidation and reduction,

which further enhanced the denitrification process facilitated by both

nitrifying and denitrifying bacteria, thereby increasing N2O

emissions. Theodorakopoulos et al. (2017) reported that N2O

emissions were predominantly attributable to nitrification at WFPS

< 60%, and by denitrification at WFPS > 60%. The soil WFPS ranged

between 17% and 71% in the present study. Consequently, it is

probable that N2O emissions from the soil primarily originated from

the nitrification pathway. Significant correlations between NO3
−-N,

inorganic N, NH4
+-N, and CE-N2O were observed, which is

inconsistent with the findings of Huang et al. (2019). We propose

that the N2O emissions observed in the present study primarily

originated from oxidation of soil ammonia, particularly through

hydroxylamine decomposition. Furthermore, the notable positive

correlation between soil DON and CE-N2O reinforces that DON-
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mediated heterotrophic ammoxidation may serve as a pivotal

contributor to N2O production. However, the findings of this study

were derived from two wheat growing seasons, and the long-term

efficacy of combined biochar and DMPP application in mitigating

N2O emissions remains to be confirmed.
4.2 Response of ammonia oxidizing
microbial communities to N and synergist

The activity of the nitrifying bacterial community is significantly

influenced by the soil environment (Zheng et al., 2019). AOA and AOB

display distinct adaptations to soil NH4
+ environments, with AOB

predominant under elevated NH4
+ conditions, whereas AOA exhibits

the opposite trend (Fang et al., 2023). Previous investigations have

revealed that fertilizer application markedly increases nitrifying

microbial activity in the soil, leading to elevated N2O emissions (Li

et al., 2020). The microcosmic examination of ammonia-oxidizing

processes under different N fertilization regimes is rather complex,

owing to the participation of a diverse array of ammonia-oxidizing

microorganisms (Yang L. et al., 2021).

The present study detected a positive correlation between N2O

emission and the abundance of AOB, which in turn increases with

elevation of the N application rate. This result accords with a meta-
FIGURE 6

Redundancy analysis of copy number of N2O related functional genes and soil physicochemical properties.
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analysis of 157 field observation datasets conducted by Ouyang et al.

(2018). However, their study indicated that the abundance of AOA

increases in response to N application. The present findings showed

that biochar application significantly enhanced the abundance of

both AOA and AOB, consistent with previous research

demonstrating that biochar stimulates nitrification activity and
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fosters the proliferation of ammonia-oxidizing microorganisms

(Xu W. et al., 2023). Application of DMPP mitigated the impact

of N fertilization on the abundance of AOB. Furthermore, the

synergistic effect of biochar and DMPP significantly decreased the

abundance of AOA and AOB. The copy number of AOA genes was

lower than that for AOB genes (AOA/AOB=0.52) at wheat
FIGURE 7

Correlation analysis of N2O emissions with soil properties and the abundance of N-related functional gene. * P < 0.05; **P < 0.01
FIGURE 8

The effects of various genera of AOB (A), nirK- (B) and nosZ- communities (C) on N2O emissions was elucidated base on random forest analysis. * P
< 0.05; **P < 0.01.
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harvesting (Table 3). These findings indicate that AOB may exhibit

greater abundance and demonstrate enhanced ammoxidation

activity in agricultural soils with elevated N contents (Yan et al.,

2018). With regard to OTU clustering within AOB, the OND and

ONDB treatments were clustered and subsequently linked with CK

to form a single cluster. The ONB and ON treatments were

preferentially linked before being grouped with FN to establish a

distinct cluster. This finding elucidates the variation in CE-N2O

under the different treatments. Redundancy analysis indicated that

AOB was the most significant positive factor that influenced N2O

emissions, while correlation analysis revealed that AOB contributes

substantially more to N2O emissions than AOA.

The impact of AOB on N2O emissions is significantly greater

than that of AOA. Further identification of specific microorganisms

within AOB that modulate N2O emissions is warranted. Cytryn et al.

(2012) amplified amoA gene fragment and revealed that the AOB

community in paddy soil is predominantly composed of

Nitrosomonas. The relative abundance of Nitrosospira decreased

compared with Nitrosomonas as N application increased., as the

addition of N promotes a shift from a less nutrient-rich bacterial

community to a more symbiotic community. However, high-

throughput sequencing revealed that the predominant genus of

AOB was Nitrosospira in this study and that the proportion of

Nitrosospira rose with increase in the N application rate, whereas

Nitrospira showed an inverse relationship. Similarity, Bi et al. (2023)

reported that Nitrosospira is the predominant ammonia-oxidizing

genus in agricultural soils. Liu et al. (2021) identified Nitrosospira as

the dominant genus in environments with high NH4
+ concentrations,

demonstrating an enhanced capacity for ammonia oxidation. This

genus plays a crucial role in N2O emissions from soils characterized

by high concentrations of NH4
+. In the current study, the application

of biochar alone (ONB) significantly enhanced the proportion of

Nitrosospira compared with the ON treatment, while concurrently

reducing Nitrospira abundance. However, Lin et al. (2017)

demonstrated that exogenous organic C altered the AOB

community, shifting from Nitrosospira to Nitrosomonas.

We propose that the primary factor contributing to this

discrepancy is soil pH. In acidic conditions, the nitrification

activity of Nitrosomonas surpasses that of Spirulina Nitrosomonas;

however, the adaptability of Nitrosomonas to alkaline

environmental stress is significantly lower than that of Spirulina

Nitrosomonas. Nitrospira can oxidize nitrite and convert urea into

ammonia, promoting the growth of nitrifying bacteria. Although its

abundance remains relatively stable with increasing N application

rates, it exhibits a significant correlation with N2O emissions (Liu

et al., 2024). Likewise, in the present study, treatments that included

DMPP were observed to enhance the relative abundance of

Nitrospira, whereas the ONB and FN treatments led to a decrease

in its relative abundance. Random forest analysis further

demonstrated that Nitrospira exhibit a significant predictive

capacity for N2O emissions. Additionally, in comparison with the

ON treatment, the combination of biochar and DMPP significantly

reduced the a-diversity indices (Supplementary Table S2),

indicating that ONDB treatment significantly reduced AOB

richness and diversity. Consequently, we propose that DMPP
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exerts an inhibitory effect on N2O emissions by diminishing the

abundance and a-diversity of AOB, as well as by increasing the

relative proportion of Nitrospira within the AOB community.
4.3 Response of denitrifying microbial
communities to N and synergist

Denitrification, mediated by heterotrophic bacteria and fungi,

primarily occurs in anaerobic environments, where nitrate undergoes

a series of transformations (e. g. NO2
−, NO, N2O) that ultimately

yield N2. Previous studies have established that denitrifying bacteria

harboring nirS and nirK are the primary contributors to

denitrification-mediated N2O production, primarily because of

inadequate genetic capacity for the reduction of N2O (Huang et al.,

2019). The nirK and nosZ copy numbers under the ONB treatment

were lower than those detected under the ON treatment (Table 3).

Biochar application can foster a soil environment with an elevated C/

N ratio, thereby promoting N assimilation within the soil and

diminishing the availability of N substrates for denitrification (Liu

Z. et al., 2021). The OTU cluster heatmaps revealed that the nirS-,

nirK-, and nosZ-containing communities exhibited distinct responses

to the various treatments. Our findings indicated that DMPP

treatment (OND and ONDB) significantly altered the composition

of nirK-containing communities (Figure 4C); however, DMPP

application alone exhibited limited effects on the nirS- and nosZ-

containing communities (Figures 4D, E). Conversely, biochar

application alone had a pronounced impact on the nirS- and nosZ-

containing communities (Figures 4D, E). Xiao et al. (2021) reported

that application of exogenous N or C influences the soil microbial

community, while the simultaneous addition may alter the dominant

genera within the denitrification gene community. Similarly, in the

present study, we observed a shift in the most dominant genus of

nirS-containing community from Bradyrhizobium under the ON

treatment to Pseudomonas under the FN and ONB treatments. The

most dominant genus of nosZ-containing community transitioned

from Bradyrhizobium to Ramlibacter under the ONB treatment.

Bradyrhizobium is an aerobic azotobacter within the rhizobia order

(Geddes et al., 2020), and was the most dominant genus in the nosZ-

containing community in all treatments except for the ONB

treatment. This finding emphasizes the possibility for

denitrification within an aerobic environment. Both nirK and nosZ

were significantly correlated with DON. The correlation coefficient

between SOC and nirS exceeded that of SOC with the other

denitrification genes (nirK, nosZ) (Figure 7), indicating that nirK-

or nosZ-containing bacteria showed heightened sensitivity to

exogenous N, whereas nirS-containing bacteria exhibited greater

sensitivity to exogenous C compared with that of nirK- or nosZ-

containing bacteria.

In this study, CE-N2O was significantly negatively correlated

with the nirK gene copy number (P < 0.01). This finding is

consistent with the conclusions by Wu et al. (2023), who

established that the presence of nirK-containing denitrifying

bacteria are critical determinants in both N2O consumption and

production. Random forest analysis identified Cronobacter as a
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critical genus driving N2O emissions in nirK-containing

communities. Similarly, Xie et al. (2024) reported that

substitution with organic fertilizers affected the relative

abundance of Cronobacter in the nirK-containing community,

thereby mitigating N2O emissions. Interestingly, our findings

demonstrate that despite the lack of a markedly correlation

between CE-N2O emissions and nosZ gene copy numbers, while a

significant negative correlation was observed with the nirK/nosZ

ratio (Shi et al., 2019). Furthermore, the present findings revealed

that Ramlibater and Methylobacillus in the nosZ-containing

community exhibited a significant predictive capacity for N2O

emissions. Consequently, the nosZ gene may still be among the

key contributors to N2O emissions mediated by denitrification.

Tang et al. (2024) reported that niche variations in the

denitrification genes nirK and nirS resulted in differential N2O

emissions. However, a weak correlation was observed between CE-

N2O and nirS gene copy number in the present study, indicating

that nirS was not the most critical factor influencing N2O emissions.

Nevertheless, correlation analysis revealed a significant correlation

between AOB and nirK copy number with N2O emissions; however,

this does not provide direct evidence for microbiome-mediated

N2O emission. Therefore, it is essential to conduct a more in-depth

analysis in future to elucidate the contributions of various

microorganisms to N2O emissions using microbial molecular

ecology and isotope tracer methodologies.
5 Conclusion

Compared to the normal N application regime, delayed N

application significantly reduced both CE-N2O and EF-N2O. Under

the delayed N application regime, the ONB treatment increases N2O

emissions, whereas treatment with DMPP (OND and ONDB)

significantly mitigates N2O emissions by 32% - 38%. The CE-N2O

exhibited a positive correlation with the copy number of AOB genes,

and a negative correlation with nirK gene copy number and nirK/nosZ

ratio. Random forest analysis identified that the community species of

the AOB, nirK, and nosZ-containing communities are sensitive

biomarkers for evaluating of N2O emissions in agricultural

ecosystems. Consequently, the ONDB treatment is a promising

strategy for mitigation of N2O emissions under the delayed N

application regime. This approach is feasible for regions with high N

inputs but requires cost-benefit analysis for farmer adoption. Future

studies are encouraged to employ isotopic tracing techniques to confirm

microbial pathways and conduct field trials across diverse soil types.
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