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The quality of “Fritillariae Cirrhosae Bulbus (FCB)” is influenced by its geographical

origin and cultivation management. Characterizing quality differences among

FCB from different sources throughmultidimensional analysis and establishing an

accurate traceability model represent critical approaches to ensure FCB

medicinal material quality. This study integrated untargeted metabolomics,

alkaloid quantification, mineral nutritional element analysis, and hyperspectral

imaging features to systematically reveal metabolic and compositional variations

in FCB from different sources, while constructing a deep learning-based

traceability model. Untargeted analysis identified significant differences in

metabolite levels across FCB sources, with Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analysis revealing that these differential metabolites

were primarily enriched in 23 pathways. Targeted alkaloid quantification

demonstrated that field-collected wild specimens from Seka township

(designated SK-FC) accumulated higher levels of peimisine, imperialine, and

peiminine, whereas tissue-cultured regenerants from Bamei town (designated

BM-TC) exhibited elevated peimine content, indicating that geographical

environments and cultivation practices regulate alkaloid biosynthesis. Mineral

nutritional element analysis showed that BM-TC samples had the highest

elemental accumulation, likely linked to nutrient-rich culture media, while

field-collected wild specimens from Chuanzhusi town (designated CZS-FC)

and Anhong township artificial cultivated accessions (designated AH-AC)

preferentially accumulated Al/Fe/Mn/Na and K/Mg/Zn/Cu, respectively. Most

elements showed positive correlations with peiminine and peimine levels but

negative correlations with peimisine and imperialine. The Residual Network

(ResNet) deep learning model, constructed using hyperspectral-derived three-

dimensional correlation spectroscopy (3DCOS) images, achieved 100% testing/

validation accuracy and 86.67% external validation accuracy, outperforming

traditional partial least squares discriminant analysis (PLS-DA) models in
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traceability efficacy and providing an efficient method for precise origin

identification of FCB. This research establishes theoretical foundations for

multidimensional quality evaluation and traceability of FCB, offering

fundamental support for further development and utilization of FCB resources.
KEYWORDS

Fritillariae Cirrhosae Bulbus, metabolomics, alkaloids, mineral elements,
traceability model
1 Introduction

Fritillariae Cirrhosae Bulbus (FCB), the dried bulbs of several

species belonging to the Fritillaria genus (Liliaceae family), was first

documented in the Shennong’s Classic of Materia Medica in China.

This document marks the beginning of its medicinal history that

has spanned over 2,000 years (Xin et al., 2014). A multitude of

studies have demonstrated that FCB possesses a variety of

therapeutic properties, including antitussive, expectorant, anti-

inflammatory, anti-asthmatic, sputum-eliminating, anticancer,

acute lung injury-alleviating, and anti-fibrotic effects (Wu et al.,

2022; Wang et al., 2021). FCB is the primary raw material for over

210 Chinese patent medicines, and its annual demand can reach up

to 5,000 tons. However, the supply of FCB is often inadequate to

meet this demand (Cunningham et al., 2018). The six FCB source

species listed in the Chinese Pharmacopoeia predominantly inhabit

high-altitude alpine regions (3,000-4,500 m above sea level) with

restricted, suitable habitats, low natural reproductive capacity, and

poor regeneration of wild resources. Environmental degradation

and excessive harvesting have caused sharp declines in wild

populations (Song et al. , 2021; Mathela et al . , 2021).

Consequently, all wild FCB source species are classified as “Class

II State-Protected Plants” in China, thereby prohibiting

indiscriminate collection (Zhao et al., 2025). Domestication and

cultivation of FCB have achieved significant progress, with

cultivated varieties now constituting the primary supply.

Cultivation bases established in suitable regions (including

Sichuan, Yunnan, Xizang, Gansu, and Qinghai) demonstrate that

variations in ecological environments and cultivation methods

impact the quality and efficacy of FCB. As the public’s attention

to traditional Chinese medicine (TCM) grows, there is an increased

emphasis on quality consistency and the ability to trace the origins

of these products. Concurrently, improvements in regional logistics

systems have facilitated the mixing of medicinal materials from

diverse sources, making multidimensional quality evaluation and

traceability of FCB imperative (Wang et al., 2024a).

The intricate composition and substantial quality variations

inherent in TCM present challenges to conventional quality control
02
methodologies, resulting in limitations in precision and

applicability (Ren et al., 2024). Conventional single-method

detection strategies are inadequate in capturing the complexity of

TCM. Therefore, the integration of multidimensional evaluation

approaches to enhance the accuracy and reliability of TCM quality

assessment, as well as the establishment of rapid, precise traceability

models, is essential for advancing the sustainable development of

the TCM industry (Xiao et al., 2024; Nie et al., 2019).The rapid

advancement of analytical technologies has provided robust tools

for the quality evaluation of FCB from diverse sources. Untargeted

metabolomics is a technique that detects all ionizable metabolites

within a specific mass range (Yao et al., 2019). In contrast, targeted

metabolomics is a method that allows for the precise quantification

of specific metabolite classes (Zhou and Yin, 2016). Elemental

analysis is a technique that is used to decipher mineral element

profiles in FCB (Ågren and Weih, 2020). The integration of these

technologies enables the provision of scientific evidence and data,

facilitating a comprehensive evaluation of the overall quality of

active components and mineral elements in FCB.

Spectroscopic technology is a non-destructive analytical

method. It enables rapid detection and real-time analysis without

requiring sample pretreatment (Armenta et al., 2008). The

integration of spectral data with deep learning algorithms

facilitates the construction of origin-discrimination models,

thereby facilitating precise traceability (Jiang et al., 2024; Zhao

et al., 2024; Wang Y. Y. et al., 2022). Residual Network (ResNet),

an exceptional convolutional neural network framework, addresses

common training challenges in deep networks, such as vanishing

and exploding gradients (Dong et al., 2021; Lecun et al., 2015). Chen

et al. (2022) developed a methodology for generating two-

dimensional correlation spectroscopy (2DCOS) images from

near-infrared (NIR) spectral data of Centella asiatica. They then

integrated these images with ResNet, achieving 100% accuracy

geographically. In addition, Li et al. (2025b) developed a ResNet-

based identification model using three-dimensional correlation

spectroscopy (3DCOS) images derived from Gastrodia elata NIR

spectral data. The model demonstrated a good level of accuracy,

achieving 100% accuracy on the test set and maintaining 95.45%
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accuracy on the external validation. These results demonstrate the

excellent performance of multidimensional spectral fusion in

conjunction with deep learning in detecting minute variations.

This study applied a multidimensional evaluation framework of

“metabolism-component-environment” to systematically profile

global metabolic profiles in FCB. Untargeted metabolomics was

used to identify metabolic variations, while targeted metabolomics

was employed to quantify major alkaloids. Mineral element analysis

was utilized to assess environmental influences on metabolic

pathways. Subsequently, we developed a synchronous 3DCOS-

ResNet model using non-destructive hyperspectral imaging to

differentiate FCB geographical origins. Collectively, these

multidimensional chemical analyses identify variations in FCB
Frontiers in Plant Science 03
quality and establish traceability models, providing novel

approaches for quality evaluation and origin identification.
2 Materials and methods

2.1 Sample collection

A total of 90 FCB samples were collected from Sichuan

Province, China. These samples were morphologically and

genetically identified as Fritillaria cirrhosa D.Don (Family,

Liliaceae) by Professor Zhuyun Yan of the Chengdu University of

Traditional Chinese Medicine and classified into five distinct source
TABLE 1 The source of FCB.

Sample
iD

Provenance Geographic coordinates

Production area
Agronomic
practice

Longitude Latitude
Altitude

(m)
Number of
specimens

AH-AC
Anhong Township, Songpan County, Aba

Prefecture
Artificial cultivation 103.647596 E 32.539952 N 3216 18

CZS-FC
Chuanzhusi Town, Songpan County, Aba

Prefecture
Field collection 103.715100 E 32.961250 N 3387 18

BM-TC Bamei Town, Daofu County, Ganzi Prefecture
Tissue culture
regeneration

101.473850 E 30.493240 N 3406 18

SK-FC
Seka Township, Daofu County, Ganzi

Prefecture
Field collection 101.447594 E 30.476054 N 3584 18

YM-AC
Yimu Township, Luhuo County, Ganzi

Prefecture
Artificial cultivation 100.760640 E 31.283110 N 3125 18
FIGURE 1

Information of FCB samples. (A) Overview of research areas; (B) FCB from different sources.
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categories. The sample origins and identification codes are detailed

in Table 1, and the geographical distribution is illustrated in

Figure 1. After collection, the FCB samples were washed, air-

dried naturally to constant weight, and ground into fine powder.

The powder was sieved through a 100-mesh sieve and subsequently

stored in sealed bags for subsequent analyses.
2.2 Reagents and materials

Reference standards (HPLC grade) of peimisine (CAS: 19773-

24-1), imperialine (CAS: 61825-98-7), peiminine (CAS: 18059-10-

4), and peimine (CAS: 23496-41-5) were supplied by Chengdu

Alpha Biotech Co., Ltd. (China). Single-element stock solutions

(Na: 23C001-1; K: 23C020; P: 238051; Ca: 238006-2) and the 24-

element mixed standard stock solution (245019-1) were certified

reference materials that had been accredited at a national level.

Methanol, formic acid, ammonium acetate, and acetonitrile

(HPLC grade) were purchased from Thermo Fisher Scientific

(USA). Ultrapure water (HPLC grade) was obtained from Merck

(Germany). Nitric acid and other analytical grade reagents were

procured from Chengdu Kelong Chemical Reagent Co.,

Ltd. (China).
2.3 Untargeted metabolomic profiling

A precisely weighed 0.1 g sample of liquid nitrogen-ground FCB

powder was mixed with 500 mL of an 80% methanol aqueous

solution. The mixture was vortexed and then incubated on ice for 5

min. It was then centrifuged at 15,000 ×g at 4°C for 20 min. A

portion of the resulting supernatant was diluted with water to

reduce the methanol concentration to 53%, after which it was

centrifuged again under the same conditions (15,000 ×g, 4°C, 20

min). The resulting supernatant was filtered through a 0.22 mm
membrane filter and analyzed using Ultra-Performance Liquid

Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS)

(Want et al., 2013).

The UPLC-MS/MS analysis of sample was conducted on a

UHPLC-Q Exactive system equipped with an ACQUITY HSS T3

column (100 mm × 2.1 mm i.d., 1.8 mm; Waters, USA) at Majorbio

Bio-Pharm Technology Co. Ltd. (China). The samples were

separated on the chromatographic column and the temperature

was maintained of 40°C and a mobile phase flow rate of 0.2 mL/

min. In positive mode, the mobile phase consisted of 0.1% formic

acid (A) and methanol (B), and in negative mode, it consisted of 5
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mM ammonium acetate (A) and methanol (B). The initial ratio was

98% A and 2% B, and the following gradient program was used: 0-3

min 98%-0% A; 3-10.1 min, 0%-98% A; 10.1-12 min, 98%-98% A.

The injection volume was 2 mL.
The UHPLC system was coupled to a UHPLC-Q Exactive

system Mass Spectrometerequipped with an electrospray

ionization (ESI) source operating in positive mode and

negativemode. The system under the following parameters:

Scanning range: 100-1500 m/z; spray voltage: 3.5 kV; sheath gas

flow rate: 35 psi; auxiliary gas flow rate: 10 L/min; ion transport tube

temperature: 320°C; iontophoresis RF level: 60; auxiliary gas heater

temperature: 350°C; polarity: positive, negative; MS/MS secondary

scanning was data-dependent scanning.
2.4 Targeted alkaloid quantification

A precisely weighed 0.1 g sample of FCB powder was precisely

weighed out mixed with 1.2 mL of a 70% methanol aqueous

solution. This mixture was vortexed for 30 min, repeated six

times and then stored in a refrigerator overnight. The mixture

was then centrifuged at 15,000 ×g and 4°C for 20 min. A portion of

the resulting supernatant was diluted with water to reduce the

methanol concentration to 53%. This was then subjected to another

round of centrifugation under identical conditions (15,000 ×g, 4°C,

20 min). The resulting supernatant was filtered through a 0.22 mm
membrane filter to obtain the FCB extracts.

The UPLC-MS/MS analysis was performed in the following

sequence concerning Han’s method (Han et al., 2023) and with

appropriate adjustments. Chromatographic separation was

performed using a TSQ-Fortis triple quadrupole mass

spectrometer (Thermo Fisher, Germany). The column (Hypersil

Gold™: 100 mm×2.1 mm, 3 um) temperature was maintained at

35°C with a mobile phase flow rate of 0.3 mL/min. The mobile

phase consisted of water containing 0.3% (v/v) formic acid (A) and

acetonitrile (B), with an initial composition of 80% A and 20% B.

The following gradient program was applied:0-5 min: 80%-60% A.

Injection volume: 2 mL (Wang et al., 2025).

The TSQ-Fortis mass spectrometer operated in default mode.

The specific parameters are as follows: Ion source type: H-ESI;

positive ion: 3500 V; negative ion: 3500 V; sheath gas flow: 35 Arb;

auxiliary gas: 15 Arb; purge gas: 1 Arb; ion transport tube

temperature: 350°C; vaporizer temperature: 350°C; different

sources of FCB extract were analyzed under multiple reaction

monitoring mode. Full details of the mass spectrometric

parameters for four steroidal alkaloids and comprehensive
TABLE 2 MS parameters of 4 alkaloids.

Analyte Retention time (min) Parent ion (m/z) Product ion (m/z) Collison energy (ev)

Peimisine 2.40 428.40 114.15*, 337.22 29.43

Imperialine 1.89 430.45 138.24*, 412.48 47.67

Peiminine 2.90 430.40 396.38*, 112.08 54,85

Peimine 2.59 434.45 398.46*, 414.39 55.00
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method validation data are detailed in Table 2, Supplementary

Table S1 and Supplementary Figure S1.
2.5 Nutritional element analysis

A precisely weighed 0.2 g aliquot of FCB powder was placed

into a digestion vessel. After adding 5 mL of nitric acid (HNO3), the

vessel was capped and allowed to stand for 1 h. The lid was then

tightly sealed, and digestion was performed following the

microwave digestion system’s standard operating procedures

(Supplementary Table S2). After cooling, the vessel was slowly

opened to release gases. The inner lid was rinsed with a small

amount of water, and the vessel was placed on a temperature-

controlled hotplate at 80°C for 3 min to remove brown fumes. The

digestate was transferred to a 25 mL volumetric flask, and the vessel

was rinsed three times with small amounts of water. The rinsates

were combined and diluted to the mark with water, followed by

thorough mixing. Blank controls were prepared simultaneously.

Standard stock solutions were serially diluted with 5% nitric

acid to prepare calibration standards. An internal standard mixture

was added to all standard solutions to correct for matrix effects and

instrumental drift, ensuring measurement accuracy. Discrepancies

between measured and certified values were maintained below 10%,

with recovery rates ranging from 95% to 100%.

Mineral elements (K, Na, Mn, Fe, Al, Cu, Mg, Zn) were

quantified using inductively coupled plasma mass spectrometry

(ICP-MS). Key operating parameters:plasma airflow: 15.0 L/min;

auxiliary gas flow: 1.5 L/min; the flow rate of nebulizer was 0.75 L/

min. Power: 1200 W.
2.6 Hyperspectral data acquisition

Hyperspectral imaging was performed using a handheld HY-

6010 imager (Hangzhou Gaopu Imaging Technology Co., Ltd,

China) spanning 400-1000 nm with 300 contiguous spectral

channels at 5 nm resolution (FWHM), configured with a 55 mm

aperture lens, 480 × 485 pixel spatial resolution, dual 100 W

tungsten-halogen lamps equipped with hemispherical diffuse

reflection domes (Labsphere Inc., USA) positioned symmetrically

at 45° to eliminate specular reflection, and a fixed 30 ms exposure

time optimized through pre-scan radiometric calibration using 99%

Spectralon® standard. Hyperspectral data collection was conducted

in a darkroom. Samples were sequentially arranged on the mobile

platform of the hyperspectral imaging system. During system

operation, the platform moved steadily, and the lens captured and

recorded sample image information. To ensure clear and complete

images, parameters were repeatedly adjusted, with the final

integration time set to 142961 and the frame rate to 7 fps. To

mitigate the effects of dark current and unstable light sources,

radiometric calibration was performed on the acquired images

using a synchronously captured radiometric calibration panel

(20% reflectance) via the HHITSYSPEC software (Version 1.9.1).

Using the calibrated images, regions of interest (ROIs) were selected
Frontiers in Plant Science 05
for each sample as individual units. Distinct ROIs were labeled with

different colors, and the average reflectance spectrum of each

sample ’s ROI was calculated. Each ROI generated a

corresponding spectral curve, which served as the dataset for

subsequent analysis.
2.7 Construction of partial least squares-
discriminant analysis model

PLS-DA is a supervised learning framework that facilitates the

visual classification of samples by integrating the dimensionality

reduction capability of partial least squares with the classification

strategy of discriminant analysis (Qi et al., 2018). The model’s

dimensionality reduction strategy is predicated on the supervised

extraction of latent variables (LVs), which are iteratively: The

primary objective is to maximize the shared variability between X

(predictor variables) and Y (class labels). This is achieved by

implementing orthogonalization, a process that eliminates

redundancy. Additionally, cross-validation is employed to

ascertain the optimal dimensionality. This process involves the

compression of high-dimensional data into a low-dimensional

space, thereby reducing the quantity of features while preserving

those that are critical for classification. Consequently, the model

attains enhanced classification accuracy and generalization

capability for high-dimensional complex data. In this study, the

first two LVs were extracted to holistically visualize the differences

among FCB from diverse sources (Qi et al., 2024).
2.8 ResNet-based traceability modeling

2.8.1 3DCOS image generation
The 3DCOS technique effectively resolves overlapping spectral

peaks and enhances discrimination capability by introducing an

additional dimension, thereby improving spectral resolution (Liu

et al., 2023a). Based on the aforementioned hyperspectral data,

3DCOS images were generated using MATLAB software. These

images were calculated according to the discrete generalized

3DCOS algorithm, with the Formulas (1) and (2) as follows (Liu

et al., 2023b):

S(v) =

s(v, t1)

s(v, t2)

⋯

s(v, tm)

8>>>><
>>>>:

(1)

j(v1, v2) =
1

m� 1
S(v1)

TS(v2) (2)

The dynamic spectral intensity at the variable v is expressed as

S, t is the external disturbance, m is the spectrum measured at equal

intervals between the disturbances t, and is the expression of the

three-dimensional correlation intensity. The transformed spectra

were stored as JPG images with a resolution of 875×656 pixels. The
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3DCOS spectra were generated from the hyperspectral dataset of

FCB using Matlab R2019b based on the three-dimensional

correlation intensity formula.

2.8.2 Model construction
The primary strategy employed by the ResNet model for

dimension reduction is the implementation of convolution

operations on the input data to generate feature maps. This is

followed by the utilization of batch normalization layers to

standardize the data, thereby facilitating accelerated model

training. The ReLU function is then employed to achieve

nonlinear activation. Subsequently, the processed data is entered

into three identity blocks and two convolution blocks for feature

extraction. The global average pooling method is employed to

extract the primary features, thereby reducing the number of

parameters. The Softmax function is utilized in the final layer to

generate the results (Li et al., 2025a).

These 3DCOS images were subsequently used for ResNet

modeling. A 12-layer ResNet image recognition model was

constructed using training and testing sets to specifically identify

3DCOS images of FCB from different sources. Key hyperparameters

included a weight decay coefficient (l) of 0.0001 and a learning rate of

0.01. Accuracy curves and cross-entropy loss function curves were

generated using Mxboard, with a smoothing parameter set to 0.6 (Li

et al., 2025b). In these curves, the x-axis represents epochs, while the y-

axis corresponds to Acc and loss value, respectively. Fewer epochs

indicate higher modeling efficiency. Accuracy and loss value are critical

metrics for evaluating classification performance and convergence. The

model’s generalization ability was ultimately assessed using an external

validation set. An Acc closer to 1 signifies superior recognition

performance, and a loss value closer to 0 indicates better

convergence. The present study employed random sampling to

allocate the samples into training sets, testing sets, and external

validation sets, with 50, 25, and 15 samples, respectively. The

utilization of random sampling ensures the mitigation of subjective

bias that may be introduced during manual sample selection. This

approach facilitates objective evaluation of model performance,

prevents overfitting, and enhances model stability and repeatability.

ResNet addresses the vanishing gradient problem in deep

network training by introducing residual blocks, enabling the

construction of deeper networks simultaneously (Su et al., 2021).

Its core architecture consists of residual blocks, each typically

containing two or three convolutional layers. Each convolutional

layer is followed by batch normalization and a ReLU activation

function. Through skip connections, the input is directly added to

the convolutional layer outputs to form residual outputs. The

Formula (3) is expressed as:

y = F(x,Wi) + x (3)

Where F(x, Wi) is the output of the convolution layer, x is the

input, and y is the output of the residual block.

The overall architecture comprises an input layer, convolutional

layers formed by multiple residual blocks, pooling layers, and fully

connected layers. The input layer converts images into feature

maps, the convolutional layers progressively extract high-level
Frontiers in Plant Science 06
features, the pooling layers reduce feature map dimensionality,

and the fully connected layers ultimately perform classification

tasks. By incorporating skip connections, ResNet effectively

mitigates vanishing and exploding gradient issues in deep

networks, maintaining superior performance even as network

depth increases (Wu et al., 2019).

Model evaluation metrics included accuracy (Acc), precision

(Pre), sensitivity (Sen), and specificity (Spe), calculated as follow

Formulas (4) to (7) (Zheng et al., 2023):

Acc =
TP + TN

TP + FP + TN + FN
(4)

Pr e =
TP

TP + FP
(5)

Sen =
TP

TP + FN
(6)

Spe =
TN

TN + FP
(7)

Among them, TP represents the number of true cases, FP

represents the number of false positive cases, TN represents the

number of true negative cases, and FN represents the number of

false negative cases.
2.9 Data processing

2.9.1 Untargeted data processing
Raw data files (.raw) were imported into the Compound

Discoverer3.1 library search software for processing. Parameters

such as retention time and mass-to-charge ratio (m/z) were filtered

for each metabolite. Peak alignment was performed across samples

with a retention time deviation of 0.2 min and a mass deviation of 5

ppm. Peak extraction was then conducted using thresholds of 5

ppm mass deviation, 30% signal intensity deviation, signal-to-noise

ratio≥3, minimum signal intensity, and adduct ion information.

Peak areas were quantified, and target ions were integrated.

Molecular formulas were predicted based on molecular ion peaks

and fragment ions, followed by comparison with the mzCloud

(https://www.mzcloud.org/), mzVault, and Masslist databases.

Background ions were removed using blank samples, and raw

quantitative results were normalized to obtain identified

metabolites and their relative quantification results. Identified

metabolites were annotated using the Kyoto Encyclopedia of

Genes and Genomes (KEGG) (https://www.genome.jp/kegg/

pathway.html), and LIPID Metabolites & Pathways Strategy

(LIPIDMaps) (http://www.lipidmaps.org/) databases.

2.9.2 Targeted data processing
Raw data files (.raw) were imported into Qual Browser software

for analysis. Parameters such as retention time and m/z were filtered

for each metabolite. Gaussian smoothing was applied, and nine key

parameters were set to quantify the peak areas of four alkaloids in

chromatograms for each sample. The concentrations of the four
frontiersin.org
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alkaloid components in each sample were calculated based on

standard calibration curves.

2.9.3 Nutritional element data processing
The contents of mineral elements (K, Na, Mn, Fe, Al, Cu, Mg,

Zn) in samples were calculated according to the formula specified in

Method 2 of GB 5009.268-2016 (Chinese National Standard). The

Formula (8) is expressed as:

X =
(C�C0)*V*1000*f

m*1000
(8)
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where:

X–The content of elements to be tested in the sample solution is

mg/kg;

C–The concentration of the measured element in the sample

solution is mg/L;

C0–The content of the measured elements in the reagent blank

solution was mg/L;

V–The constant volume mL of sample digestive fluid;

f–Sample dilution multiple;

m–Sample weight g.
FIGURE 2

Untargeted metabolomic analysis of FCB. (A) Comparative metabolite profiles of FCB from different sources; (B) Metabolite category distribution; (C)
PLS-DA score plot in positive ion mode; (D) PLS-DA score plot in negative ion mode; (E) KEGG pathway enrichment analysis; (F) Content of five key
metabolites in FCB from different sources. Asterisks are used to denote statistically significant differences: The significance of the results is indicated
by the following p-values: p<0.05, ** p<0.01, p<0.001, and **** p<0.0001, among others.
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3 Results and discussion

3.1 Untargeted metabolomic profiling

Ionizable metabolites in FCB from various sources were

comprehensively characterized using UPLC-MS, with total ion

chromatogram (TIC) and results illustrated in Figure 2A and

Supplementary Figure S2A-D. As shown in the Figure 2A, the

five different FCB sources shared 8,652 common metabolites, while

unique metabolites were identified as follows: 342 in BM-TC, 176 in

AH-AC, 56 in YM-AC (Yimu township crtificial cultivated

accessions), 86 in SK-FC, and 48 in CZS-FC. Figure 2B displays

the proportional distribution of metabolite categories. Lipids and

lipid-like molecules accounted for the largest proportion (30.25%),

followed by organic acids and derivatives (24.63%). Organic

heterocyclic compounds and organic oxygen-containing

compounds showed similar proportions, at 13.01% and 12.58%,

respectively. Benzene-type compounds, phenylpropanoids, and

polyketides constituted 7.44% and 6.35%, respectively.

Nucleosides, nucleotides and analogues, nitrogen-containing

organic compounds, alkaloids and derivatives, lignans,

neolignans, and related compounds collectively represented

5.74%. Subsequently, PLS-DA discrimination models were

constructed based on metabolites detected in positive ion mode

and negative ion mode, with results shown in Figure 2C, D. Both

models effectively differentiated CZS-FC, AH-AC, and BM-TC

samples but failed to distinguish SK-FC and YM-AC, likely due

to their shared geographical source (Daofu County and Ganzi

Prefecture), resulting in minimal metabolic differences.

Variable Importance in Projection (VIP) analysis of PLS-DA

results identified metabolites with VIP > 1 (Supplementary Table

S2), which were subjected to KEGG pathway enrichment analysis

(Figure 2E). KEGG enrichment revealed 23 pathways significantly

influenced by these differential metabolites, primarily involving

arginine and proline metabolism, biosynthesis of terpenoid and

polyketide alkaloids, lysine biosynthesis, alanine, aspartate, and

glutamate metabolism, phytohormone biosynthesis, and

biosynthesis of alkaloids derived from histidine and purine,

among others. Finally, the top five key metabolites were selected,

and their contents in FCB from different sources were analyzed

(Figure 2F). AH-AC samples exhibited the highest levels of these

metabolites across all sources, likely due to significant differences in

soil nutrients and mineral elements between wild and cultivated

habitats (Li et al., 2024). CZS-FC samples also showed higher

metabolite levels compared to other sources. This phenomenon

may be attributed to the fact that both locations are situated within

the Songpan region, which is the primary production area for FCB

(Lin et al., 2025). Concurrently, it is noteworthy that FCB specimens

from disparate origins manifest variable characteristics, which are

predominantly manifested in 23 metabolic pathways, encompassing

arginine, proline metabolism, and terpenoid biosynthesis (Wang

et al., 2025). These pathways may influence FCB’s adaptation to the

high-altitude environment, characterized by low temperatures,

dryness, and hypoxia, as well as the synthesis of alkaloids and
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saponins. This finding provides molecular-level evidence for the

geographical dependence of FCB’s secondary metabolites. These

differential metabolic pathways may affect the synthesis of active

components in FCB To test this hypothesis, the present study

conducted targeted metabolomics analysis on four key alkaloids.
3.2 Targeted analysis results

Multiple studies have demonstrated that alkaloids are the

primary active components responsible for the pharmacological

effects of FCB (Chang et al., 2020; Chen et al., 2020; Wang et al.,

2016). Therefore, this study quantified the contents of four major

alkaloids in FCB from different sources using UPLC-MS/MS. The

MS/MS fragmentation patterns of FCB alkaloids are shown in

Figure 3A, sequentially corresponding to peimisine, imperialine,

peiminine, and peimine. Notably, imperialine and peiminine are

isomers (C27H43NO3), resulting in two distinct retention time

peaks: 1.89 min for imperialine and 2.90 min for peiminine. The

alkaloid contents in FCB from different sources, calculated based on

standard calibration curves (Supplementary Table S1), are

illustrated in Figure 3B. All five FCB sources contained detectable

levels of peimisine and imperialine, while peiminine and peimine

were undetectable in some sources, consistent with findings

reported by Zhang et al. (2022).

Among the collected samples, SK-FC-derived FCB exhibited

significantly higher levels of peimisine (120.69-197.36 µg/g),

imperialine (64.71-253.62 µg/g), and peiminine (1.53-17.17 µg/g)

compared to other sources. This phenomenon is likely attributed to

unique soil nutrients, altitude, and climatic variables in Seka

Township, Daofu County, which regulate secondary metabolic

pathways and drive high alkaloid accumulation (Chen et al.,

2025). Only BM-TC-derived FCB contained elevated levels of

peimine (64.13-107.42 µg/g). Although BM-TC samples showed

lower peimisine, imperialine, and peiminine contents than SK-FC,

they uniquely accumulated peimine, which is absent in wild

varieties. Compared to cultivated sources, BM-TC samples

displayed higher levels of most alkaloids except peimisine.In

addition, Zhao et al. (2018) also demonstrated that tissue culture

enhances FCB alkaloid synthesis. The biosynthesis of peimine may

be regulated by the type and concentration of carbon sources in the

culture medium, leading to its enrichment in BM-TC-derived FCB

(Ptak et al., 2020). These findings indicate significant variations in

alkaloid profiles across FCB sources, particularly the specific

enrichment of peimine in tissue-cultured samples (BM-TC) and

the high accumulation of peimisine and imperialine in SK-FC

samples. The present study found that tissue culture technology

promoted the synthesis of FCB, providing new insights for

optimizing cultivation strategies. Subsequent experiments are

necessary to substantiate these findings. The present study was

conducted with the objective of investigating the potential driving

factors behind cultivation environment differences. To this end, a

further analysis of the nutrient content in FCB was conducted, with

a particular focus on its correlation with alkaloid synthesis.
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FIGURE 4

Elemental analysis of FCB. (A) PCA plot; (B) Content of eight mineral nutritional elements in FCB from different sources; (C) Correlation analysis
between mineral nutritional elements and alkaloids.
FIGURE 3

Targeted analysis of FCB. (A) Typical multiple reaction monitoring chromatograms of alkaloids in FCB from different sources; (B) Content of four
alkaloids in FCB from different sources.
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3.3 Results of mineral element
accumulation characteristics

The mineral element contents of FCB from different sources were

accurately determined using ICP-MS. Principal component analysis

(PCA) was performed on the mineral element data to visualize

similarities and differences among samples at the elemental level,

with results shown in Figure 4A. The PCA plot revealed significant

divergence of BM-TC samples from other sources, enabling effective

differentiation. CZS-FC, SK-FC, and YM-AC samples exhibited relative

proximity but showed no overlap. AH-AC, SK-FC, and YM-AC

samples demonstrated partial overlap, indicating some similarity.

Notably, AH-AC samples displayed pronounced separation along the

positive half-axis of PC2, while some SK-FC samples showed

separation trends along the negative half-axis of PC2.

The nutritional element contents of FCB from different sources

are illustrated in Figure 4B. BM-TC samples exhibited the highest

elemental accumulation, likely due to the high concentrations of

nutrients and trace elements in the culture medium used for tissue

cultivation (Deepika and Singh, 2021). Under laboratory

conditions, tissue-cultured FCB may accumulate more nutrients

compared to seed-derived plants, as the MS medium used in tissue

culture provides elements critical for later developmental stages,

enabling continued nutrient absorption post-transplantation.
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Additionally, phytohormones or chemical additives during

cultivation might influence elemental uptake (Tyunin et al.,

2020). Further experiments and data analyses are required to

clarify the exact mechanisms and optimize cultivation

protocols.Apart from BM-TC, CZS-FC samples contained higher

levels of Al (43.85-52.94 mg/kg), Fe (70.30-115.85 mg/kg), Mn

(13.65-16.06 mg/kg), and Na (15.09-21.63 mg/kg), potentially

linked to the native soil background of Songpan County, Aba

Prefecture (Song et al., 2022). AH-AC samples showed elevated

contents of K (7239.18-13342.10 mg/kg), Mg (518.71-818.63 mg/

kg), Cu (2.35-3.68 mg/kg), and Zn (12.86-18.11 mg/kg), likely

influenced by fertilizer application in artificial cultivation

(Brodowska et al., 2022; Pongrac et al., 2019). Subsequently,

correlations between mineral elements and the four major

alkaloids in FCB were investigated (Figure 4C). As shown in the

figure Fe, Mn, and Al exhibited significant positive correlations with

peiminine, while Mn showed a significant negative correlation with

peimisine. Additionally, most elements demonstrated negative

correlations with peimisine and imperialine but positive

correlations with peiminine and peimine. Currently, there are

relatively few reports on the relationship between nutritional

elements and the four main alkaloids in FCB The results of this

study establish a foundation for future research on the element-

mediated secondary metabolic regulation mechanisms in FCB.
FIGURE 5

Traceability model results. (A) Hyperspectral profiles of FCB from different sources; (B) PLS-DA results; (C) 3DCOS images of FCB from different
sources; (D) Model distortion rate; (E) Model accuracy rate; (F) Confusion matrix.
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3.4 Traceability model results

Multivariate analysis revealed significant differences in the

chemical profiles of FBC from different geographical sources.

Characteristic wavelength measurements have been demonstrated

to be suitable for the quantitative analysis of specific constituents

(Hu et al., 2024). Additionally, the heterogeneity of these chemical

profiles could be characterized using spectroscopic techniques.

Figure 5A presents the hyperspectral curves of FBC from diverse

geographical origins. Despite the observed variations in reflectance

intensity among the spectral curves, a similarity in the overall

absorption peak positions was noted. These characteristic

absorption peaks correspond to vibrational and stretching modes

of functional groups or chemical bonds within the phytochemical

constituents (Wei et al., 2024), indicating a high degree of

compositional similarity among the samples to a certain extent.

As demonstrated in Supplementary Figure S3A, the absorption

peaks for all samples were predominantly centered at 750, 800, 840,

and 970 nm. Among these, the absorption peak near 750 nmmay be

attributed to the third overtone of carbon-hydrogen (C-H)

vibrations in organic compounds, including sugars (e.g., glucose,

fructose), organic acids (e.g., tartaric acid), and alcohols (Cui et al.,

2025). The absorption band around 800 nm is potentially associated

with flavonoid components (Wang S. M. et al., 2022).The

absorption feature near 840 nm is likely related to C-H vibrations

in sugar-dominated organic compounds within the bulb (Shao

et al., 2024). The absorption band observed near 970 nm may be

attributed to the second harmonic of O-H vibrations, correlating

with sample moisture content (Gao et al., 2022). Alternatively, the

observed phenomenon may be associated with the third and second

harmonic of O-H vibrations in the chemical components of saponin

within this spectral region (Sun et al., 2024).

With respect to samples from disparate origins, comparative

analysis of Supplementary Figure S3A, B demonstrated that the

BM-TC sample exhibited diminished overall values across the 460-

750 nm range in comparison to other samples. This phenomenon

can be attributed to the comparatively brief growth period of the

tissue culture cultivation (BM-TC) relative to the seeding samples.

This relative paucity of growth time may result in lower

concentrations of chemical constituents, including saponins,

flavonoids, and polysaccharides, within this particular wavelength

range (Hu et al., 2024). This finding further underscores the

influence of sufficient cultivation duration on the chemical

composition of FCB derived from tissue culture cultivation.

Concurrently, the BM-TC and AH-AC samples exhibited a high

degree of similarity below 460 nm, suggesting that artificially

cultivated samples share certain compositional similarities. In

contrast, the hyperspectral curves of the four seedling-derived

FCB samples exhibited a high degree of consistency beyond 460 nm.

In general, hyperspectral technology can effectively distinguish

between cultivated and wild products. Hu et al. (2023) also found

similar results in their research. Hyperspectral spectra of wild FCB

from different sources show slight differences, making it difficult to

accurately identify them by visual observation alone. To address

this, this study applied machine learning techniques to analyze
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hyperspectral data from five FCB sources, aiming to achieve

traceability of FCB origins.

This study first performed dimensionality reduction analysis on

the hyperspectral dataset of FCB and constructed a PLS-DA model,

with results shown in Figure 5B. The results revealed extensive

overlap in the identification regions of the five FCB sources, with

some samples remaining unclassified, indicating the inability of

traditional PLS-DA to distinguish FCB origins. To overcome these

limitations, deep learning methods were introduced to develop a

traceability model.

Compared to traditional machine learning models, the

identification system combining vis ible-near-infrared

spectroscopy with deep learning models eliminates the need for

complex preprocessing while achieving higher accuracy and

superior generalization capability, demonstrating greater precision

and robustness (Wang et al., 2024b). The study produced 3DCOS

spectra, as demonstrated in Figure 5C, derived from hyperspectral

datasets originating from various sources of FCB These datasets

were subsequently employed for the ResNet modeling process.The

relationships between Acc/Loss value and epochs are depicted in

Figure 5D, E, respectively, while the external validation results are

shown in Figure 5F.

As shown in the above figure, when the iteration number

reached 22, the ResNet model achieved 100% accuracy for both

the training and testing sets, with a loss value of 0.334. Among the

15 samples in the external validation set, 13 were correctly classified,

while 2 samples were misclassified, yielding an accuracy of 86.667%,

demonstrating robust classification performance. The two

classification errors involved a CZS-FC sample misclassified as

YM-AC and a BM-TC sample misclassified as CZS-FC. These

errors may arise from the fact that all samples were collected

from Sichuan Province, China, where some samples exhibit

minor differences in chemical composition. Additionally, the

limited sample size may have impacted the model’s generalization

capability, leading to classification errors in the external

validation set.

Based on these results, the ResNet model constructed using

3DOCS images in this study excels across multiple performance

metrics, achieving high accuracy. It also exhibits strong

generalization ability, enabling precise identification of FCB

feature differences under varying conditions and thereby realizing

high-accuracy traceability of FCB from different sources.The

multidimensional analysis results revealed significant differences

in the chemical characteristics of FCB from different sources. The

chemical heterogeneity can be characterized using spectroscopic

techniques. Consequently, this study employed hyperspectral data

to construct 3DCOS images, thereby capturing the microscopic

chemical fingerprints of FCB. The integration of 3DCOS images

with the ResNet deep learning model resulted in the establishment

of a traceability model that distinguishes FCB from different origins.

The experimental results demonstrated that the model achieved

100% accuracy on the testing set and 86.67% accuracy on the

validation set, thereby significantly outperforming traditional PLS-

DA methods. Although classification errors occurred for a few

samples in external validation due to geographical proximity or
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chemical similarity, the model’s overall performance highlights its

high reliability and generalization potential for FCB traceability.

This study corroborates the prospective implementation of spectral

technology in conjunction with multivariate data processing

methodologies for the assessment of quality disparities in TCM

(Li et al., 2023; Wu et al., 2023; Qi et al., 2024).
4 Conclusion

This study revealed the significant effects of geographical origins

and cultivation methods on the metabolite composition, alkaloid

content, and mineral element accumulation in FCB through

multidimensional analyses, thereby establishing a “metabolism-

component-environment” multidimensional evaluation framework.

The results demonstrate that FCB quality characteristics exhibit

significant heterogeneity due to environmental factors such as soil

nutrients, climatic conditions, and cultivation practices. The ResNet

deep learning model, constructed using hyperspectral-derived 3DCOS

images, achieved 100% testing/validation accuracy and 86.67% external

validation accuracy, providing an efficient method for precise FCB

traceability. Integrating multidimensional analysis with deep learning

establishes the theoretical foundations for FCB quality evaluation and

origin tracing, offering fundamental support for further development

and utilization of FCB resources. To enhance the generalizability and

translational potential of the model, future research should prioritize

the following: (1) Cross-regional validation: The expansion of sampling

to encompass core production zones, including Yunnan, Tibet and

Qinghai, among others, is imperative for the execution of large-scale

cohort studies. This expansion is necessary to optimize parameters and

validate geographical transferability. (2) Integrated intelligent tracing:

Developing a tripartite decision-making model (“chemical fingerprint-

environmental imprint-agronomic indicators”) by combining

hyperspectral imaging with key environmental covariates (elevation

gradients, soil micronutrient profiles) and cultivation practices to

improve robustness in complex ecosystems; (3) Methodology

transfer: The multidimensional 3DCOS-ResNet framework is applied

to geographically sensitive medicinal materials to establish

standardized quality traceability protocols.
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