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Early detection and severity
classification of verticillium
wilt in cotton stems using
Raman spectroscopy and
machine learning
Xuanzhang Wang1,2†, Jianan Chi1,2†, Xiao Zhang1,2*,
Guangshuai Lu1,2, Xuan Li1,2, Chunli Wang1,2, Lijun Wang3

and Nannan Zhang1,2*

1Country College of Information Engineering, Tarim University, Alar, China, 2Key Laboratory of Tarim
Oasis Agriculture (Tarim University), Ministry of Education, Alar, China, 3Analysis and Testing Center,
Tarim University, Alar, China
The early detection of Verticillium wilt (VW) in cotton is a critical challenge in

agricultural disease management. Cotton, a vital global textile resource, is

severely threatened by this devastating disease. Traditional diagnostic methods,

which often rely on manual expertise or destructive sampling, are limited by low

efficiency and high subjectivity. In recent years, Raman spectroscopy has

emerged as a promising solution due to its rapid, non-destructive, and highly

sensitive characteristics for plant disease detection. In this study, we analyzed

cotton stems using Raman spectroscopy, applying Savitzky-Golay (SG)

smoothing combined with multiple preprocessing methods including Scaling

and Shifting (SS), Standard Normal Variate (SNV), inverse first-order differential (1/

SG)′, and multiplicative scatter correction (MSC). For baseline correction, we

employed polynomial fitting (PolyFit) and adaptive iterative weighted penalized

least squares (airPLS). Feature selection was performed using principal

component analysis (PCA), successive projection algorithm (SPA), and

competitive adaptive reweighted sampling (CARS).Three optimized models

were developed: support vector machine (SVM) with weighted mean of

vectors (INFO) algorithm, random forest (RF) enhanced by particle swarm

optimization (PSO), and long short-term memory (LSTM) network optimized

via chameleon swarm algorithm (CSA).The results show that the INFO-SVM

model with SG-airPLS-(1/SG)′ -CARS preprocessing demonstrated superior

performance, achieving 97.5% accuracy (0.974 F1-score) on training data and

90.0% accuracy (0.867 F1-score) on validation data, outperforming both PSO-RF

and CSA-LSTM models. These results confirm that Raman spectroscopy

integrated with optimized machine learning enables accurate VW classification

in cotton stems. This method enables early disease detection during infection,

facilitating timely fungicide application and reducing yield losses.
KEYWORDS

Raman spectroscopy, cotton stems, verticillium wilt, disease severity classification,
machine learning, CARS-INFO-SVM
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1 Introduction

Cotton (Gossypium spp.) is a vital global cash crop and a key

raw material for the textile industry (Arya and Sarkar, 2024). As the

world’s largest cotton producer and consumer, China plays a pivotal

role in sustaining the global textile supply chain. Xinjiang Uygur

Autonomous Region is the dominant cotton-producing area in

China, contributing 83.2% of the country’s total cotton cultivation

area in 2022 (National Bureau of Statistics of China, 2022). The

region’s favorable natural conditions, including abundant sunlight

and suitable soil, support high-quality cotton production, meeting

both domestic and international demand.

However, cotton production faces significant challenges from

pests and diseases, particularly Verticillium wilt (VW). In Xinjiang,

nearly half of the major cotton-growing areas are affected by

moderate-to-severe VW, with 24.1% classified as severely infected

(Liu et al., 2015). This disease severely reduces cotton yield and

quality, causing annual economic losses of 1.5 to 2 billion yuan in

China (Cai et al., 2009; Wang, 2022). Early detection and effective

management of VW are therefore critical to minimizing its impact

on cotton production.

Cotton VW is a trans-regional disease characterized by

widespread incidence, high prevalence, and a significant

probability of occurrence (Liu et al., 2015). It is one of the most

serious diseases affecting cotton production both in China and all

over the world (Wang, 2012). Verticillium dahlia (V. dahliae) is a

soil-borne fungus that primarily infects vascular bundle systems of

cotton plants. After microsclerotia germinate in the soil, the

mycelium can invade directly through cotton root hair cells, root

epidermal cells, or root wounds (Bhandari et al., 2020; Zhu et al.,

2023; Wu et al., 2025). It then penetrates the cortex and spreads

throughout the plant via vascular conduits (Bolek et al., 2005). This

infection mechanism complicates the early detection of VW,

particularly during the seedling stage, because cotton plants

typically do not exhibit obvious external symptoms. However,

dissection examinations have revealed yellow-brown lesions in the

xylem conduits of cotton stems (Palanga et al., 2021). As the disease

progresses, cotton plants may show typical symptoms after the buds

emerge, including green loss, yellowing, curling, and drying of leaf

tissue between the main veins of the leaf blades (Zhang et al., 2025).

In severe cases, this can lead to complete wilting and shedding of

leaf blades (Yang et al., 2022). Owing to the absence of prominent

external symptoms in the early stages of VW, its detection and

identification pose significant challenges. Nevertheless, early

diagnosis is essential to control the spread of the disease and to
Abbreviations: VW, Verticillium wilt; SG, Savitzky-Golay; SS, Scaling and

Shifting; SNV, Standard Normal Variate; MSC, multiplicative scatter

correction; PolyFit, polynomial fitting; airPLS, adaptive iterative weighted

penalized least squares; PCA, principal component analysis; SPA, successive

projection algorithm; CARS, competitive adaptive reweighted sampling; SVM,

support vector machine; INFO, weighted mean of vectors; RF, random forest;

PSO, particle swarm optimization; LSTM, long short-term memory; CSA,

chameleon swarm algorithm; V. dahliae, Verticillium dahliae; SNR, signal-to-

noise ratio.
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minimize economic losses. Consequently, the development of

efficient and accurate early detection techniques has become a

critical focus of current research on the management of cotton

VW (Klosterman et al., 2009).

Currently, there are numerous detection methods for VW in

cotton, however, traditional approaches have several disadvantages.

The existing classification for early detection of cotton VW relies

primarily on field identification and modern laboratory biochemical

detection techniques (Jiang and Liu, 2002). Field identification

typically necessitates manual assessment of diseased plants, which

is not only time-consuming but also fails to accurately identify the

disease during the incubation period (i.e., the early infection stage

without typical symptoms). This limitation extends the timeframe

for disease identification and creates conditions conducive to large-

scale outbreaks of VW in cotton fields. While current laboratory-

based methods like ELISA and PCR provide reliable pathogen

identification, they exhibit fundamental limitations for early

Verticillium wilt detection (Zhang et al., 2014). These techniques

primarily target late-stage infection markers - ELISA detects

pathogen-specific antibodies (Pérez-Artés et al., 2000; Yucel et al.,

2005; Xu and Chen, 2000) and PCR identifies microbial DNA (Jiang

and Liu, 2002) - both requiring substantial pathogen accumulation

for accurate diagnosis. This inherent detection threshold means

infections can only be confirmed after significant disease

progression, missing the critical early intervention window.

Consequently, these methods systematically miss the initial

infection window when disease control measures would be most

effective. These limitations have significantly hindered the rapid

development of plant disease detection and control technologies.

With advancements in technology, machine vision has been

introduced in the realm of plant disease detection, significantly

enhancing information collection efficiency and simplifying

operational procedures (Lu et al., 2023). However, machine vision

technology depends on the visible symptoms of the disease, and

cannot capture the physiological responses of cotton plants during

the early stages of infection (Mohanty et al., 2016). In contrast,

hyperspectral imaging (HSI) technology, which captures both

spatial and spectral information across hundreds of contiguous

narrow bands, has emerged as a powerful tool for pre-symptomatic

disease detection. Numerous studies have demonstrated its

capability to identify subtle physiological and biochemical

changes in cotton plants induced by V. dahliae infection, such as

alterations in leaf temperature, chlorophyll fluorescence, and

cellular structure (Lowe et al., 2017; Yang et al., 2024). However,

its effectiveness in the very early, pre-symptomatic phase can be

limited by the depth of tissue penetration and the relatively weak

spectral signals associated with initial pathogen activity. Because

cotton VW typically does not exhibit obvious external symptoms

during the early stages of infection, both existing manual

identification methods and machine vision techniques struggle to

achieve accurate disease detection in this initial phase (Yang et al.,

2022). Although traditional disease management strategies have

reduced the spread and impact of this disease, they continue to face

significant challenges in terms of early detection. Consequently,

there is an urgent need to develop detection technologies capable of
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identifying VW during the pre-symptomatic phase, when early

intervention can most effectively prevent disease establishment

and spread.

Raman spectroscopy is a form of scattering spectroscopy that

utilizes inelastic scattered light to identify the vibrational states of

molecules (Schulz and Baranska, 2007). Each Raman peak in the

spectrum corresponds to a specific molecular bond, allowing for

molecular identification of analytes through the generation of a

unique vibrational fingerprint (Saletnik et al., 2024). This technique

is rapid, highly sensitive, and non-destructive, demonstrating

significant potential in the field of plant disease detection (Negi

and Anand, 2024). Raman spectroscopy can capture early

physiological and biochemical changes associated with diseases by

analyzing the molecular vibrational information of plant tissues,

thereby facilitating early diagnosis (Juárez et al., 2023). In recent

years, the application of Raman spectroscopy in agriculture has

become an essential tool for disease detection owing to its

advantages such as speed and environmental friendliness, leading

to improved research outcomes. Tan et al. (2015) used Raman

spectroscopy to analyze healthy and infected rice leaves affected by

rice blast disease, enabling early detection in cold regions. Whereas

Zhang (2016) used spectral and spectral imaging techniques to

detect Sclerotinia stem rot in oilseed rape leaves, Farber et al.

(2019b) applied Raman spectroscopy to identify rose rosette

infection in rose plants. Farber Charles et al. used Raman

spectroscopy to identify rose rosette infection (Farber et al.,

2019b), and Farber Charles et al. detected wheat streak mosaic

virus and barley yellow dwarf virus in wheat (Farber et al., 2020).

Mandri et al. employed Raman spectroscopy to identify tomato

plants infected with Tomato yellow leaf curl Sardinia virus and

Tomato spotted wilt virus (Mandrile et al., 2019). Sanchez Lee et al.

employed Raman spectroscopy for early detection and confirmatory

diagnosis of Xanthomonas-induced diseases in citrus and grapefruit

trees, demonstrating its potential as a sensitive alternative to qPCR-

based pathogen detection (Sanchez et al., 2020). Vallejo-Perez et al.

(2016), employed a portable Raman spectrometer to acquire

spectral signatures from healthy, latent, and ‘Candidatus’

Liberibacter asiaticus-infected citrus leaves, utilizing PCA-LDA

for spectral differentiation with 89% diagnostic accuracy. These

studies demonstrate that Raman spectroscopy can identify crop-

specific components, such as carbohydrates, amino acids, proteins,

and lipids, through spectral peak analysis (Schulz and Baranska,

2007; Saletnik et al., 2024). They also highlight its significant

potential for the identification and differentiation of early crop

diseases by detecting pathogen-specific changes in plant

metabolism (Tan et al., 2015; Zhang, 2016; Farber et al., 2019b,

2020; Mandrile et al., 2019; Sanchez et al., 2020). Furthermore, the

use of portable Raman spectrometers enhances the practicality of

Raman spectroscopy, enabling its direct application in the

confirmatory diagnosis of viral diseases with high diagnostic

accuracy (Vallejo-Perez et al., 2016; Sanchez et al., 2020). The

objective of this study was to establish a rapid and accurate

detection model for Verticillium wilt in cotton stems that could

differentiate between varying degrees of cotton stem Verticillium

wilt. This study aimed to provide an efficient and reliable technical
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tool for early diagnosis, precise prevention, and control of cotton

stems VW. In practical applications, this technology can assist

cotton farmers in the timely detection of issues during the early

stages of a disease, enabling them to implement targeted preventive

and control measures. These measures may include the rational

application of fungicides and adjustments to planting strategies,

which can effectively mitigate the spread of the disease, reduce yield

loss, and safeguard the quality of cotton fiber. This is of great

significance for promoting sustainable development of the cotton

industry and enhancing the economic and social benefits of cotton

production. Furthermore, this study offers new ideas and methods

for the detection and diagnosis of other plant diseases, thereby

advancing the application of spectral technology and machine

learning in the agricultural sector.
2 Materials and methods

To establish a rapid and accurate detection model for cotton

stem blight and distinguish different degrees of cotton stem blight,

this study adopted the technical process shown in Figure 1. First, in

the spectral acquisition stage (Figure 1A), cotton samples were

prepared and their Raman spectra were collected. Then, in the data

preprocessing stage (Figure 1B), steps such as removing cosmic

rays, baseline correction, and applying algorithms like SG, SNV,

MMS, (1/SG)’, and MSC were carried out. Next, in the feature band

selection stage (Figure 1C), methods including PCA, CARS, and

SPA were utilized. Finally, in the stage of building machine learning

classification models (Figure 1D), models such as INFO-SVM,

PSO-RF, and CSA-LSTM were constructed for classification.
2.1 Test sample collection

In this controlled study, the experimental samples were selected

from Tahe 2 cotton plants grown in pots in sterilized field soil (pH

8.2) under the conditions of the cotton growing greenhouse at

Tarim University (day/night temperature difference of 28/22 °C,

relative humidity of 60%, and a photoperiod of 14 h) and inoculated

at the four-leaf stage with five different concentrations of

Verticillium dahliae strains by root dipping Vd080 conidia (1 ×

10³, 1 × 104, 1 × 105, 1 × 106, and 1 × 107 conidia/mL, courtesy of the

Plant Pathology Laboratory, Tarim University) for simulating early

infestation. Disease severity was categorized into five classes based

on symptom development at 21 days post-inoculation (dpi): class I

(0%, no symptoms), class II (vascular browning ≤ 25%), class III

(25-50%), class IV (50-75%), and class V (≥75%, severe wilting), as

shown in Figure 2A. Figure 2A illustrates representative images of

cotton stems for each disease severity class, highlighting the

progression of vascular browning and wilting across the five

grades. Twenty biological replicates were performed at a time.

These replicates consisted of 20 independent experiments, each

with a separate set of cotton plants grown and inoculated under

identical conditions. Stem segments (10 cm long) were collected 3

cm above the soil level, carefully avoiding epidermal and pith tissue.
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The consistency of the tissue sections was strictly controlled during

sampling to minimize background interference. Ten vascular

regions from each sample were analyzed using Raman

spectroscopy within 24 hours of collection (stored at 4°C) to

detect concentration-dependent pathological changes. Previous

studies have confirmed that storing plant tissue samples at 4°C

for up to 24 hours does not significantly alter Raman spectra,
Frontiers in Plant Science 04
ensuring the reliability of the spectral data (Schulz and Baranska,

2007; Sanchez et al., 2020).

2.2 Raman spectroscopy data acquisition

The spectral data acquisition for this study was conducted at the

Analysis and Testing Center of Tarim University using a HORIBA
FIGURE 1

Methodological scheme for the rapid grading of cotton stalk Verticillium wilt (VW) disease using Raman spectroscopy and machine learning.
(A) Sample Processing and Raman Spectrum Acquisition: Cotton stalks were collected, preprocessed, and their Raman spectra were acquired using
Raman confocal microscopy. (B) Data Preprocessing: Spectral data were processed by removing cosmic rays, performing baseline correction, and
applying smoothing techniques. (C) Feature Selection: Principal Component Analysis (PCA), Competitive Adaptive Reweighting Sampling (CARS), and
Successive Projection Algorithm (SPA) were applied to select key spectral features from the preprocessed data. (D) Machine Learning Model
Development: Classification models, including Weighted Mean of Vectors-Support Vector Machine (INFO-SVM), Particle Swarm Optimization-
Random Forest (PSO-RF), and Chameleon Optimization Algorithm-Long Short-Term Memory (CSA-LSTM), were constructed to evaluate the
classification performance of Raman spectra for cotton stalks with varying VW disease severity levels.
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LabRAM Soleil-type Raman microscope (France) equipped with a

532 nm laser light source to minimize fluorescence background

interference. The experimental parameters were established as

follows: 42 mW laser power (to prevent thermal damage to the

samples), a 20-second integration time (to enhance the signal-to-

noise ratio [SNR]), 600 nm grating, and 50× objective lens (NA =

0.75). The spectra spanned a range of 400–1800 cm-¹ with a

resolution of 1.15 cm-1. The samples were categorized into five

grades based on disease severity (Grades I–V) determined by the

percentage of lesions on the stem surface, which ranged from 0% to

≥75%. For each group, 20 cotton stems were selected, and 0.5–1 cm

transverse slices of the stem segments were prepared by cutting the

roots at 0–3 cm. These slices were then washed and dried in sterile

deionized water, and the vascular bundles were mounted on slides

with the cut surface facing upwards. To minimize the effects of

tissue heterogeneity, 10 sites within a 1 mm² area were randomly

selected in the xylem region of each sample for spectral acquisition,

and the average value was recorded as the Raman spectrum of the

sample (Figure 2B). Figure 2B shows representative Raman spectra

for each disease severity grade, with key spectral peaks indicating

molecular changes associated with Verticillium dahliae infection

across the five classes. In total, 100 spectral data points were

obtained. The wavelength was calibrated in silico (520.7 cm-1

peak) throughout the experiment, with calibration performed

daily before each experimental session to ensure spectral

accuracy. Ambient humidity was maintained at 40–50%, and the

stability of the instrument was verified (with laser power

fluctuations <2% and a repeat spectral correlation coefficient

>0.98) to ensure that the data were reproducible and correlated

with the pathological features.
Frontiers in Plant Science 05
2.3 Data preprocessing and feature
selection

2.3.1 Preprocessing methods
Lignin in cotton stems contains aromatic ring structures that

tend to produce a strong fluorescent background under laser

excitation (Laehdetie et al., 2013). In addition, metabolites of

organic matter such as cellulose and hemicellulose introduce

interference signals into the spectrum. These interferences mask

the Raman signals, leading to a spectral baseline drift and increased

noise (Zhang et al., 2024). To address these issues when measuring

the Raman spectra of cotton stems, the built-in algorithm of the

LabSpec6 software was initially used to automatically identify and

interpolate high-intensity transient spikes triggered by cosmic rays

(Cappel et al., 2010). This step helps mitigate the anomalous signal

interference caused by high-energy particles (Ehrentreich and

Sümmchen, 2001). To address the baseline drift caused by the

strong fluorescence background of the cotton stem tissue, this study

compared two baseline correction strategies: polynomial fitting

(PolyFit) and airPLS. The former utilizes low-order polynomials

to simulate the fluorescence trend but is vulnerable to interference

from complex spectral regions (Zhao et al., 2007). In contrast, the

latter uses asymmetrically weighted iterative optimization for

dynamic baseline fitting, allowing it to better adapt to the

heterogeneous fluorescence characteristics of plant tissues (Zhang

et al., 2010). This approach effectively reduces interference, thereby

enhancing the quality of the spectral data and improving the

accuracy of subsequent analyses (Liu et al., 2019; Zhang et al., 2010).

Photon noise was also suppressed using Savitzky-Golay (SG)

processing to enhance the SNR while preserving the characteristic
URE 2FIG

Comparison of cotton VW appearance, stem characteristics, and raw Raman spectra for different disease classes. (A) Schematic diagram of the
appearance of cotton plants with VW disease classes I–V, stem cross-section, and selected points (marked by green dots) irradiated by Raman
spectra under a microscope. (B) Original Raman spectra corresponding to the five VW disease classes.
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peak morphology (Clupek et al., 2007). The optical range difference

was eliminated through scaling and shifting (SS), the effects of

scattering were compensated using a standard normal variate

(SNV), and the effect of surface roughness was addressed using

multiplicative scatter correction (MSC) (Afseth et al., 2006; Dhanoa

and Lister, 1994; Kachrimanis et al., 2007). Inverse first-order

differentiation (1/SG)′ was introduced to improve the resolution

of weak peaks. All algorithms were implemented on the Python 3.10

platform using the sci-kit-learn library, which provides a solid

foundation for high-quality spectral data for the subsequent

hierarchical modeling of VW.

2.3.2 Spectral characterization band selection
PCA, SPA, and CARS were used in this study to address the

redundancy inherent in high-dimensional data and enhance the

extraction of biochemical features specific to VW. PCA identifies

the principal components that capture the maximum variance

through an orthogonal transformation. However, this process

may diminish the local nonlinear responses associated with

disease classification while compressing the data dimensionality

(Robert et al., 2023; Tariq et al., 2024). SPA iteratively selects feature

wavelengths based on the least covariance criterion, and its greedy

search strategy enhances model interpretability, although it may

lack sensitivity to synergistic effects among discrete bands (Balabin

and Smirnov, 2011; Ma et al., 2024). By contrast, CARS integrates

spectral features with disease phenotypic correlations using Monte

Carlo sampling and dynamic weighting mechanisms. To improve

the stability, the randomness of variable screening should be

enhanced through repeated calculations (Li et al., 2014). The

application of these three algorithms provides a robust

spectroscopic foundation for the development of an effective

disease classification model using multidimensional feature fusion.

After preprocessing, the Raman spectral data were stratified and

randomly divided into a training set and a test set at an 80:20 ratio

to construct the classification model.
2.4 Model construction methods

2.4.1 INFO-SVM modeling
A support vector machine (SVM) is a machine-learning

algorithm grounded in a robust theoretical framework known for

its exceptional classification performance. The effectiveness of

SVMs is significantly influenced by the selection of the kernel

function parameters g and penalty coefficient C. However,

optimizing these parameters often leads to local optima and

incurs high computational costs (Li et al., 2015). To address these

challenges, this study introduces an weighted mean of vectors

(INFO) algorithm. The primary objective of the INFO-SVM

method is to minimize the classification error while maximizing

the generalization performance of the model within a complex

parameter space by optimizing the kernel function parameters and

penalty coefficients of the SVM (Ahmadianfar et al., 2022; Wan

et al., 2024). By integrating an enhanced Nelder-Mead method with

a fuzzy optimization strategy, the search step size is dynamically
Frontiers in Plant Science 06
adjusted, and fuzzy logic is used to manage the uncertain

parameters. This approach aims to minimize the classification

error and maximize the generalization performance of the model

while efficiently searching for an optimal solution in an intricate

parameter space (Ahmadianfar et al., 2022; Wan et al., 2024). The

core process in Figure 3A: in which 80% of the preprocessed Raman

spectral data from cotton stems were used as the training set

(x_i, yi)
� �n

i=1, where xi is the Raman spectral feature vector of cotton

stems, and yi is the corresponding classification label for cotton

stem Verticillium wilt. The goal of SVM is to identify the optimal

classification hyperplane WT f(x)+b=0, where f(x) is the kernel

function mapping, W is the weight vector, and b is the bias term.

The optimization problem can be expressed as (Equation 1)

m in
W,b,x

1
2
∥W ∥2 +Co

n

i=1
xi (1)

The constraints are (Equation 2):

yi(W
Tf(x_i) + b ≥ 1 − xi,   xi ≥ 0,   i = 1,…, n (2)

where xi are the slack variables and C is the penalty coefficient.

The INFO algorithm evaluates the model performance by

dynamically optimizing the kernel function parameters g and

penalty coefficients C using the fitness function f (g, C) (Equation 3):

f (g ,C) = Accuracy(g ,C) − l · Generalization Error(g ,C) (3)

Where l is a trade-off factor. The INFO algorithm iteratively

updates the parameter combinations (g, C) using the Nelder-Mead

method until the fitness function converges to the global local

optimal solution (Equation 4).

(g *,C*) = argmax
g ,C

f (g ,C) (4)

Ultimately, the SVM model is trained using optimal parameters

(g*, C *), which significantly enhance the classification accuracy and

generalization performance while simultaneously mitigating the

risk of falling into a local optimum, which is a common issue

with traditional methods. Its efficient parameter-search strategy

reduces computational costs, and when combined with fuzzy logic,

improves the adaptability of the model to complex data

distributions. This approach offers an effective and robust

solution for the classification of cotton stem Verticillium wilt

(Cortes and Vapnik, 1995; Ahmadianfar et al., 2022; Wan

et al., 2024).

2.4.2 PSO-RF modeling
The PSO-RF model offers an efficient and robust solution for

classifying cotton stem Verticillium wilt by integrating particle

swarm optimization (PSO) with random forest (RF) algorithms

(Chatrsimab et al., 2020). As an ensemble method, RF demonstrates

exceptional classification performance when handling high-

dimensional, nonlinear Raman spectral data by constructing

multiple decision trees and aggregating their predictions (Khan

et al., 2017). However, the effectiveness of the RF is significantly

influenced by the selection of hyperparameters (e.g., the number of

trees, maximum depth, and minimum number of samples for
frontiersin.org
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splits). Traditional optimization methods, such as grid search,

struggle to quickly identify optimal parameter combinations in

complex data scenarios because of their high computational cost

and low efficiency. Consequently, PSO algorithms are introduced to

address these challenges. The PSO algorithm is based on the

principle of swarm intelligence optimization (Bergstra and

Bengio, 2012; Chatrsimab et al., 2020). It efficiently explores the

hyperparameter space and approximates the global optimal

solution by simulating the dynamic updates of particle positions

and speed adjustments within the search space as well as a

mechanism for sharing information about both global and local

optimal solutions (Wu et al., 2023). The workflow of the PSO-RF

algorithm is divided into two main stages. In the first stage, the RF

hyperparameters are optimized using the PSO algorithm, which

searches for the optimal parameter combinations in the

hyperparameter space through continuous iterations. In the

second stage, the optimized hyperparameters are applied to the

RF model. The RF model is trained using the training data, and the

trained model is subsequently used to classify and predict unknown

data (Chatrsimab et al., 2020; Xiao et al., 2022). The specific process

in Figure 3B: First, the position vector xi of each particle in the

swarm is defined and the particle velocity Vi is initialized. The

fitness function f(xi) (Equation 5), typically defined as the

classification accuracy, is used to evaluate the performance of the

RF model, as follows (Equation 6):

xi = (ntrees, dmax , smin) (5)

f (xi) = Accuracy(xi) (6)
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where the hyperparameters of RF, ntrees, dmax, and smin, denote

the number of trees, the maximum depth, and the minimum

number of sample splits, respectively. The particles update their

speed and position according to the individual historical optimal

position Pi and the global optimal position g (Equations 7, 8).

Vi(t + 1) = w · Vi(t) + c1 · r1 · (Pi − xi(t)) + c2 · r2 · (g − xi(t)) (7)

xi(t + 1) = xi(t) + Vi(t + 1) (8)

where w is the inertia weight, c1 and c2 are the learning factors,

r1 and r2 are random numbers. The optimal hyperparameter

combination x* is gradually approximated by iteratively updating

the particle positions. Ultimately, the RF model is trained using x*,

and its classification performance is evaluated on a test set to

achieve an accurate classification of cotton stem Verticillium wilt.

Applying PSO to the hyperparameter optimization of RF not only

significantly enhances the accuracy and generalization capabilities

of the model for grading cotton stem Verticillium wilt but also

dramatically reduces computational costs. In addition, it adapts well

to various data distributions and disease grading scenarios,

demonstrating exceptional generalization ability. This approach

provides reliable technical support for early diagnosis of the

disease and precise prevention and control.

2.4.3 CSA-LSTM modeling
Long short-term memory (LSTM) is a deep learning model that

effectively processes time-series data and addresses the issues of

gradient vanishing and gradient explosion that are commonly

encountered in traditional recurrent neural networks. This is
FIGURE 3

Optimization Algorithm Flowchart. (A) INFO algorithm-optimized SVM model parameters and classification process. (B) RF model training,
evaluation, and classification process based on PSO-optimized hyperparameters.
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achieved by introducing a gating mechanism that enables the

retention of long-term information (Zhang et al., 2018). However,

the performance of LSTM is highly dependent on the selection of

the hyperparameters. Traditional optimization methods, such as

grid search and stochastic search, are often inefficient and

susceptible to local optima, which can hinder improvements in

the model performance (Bergstra and Bengio, 2012). Chameleon

swarm algorithm (CSA) mimics the predatory behavior of

chameleons and exhibits strong global search capabilities and

rapid convergence through a unique visual perception and fast

localization mechanism, effectively mitigating the local optimum

problem (Braik, 2021). The core of the CSA-LSTM algorithm is to

use CSA to optimize the hyperparameters of LSTM networks,

thereby enhancing the classification performance of LSTM in

grading cotton stem Verticillium wilt (Abba et al., 2023). The

workflow is as follows. First, the chameleon population is

randomly initialized, with the position vector of each chameleon

representing a set of hyperparameter combinations for the LSTM.

Subsequently, these hyperparameter combinations are applied to

the LSTM models and the performance of each model is evaluated

using a defined fitness function. The predatory behavior of the

chameleon is simulated in three phases: searching for, locating, and

capturing prey. During this process, the position of the chameleon

is continuously adjusted within the search space, allowing the

optimization of the LSTM hyperparameters. After numerous

iterations, the optimal combination of hyperparameters is selected

to initialize the LSTMmodel (Al Bataineh and Kaur, 2021) once the

preset termination conditions are met. Ultimately, the optimized

LSTM model was used to classify the cotton stems VW data to

achieve accurate disease classification. The integration of CSA into

LSTM hyperparameter optimization is anticipated to significantly

enhance model performance and provide efficient and reliable

technical support for practical applications such as the

classification of cotton stem Verticillium wilt.
2.5 Model evaluation indicators

In this study, accuracy (Equation 9) and F1-score (Equation 10)

were used as the primary evaluation metrics to quantify the overall

performance of the model in grading the severity of cotton stem

Verticillium wilt. The accuracy reflects the overall classification

accuracy of the model and is suitable for assessing its diagnostic

efficacy, such as distinguishing between different levels of VW

infection. However, its sensitivity to class imbalance may lead to

an overestimation of the predictive advantage of majority classes

(Mandrile et al., 2019). To address this limitation, we introduced the

F1-score, which harmonizes the means of precision and recall. This

approach emphasizes the risk of detecting early stage diseases in

field samples due to hidden symptoms, aligning with the

fundamental requirements of “early diagnosis and early

intervention” in plant pathology (Barbedo, 2019).

Accuracy = TP + TN=(TP + TN + FP + FN) (9)
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F1 − Score = 2 · (Precision · Recall)=(Precision + Recall) (10)

where Precision is the precision rate and Recall is the recall rate.

The advantages of combining these two metrics are particularly

significant in the grading scenario for VW. The accuracy metric

validates the model’s consistent identification of dominant

symptoms, such as vascular browning, whereas the F1-score

enhances the sensitivity to subtle spectral features present during

the initial infection stage, thereby mitigating the model bias caused

by a skewed sample distribution (Vallejo-Perez et al., 2016). The

experimental component further confirmed the robustness of the

index through standard deviation analysis using ten-fold cross-

val idation. In addit ion, i t addressed the cross-grade

misclassification pattern by integrating the confusion matrix,

which provided a foundation for optimizing the grading

thresholds. This further demonstrates the capability of the

evaluation system to characterize the dynamic pathological

mechanisms of VW.
3 Results

3.1 Spectral preprocessing

The parameters for each method were optimized during the

preprocessing stage. For the SG processing, the number of

smoothing points was set to eight to effectively denoise the data

while preserving the primary features of the spectrum. In the

baseline correction step, this study compared two commonly used

methods, PolyFit and airPLS. The PolyFit method estimates the

baseline by fitting a low-order polynomial with a chosen order of

three (Gan et al., 2006; Lieber and Mahadevan-Jansen, 2003). This

choice strikes a balance between the fitting accuracy and the risk of

overfitting. Although this method is computationally simple and

easy to implement, it may lack the flexibility required to address the

complex baselines (Gan et al., 2006). In contrast, the airPLS method

optimizes the number of iterations and penalty weights through

cross-validation, allowing better management of the nonlinear

baseline drift and complex fluorescence backgrounds (Zhang

et al., 2010). In addition, SS and SNV transformations were used

to eliminate discrepancies in the spectral intensity, whereas (1/SG)′
was applied to enhance subtle features within the spectra. Figure 4A

presents a comparison between the original and Raman spectra

after baseline correction. As illustrated, airPLS baseline correction

significantly suppressed the background fluorescence and noise

signals in the spectra. The intensity range of the Raman peaks

became more concentrated, the baseline fitting curve aligned more

closely with the low-frequency portion of the original spectra, and

the main feature peaks were more distinctly visible, allowing for

better capture of the complex baseline variations. However, the

polynomial-fit-corrected spectra exhibited overfitting or

underfitting in certain regions, which led to distortions in the

intensities or shapes of the characteristic peaks. This indicates

that airPLS is more effective in managing complex fluorescence

backgrounds, and its ability to remove fluorescence backgrounds
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surpasses that of PolyFit, thereby better preserving the spectral

information related to VW.
3.2 Raman peak resolution

The Raman fingerprint region (300–1800 cm-¹) provides crucial

information regarding the biochemical composition of cotton

stems, as the vibrational bands within this range are closely

associated with structural polymers such as lignin, cellulose, and

hemicellulose (Agarwal, 2006; Gierlinger and Schwanninger, 2007;

Smith and Dent, 2005). We first analyzed the Raman spectra of the

VW-infected cotton stems (Figure 4B). Table 1 summarizes the

characteristic vibrational bands and their corresponding

biochemical assignments. Notably, the peak intensities at 931,

1332, 1457, and 1594 cm-¹ reflect the degree of lignin

polymerization, a key structural polymer that dominates the
Frontiers in Plant Science 09
Raman spectral features of cotton stems. The Raman peak at 931

cm-¹ corresponded to the vibrational mode associated with C–C–H.

When V. dahliae infects cotton stems, it disrupts the normal

physiological metabolism of plants, causing an imbalance between

the synthesis and decomposition of intracellular substances,

particularly affecting polysaccharide metabolism (Shaban et al.,

2018; Xiong et al., 2021). This disruption affects the metabolism

of polysaccharides and alters the chemical environment in which

chemical bonds, such as C–C–H, are embedded, leading to shifts in

their vibrational frequencies (Egging et al., 2018; Gierlinger and

Schwanninger, 2007). 1332 cm-¹ is attributed to -CH deformation

and -CCH bending, which may result from the degradation of

lignin. This degradation could lead to the breaking or deformation

of the -CH bond, indicating potential changes in the lignin structure

of cotton stems after Verticillium wilt infection. Such alterations

may affect the physical and chemical properties of stems. The peak

at 1457 cm-¹ corresponds to the bending of CH3 in OCH3. In
FIGURE 4

Pre-processing and Spectral Analysis of Raman Spectroscopy for Cotton Stems. (A) Comparison of baseline correction algorithms: PolyFit and
airPLS, with the black line representing the original spectrum, the red line showing the estimated baseline, and the blue line indicating the corrected
spectrum. (B) Raman spectrum with characteristic peaks after baseline correction and smoothing. (C) Comparison of average Raman spectra for
cotton stems across Verticillium dahliae disease severity grades I-V (0%, ≤25%, 25-50%, 50-75%, and ≥75% vascular browning or wilting), with each
line representing the average spectrum of 20 stem samples per grade.
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addition, the strong aromatic ring symmetry stretching vibration

observed at 1594 cm-¹ further confirms the presence of lignin,

suggesting that the aryl-related chemical bonds and functional

groups within the cotton stems were affected during the infection

process with VW disease, potentially altering their internal lignin

structure. Cellulose vibrations were prominent at 1079, 1121, and

1380 cm-¹. The Raman peak at 1079 cm-¹ can be attributed to the

vibrations of the C-O-C or C-C bonds. In contrast, the peak at 1121

cm-¹was assigned to symmetric stretching of the glycosidic C-O-C

bond. The Raman features appearing at 1380 cm-¹ were associated

with -CCH, -CHO, and -COH bond bending. Hemicellulose, likely

in the form of xyloglucan, contributes to the -CH and -COH

bending observed in the 1258 cm-¹ band, consistent with its

mixed polysaccharide structure.

The Raman spectra of the cotton stem exhibited significant

changes with increasing levels of VW infestation (Figure 4C). The

primary differences between the early and late spectra were

observed at 899, 931, and 1594 cm-¹. Notably, the Raman

characteristic peak at 1594 cm-¹ exhibited a higher intensity

during the middle stage of VW infestation (disease grades II–III)

than during the early stage. This increase is attributed to the

activation of plant defense mechanisms in response to the initial

infestation (Pomar et al., 2004). In the early stages, the plant

enhances the mechanical strength of its cell wall by increasing

lignin synthesis, which promotes the deposition of lignin around

vascular bundles, thereby strengthening the mechanical barrier

(Klopfenstein et al., 1991; Pomar et al., 2004). However, as the

disease progresses, plant defense mechanisms may gradually

weaken, allowing the pathogen to secrete various cell wall-

degrading enzymes, including lignin-degrading enzymes. These

enzymes can disrupt the structure of lignin, resulting in decreased

capacity for lignin synthesis and a reduction in its overall content

(Yucel et al., 2005; Pomar et al., 2004). This phenomenon accounts

for the observed decrease in the intensity of the Raman

characteristic peaks at 931 and 1594 cm-¹ during the later stages

of the disease. Disruption of the cellulose structure was evidenced
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by an increase in the half-height width of the peak at 1079 cm-¹,

indicating a reduction in crystallinity due to the breakage of b-1,4-
glycosidic bonds. This phenomenon further confirmed the

degradation of cell walls by cellulases secreted by pathogenic

fungi. Additionally, the Raman peak at 899 cm-¹ was correlated

with the n(CCH), n(COH) vibrational mode of pectin. As the

severity of VW intensified, pectin continued to degrade, resulting

in a shift of the characteristic peaks to lower wavenumbers (~850

cm-¹), whereas the intensity of Raman peaks related to pectin (e.g.,

850–900 cm-¹) decreased significantly. This alteration reflects the

degradation of pectin under the influence of pectinase secreted by

the pathogenic fungi. The observed changes in the spectral features

indicate the degradation and structural alteration of the primary

components of the cotton stem cell wall (lignin, cellulose, and

pectin) during infestation by Verticillium dahliae (Schulz and

Baranska, 2007; Agarwal, 2006). These hierarchical changes in

biochemical characteristics provide a molecular spectroscopic

foundation for analyzing the pathogenic mechanisms of VW and

breeding disease-resistant varieties. This study is of great

significance for the in-depth study of microstructural changes in

cotton stems after VW infection, and the development of effective

disease detection and control methods.
3.3 Characteristic band selection

Before constructing the classification model for cotton stem

Verticillium wilt, preprocessed Raman spectral data were analyzed

using PCA to preliminarily assess the spectral distribution

characteristics of different grades of cotton stem Verticillium wilt

infection (disease grades I–V) through downscaling and

visualization. A total of 100 cotton stem Raman spectral data

points were inputted into the PCA model. The results (Figure 5A)

indicated that the first two principal components (PC1 and PC2)

accounted for 49.4% and 31.5% of the variance, respectively,

yielding a cumulative contribution of 80.9%. The cumulative

contribution of the first three PCs reached 85.9%, suggesting that

these components effectively captured the primary features of the

spectral data. However, as illustrated in the PCA score plot,

although the samples from different infection classes were roughly

categorized into five groups, the concentrated distribution of sample

points, particularly the significant overlap in the central region,

resulted in insufficiently distinct differences in the spectral features

among the various classes. This partial overlap was expected due to

the gradual biochemical changes across Verticillium dahliae

infection stages and factors such as biological variability in cotton

stem composition, spectral similarity in cell wall components, and

tissue heterogeneity, which can obscure class separation in PCA

(Schulz and Baranska, 2007; Gierlinger and Schwanninger,

2006).This high degree of similarity complicates the ability of

PCA to differentiate between the five VW infection classes,

indicating that relying solely on PCA for feature extraction

and classification has limited effectiveness, and should be

further integrated with machine learning models for

improved discrimination.
TABLE 1 Raman band attribution in VW cotton stems.

Band
(cm−1)

Vibrational
assignment

Polymer

931 CCH Vibration Lignin (Yang et al., 2023)

1079
C-O-C or C-C bond

vibration
Cellulose (Agarwal and Ralph, 1997)

1121
-COC-symmetric

stretching (glycosides)
Cellulose (Gorzsás, 2017)

1258 -CH, -COH bend Hemicellulose (Gorzsás, 2017)

1332
- CH deformation and -

CCH bending
Lignin (Gorzsás, 2017)

1380
- CCH, - CHO, - COH

and C-O bending
Lignin (Gorzsás, 2017); Fusaric acid

(Rosado et al., 2016)

1457 CH3 bends in OCH3 Cellulose (Yang et al., 2023)

1594
Aryl ring symmetric
stretching vibrations

Lignin (Cao et al., 2006)
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To further optimize the feature band selection, this study used two

efficient feature selection algorithms: SPA and CARS. Both algorithms

significantly reduced the dimensionality of the spectral data, achieving

a reduction ratio of >81% (Figure 5B). Specifically, the SPA algorithm

identified 84–98 feature bands, with a dimensionality reduction ratio

of >82%. In contrast, the CARS algorithm also achieved a

dimensionality reduction ratio of >81%. Notably, when applied to

spectral data after the PolyFit baseline correction and SG smoothing,

the CARS algorithm selected 104 feature bands. However, when

applied to the spectral data after airPLS baseline correction and

MSC processing, only seven feature bands were identified. These

results demonstrate that both the SPA and CARS algorithms

effectively extracted key features from spectral data while

significantly reducing dimensionality, thereby providing efficient

feature inputs for the subsequent construction of classification models.

To comprehensively evaluate the performance of various

feature band selection methods, this study constructed an SVM-

based classification model. The feature selection results from the

SPA and CARS algorithms were inputted into the model for

comparison. In addition, the classification effects of the eight

significant Raman feature peaks obtained through inverse
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convolution calculations in Section 3.2 were also compared. The

results indicate that the classification model based on the eight

known feature bands was significantly less accurate for the training

set than the results from the SPA and CARS algorithms (Table 2).

This phenomenon suggests that although these feature peaks are

prominent in the spectra, they do not provide sufficient information

to fully reflect the biochemical characteristics of the samples,

leading to limited classification performance. By contrast, the SPA

and CARS algorithms extracted deeper insights from spectral data

and identified more representative and discriminative feature

bands, thereby significantly enhancing the accuracy of the

classification model. In summary, although PCA has some value

in the initial exploration of spectral data distributions, its

classification effectiveness is limited. Conversely, the SPA and

CARS algorithms substantially improved the performance of the

classification model through efficient dimensionality reduction and

feature extraction. Combined with the comparative results of the

SVM models, this study confirmed the superiority of feature band

selection algorithms based on chemometric approaches for

classifying cotton stem Verticillium wilt, thereby providing an

important methodological reference for future research.
FIGURE 5

(A) PCA plot of model scores. (B) Number of feature bands resulting from different preprocessing steps for the SPA and CARS feature band selection
algorithms. (C) CARS process for spectral feature band selection in the INFO-SVM classification model. The number of sampling runs was 100, and
the RMSECV showed a decreasing and then an increasing trend. The optimal set of feature wavelengths was selected when the number of sampling
runs was 57. (D) Spectral feature band selection by CARS in PSO-RF classification model.
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3.4 Cotton stem classification models for
different disease levels

In this study, three distinct classification models, INFO-SVM,

PSO-RF, and CSA-LSTM, were developed to classify cotton stem

Verticillium wilt using Raman spectroscopy. Various preprocessing

methods and feature band selection strategies were used for each

model, and their performance was assessed using cross-validation

and test sets. The effectiveness of each model in grading cotton

stems with varying severities of VW is shown in Table 3.

The results of INFO-SVM modeling indicated that the

classification model constructed using CARS for feature band

selection was the most effective for grading cotton stems with

varying severities of VW after SG-airPLS-(1/SG)′ processing.

After ten-fold cross-validation and Monte Carlo sampling (100

times), the model achieved an accuracy of 97.5% and an F1-score of

0.974 on the modeling set. In contrast, the accuracy and F1-score

for the validation set were 90.0% and 0.867, respectively (Table 3).

The process of optimizing the spectral feature wavelengths is

illustrated in Figure 6A. The optimal set of feature wavelengths

was selected after 57 iterations, resulting in 58 feature wavelengths

that accounted for 10.10% of the entire spectral band. These bands

were identified as the optimal feature wavelength set when the

RMSECV value was minimized. Figure 6B shows the confusion

matrix of the INFO-SVM model for the training set. Its high

accuracy and precision demonstrated the ability of the model to

effectively differentiate between various sample classes. However,

the performance of the validation set (Figure 5C) was slightly lower

than that of the training set. The decrease in the F1-score suggests a

slight reduction in the classification ability of the model on the

validation set; nevertheless, the specificity remained high, indicating

that the model performed well in identifying non-target classes. The

performance of the test set is less different from that of the

validation set, suggesting that the model exhibited good

generalization capabilities for unseen data.

The grading effectiveness of the PSO-RF model on cotton stems

with varying severities of VW is illustrated in Table 3. The results

indicated that after airPLS baseline correction, the PSO-RF model

constructed using CARS for feature band selection demonstrated the

highest efficacy in grading cotton stems with different levels of VW

severity. The accuracy and F1-score for the modeling set were 0.975,
Frontiers in Plant Science 12
whereas the accuracy and F1-score for the validation set were 70.0%

and 0.544, respectively. The model used airPLS solely for baseline

correction of the raw spectral data, with CARS utilized for feature

band selection, as shown in Figure 5D. A total of 49 feature bands

were identified, all of which fall within the Raman wavenumber range

of 400 to 1800 cm-¹. This range encompasses the majority of

characteristic peaks associated with lignin, proteins, and nucleic

acids in cotton stems. Figure 7 illustrate the confusion matrix for

the PSO-RF hierarchical model applied to the training and validation

sets. The grading effects of cotton stems with varying severities of

cotton stem Verticillium wilt demonstrated different performance

levels. The confusion matrix revealed that, in the training set, the

sample prediction accuracies were consistently high, exceeding 90%.

In contrast, the prediction accuracies in the validation set showed

significant deviations, likely due to the limited number of samples.

The results of the CSA-LSTM classification model indicated that

after SG-airPLS-SNV processing, the model constructed using CARS

for feature band selection achieved the best classification

performance. It recorded an accuracy of 93.8% and an F1-score of

0.936 for the modeling set, whereas the validation set yielded an

accuracy of 80.0% and an F1-Score of 0.638 (Table 3). Although the

model demonstrated high accuracy on the modeling set, the relatively

low F1-score on the validation set suggests that the model may have

experienced some degree of overfitting during the validation phase.

Figure 8 illustrate the accuracy of the iteration and loss function

curves for the CSA-LSTM model. As the number of iterations

increased, the training set accuracy gradually improved and

stabilized, whereas the loss function value decreased and converged

to a lower value. However, this optimization may be overly reliant on

the data features of the modeling set, which could diminish the

generalization ability of the model when applied to the validation set

data, ultimately affecting the F1-score of the validation set.

The results of this study demonstrated that an effective

preprocessing method can enhance the accuracy of the

classification detection model by as much as 97.5% on the

training set. When evaluating the classification performance of

the three models, the INFO-SVM model exhibited high accuracy

and an F1 score on both the modeling and validation sets,

surpassing those of the other two models on the validation set.

The PSO-RF model performed well on the training set; however, its

performance on the validation set declined significantly, indicating
TABLE 2 Classification accuracy of different feature band selection algorithms in SVM models.

Preprocessing
Methods

Eight characteristic peaks CARS SPA

Train Vaild Train Vaild Train Vaild

airPLS 0.65 0.62 0.70 0.68 0.72 0.70

SG-airPLS 0.68 0.65 0.73 0.70 0.75 0.73

SG-airPLS-(1/SG)′ 0.70 0.68 0.75 0.72 0.78 0.75

SG-airPLS-MSC 0.55 0.52 0.60 0.58 0.63 0.60

SG-airPLS-SNV 0.60 0.58 0.65 0.62 0.68 0.65

SG-airPLS-SS 0.63 0.60 0.68 0.65 0.70 0.68
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TABLE 3 Results of each hierarchical model.

Preprocessing and Feature INFO-SVM PSO-RF CSA-LSTM

Train Vaild Train Vaild

F1 -
core

Accuracy
F1 -
score

Accuracy
F1 -
score

Accuracy
F1 -
score

Accuracy
F1 -
score

0.911 0.938 0.936 0.600 0.627 0.688 0.656 0.600 0.541

0.330 0.663 0.664 0.200 0.157 0.650 0.634 0.500 0.363

0.678 0.975 0.975 0.700 0.544 0.825 0.806 0.500 0.533

0.294 0.963 0.963 0.400 0.394 0.638 0.602 0.400 0.360

0.738 0.838 0.820 0.700 0.747 0.725 0.717 0.500 0.448

0.633 0.813 0.805 0.600 0.493 0.700 0.682 0.500 0.430

0.867 0.963 0.962 0.800 0.638 0.738 0.726 0.600 0.574

0.544 0.963 0.965 0.500 0.367 0.700 0.651 0.400 0.367

0.133 0.948 0.949 0.600 0.471 0.513 0.468 0.700 0.748

0.811 0.963 0.961 0.400 0.360 0.638 0.632 0.600 0.550

0.385 0.925 0.926 0.500 0.440 0.938 0.936 0.800 0.638

0.600 0.950 0.948 0.700 0.611 0.588 0.512 0.200 0.137

0.738 0.975 0.974 0.500 0.428 0.688 0.675 0.400 0.294

0.643 0.963 0.963 0.600 0.653 0.750 0.705 0.400 0.380
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Selection Methods
Train Vaild

Accuracy
F1 -
score

Accuracy
s

R-CARS 0.963 0.963 0.900

R-SPA 0.625 0.604 0.500

airPLS-CARS 0.950 0.950 0.800

airPLS-SPA 0.625 0.616 0.400

SG-airPLS-CARS 0.588 0.575 0.800

SG-airPLS-SPA 0.650 0.641 0.800

SG-airPLS-(1/SG)′-CARS 0.975 0.974 0.900

SG-airPLS-(1/SG)′-SPA 0.675 0.667 0.700

SG-airPLS-MSC-CARS 0.388 0.235 0.200

SG-airPLS-MSC-SPA 0.813 0.814 0.800

SG-airPLS-SNV-CARS 0.913 0.912 0.500

SG-airPLS-SNV-SPA 0.925 0.924 0.500

SG-airPLS-SS-CARS 0.525 0.518 0.800

SG-airPLS-SS-SPA 0.800 0.775 0.700

Bold values indicate the best performance results under the corresponding algorithm.
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a weak generalization ability. In contrast, the CSA-LSTM model

showed strong performance on the modeling set but had a low F1

score on the validation set, suggesting potential overfitting. Overall,

the results indicate that the INFO-SVM model after SG-airPLS-(1/

SG)′ -CARS preprocessing was the most effective for classifying and

recognizing the Raman spectral data of cotton stems with varying

levels of VW infection.
4 Discussion

The infestation of cotton with V. dahliae leads to significant

alterations in various compounds within the stem, which can be

effectively monitored using Raman spectroscopy. The analysis
Frontiers in Plant Science 14
revealed that the intensity of the characteristic lignin peak at 1594

cm-¹ exhibited a dynamic pattern of an initial increase followed by a

decrease. This phenomenon intuitively reflects the adjustment of

plant defense strategies in response to VW. In the early stages of

infestation, lignin accumulates in the cell wall as plants form a

physical barrier against pathogenic fungi. However, as the disease

progresses, the pathogen gradually degrades the lignin structure of

the plant cell wall, resulting in a reduction in the lignin content and

subsequent weakening of the intensity of the characteristic peaks

(Pomar et al., 2004; Tian et al., 2023). This change was corroborated

by the dynamic response of the characteristic peak at 931 cm-¹,

which together illustrated the failure of plant defense mechanisms

under sustained pathogen infestation. In addition, pectin

degradation was reflected in the Raman spectra, with the intensity
FIGURE 7

PSO - RF model performance comparison and analysis. (A) and (B) are its confusion matrices in the training and validation sets. The rows of each
matrix represent the true categories and the columns represent the predicted categories.
FIGURE 6

INFO-SVM cotton yellow wilt classification model results. (A) and (B) are the confusion matrices used by the model for the training and validation
sets, respectively. The rows of each matrix represent the true categories and the columns represent the predicted categories.
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of the characteristic peak at 899 cm-¹ diminishing and shifting

toward lower wavenumbers. This shift directly indicated the role of

pectinase and further confirmed the synergistic degradation

strategy used by pathogenic fungi for multiple components of the

plant cell wall. This study not only verified the reliability and

accuracy of Raman spectroscopy in phytopathological research

but also demonstrated its unique advantage in elucidating the

mechanisms of plant-pathogen interactions. Furthermore, a

database of the Raman spectra of cotton stems was established,

providing valuable data resources for future studies and facilitating

the exploration of broader application scenarios.

Raman spectroscopy offers significant advantages in the analysis

of biological samples, however, its spectral data are often influenced

by fluorescence background, baseline drift, and noise interference

(Schulz and Baranska, 2007; Smith and Dent, 2005). Consequently,

spectral preprocessing is a crucial step in enhancing modeling

effectiveness (Zhao et al., 2007). In this study, we systematically

compared multiple spectral preprocessing methods and two

baseline correction algorithms to optimize the quality of the

spectral data for classifying cotton stem Verticillium wilt. The

results indicate that the airPLS baseline correction effectively

fitted the complex baselines and separated the target Raman

signal using adaptive iterative weighted least squares. This

approach significantly improves the SNR, outperforms traditional

PolyFit for managing nonlinear baselines, and is particularly

suitable for biological samples with strong fluorescence

interference (Zhang et al., 2010). Spectral quality was further

enhanced by combining SG smoothing with (1/SG)′, SG

smoothing reduced random noise, whereas (1/SG)′ improved the

distinction of feature peaks, particularly in weak-signal regions

(Clupek et al., 2007). The comparison indicates that the SG-

airPLS baseline correction combined with (1/SG)′ performed the
Frontiers in Plant Science 15
best in enhancing the spectral quality and model classification

performance. This approach significantly reduced the background

fluorescence intensity and provided high-quality data support for

subsequent feature extraction and machine-learning modeling. In

this study, the SG-airPLS-(1/SG)′ combination strategy was applied

for the first time to rapidly grade VW-affected cotton stems, thereby

offering a new technical tool for the early diagnosis of agricultural

diseases. Future research should explore the optimization of this

combination with other pretreatment techniques and assess their

generalizability for diagnosing other crop diseases, thereby

providing broader technical support for disease management in

agricultural production.

The intelligent screening mechanism of the feature bands exerts

a dual driving effect on the performance optimization of the cotton

stem Verticillium wilt classification model. In a comparison of

downscaling methodologies, CARS demonstrated a parsing

capability that surpassed traditional methods while effectively

eliminating the most redundant noise bands and covariance

interference in spectral data (Li et al., 2014). Compared with the

eight intuitively selected Raman peaks, CARS extracted a greater

number of feature bands and provided more comprehensive

information, significantly enhancing the performance of the

classification model, suggesting that an in-depth exploration of

spectral potential information is crucial for model optimization. In

contrast to PCA, which is hindered by the issue of pathological

spectral feature aliasing due to linear decomposition (Tariq et al.,

2024) and the risk of overfitting during band-independence

screening with SPA, CARS constructs biologically interpretable

feature subsets through dynamic integration of Monte Carlo

sampling and partial least squares regression coefficients.

Principal Component Analysis (PCA) often exhibit class overlap

when analyzing Raman spectra of plant tissues due to spectral
FIGURE 8

CSA-LSTM model training set process. (A) Accuracy iteration curves for the training set of the model. (B) Loss function curve for the training set
of the model.
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similarities and biological variability, limiting their ability to

distinguish Verticillium dahliae disease severity classes (Gierlinger

and Schwanninger, 2006; Egging et al., 2018). Meanwhile, the

experimental results indicated that the F1-score of the INFO-

SVM model, developed from 37 eigenbands screened by CARS,

reached 0.974, representing a 6.82% improvement over the SPA

method. This demonstrates the unique advantage of CARS in

resolving nonlinear interactions between bands. Furthermore,

CARS effectively enhanced the key biochemical response bands,

particularly within the Raman shift interval of 1380 cm-¹ (the

characteristic peak of Fusaric acid) and other specific markers for

VW (Egging et al., 2018; Rosado et al., 2016), thereby providing a

reliable spectral fingerprint library for the in situ detection of

disease metabolites.

When constructing a rapid grading model for cotton stem

Verticillium wilt, the INFO-SVM model demonstrated high accuracy,

outperforming the PSO-RF and CSA-LSTM models. Its effectiveness in

grading the detection of cotton stem Verticillium wilt was confirmed.

The optimization benefits of the INFO algorithm stem from its global

adaptive search capability for SVM hyperparameters, which effectively

mitigates the limitations of traditional optimization methods that are

often trapped in local optima (Li et al., 2015). This was achieved by

introducing a nonlinear dynamic weighting strategy that reduced the

sensitivity of the model to the initial parameters (Wan et al., 2024).

Furthermore, the spectral data preprocessed by SG-airPLS-(1/SG)′
-CARS, when combined with the INFO-SVM model, exhibited high

specificity and an F1-score of 0.867 on the validation set, confirming its

ability to distinguish between different infection classes of VW in a

complex noise environment. Although there was a slight decrease in the

F1-score compared with the training set, the overall generalization

performance of the model remained stable, indicating the feasibility of

the method for grading the detection of other crop diseases.

Despite the promising results achieved in this study, several

limitations should be acknowledged to guide future research. First,

the current dataset, though carefully curated, may lack sufficient

representativeness across diverse cotton cultivars, growth stages, and

environmental conditions. Early-stage infection samples were

particularly limited, which could affect the model’s sensitivity to

initial symptom detection. Expanding the spectral database with

longitudinal field samples is essential to enhance generalization.

Second, while Raman spectroscopy offers high specificity, its

performance in field applications is often compromised by

environmental interferences, such as ambient light, temperature

fluctuations, and humidity, which can introduce noise and baseline

drift (Smith and Dent, 2005; Farber et al., 2019a). Developing robust

preprocessing algorithms or noise-invariant deep learning

architectures could improve adaptability to these real-world

conditions. Third, although machine learning models delivered high

accuracy, their “black-box” nature limits agronomic interpretability. In

the future, the Shapley Additive exPlanations (SHAP) interpretable

framework can be integrated into a feature band screening system. By

quantifying the contributions of band weights, we can create spectral

response-metabolic pathway correlation maps to further address the

limitations of the traditional “black box”model. Lastly, the reliance on

benchtop Raman systems restricts field deployability due to their high
Frontiers in Plant Science 16
cost, large size, and susceptibility to fluorescence interference in

biological samples (Farber et al., 2019a). Future investigations could

explore the integration of alternative laser wavelengths, such as 785 nm

and 1064 nm, which are more common in portable Raman systems.

The 785 nm laser provides a strong balance between signal intensity

and fluorescence suppression, while the 1064 nm laser significantly

reduces fluorescence interference in biological samples, offering a

particular advantage for in-field diagnosis of pigmented plant tissues

(Smith and Dent, 2005). Exploring low-cost portable spectrometers

coupled with lightweight models could facilitate scalable, on-farm

diagnostics. Addressing these limitations will be critical for

translating this technology into practical precision agriculture tools.

This study demonstrates a novel Raman spectroscopy-machine

learning frame-work that enables early and accurate detection of

Verticillium wilt (VW), a major advancement in the field of plant

disease diagnosis. By leveraging the molecular specificity of Raman

spectroscopy to identify pre-symptomatic biochemical changes and

combining it with optimized machine learning algorithms, we

achieve sensitive detection of early infection with up to 85% recall.

This study offers unique advantages for early cotton yellow wilt

surveillance, including minimal sample preparation, rapid analysis,

and high classification performance. While the current results

demonstrate the method’s good pre-symptomatic detection

capability, future studies should extend the spectral database to

include a more diverse range of early infection time courses and

environmental conditions to enhance the robustness of the model.

This early detection approach fundamentally shifts crop protection

strategies from reactive treatment to preventive intervention,

providing an important technological foundation for implementing

precision agriculture systems that can identify and mitigate disease

threats before visible symptoms appear. Further integration with

portable spectroscopic equipment and an interpretable artificial

intelligence framework will accelerate the translation of this

technology into a practical early warning system for field applications.
5 Conclusion

In this study, hierarchical detection of VW on cotton stems was

achieved using Raman spectroscopy in conjunction with machine

learning algorithms. The combination of Raman spectroscopy and

the CARS feature band selection algorithm effectively extracted the

spectral features associated with VW, thereby significantly enhancing

the accuracy of the classification model. By comparing the

classification models constructed with various optimization

algorithms, it was determined that the classification accuracy of the

INFO-SVMmodel on the validation set reached 90%, outperforming

the PSO-RF (70%) and CSA-LSTM (80%) models. This indicates that

the INFO-SVM model is more suitable for Raman spectral grading

detection of cotton stem Verticillium wilt. This method established a

rapid and accurate disease classification model, providing a novel

approach for the early detection of cotton stem Verticillium wilt. It

offers the advantages of high efficiency and low cost and delivers

reliable data support for subsequent research. This study confirmed

the significant potential of combining Raman spectroscopy with
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machine learning for diagnosing agricultural diseases, thereby

offering technical support for intelligent disease monitoring and

management. In the future, this method can be further

disseminated and applied for the early diagnosis of other crop

diseases, thereby promoting the intelligent development of

agricultural disease-monitoring technology.
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