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Early detection and severity
classification of verticillium
wilt in cotton stems using
Raman spectroscopy and
machine learning
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and Nannan Zhang**
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The early detection of Verticillium wilt (VW) in cotton is a critical challenge in
agricultural disease management. Cotton, a vital global textile resource, is
severely threatened by this devastating disease. Traditional diagnostic methods,
which often rely on manual expertise or destructive sampling, are limited by low
efficiency and high subjectivity. In recent years, Raman spectroscopy has
emerged as a promising solution due to its rapid, non-destructive, and highly
sensitive characteristics for plant disease detection. In this study, we analyzed
cotton stems using Raman spectroscopy, applying Savitzky-Golay (SG)
smoothing combined with multiple preprocessing methods including Scaling
and Shifting (SS), Standard Normal Variate (SNV), inverse first-order differential (1/
SG)’, and multiplicative scatter correction (MSC). For baseline correction, we
employed polynomial fitting (PolyFit) and adaptive iterative weighted penalized
least squares (airPLS). Feature selection was performed using principal
component analysis (PCA), successive projection algorithm (SPA), and
competitive adaptive reweighted sampling (CARS).Three optimized models
were developed: support vector machine (SVM) with weighted mean of
vectors (INFO) algorithm, random forest (RF) enhanced by particle swarm
optimization (PSO), and long short-term memory (LSTM) network optimized
via chameleon swarm algorithm (CSA).The results show that the INFO-SVM
model with SG-airPLS-(1/SG)’ -CARS preprocessing demonstrated superior
performance, achieving 97.5% accuracy (0.974 Fl-score) on training data and
90.0% accuracy (0.867 F1-score) on validation data, outperforming both PSO-RF
and CSA-LSTM models. These results confirm that Raman spectroscopy
integrated with optimized machine learning enables accurate VW classification
in cotton stems. This method enables early disease detection during infection,
facilitating timely fungicide application and reducing yield losses.
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Raman spectroscopy, cotton stems, verticillium wilt, disease severity classification,
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1 Introduction

Cotton (Gossypium spp.) is a vital global cash crop and a key
raw material for the textile industry (Arya and Sarkar, 2024). As the
world’s largest cotton producer and consumer, China plays a pivotal
role in sustaining the global textile supply chain. Xinjiang Uygur
Autonomous Region is the dominant cotton-producing area in
China, contributing 83.2% of the country’s total cotton cultivation
area in 2022 (National Bureau of Statistics of China, 2022). The
region’s favorable natural conditions, including abundant sunlight
and suitable soil, support high-quality cotton production, meeting
both domestic and international demand.

However, cotton production faces significant challenges from
pests and diseases, particularly Verticillium wilt (VW). In Xinjiang,
nearly half of the major cotton-growing areas are affected by
moderate-to-severe VW, with 24.1% classified as severely infected
(Liu et al, 2015). This disease severely reduces cotton yield and
quality, causing annual economic losses of 1.5 to 2 billion yuan in
China (Cai et al., 2009; Wang, 2022). Early detection and effective
management of VW are therefore critical to minimizing its impact
on cotton production.

Cotton VW is a trans-regional disease characterized by
widespread incidence, high prevalence, and a significant
probability of occurrence (Liu et al., 2015). It is one of the most
serious diseases affecting cotton production both in China and all
over the world (Wang, 2012). Verticillium dahlia (V. dahliae) is a
soil-borne fungus that primarily infects vascular bundle systems of
cotton plants. After microsclerotia germinate in the soil, the
mycelium can invade directly through cotton root hair cells, root
epidermal cells, or root wounds (Bhandari et al., 2020; Zhu et al.,
2023; Wu et al,, 2025). It then penetrates the cortex and spreads
throughout the plant via vascular conduits (Bolek et al., 2005). This
infection mechanism complicates the early detection of VW,
particularly during the seedling stage, because cotton plants
typically do not exhibit obvious external symptoms. However,
dissection examinations have revealed yellow-brown lesions in the
xylem conduits of cotton stems (Palanga et al., 2021). As the disease
progresses, cotton plants may show typical symptoms after the buds
emerge, including green loss, yellowing, curling, and drying of leaf
tissue between the main veins of the leaf blades (Zhang et al., 2025).
In severe cases, this can lead to complete wilting and shedding of
leaf blades (Yang et al., 2022). Owing to the absence of prominent
external symptoms in the early stages of VW, its detection and
identification pose significant challenges. Nevertheless, early
diagnosis is essential to control the spread of the disease and to

Abbreviations: VW, Verticillium wilt; SG, Savitzky-Golay; SS, Scaling and
Shifting; SNV, Standard Normal Variate; MSC, multiplicative scatter
correction; PolyFit, polynomial fitting; airPLS, adaptive iterative weighted
penalized least squares; PCA, principal component analysis; SPA, successive
projection algorithm; CARS, competitive adaptive reweighted sampling; SVM,
support vector machine; INFO, weighted mean of vectors; RF, random forest;
PSO, particle swarm optimization; LSTM, long short-term memory; CSA,
chameleon swarm algorithm; V. dahliae, Verticillium dahliae; SNR, signal-to-

noise ratio.
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minimize economic losses. Consequently, the development of
efficient and accurate early detection techniques has become a
critical focus of current research on the management of cotton
VW (Klosterman et al., 2009).

Currently, there are numerous detection methods for VW in
cotton, however, traditional approaches have several disadvantages.
The existing classification for early detection of cotton VW relies
primarily on field identification and modern laboratory biochemical
detection techniques (Jiang and Liu, 2002). Field identification
typically necessitates manual assessment of diseased plants, which
is not only time-consuming but also fails to accurately identify the
disease during the incubation period (i.e., the early infection stage
without typical symptoms). This limitation extends the timeframe
for disease identification and creates conditions conducive to large-
scale outbreaks of VW in cotton fields. While current laboratory-
based methods like ELISA and PCR provide reliable pathogen
identification, they exhibit fundamental limitations for early
Verticillium wilt detection (Zhang et al., 2014). These techniques
primarily target late-stage infection markers - ELISA detects
pathogen-specific antibodies (Perez-Artes et al., 2000; Yucel et al,
2005; Xu and Chen, 2000) and PCR identifies microbial DNA (Jiang
and Liu, 2002) - both requiring substantial pathogen accumulation
for accurate diagnosis. This inherent detection threshold means
infections can only be confirmed after significant disease
progression, missing the critical early intervention window.
Consequently, these methods systematically miss the initial
infection window when disease control measures would be most
effective. These limitations have significantly hindered the rapid
development of plant disease detection and control technologies.
With advancements in technology, machine vision has been
introduced in the realm of plant disease detection, significantly
enhancing information collection efficiency and simplifying
operational procedures (Lu et al., 2023). However, machine vision
technology depends on the visible symptoms of the disease, and
cannot capture the physiological responses of cotton plants during
the early stages of infection (Mohanty et al., 2016). In contrast,
hyperspectral imaging (HSI) technology, which captures both
spatial and spectral information across hundreds of contiguous
narrow bands, has emerged as a powerful tool for pre-symptomatic
disease detection. Numerous studies have demonstrated its
capability to identify subtle physiological and biochemical
changes in cotton plants induced by V. dahliae infection, such as
alterations in leaf temperature, chlorophyll fluorescence, and
cellular structure (Lowe et al., 2017; Yang et al., 2024). However,
its effectiveness in the very early, pre-symptomatic phase can be
limited by the depth of tissue penetration and the relatively weak
spectral signals associated with initial pathogen activity. Because
cotton VW typically does not exhibit obvious external symptoms
during the early stages of infection, both existing manual
identification methods and machine vision techniques struggle to
achieve accurate disease detection in this initial phase (Yang et al.,
2022). Although traditional disease management strategies have
reduced the spread and impact of this disease, they continue to face
significant challenges in terms of early detection. Consequently,
there is an urgent need to develop detection technologies capable of
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identifying VW during the pre-symptomatic phase, when early
intervention can most effectively prevent disease establishment
and spread.

Raman spectroscopy is a form of scattering spectroscopy that
utilizes inelastic scattered light to identify the vibrational states of
molecules (Schulz and Baranska, 2007). Each Raman peak in the
spectrum corresponds to a specific molecular bond, allowing for
molecular identification of analytes through the generation of a
unique vibrational fingerprint (Saletnik et al., 2024). This technique
is rapid, highly sensitive, and non-destructive, demonstrating
significant potential in the field of plant disease detection (Negi
and Anand, 2024). Raman spectroscopy can capture early
physiological and biochemical changes associated with diseases by
analyzing the molecular vibrational information of plant tissues,
thereby facilitating early diagnosis (Juarez et al., 2023). In recent
years, the application of Raman spectroscopy in agriculture has
become an essential tool for disease detection owing to its
advantages such as speed and environmental friendliness, leading
to improved research outcomes. Tan et al. (2015) used Raman
spectroscopy to analyze healthy and infected rice leaves aftected by
rice blast disease, enabling early detection in cold regions. Whereas
Zhang (2016) used spectral and spectral imaging techniques to
detect Sclerotinia stem rot in oilseed rape leaves, Farber et al.
(2019b) applied Raman spectroscopy to identify rose rosette
infection in rose plants. Farber Charles et al. used Raman
spectroscopy to identify rose rosette infection (Farber et al,
2019b), and Farber Charles et al. detected wheat streak mosaic
virus and barley yellow dwarf virus in wheat (Farber et al., 2020).
Mandri et al. employed Raman spectroscopy to identify tomato
plants infected with Tomato yellow leaf curl Sardinia virus and
Tomato spotted wilt virus (Mandrile et al., 2019). Sanchez Lee et al.
employed Raman spectroscopy for early detection and confirmatory
diagnosis of Xanthomonas-induced diseases in citrus and grapefruit
trees, demonstrating its potential as a sensitive alternative to qPCR-
based pathogen detection (Sanchez et al., 2020). Vallejo-Perez et al.
(2016), employed a portable Raman spectrometer to acquire
spectral signatures from healthy, latent, and ‘Candidatus’
Liberibacter asiaticus-infected citrus leaves, utilizing PCA-LDA
for spectral differentiation with 89% diagnostic accuracy. These
studies demonstrate that Raman spectroscopy can identify crop-
specific components, such as carbohydrates, amino acids, proteins,
and lipids, through spectral peak analysis (Schulz and Baranska,
2007; Saletnik et al, 2024). They also highlight its significant
potential for the identification and differentiation of early crop
diseases by detecting pathogen-specific changes in plant
metabolism (Tan et al., 2015; Zhang, 2016; Farber et al., 2019b,
2020; Mandrile et al., 2019; Sanchez et al., 2020). Furthermore, the
use of portable Raman spectrometers enhances the practicality of
Raman spectroscopy, enabling its direct application in the
confirmatory diagnosis of viral diseases with high diagnostic
accuracy (Vallejo-Perez et al, 2016; Sanchez et al., 2020). The
objective of this study was to establish a rapid and accurate
detection model for Verticillium wilt in cotton stems that could
differentiate between varying degrees of cotton stem Verticillium
wilt. This study aimed to provide an efficient and reliable technical
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tool for early diagnosis, precise prevention, and control of cotton
stems VW. In practical applications, this technology can assist
cotton farmers in the timely detection of issues during the early
stages of a disease, enabling them to implement targeted preventive
and control measures. These measures may include the rational
application of fungicides and adjustments to planting strategies,
which can effectively mitigate the spread of the disease, reduce yield
loss, and safeguard the quality of cotton fiber. This is of great
significance for promoting sustainable development of the cotton
industry and enhancing the economic and social benefits of cotton
production. Furthermore, this study offers new ideas and methods
for the detection and diagnosis of other plant diseases, thereby
advancing the application of spectral technology and machine
learning in the agricultural sector.

2 Materials and methods

To establish a rapid and accurate detection model for cotton
stem blight and distinguish different degrees of cotton stem blight,
this study adopted the technical process shown in Figure 1. First, in
the spectral acquisition stage (Figure 1A), cotton samples were
prepared and their Raman spectra were collected. Then, in the data
preprocessing stage (Figure 1B), steps such as removing cosmic
rays, baseline correction, and applying algorithms like SG, SNV,
MMS, (1/SG)’, and MSC were carried out. Next, in the feature band
selection stage (Figure 1C), methods including PCA, CARS, and
SPA were utilized. Finally, in the stage of building machine learning
classification models (Figure 1D), models such as INFO-SVM,
PSO-RF, and CSA-LSTM were constructed for classification.

2.1 Test sample collection

In this controlled study, the experimental samples were selected
from Tahe 2 cotton plants grown in pots in sterilized field soil (pH
8.2) under the conditions of the cotton growing greenhouse at
Tarim University (day/night temperature difference of 28/22 °C,
relative humidity of 60%, and a photoperiod of 14 h) and inoculated
at the four-leaf stage with five different concentrations of
Verticillium dahliae strains by root dipping Vd080 conidia (1 x
10% 1 x 10% 1 x 10%,1 x 10° and 1 x 107 conidia/mL, courtesy of the
Plant Pathology Laboratory, Tarim University) for simulating early
infestation. Disease severity was categorized into five classes based
on symptom development at 21 days post-inoculation (dpi): class I
(0%, no symptoms), class II (vascular browning < 25%), class IIT
(25-50%), class IV (50-75%), and class V (=75%, severe wilting), as
shown in Figure 2A. Figure 2A illustrates representative images of
cotton stems for each disease severity class, highlighting the
progression of vascular browning and wilting across the five
grades. Twenty biological replicates were performed at a time.
These replicates consisted of 20 independent experiments, each
with a separate set of cotton plants grown and inoculated under
identical conditions. Stem segments (10 cm long) were collected 3
cm above the soil level, carefully avoiding epidermal and pith tissue.
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FIGURE 1

Methodological scheme for the rapid grading of cotton stalk Verticillium wilt (VW) disease using Raman spectroscopy and machine learning.

(A) Sample Processing and Raman Spectrum Acquisition: Cotton stalks were collected, preprocessed, and their Raman spectra were acquired using
Raman confocal microscopy. (B) Data Preprocessing: Spectral data were processed by removing cosmic rays, performing baseline correction, and
applying smoothing techniques. (C) Feature Selection: Principal Component Analysis (PCA), Competitive Adaptive Reweighting Sampling (CARS), and
Successive Projection Algorithm (SPA) were applied to select key spectral features from the preprocessed data. (D) Machine Learning Model
Development: Classification models, including Weighted Mean of Vectors-Support Vector Machine (INFO-SVM), Particle Swarm Optimization-
Random Forest (PSO-RF), and Chameleon Optimization Algorithm-Long Short-Term Memory (CSA-LSTM), were constructed to evaluate the
classification performance of Raman spectra for cotton stalks with varying VW disease severity levels.

The consistency of the tissue sections was strictly controlled during
sampling to minimize background interference. Ten vascular
regions from each sample were analyzed using Raman
spectroscopy within 24 hours of collection (stored at 4°C) to
detect concentration-dependent pathological changes. Previous
studies have confirmed that storing plant tissue samples at 4°C
for up to 24 hours does not significantly alter Raman spectra,
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ensuring the reliability of the spectral data (Schulz and Baranska,
2007; Sanchez et al., 2020).

2.2 Raman spectroscopy data acquisition

The spectral data acquisition for this study was conducted at the
Analysis and Testing Center of Tarim University using a HORIBA
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FIGURE 2

Comparison of cotton VW appearance, stem characteristics, and raw Raman spectra for different disease classes. (A) Schematic diagram of the
appearance of cotton plants with VW disease classes |-V, stem cross-section, and selected points (marked by green dots) irradiated by Raman
spectra under a microscope. (B) Original Raman spectra corresponding to the five VW disease classes.

LabRAM Soleil-type Raman microscope (France) equipped with a
532 nm laser light source to minimize fluorescence background
interference. The experimental parameters were established as
follows: 42 mW laser power (to prevent thermal damage to the
samples), a 20-second integration time (to enhance the signal-to-
noise ratio [SNR]), 600 nm grating, and 50x objective lens (NA =
0.75). The spectra spanned a range of 400-1800 cm-' with a
resolution of 1.15 cm-1. The samples were categorized into five
grades based on disease severity (Grades I-V) determined by the
percentage of lesions on the stem surface, which ranged from 0% to
>75%. For each group, 20 cotton stems were selected, and 0.5-1 cm
transverse slices of the stem segments were prepared by cutting the
roots at 0-3 cm. These slices were then washed and dried in sterile
deionized water, and the vascular bundles were mounted on slides
with the cut surface facing upwards. To minimize the effects of
tissue heterogeneity, 10 sites within a 1 mm” area were randomly
selected in the xylem region of each sample for spectral acquisition,
and the average value was recorded as the Raman spectrum of the
sample (Figure 2B). Figure 2B shows representative Raman spectra
for each disease severity grade, with key spectral peaks indicating
molecular changes associated with Verticillium dahliae infection
across the five classes. In total, 100 spectral data points were
obtained. The wavelength was calibrated in silico (520.7 cm-1
peak) throughout the experiment, with calibration performed
daily before each experimental session to ensure spectral
accuracy. Ambient humidity was maintained at 40-50%, and the
stability of the instrument was verified (with laser power
fluctuations <2% and a repeat spectral correlation coefficient
>0.98) to ensure that the data were reproducible and correlated
with the pathological features.
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2.3 Data preprocessing and feature
selection

2.3.1 Preprocessing methods

Lignin in cotton stems contains aromatic ring structures that
tend to produce a strong fluorescent background under laser
2013). In addition, metabolites of
organic matter such as cellulose and hemicellulose introduce

excitation (Laehdetie et al.,

interference signals into the spectrum. These interferences mask
the Raman signals, leading to a spectral baseline drift and increased
noise (Zhang et al., 2024). To address these issues when measuring
the Raman spectra of cotton stems, the built-in algorithm of the
LabSpec6 software was initially used to automatically identify and
interpolate high-intensity transient spikes triggered by cosmic rays
(Cappel et al., 2010). This step helps mitigate the anomalous signal
interference caused by high-energy particles (Ehrentreich and
Stimmchen, 2001). To address the baseline drift caused by the
strong fluorescence background of the cotton stem tissue, this study
compared two baseline correction strategies: polynomial fitting
(PolyFit) and airPLS. The former utilizes low-order polynomials
to simulate the fluorescence trend but is vulnerable to interference
from complex spectral regions (Zhao et al., 2007). In contrast, the
latter uses asymmetrically weighted iterative optimization for
dynamic baseline fitting, allowing it to better adapt to the
heterogeneous fluorescence characteristics of plant tissues (Zhang
et al,, 2010). This approach effectively reduces interference, thereby
enhancing the quality of the spectral data and improving the
accuracy of subsequent analyses (Liu et al., 2019; Zhang et al., 2010).

Photon noise was also suppressed using Savitzky-Golay (SG)
processing to enhance the SNR while preserving the characteristic
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peak morphology (Clupek et al., 2007). The optical range difference
was eliminated through scaling and shifting (SS), the effects of
scattering were compensated using a standard normal variate
(SNV), and the effect of surface roughness was addressed using
multiplicative scatter correction (MSC) (Afseth et al., 2006; Dhanoa
and Lister, 1994; Kachrimanis et al., 2007). Inverse first-order
differentiation (1/SG)’ was introduced to improve the resolution
of weak peaks. All algorithms were implemented on the Python 3.10
platform using the sci-kit-learn library, which provides a solid
foundation for high-quality spectral data for the subsequent
hierarchical modeling of VW.

2.3.2 Spectral characterization band selection

PCA, SPA, and CARS were used in this study to address the
redundancy inherent in high-dimensional data and enhance the
extraction of biochemical features specific to VW. PCA identifies
the principal components that capture the maximum variance
through an orthogonal transformation. However, this process
may diminish the local nonlinear responses associated with
disease classification while compressing the data dimensionality
(Robertetal,, 2023; Tariq et al., 2024). SPA iteratively selects feature
wavelengths based on the least covariance criterion, and its greedy
search strategy enhances model interpretability, although it may
lack sensitivity to synergistic effects among discrete bands (Balabin
and Smirnov, 2011; Ma et al.,, 2024). By contrast, CARS integrates
spectral features with disease phenotypic correlations using Monte
Carlo sampling and dynamic weighting mechanisms. To improve
the stability, the randomness of variable screening should be
enhanced through repeated calculations (Li et al., 2014). The
application of these three algorithms provides a robust
spectroscopic foundation for the development of an effective
disease classification model using multidimensional feature fusion.

After preprocessing, the Raman spectral data were stratified and
randomly divided into a training set and a test set at an 80:20 ratio
to construct the classification model.

2.4 Model construction methods

2.4.1 INFO-SVM modeling

A support vector machine (SVM) is a machine-learning
algorithm grounded in a robust theoretical framework known for
its exceptional classification performance. The effectiveness of
SVMs is significantly influenced by the selection of the kernel
function parameters y and penalty coefficient C. However,
optimizing these parameters often leads to local optima and
incurs high computational costs (Li et al., 2015). To address these
challenges, this study introduces an weighted mean of vectors
(INFO) algorithm. The primary objective of the INFO-SVM
method is to minimize the classification error while maximizing
the generalization performance of the model within a complex
parameter space by optimizing the kernel function parameters and
penalty coefficients of the SVM (Ahmadianfar et al., 2022; Wan
et al.,, 2024). By integrating an enhanced Nelder-Mead method with
a fuzzy optimization strategy, the search step size is dynamically
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adjusted, and fuzzy logic is used to manage the uncertain
parameters. This approach aims to minimize the classification
error and maximize the generalization performance of the model
while efficiently searching for an optimal solution in an intricate
parameter space (Ahmadianfar et al., 2022; Wan et al,, 2024). The
core process in Figure 3A: in which 80% of the preprocessed Raman
spectral data from cotton stems were used as the training set
{(x;,y1) } ;> where x; is the Raman spectral feature vector of cotton
stems, and y; is the corresponding classification label for cotton
stem Verticillium wilt. The goal of SVM is to identify the optimal
classification hyperplane wt O(x)+b=0, where ¢(x) is the kernel
function mapping, W is the weight vector, and b is the bias term.
The optimization problem can be expressed as (Equation 1)

1 2 "
in—|| W C> G 1
min W I +C34 1)

i=1

The constraints are (Equation 2):

yiWTex)+b21-&, £20, i=1,..,n )

where &; are the slack variables and C is the penalty coefficient.
The INFO algorithm evaluates the model performance by
dynamically optimizing the kernel function parameters y and
penalty coefficients C using the fitness function f (y, C) (Equation 3):

f(y,C) = Accuracy(y, C) — A - Generalization Error(y,C)  (3)

Where A is a trade-off factor. The INFO algorithm iteratively
updates the parameter combinations (y, C) using the Nelder-Mead
method until the fitness function converges to the global local
optimal solution (Equation 4).

(y*, cH = argmaxf(y, C) (4)
7,C

Ultimately, the SVM model is trained using optimal parameters
(7%, C*), which significantly enhance the classification accuracy and
generalization performance while simultaneously mitigating the
risk of falling into a local optimum, which is a common issue
with traditional methods. Its efficient parameter-search strategy
reduces computational costs, and when combined with fuzzy logic,
improves the adaptability of the model to complex data
distributions. This approach offers an effective and robust
solution for the classification of cotton stem Verticillium wilt
(Cortes and Vapnik, 1995; Ahmadianfar et al., 2022; Wan
et al., 2024).

2.4.2 PSO-RF modeling

The PSO-RF model offers an efficient and robust solution for
classifying cotton stem Verticillium wilt by integrating particle
swarm optimization (PSO) with random forest (RF) algorithms
(Chatrsimab et al., 2020). As an ensemble method, RF demonstrates
exceptional classification performance when handling high-
dimensional, nonlinear Raman spectral data by constructing
multiple decision trees and aggregating their predictions (Khan
et al., 2017). However, the effectiveness of the RF is significantly
influenced by the selection of hyperparameters (e.g., the number of
trees, maximum depth, and minimum number of samples for
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splits). Traditional optimization methods, such as grid search,
struggle to quickly identify optimal parameter combinations in
complex data scenarios because of their high computational cost
and low efficiency. Consequently, PSO algorithms are introduced to
address these challenges. The PSO algorithm is based on the
principle of swarm intelligence optimization (Bergstra and
Bengio, 2012; Chatrsimab et al., 2020). It efficiently explores the
hyperparameter space and approximates the global optimal
solution by simulating the dynamic updates of particle positions
and speed adjustments within the search space as well as a
mechanism for sharing information about both global and local
optimal solutions (Wu et al., 2023). The workflow of the PSO-RF
algorithm is divided into two main stages. In the first stage, the RF
hyperparameters are optimized using the PSO algorithm, which
searches for the optimal parameter combinations in the
hyperparameter space through continuous iterations. In the
second stage, the optimized hyperparameters are applied to the
RF model. The RF model is trained using the training data, and the
trained model is subsequently used to classify and predict unknown
data (Chatrsimab et al., 2020; Xiao et al., 2022). The specific process
in Figure 3B: First, the position vector x; of each particle in the
swarm is defined and the particle velocity V; is initialized. The
fitness function f(x;) (Equation 5), typically defined as the
classification accuracy, is used to evaluate the performance of the
RF model, as follows (Equation 6):

X = (ntreeydmux’smin) (5)

f(x;) = Accuracy(x;) (6)
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where the hyperparameters of RF, Nyeess dmax> and S, denote
the number of trees, the maximum depth, and the minimum
number of sample splits, respectively. The particles update their
speed and position according to the individual historical optimal
position P; and the global optimal position g (Equations 7, 8).

Vit+ D) =w-Vit) +c; -1 - (Pi—x(t) + ¢ - 1y - (g — x:(8)) (7)

xi(t+1) =x;(t) + Vi(t + 1) (8)

where o is the inertia weight, ¢; and ¢, are the learning factors,
r; and r, are random numbers. The optimal hyperparameter
combination x* is gradually approximated by iteratively updating
the particle positions. Ultimately, the RF model is trained using x*,
and its classification performance is evaluated on a test set to
achieve an accurate classification of cotton stem Verticillium wilt.
Applying PSO to the hyperparameter optimization of RF not only
significantly enhances the accuracy and generalization capabilities
of the model for grading cotton stem Verticillium wilt but also
dramatically reduces computational costs. In addition, it adapts well
to various data distributions and disease grading scenarios,
demonstrating exceptional generalization ability. This approach
provides reliable technical support for early diagnosis of the
disease and precise prevention and control.

2.4.3 CSA-LSTM modeling

Long short-term memory (LSTM) is a deep learning model that
effectively processes time-series data and addresses the issues of
gradient vanishing and gradient explosion that are commonly
encountered in traditional recurrent neural networks. This is
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achieved by introducing a gating mechanism that enables the
retention of long-term information (Zhang et al., 2018). However,
the performance of LSTM is highly dependent on the selection of
the hyperparameters. Traditional optimization methods, such as
grid search and stochastic search, are often inefficient and
susceptible to local optima, which can hinder improvements in
the model performance (Bergstra and Bengio, 2012). Chameleon
swarm algorithm (CSA) mimics the predatory behavior of
chameleons and exhibits strong global search capabilities and
rapid convergence through a unique visual perception and fast
localization mechanism, effectively mitigating the local optimum
problem (Braik, 2021). The core of the CSA-LSTM algorithm is to
use CSA to optimize the hyperparameters of LSTM networks,
thereby enhancing the classification performance of LSTM in
grading cotton stem Verticillium wilt (Abba et al., 2023). The
workflow is as follows. First, the chameleon population is
randomly initialized, with the position vector of each chameleon
representing a set of hyperparameter combinations for the LSTM.
Subsequently, these hyperparameter combinations are applied to
the LSTM models and the performance of each model is evaluated
using a defined fitness function. The predatory behavior of the
chameleon is simulated in three phases: searching for, locating, and
capturing prey. During this process, the position of the chameleon
is continuously adjusted within the search space, allowing the
optimization of the LSTM hyperparameters. After numerous
iterations, the optimal combination of hyperparameters is selected
to initialize the LSTM model (Al Bataineh and Kaur, 2021) once the
preset termination conditions are met. Ultimately, the optimized
LSTM model was used to classify the cotton stems VW data to
achieve accurate disease classification. The integration of CSA into
LSTM hyperparameter optimization is anticipated to significantly
enhance model performance and provide efficient and reliable
technical support for practical applications such as the
classification of cotton stem Verticillium wilt.

2.5 Model evaluation indicators

In this study, accuracy (Equation 9) and F1-score (Equation 10)
were used as the primary evaluation metrics to quantify the overall
performance of the model in grading the severity of cotton stem
Verticillium wilt. The accuracy reflects the overall classification
accuracy of the model and is suitable for assessing its diagnostic
efficacy, such as distinguishing between different levels of VW
infection. However, its sensitivity to class imbalance may lead to
an overestimation of the predictive advantage of majority classes
(Mandrile et al., 2019). To address this limitation, we introduced the
F1-score, which harmonizes the means of precision and recall. This
approach emphasizes the risk of detecting early stage diseases in
field samples due to hidden symptoms, aligning with the
fundamental requirements of “early diagnosis and early
intervention” in plant pathology (Barbedo, 2019).

Accuracy = TP+ TN /(TP + TN + FP + FN) 9)
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F1 — Score = 2 - (Precision - Recall) /(Precision + Recall) (10)

where Precision is the precision rate and Recall is the recall rate.

The advantages of combining these two metrics are particularly
significant in the grading scenario for VW. The accuracy metric
validates the model’s consistent identification of dominant
symptoms, such as vascular browning, whereas the Fl-score
enhances the sensitivity to subtle spectral features present during
the initial infection stage, thereby mitigating the model bias caused
by a skewed sample distribution (Vallejo-Perez et al., 2016). The
experimental component further confirmed the robustness of the
index through standard deviation analysis using ten-fold cross-
validation. In addition, it addressed the cross-grade
misclassification pattern by integrating the confusion matrix,
which provided a foundation for optimizing the grading
thresholds. This further demonstrates the capability of the
evaluation system to characterize the dynamic pathological
mechanisms of VW.

3 Results
3.1 Spectral preprocessing

The parameters for each method were optimized during the
preprocessing stage. For the SG processing, the number of
smoothing points was set to eight to effectively denoise the data
while preserving the primary features of the spectrum. In the
baseline correction step, this study compared two commonly used
methods, PolyFit and airPLS. The PolyFit method estimates the
baseline by fitting a low-order polynomial with a chosen order of
three (Gan et al., 2006; Lieber and Mahadevan-Jansen, 2003). This
choice strikes a balance between the fitting accuracy and the risk of
overfitting. Although this method is computationally simple and
easy to implement, it may lack the flexibility required to address the
complex baselines (Gan et al., 2006). In contrast, the airPLS method
optimizes the number of iterations and penalty weights through
cross-validation, allowing better management of the nonlinear
baseline drift and complex fluorescence backgrounds (Zhang
et al., 2010). In addition, SS and SNV transformations were used
to eliminate discrepancies in the spectral intensity, whereas (1/SG)’
was applied to enhance subtle features within the spectra. Figure 4A
presents a comparison between the original and Raman spectra
after baseline correction. As illustrated, airPLS baseline correction
significantly suppressed the background fluorescence and noise
signals in the spectra. The intensity range of the Raman peaks
became more concentrated, the baseline fitting curve aligned more
closely with the low-frequency portion of the original spectra, and
the main feature peaks were more distinctly visible, allowing for
better capture of the complex baseline variations. However, the
polynomial-fit-corrected spectra exhibited overfitting or
underfitting in certain regions, which led to distortions in the
intensities or shapes of the characteristic peaks. This indicates
that airPLS is more effective in managing complex fluorescence
backgrounds, and its ability to remove fluorescence backgrounds
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Pre-processing and Spectral Analysis of Raman Spectroscopy for Cotton Stems. (A) Comparison of baseline correction algorithms: PolyFit and
airPLS, with the black line representing the original spectrum, the red line showing the estimated baseline, and the blue line indicating the corrected
spectrum. (B) Raman spectrum with characteristic peaks after baseline correction and smoothing. (C) Comparison of average Raman spectra for
cotton stems across Verticillium dahliae disease severity grades |-V (0%, <25%, 25-50%, 50-75%, and >75% vascular browning or wilting), with each

line representing the average spectrum of 20 stem samples per grade.

surpasses that of PolyFit, thereby better preserving the spectral
information related to VW.

3.2 Raman peak resolution

The Raman fingerprint region (300-1800 cm™) provides crucial
information regarding the biochemical composition of cotton
stems, as the vibrational bands within this range are closely
associated with structural polymers such as lignin, cellulose, and
hemicellulose (Agarwal, 2006; Gierlinger and Schwanninger, 2007;
Smith and Dent, 2005). We first analyzed the Raman spectra of the
VWe-infected cotton stems (Figure 4B). Table 1 summarizes the
characteristic vibrational bands and their corresponding
biochemical assignments. Notably, the peak intensities at 931,
1332, 1457, and 1594 cm™' reflect the degree of lignin
polymerization, a key structural polymer that dominates the
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Raman spectral features of cotton stems. The Raman peak at 931
cm™ corresponded to the vibrational mode associated with C-C-H.
When V. dahliae infects cotton stems, it disrupts the normal
physiological metabolism of plants, causing an imbalance between
the synthesis and decomposition of intracellular substances,
particularly affecting polysaccharide metabolism (Shaban et al,
2018; Xiong et al., 2021). This disruption affects the metabolism
of polysaccharides and alters the chemical environment in which
chemical bonds, such as C-C-H, are embedded, leading to shifts in
their vibrational frequencies (Egging et al., 2018; Gierlinger and
Schwanninger, 2007). 1332 cm™ is attributed to -CH deformation
and -CCH bending, which may result from the degradation of
lignin. This degradation could lead to the breaking or deformation
of the -CH bond, indicating potential changes in the lignin structure
of cotton stems after Verticillium wilt infection. Such alterations
may affect the physical and chemical properties of stems. The peak
at 1457 cm™ corresponds to the bending of CH3 in OCHj;. In
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TABLE 1 Raman band attribution in VW cotton stems.

Band Vibrational

2 : Polymer
(cm™) assignment y
931 CCH Vibration Lignin (Yang et al., 2023)
1079 C-O-C‘or C,_C bond Cellulose (Agarwal and Ralph, 1997)
vibration
- - tri
1121 CO,C symme ltlc Cellulose (Gorzsas, 2017)
stretching (glycosides)
1258 -CH, -COH bend Hemicellulose (Gorzsas, 2017)

1332 - CH deformation and - Lignin (Gorzsas, 2017)
ignin (Gorzsas,
CCH bending g

- CCH, - CHO, - COH Lignin (Gorzsas, 2017); Fusaric acid

1380
and C-O bending (Rosado et al., 2016)
1457 CH3 bends in OCH3 Cellulose (Yang et al., 2023)
Aryl ri tri
1594 T g symmetric Lignin (Cao et al., 2006)

stretching vibrations

addition, the strong aromatic ring symmetry stretching vibration
observed at 1594 cm™ further confirms the presence of lignin,
suggesting that the aryl-related chemical bonds and functional
groups within the cotton stems were affected during the infection
process with VW disease, potentially altering their internal lignin
structure. Cellulose vibrations were prominent at 1079, 1121, and
1380 cm™. The Raman peak at 1079 cm™ can be attributed to the
vibrations of the C-O-C or C-C bonds. In contrast, the peak at 1121
cm'was assigned to symmetric stretching of the glycosidic C-O-C
bond. The Raman features appearing at 1380 cm™ were associated
with -CCH, -CHO, and -COH bond bending. Hemicellulose, likely
in the form of xyloglucan, contributes to the -CH and -COH
bending observed in the 1258 cm™ band, consistent with its
mixed polysaccharide structure.

The Raman spectra of the cotton stem exhibited significant
changes with increasing levels of VW infestation (Figure 4C). The
primary differences between the early and late spectra were
observed at 899, 931, and 1594 cm™. Notably, the Raman
characteristic peak at 1594 cm™ exhibited a higher intensity
during the middle stage of VW infestation (disease grades II-III)
than during the early stage. This increase is attributed to the
activation of plant defense mechanisms in response to the initial
infestation (Pomar et al., 2004). In the early stages, the plant
enhances the mechanical strength of its cell wall by increasing
lignin synthesis, which promotes the deposition of lignin around
vascular bundles, thereby strengthening the mechanical barrier
(Klopfenstein et al., 1991; Pomar et al, 2004). However, as the
disease progresses, plant defense mechanisms may gradually
weaken, allowing the pathogen to secrete various cell wall-
degrading enzymes, including lignin-degrading enzymes. These
enzymes can disrupt the structure of lignin, resulting in decreased
capacity for lignin synthesis and a reduction in its overall content
(Yucel et al., 2005; Pomar et al., 2004). This phenomenon accounts
for the observed decrease in the intensity of the Raman
characteristic peaks at 931 and 1594 cm™ during the later stages
of the disease. Disruption of the cellulose structure was evidenced
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by an increase in the half-height width of the peak at 1079 cm™,
indicating a reduction in crystallinity due to the breakage of B-1,4-
glycosidic bonds. This phenomenon further confirmed the
degradation of cell walls by cellulases secreted by pathogenic
fungi. Additionally, the Raman peak at 899 cm™ was correlated
with the v(CCH), v(COH) vibrational mode of pectin. As the
severity of VW intensified, pectin continued to degrade, resulting
in a shift of the characteristic peaks to lower wavenumbers (~850
cm’™), whereas the intensity of Raman peaks related to pectin (e.g.,
850-900 cm™) decreased significantly. This alteration reflects the
degradation of pectin under the influence of pectinase secreted by
the pathogenic fungi. The observed changes in the spectral features
indicate the degradation and structural alteration of the primary
components of the cotton stem cell wall (lignin, cellulose, and
pectin) during infestation by Verticillium dahliae (Schulz and
Baranska, 2007; Agarwal, 2006). These hierarchical changes in
biochemical characteristics provide a molecular spectroscopic
foundation for analyzing the pathogenic mechanisms of VW and
breeding disease-resistant varieties. This study is of great
significance for the in-depth study of microstructural changes in
cotton stems after VW infection, and the development of effective
disease detection and control methods.

3.3 Characteristic band selection

Before constructing the classification model for cotton stem
Verticillium wilt, preprocessed Raman spectral data were analyzed
using PCA to preliminarily assess the spectral distribution
characteristics of different grades of cotton stem Verticillium wilt
infection (disease grades I-V) through downscaling and
visualization. A total of 100 cotton stem Raman spectral data
points were inputted into the PCA model. The results (Figure 5A)
indicated that the first two principal components (PC1 and PC2)
accounted for 49.4% and 31.5% of the variance, respectively,
yielding a cumulative contribution of 80.9%. The cumulative
contribution of the first three PCs reached 85.9%, suggesting that
these components effectively captured the primary features of the
spectral data. However, as illustrated in the PCA score plot,
although the samples from different infection classes were roughly
categorized into five groups, the concentrated distribution of sample
points, particularly the significant overlap in the central region,
resulted in insufficiently distinct differences in the spectral features
among the various classes. This partial overlap was expected due to
the gradual biochemical changes across Verticillium dahliae
infection stages and factors such as biological variability in cotton
stem composition, spectral similarity in cell wall components, and
tissue heterogeneity, which can obscure class separation in PCA
(Schulz and Baranska, 2007; Gierlinger and Schwanninger,
2006).This high degree of similarity complicates the ability of
PCA to differentiate between the five VW infection classes,
indicating that relying solely on PCA for feature extraction
and classification has limited effectiveness, and should be
further integrated with machine learning models for
improved discrimination.
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(A) PCA plot of model scores. (B) Number of feature bands resulting from different preprocessing steps for the SPA and CARS feature band selection
algorithms. (C) CARS process for spectral feature band selection in the INFO-SVM classification model. The number of sampling runs was 100, and
the RMSECV showed a decreasing and then an increasing trend. The optimal set of feature wavelengths was selected when the number of sampling
runs was 57. (D) Spectral feature band selection by CARS in PSO-RF classification model.

To further optimize the feature band selection, this study used two
efficient feature selection algorithms: SPA and CARS. Both algorithms
significantly reduced the dimensionality of the spectral data, achieving
a reduction ratio of >81% (Figure 5B). Specifically, the SPA algorithm
identified 84-98 feature bands, with a dimensionality reduction ratio
of >82%. In contrast, the CARS algorithm also achieved a
dimensionality reduction ratio of >81%. Notably, when applied to
spectral data after the PolyFit baseline correction and SG smoothing,
the CARS algorithm selected 104 feature bands. However, when
applied to the spectral data after airPLS baseline correction and
MSC processing, only seven feature bands were identified. These
results demonstrate that both the SPA and CARS algorithms
effectively extracted key features from spectral data while
significantly reducing dimensionality, thereby providing efficient
feature inputs for the subsequent construction of classification models.

To comprehensively evaluate the performance of various
feature band selection methods, this study constructed an SVM-
based classification model. The feature selection results from the
SPA and CARS algorithms were inputted into the model for
comparison. In addition, the classification effects of the eight
significant Raman feature peaks obtained through inverse
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convolution calculations in Section 3.2 were also compared. The
results indicate that the classification model based on the eight
known feature bands was significantly less accurate for the training
set than the results from the SPA and CARS algorithms (Table 2).
This phenomenon suggests that although these feature peaks are
prominent in the spectra, they do not provide sufficient information
to fully reflect the biochemical characteristics of the samples,
leading to limited classification performance. By contrast, the SPA
and CARS algorithms extracted deeper insights from spectral data
and identified more representative and discriminative feature
bands, thereby significantly enhancing the accuracy of the
classification model. In summary, although PCA has some value
in the initial exploration of spectral data distributions, its
classification effectiveness is limited. Conversely, the SPA and
CARS algorithms substantially improved the performance of the
classification model through efficient dimensionality reduction and
feature extraction. Combined with the comparative results of the
SVM models, this study confirmed the superiority of feature band
selection algorithms based on chemometric approaches for
classifying cotton stem Verticillium wilt, thereby providing an
important methodological reference for future research.
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TABLE 2 Classification accuracy of different feature band selection algorithms in SVM models.

Preprocessing

Eight characteristic peaks

Methods
Train Vaild Train
airPLS 0.65 0.62 0.70 0.68 0.72 0.70
SG-airPLS 0.68 0.65 073 0.70 0.75 0.73
SG-airPLS-(1/SG)’ 0.70 0.68 0.75 0.72 0.78 0.75
SG-airPLS-MSC 0.55 0.52 0.60 0.58 0.63 0.60
SG-airPLS-SNV 0.60 0.58 0.65 0.62 0.68 0.65
SG-airPLS-SS 0.63 0.60 0.68 0.65 0.70 0.68

3.4 Cotton stem classification models for
different disease levels

In this study, three distinct classification models, INFO-SVM,
PSO-RF, and CSA-LSTM, were developed to classify cotton stem
Verticillium wilt using Raman spectroscopy. Various preprocessing
methods and feature band selection strategies were used for each
model, and their performance was assessed using cross-validation
and test sets. The effectiveness of each model in grading cotton
stems with varying severities of VW is shown in Table 3.

The results of INFO-SVM modeling indicated that the
classification model constructed using CARS for feature band
selection was the most effective for grading cotton stems with
varying severities of VW after SG-airPLS-(1/SG)’ processing.
After ten-fold cross-validation and Monte Carlo sampling (100
times), the model achieved an accuracy of 97.5% and an F1-score of
0.974 on the modeling set. In contrast, the accuracy and Fl-score
for the validation set were 90.0% and 0.867, respectively (Table 3).
The process of optimizing the spectral feature wavelengths is
illustrated in Figure 6A. The optimal set of feature wavelengths
was selected after 57 iterations, resulting in 58 feature wavelengths
that accounted for 10.10% of the entire spectral band. These bands
were identified as the optimal feature wavelength set when the
RMSECV value was minimized. Figure 6B shows the confusion
matrix of the INFO-SVM model for the training set. Its high
accuracy and precision demonstrated the ability of the model to
effectively differentiate between various sample classes. However,
the performance of the validation set (Figure 5C) was slightly lower
than that of the training set. The decrease in the F1-score suggests a
slight reduction in the classification ability of the model on the
validation set; nevertheless, the specificity remained high, indicating
that the model performed well in identifying non-target classes. The
performance of the test set is less different from that of the
validation set, suggesting that the model exhibited good
generalization capabilities for unseen data.

The grading effectiveness of the PSO-RF model on cotton stems
with varying severities of VW is illustrated in Table 3. The results
indicated that after airPLS baseline correction, the PSO-RF model
constructed using CARS for feature band selection demonstrated the
highest efficacy in grading cotton stems with different levels of VW
severity. The accuracy and F1-score for the modeling set were 0.975,

Frontiers in Plant Science

12

whereas the accuracy and F1-score for the validation set were 70.0%
and 0.544, respectively. The model used airPLS solely for baseline
correction of the raw spectral data, with CARS utilized for feature
band selection, as shown in Figure 5D. A total of 49 feature bands
were identified, all of which fall within the Raman wavenumber range
of 400 to 1800 cm™. This range encompasses the majority of
characteristic peaks associated with lignin, proteins, and nucleic
acids in cotton stems. Figure 7 illustrate the confusion matrix for
the PSO-RF hierarchical model applied to the training and validation
sets. The grading effects of cotton stems with varying severities of
cotton stem Verticillium wilt demonstrated different performance
levels. The confusion matrix revealed that, in the training set, the
sample prediction accuracies were consistently high, exceeding 90%.
In contrast, the prediction accuracies in the validation set showed
significant deviations, likely due to the limited number of samples.

The results of the CSA-LSTM classification model indicated that
after SG-airPLS-SNV processing, the model constructed using CARS
for feature band selection achieved the best classification
performance. It recorded an accuracy of 93.8% and an Fl-score of
0.936 for the modeling set, whereas the validation set yielded an
accuracy of 80.0% and an F1-Score of 0.638 (Table 3). Although the
model demonstrated high accuracy on the modeling set, the relatively
low F1-score on the validation set suggests that the model may have
experienced some degree of overfitting during the validation phase.
Figure 8 illustrate the accuracy of the iteration and loss function
curves for the CSA-LSTM model. As the number of iterations
increased, the training set accuracy gradually improved and
stabilized, whereas the loss function value decreased and converged
to a lower value. However, this optimization may be overly reliant on
the data features of the modeling set, which could diminish the
generalization ability of the model when applied to the validation set
data, ultimately affecting the F1-score of the validation set.

The results of this study demonstrated that an effective
preprocessing method can enhance the accuracy of the
classification detection model by as much as 97.5% on the
training set. When evaluating the classification performance of
the three models, the INFO-SVM model exhibited high accuracy
and an F1 score on both the modeling and validation sets,
surpassing those of the other two models on the validation set.
The PSO-RF model performed well on the training set; however, its
performance on the validation set declined significantly, indicating
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TABLE 3 Results of each hierarchical model.

Preprocessing and Feature INFO-SVM CSA-LSTM
Selection Methods
Train Vaild Train Vaild Train Vaild
Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy
score score score score score

R-CARS 0.963 0.963 0.900 0911 0.938 0.936 0.600 0.627 0.688 0.656 0.600 0.541

R-SPA 0.625 0.604 0.500 0330 0.663 0.664 0.200 0.157 0.650 0.634 0.500 0363

airPLS-CARS 0.950 0.950 0.800 0.678 0.975 0.975 0.700 0.544 0.825 0.806 0.500 0533

airPLS-SPA 0.625 0616 0.400 0.294 0.963 0.963 0.400 0394 0.638 0.602 0.400 0.360

SG-airPLS-CARS 0588 0575 0.800 0.738 0.838 0.820 0.700 0.747 0.725 0.717 0500 0.448

SG-airPLS-SPA 0.650 0.641 0.800 0.633 0.813 0.805 0.600 0.493 0.700 0.682 0.500 0.430

SG-airPLS-(1/SG)’-CARS 0.975 0.974 0.900 0.867 0.963 0.962 0.800 0.638 0.738 0.726 0.600 0.574

SG-airPLS-(1/SG)'-SPA 0.675 0.667 0.700 0.544 0.963 0.965 0.500 0367 0.700 0.651 0.400 0367

SG-airPLS-MSC-CARS 0.388 0.235 0.200 0.133 0.948 0.949 0.600 0.471 0513 0.468 0.700 0.748

SG-airPLS-MSC-SPA 0.813 0.814 0.800 0.811 0.963 0.961 0.400 0.360 0.638 0.632 0.600 0.550

SG-airPLS-SNV-CARS 0913 0912 0.500 0385 0.925 0.926 0500 0.440 0.938 0.936 0.800 0.638

SG-airPLS-SNV-SPA 0.925 0.924 0.500 0.600 0.950 0.948 0.700 0.611 0.588 0512 0.200 0.137

SG-airPLS-SS-CARS 0525 0518 0.800 0.738 0975 0.974 0.500 0.428 0.688 0.675 0.400 0.294

SG-airPLS-SS-SPA 0.800 0.775 0.700 0.643 0.963 0.963 0.600 0.653 0.750 0.705 0.400 0.380

Bold values indicate the best performance results under the corresponding algorithm.
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INFO-SVM cotton yellow wilt classification model results. (A) and (B) are the confusion matrices used by the model for the training and validation
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a weak generalization ability. In contrast, the CSA-LSTM model
showed strong performance on the modeling set but had a low F1
score on the validation set, suggesting potential overfitting. Overall,
the results indicate that the INFO-SVM model after SG-airPLS-(1/
SG)’ -CARS preprocessing was the most effective for classifying and
recognizing the Raman spectral data of cotton stems with varying
levels of VW infection.

4 Discussion

The infestation of cotton with V. dahliae leads to significant
alterations in various compounds within the stem, which can be
effectively monitored using Raman spectroscopy. The analysis
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FIGURE 7

revealed that the intensity of the characteristic lignin peak at 1594
cm’! exhibited a dynamic pattern of an initial increase followed by a
decrease. This phenomenon intuitively reflects the adjustment of
plant defense strategies in response to VW. In the early stages of
infestation, lignin accumulates in the cell wall as plants form a
physical barrier against pathogenic fungi. However, as the disease
progresses, the pathogen gradually degrades the lignin structure of
the plant cell wall, resulting in a reduction in the lignin content and
subsequent weakening of the intensity of the characteristic peaks
(Pomar et al., 2004; Tian et al., 2023). This change was corroborated
by the dynamic response of the characteristic peak at 931 cm™,
which together illustrated the failure of plant defense mechanisms
under sustained pathogen infestation. In addition, pectin
degradation was reflected in the Raman spectra, with the intensity
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CSA-LSTM model training set process. (A) Accuracy iteration curves for the training set of the model. (B) Loss function curve for the training set

of the model.

of the characteristic peak at 899 c¢m™ diminishing and shifting
toward lower wavenumbers. This shift directly indicated the role of
pectinase and further confirmed the synergistic degradation
strategy used by pathogenic fungi for multiple components of the
plant cell wall. This study not only verified the reliability and
accuracy of Raman spectroscopy in phytopathological research
but also demonstrated its unique advantage in elucidating the
mechanisms of plant-pathogen interactions. Furthermore, a
database of the Raman spectra of cotton stems was established,
providing valuable data resources for future studies and facilitating
the exploration of broader application scenarios.

Raman spectroscopy offers significant advantages in the analysis
of biological samples, however, its spectral data are often influenced
by fluorescence background, baseline drift, and noise interference
(Schulz and Baranska, 2007; Smith and Dent, 2005). Consequently,
spectral preprocessing is a crucial step in enhancing modeling
effectiveness (Zhao et al,, 2007). In this study, we systematically
compared multiple spectral preprocessing methods and two
baseline correction algorithms to optimize the quality of the
spectral data for classifying cotton stem Verticillium wilt. The
results indicate that the airPLS baseline correction effectively
fitted the complex baselines and separated the target Raman
signal using adaptive iterative weighted least squares. This
approach significantly improves the SNR, outperforms traditional
PolyFit for managing nonlinear baselines, and is particularly
suitable for biological samples with strong fluorescence
interference (Zhang et al, 2010). Spectral quality was further
enhanced by combining SG smoothing with (1/SG)’, SG
smoothing reduced random noise, whereas (1/SG)’ improved the
distinction of feature peaks, particularly in weak-signal regions
(Clupek et al, 2007). The comparison indicates that the SG-
airPLS baseline correction combined with (1/SG)’ performed the
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best in enhancing the spectral quality and model classification
performance. This approach significantly reduced the background
fluorescence intensity and provided high-quality data support for
subsequent feature extraction and machine-learning modeling. In
this study, the SG-airPLS-(1/SG)" combination strategy was applied
for the first time to rapidly grade VW-affected cotton stems, thereby
offering a new technical tool for the early diagnosis of agricultural
diseases. Future research should explore the optimization of this
combination with other pretreatment techniques and assess their
generalizability for diagnosing other crop diseases, thereby
providing broader technical support for disease management in
agricultural production.

The intelligent screening mechanism of the feature bands exerts
a dual driving effect on the performance optimization of the cotton
stem Verticillium wilt classification model. In a comparison of
downscaling methodologies, CARS demonstrated a parsing
capability that surpassed traditional methods while effectively
eliminating the most redundant noise bands and covariance
interference in spectral data (Li et al., 2014). Compared with the
eight intuitively selected Raman peaks, CARS extracted a greater
number of feature bands and provided more comprehensive
information, significantly enhancing the performance of the
classification model, suggesting that an in-depth exploration of
spectral potential information is crucial for model optimization. In
contrast to PCA, which is hindered by the issue of pathological
spectral feature aliasing due to linear decomposition (Tariq et al.,
2024) and the risk of overfitting during band-independence
screening with SPA, CARS constructs biologically interpretable
feature subsets through dynamic integration of Monte Carlo
sampling and partial least squares regression coefficients.
Principal Component Analysis (PCA) often exhibit class overlap
when analyzing Raman spectra of plant tissues due to spectral
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similarities and biological variability, limiting their ability to
distinguish Verticillium dahliae disease severity classes (Gierlinger
and Schwanninger, 2006; Egging et al., 2018). Meanwhile, the
experimental results indicated that the Fl-score of the INFO-
SVM model, developed from 37 eigenbands screened by CARS,
reached 0.974, representing a 6.82% improvement over the SPA
method. This demonstrates the unique advantage of CARS in
resolving nonlinear interactions between bands. Furthermore,
CARS effectively enhanced the key biochemical response bands,
particularly within the Raman shift interval of 1380 cm™ (the
characteristic peak of Fusaric acid) and other specific markers for
VW (Egging et al., 2018; Rosado et al., 2016), thereby providing a
reliable spectral fingerprint library for the in situ detection of
disease metabolites.

When constructing a rapid grading model for cotton stem
Verticillium wilt, the INFO-SVM model demonstrated high accuracy,
outperforming the PSO-RF and CSA-LSTM models. Its effectiveness in
grading the detection of cotton stem Verticillium wilt was confirmed.
The optimization benefits of the INFO algorithm stem from its global
adaptive search capability for SVM hyperparameters, which effectively
mitigates the limitations of traditional optimization methods that are
often trapped in local optima (Li et al., 2015). This was achieved by
introducing a nonlinear dynamic weighting strategy that reduced the
sensitivity of the model to the initial parameters (Wan et al., 2024).
Furthermore, the spectral data preprocessed by SG-airPLS-(1/SG)’
-CARS, when combined with the INFO-SVM model, exhibited high
specificity and an F1-score of 0.867 on the validation set, confirming its
ability to distinguish between different infection classes of VW in a
complex noise environment. Although there was a slight decrease in the
Fl-score compared with the training set, the overall generalization
performance of the model remained stable, indicating the feasibility of
the method for grading the detection of other crop diseases.

Despite the promising results achieved in this study, several
limitations should be acknowledged to guide future research. First,
the current dataset, though carefully curated, may lack sufficient
representativeness across diverse cotton cultivars, growth stages, and
environmental conditions. Early-stage infection samples were
particularly limited, which could affect the model’s sensitivity to
initial symptom detection. Expanding the spectral database with
longitudinal field samples is essential to enhance generalization.
Second, while Raman spectroscopy offers high specificity, its
performance in field applications is often compromised by
environmental interferences, such as ambient light, temperature
fluctuations, and humidity, which can introduce noise and baseline
drift (Smith and Dent, 2005; Farber et al, 2019a). Developing robust
preprocessing algorithms or noise-invariant deep learning
architectures could improve adaptability to these real-world
conditions. Third, although machine learning models delivered high
accuracy, their “black-box” nature limits agronomic interpretability. In
the future, the Shapley Additive exPlanations (SHAP) interpretable
framework can be integrated into a feature band screening system. By
quantifying the contributions of band weights, we can create spectral
response-metabolic pathway correlation maps to further address the
limitations of the traditional “black box” model. Lastly, the reliance on
benchtop Raman systems restricts field deployability due to their high
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cost, large size, and susceptibility to fluorescence interference in
biological samples (Farber et al., 2019a). Future investigations could
explore the integration of alternative laser wavelengths, such as 785 nm
and 1064 nm, which are more common in portable Raman systems.
The 785 nm laser provides a strong balance between signal intensity
and fluorescence suppression, while the 1064 nm laser significantly
reduces fluorescence interference in biological samples, offering a
particular advantage for in-field diagnosis of pigmented plant tissues
(Smith and Dent, 2005). Exploring low-cost portable spectrometers
coupled with lightweight models could facilitate scalable, on-farm
diagnostics. Addressing these limitations will be critical for
translating this technology into practical precision agriculture tools.
This study demonstrates a novel Raman spectroscopy-machine
learning frame-work that enables early and accurate detection of
Verticillium wilt (VW), a major advancement in the field of plant
disease diagnosis. By leveraging the molecular specificity of Raman
spectroscopy to identify pre-symptomatic biochemical changes and
combining it with optimized machine learning algorithms, we
achieve sensitive detection of early infection with up to 85% recall.
This study offers unique advantages for early cotton yellow wilt
surveillance, including minimal sample preparation, rapid analysis,
and high classification performance. While the current results
demonstrate the method’s good pre-symptomatic detection
capability, future studies should extend the spectral database to
include a more diverse range of early infection time courses and
environmental conditions to enhance the robustness of the model.
This early detection approach fundamentally shifts crop protection
strategies from reactive treatment to preventive intervention,
providing an important technological foundation for implementing
precision agriculture systems that can identify and mitigate disease
threats before visible symptoms appear. Further integration with
portable spectroscopic equipment and an interpretable artificial
intelligence framework will accelerate the translation of this
technology into a practical early warning system for field applications.

5 Conclusion

In this study, hierarchical detection of VW on cotton stems was
achieved using Raman spectroscopy in conjunction with machine
learning algorithms. The combination of Raman spectroscopy and
the CARS feature band selection algorithm effectively extracted the
spectral features associated with VW, thereby significantly enhancing
the accuracy of the classification model. By comparing the
classification models constructed with various optimization
algorithms, it was determined that the classification accuracy of the
INFO-SVM model on the validation set reached 90%, outperforming
the PSO-RF (70%) and CSA-LSTM (80%) models. This indicates that
the INFO-SVM model is more suitable for Raman spectral grading
detection of cotton stem Verticillium wilt. This method established a
rapid and accurate disease classification model, providing a novel
approach for the early detection of cotton stem Verticillium wilt. It
offers the advantages of high efficiency and low cost and delivers
reliable data support for subsequent research. This study confirmed
the significant potential of combining Raman spectroscopy with
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machine learning for diagnosing agricultural diseases, thereby
offering technical support for intelligent disease monitoring and
management. In the future, this method can be further
disseminated and applied for the early diagnosis of other crop
diseases, thereby promoting the intelligent development of
agricultural disease-monitoring technology.
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