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Traditional path planning algorithms often face problems such as local optimum

traps and low monitoring efficiency in agricultural UAV operations, making it

difficult to meet the operational requirements of complex environments in

modern precision agriculture. Therefore, there is an urgent need to develop an

intelligent path planning algorithm. To address this issue, this study proposes an

improved Informed-RRT* path planning algorithm guided by domain-partitioned

A* algorithm. The proposed algorithm employs a multi-level decomposition

strategy to intelligently divide complex paths into a sequence of key sub-

segments, and uses an adaptive node density allocation mechanism to

dynamically respond to changes in path complexity. Finally, a dual-layer

optimization framework is constructed by combining elliptical heuristic

sampling with dynamic weight adjustment. Complex maps are constructed in

simulation to evaluate the algorithm’s performance under varying obstacle

densities. Experimental results show that, compared to traditional RRT* and its

improved variants, the proposed algorithm reduces computation time by 56.3%–

92.5% and shortens path length by 0.42%–8.5%, while also demonstrating

superior path smoothness and feasibility, as well as a more balanced

distribution of search nodes. Comprehensive analysis indicates that the A*-

MSRRT* (A*-Guided Multi-stage Bidirectional Informed-RRT*) algorithm has

strong potential for application in complex agricultural environments.
KEYWORDS

precision agriculture, A*-MSRRT* algorithm, adaptive node allocation, path
planning, UAV
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1 Introduction

With the rapid advancement of UAV technology, its

applications in the field of precision agriculture are becoming

increasingly widespread (Guebsi et al., 2024), particularly

demonstrating strong potential in crop growth assessment (Fan

et al., 2022), yield prediction (Fang et al., 2024; van Klompenburg

et al., 2020), and pest and disease early warning (Yang, 2020).

Utilizing various types of sensors, UAVs can quickly acquire key

physiological and biological parameters of crops, significantly

enhancing data collection efficiency (Rejeb et al., 2022). The

acquired information provides a solid data foundation for

agricultural production, gradually making UAVs a core tool in

promoting intelligent and smart and precise agricultural

management (Tsouros et al., 2019).

However, in most agricultural operation environments, UAVs

often encounter interference from complex obstacles such as dense

trees during ultra-low altitude flight missions, which severely

restricts their operational efficiency and flight safety (Aliloo et al.,

2024). To overcome these challenges, many researchers have carried

out comprehensive investigations into various path planning

strategies (Yang et al., 2023), aiming to enhance UAVs’

autonomous navigation and obstacle avoidance capabilities in

high-density obstacle environments (Fang et al., 2021; Yedilkhan

et al., 2024). Representative methods include heuristic search

algorithms such as A* (Foead et al., 2021; Hart et al., 1968),

graph search-based algorithms like Dijkstra (Dijkstra, 1959; Peyer

et al., 2009), and sampling-based algorithms exemplified by

Rapidly-exploring Random Tree (RRT) (Varricchio et al., 2014).

Owing to the high complexity and dynamic nature of agricultural

environments, the A* algorithm encounters significant challenges in

designing effective heuristic functions and suffers from exponential

increases in computational complexity when operating within high-

dimensional configuration spaces (Henkel et al., 2016). The Dijkstra

algorithm ensures an optimal solution by exhaustively traversing

the entire graph space. In comparison, the RRT algorithm, with its

straightforward structure and high computational efficiency, is

capable of quickly generating feasible paths in high-dimensional

spaces, making it well-suited for path planning in complex

scenarios. Consequently, RRT has progressively emerged as a

representative approach in intelligent path planning research and

holds a prominent position among various planning algorithms

(Wu et al., 2021). Due to its strong pathfinding capability in

complex environments, this study adopts the RRT algorithm as

the foundational framework for further enhancement, aiming to

improve its practical effectiveness in agricultural UAV applications.

Nevertheless, the RRT* algorithm requires the exploration of

numerous nodes, resulting in higher computational costs and

reduced efficiency in the path planning process. As the map size

expands, the computational load increases exponentially. To tackle

this issue, extensive studies have been carried out by researchers

worldwide to optimize and improve such algorithms. YanLin et al.

proposed HBAI-RRT*, a dual-tree search method with greedy

heuristics that speeds up convergence but is complex and heavily

heuristic-dependent (Lin and Zhang, 2024). Tai Huang et al.
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proposed PF-RRT*, combining APF and RRT* to improve path

efficiency and quality, though its performance depends heavily on

specific environments (Huang et al., 2023). Peng Xin proposed an

enhanced bidirectional RRT* algorithm integrating APF and DWA

to improve path quality and planning efficiency, though its

performance remains limited in highly complex environments

(Xin et al., 2023). Xinyan Chen et al. proposed an Informed-

RRT* algorithm that uses sub-nodes as intermediate points in

combination with a dual-directional search strategy (Chen et al.,

2025), which reduces computation time and path length and

improves efficiency. However, its application scenarios are

relatively simple and not appropriate for path planning in

environments with high obstacle density.

Although current enhanced RRT* algorithms have achieved

certain improvements in planning efficiency and path quality, they

perform poorly in high-obstacle-density environments. These

methods often suffer from overly complex structures, rigid reliance

on predefined sampling regions, and limited adaptability, resulting in

frequent path failures, inefficient exploration, and suboptimal

trajectory structures lacking robustness and continuity (Sánchez-

Ibáñez et al., 2021). As a result, it remains difficult to balance

planning efficiency and path quality. Therefore, this study aims to

enhance the efficiency and adaptability of the RRT* algorithm in

complex agricultural environments by integrating an A*-based key

node selection mechanism with an optimized multi-stage path

decomposition strategy, effectively addressing the poor performance

of existing methods in high-obstacle-density scenarios.

The main contributions of this study are as follows:
1. In order to improve the low global search efficiency of

conventional RRT algorithms in complex scenarios, this

study proposes a heuristic-based key node extraction

method. By employing the A* algorithm to quickly

identify a near-optimal path, several key intermediate

nodes along the path are selected as key intermediate

nodes for segmenting the trajectory. In this way, the path

planning problem is divided into multiple relatively

independent and spatially localized sub-tasks, significantly

reducing the dimensionality and complexity of the global

search space.

2. To address the issue of uneven distribution of

computational resources in multi-stage path planning,

this study proposes an adaptive node allocation method

for corner optimization. The algorithm establishes a node

prioritization model based on turning angles to accurately

identify key turning points, and ensures uniform node

distribution through adaptive distance constraints and a

path length balancing algorithm. Additionally, a dynamic

iterative resource allocation strategy is constructed to

allocate computational resources rationally according to

the complexity weights of each path segment.

3. This study further proposes a segmented bidirectional

Informed-RRT* path optimization algorithm. For each

pair of adjacent key intermediate nodes, a local path

segment is independently constructed by initializing
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bidirectional search trees and elliptical samplers, thereby

enabling efficient path optimization within each local

region. Finally, multiple path segments are sequentially

stitched together to generate a globally high-quality and

feasible path, meeting the dynamic path planning

requirements in complex obstacle-dense and multi-

channel environments.
2 Materials and methods

2.1 Problem definition

The path planning problem is defined as follows: Let the

configuration space be X  =  Rd , which is an important concept in

UAV path planning, where the obstacle region is denoted as Xobs ⊂
X, and the free space as Xfree = X ∖Xobs. The distance between nodes

x1,  x2 ∈ X is measured using the standard Euclidean norm x1 − x2.

Let  xstar   ∈  Xfreebe the starting position and xgoal ∈ Xfree be the

target position, then the path planning problem can be formalized

as a triplet (Xfree, xstar , xgoal). The path is represented as a continuous

mapping b :½0, 1� → Xfree, satisfying b(0) = xstart , b(1) =  xgoal .

The path planning problem can be divided into the following

three sub-problems:

Problem A: Given the triplet (Xfree, xstar , xgoal), find a path b :½0
, 1� → X that connects the start and end points;

Problem B: Ensure that the generated path b satisfies the

collision-free constraint throughout the entire path segment T ∈
½½0, 1�, i.e., b(t) ∈  Xtree;

Problem C: Under the premise of ensuring path feasibility, find

a path t that satisfies the above conditions in the shortest

possible time.
2.2 RRT* algorithm

The traditional RRT algorithm often fails to generate globally

shortest or optimal paths. To address this, Karaman et al. proposed

the classical RRT* algorithm in 2011, which is an improvement over

the traditional RRT algorithm (Fang et al., 2023, Fang et al., 2020;

Karaman and Frazzoli, 2011; Xu et al., 2025). After a new node is

generated, the algorithm does not directly enter the next iteration;

instead, it performs collision checking to reselect the most suitable

parent node and replans the path accordingly. As illustrated in

Appendix S1 (Supplementary Figure 1), the black circular markers

denote individual nodes, with the labels indicating their respective

generation sequence.

The enhanced performance of the RRT* algorithm can be

illustrated by assigning weights to a directed weighted graph. The

novel approach of resetting and reselecting the parent node during

the rewiring process is depicted in Appendix S1 (Supplementary

Figure 1). The algorithm resets the parent node by finding a path

from the start point to the new node with the minimum cost. xrand
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random point xrand is generated, and the nearest node to xrand on

the tree is identified as xnearest . Then, xrand and  xnearest are

connected, and with xrand as the center and r as the radius,

neighboring nodes are searched on the tree. xrand set of potential

parent nodes is identified with the aim of updating xrand and

checking for better parent nodes. Starting from a potential parent

node xnear , the path cost is calculated separately for xnearest and xnear
as parent nodes. If the new path has a lower cost, the previous edge

in the tree is removed, as shown by the dashed line in the figure. The

new cost C } is calculated using the following expression when the

neighboring node is xnear

C0 = Cost(xnear) + Line(xnear + xnew) (1)

As shown in Equation 1, where:

Cost(xnear) is the accumulated cost from the root of the tree to

point xnear , and Line(xnear + xnew) is the distance from xnear to xnew.

Updating the parent node: if C } < Cost(xnew), then update the cost

and parent node of xnew as shown in Equation 2

Cost(xnew) = C0Parent(xnew) = xnear (2)

If a more optimal parent node is identified, a connection is then

established between them. For rewiring, for each neighboring node

Xnear , the cost through the new node xnew is calculated as shown in

Equation 3

C0 = Cost(xnew) + Line(xnew,xnear) (3)

If C } < Cost(xnear), then rewiring is performed, and the original

connection is removed.
2.3 Bidirectional RRT* algorithm

Due to the RRT* algorithm expands the search tree in only one

direction and converges relatively slowly, the Bidirectional Rapidly-

exploring Random Tree (Bidirectional RRT*) algorithm was

introduced as an improved variant to overcome these limitations

(Candemir et al., 2024; Liu et al., 2019), aimed at accelerating

convergence in high-dimensional configuration spaces. As shown in

Appendix S1 (Supplementary Figure 2), the algorithm

simultaneously builds two exploration trees, T1 from the start

point xstart and T2 from the goal point xgoal , and explores the

space through bidirectional expansion. During every iteration, the

algorithm randomly selects a point xrand within the configuration

space, locates the nearest node xnearest in both trees, and generates a

new node xnew in its direction. Tree T1 expands outward from xstart ,

while tree T2 grows in reverse from xgoal . When the newly generated

nodes from both trees are close enough and the path between them

is free of collisions, the algorithm proceeds to connect the two trees.

Unlike the conventional RRT method, Bidirectional RRT*

incorporates a path refinement strategy during tree expansion.

Upon generating a new node, it examines neighboring nodes

within a defined radius to identify several potential parent

candidates, then connects to the one offering the lowest cost,

thereby enhancing path quality, as described in Equation 4.
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Cost(xnew) = min
xi∈N(xnew)

½Cost(xi) + ∥ xi − xnew ∥2� (4)

Each time a new node xnew is generated, the algorithm searches

its neighboring node set N(xnew) to find the optimal parent node

and connects it through the path with the lowest total cost, as shown

in Equation 5

Ptotal = PT1
(xnew) ∪ PT2

(x＇new) (5)

Once the new nodes xnew and xxFF07;new in the two trees are

successfully connected, the algorithm traces back from each of

these nodes to their respective root nodes (start or goal), resulting in

two sub-paths PT1
and PT2

. The final path is formed by

concatenating these two paths into Ptotal .
2.4 Informed-RRT* algorithm

Due to the built-in constraints of the RRT* algorithm, including

its high computational complexity and reduced search efficiency in

high-dimensional environments, Informed-RRT* was proposed by

Jonathan D. Gammell and S. Srinivasa (Gammell et al., 2014). It

improves the original RRT* algorithm by optimizing the search

process for asymptotically optimal paths. When solving path

planning problems (Fang and Xie, 2024; Huang et al., 2025; Qureshi

and Ayaz, 2015), Informed-RRT* demonstrates faster convergence

toward the optimal solution, as illustrated in Appendix S1

(Supplementary Figure 3).The traditional Informed-RRT* algorithm

utilizes known information (such as the currently known best path

length) to constrain the search space, thereby avoiding unnecessary

exploration. After finding an initial path, Informed-RRT* uses the

current path length cbest , the start point xstart , and the shortest distance

cmin between the goal point xgoal and the start point. The major axis

length is a, and the minor axis length is b. Let a be equal to half the

length of the initial path, as shown in Equation 6

a = Cbest
2

c = Cmin
2

b =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
best−C

2
min

p
2

8>>><
>>>:

(6)

An elliptical sampling region is thus constructed. In subsequent

iterations, each time a shorter path is found, its length is used as the

new cbest to update the sampling ellipse, as shown in Appendix S1

(Supplementary Figure 4).
2.5 A* heuristic key path node extraction
strategy

As a core factor determining the convergence performance and

route quality of the RRT* algorithm, the node selection strategy

suffers from limitations in random sampling efficiency, avoidance of

local optima, and adaptability to high-dimensional spaces, which

have become key bottlenecks restricting algorithmic performance

improvements. This study proposes an optimized intermediate

node selection algorithm, aiming to use a dynamically scored
Frontiers in Plant Science 04
mechanism based on corner angles to accurately identify key

intermediate nodes in the path. A grid distance constraint is

introduced to prevent key intermediate nodes from being overly

dense. A new path segment length balancing mechanism is added to

automatically supplement necessary key intermediate nodes. Then,

by combining A* grid paths with continuous space validation, the

validity of key intermediate nodes is ensured. Finally, a visibility

check is used to further optimize the number of nodes by removing

redundant points. The corresponding pseudocode for this process is

presented in Key Waypoints Selection Algorithm, while the detailed

procedural steps are visualized in Figure 1.

Key waypoints selection Algorithm 1:
Input: start, goal, obstacle, map_info

Output: key_points

1: path ← Generate A ∗ grid path (start, goal, binary_map)

2: simplifiedPath← Remove redundant turning points (path)

3: scores ← Compute node importance (simplifiedPath)

4: keyPoints ← [start, goal]

5: for each node in sorted (simplifiedPath, scores

descending) do

6: if scores [node] > 015 ∧ min_grid_distance (node,

keyPoints) ≥ 3 then

7: keyPoints.append (node)

8: end

9: i ← 0

10: while i < lenght (keyPoints) − 2 do

11: if IsVisible (keyPoints[i], keyPoints[i + 2] ,

binary_map) then

12: Remove keyPoints[i + 1]

13: else i ← i + 1

14: end

15: keyPoints ← Insert intermidiate nodes (keyPoints,

original_path, max_lenght = 8.0)

16: return ConvertToContinuousSpace (keyPoints,

obstacles, grid_params)
Algorithm 1. Key waypoints selection.

The A* algorithm is a heuristic-based search method that

merges the optimality assurance of the Dijkstra algorithm with

the high efficiency of greedy best-first search. It steers the search

direction using an evaluation function composed of the actual cost

and an estimated heuristic cost. The essence of the A* algorithm is

reflected in this evaluation mechanism, which drives the search

process, as illustrated in Equation 7

f (n) = g(n) + h(n) (7)

Where: f(n) denotes the total estimated cost of node n; g(n)

denotes the actual path cost from the start point to node n; H

denotes the heuristic estimated cost from node n to the goal point.

To ensure the effectiveness and accuracy of the algorithm in a

two-dimensional grid environment, Euclidean distance is adopted

as the heuristic function, as shown in Equation 8
frontiersin.org
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h(n) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xn − xgoal)

2 + (yn − ygoal)
2

q
(8)

Wh e r e (xn ​, yn ​ ) a n d (ygoal , xgoal) r e p r e s e n t t h e

coordinates of the current node and the goal node, respectively.

This heuristic function satisfies the admissibility condition, i.e.,

h(n) ≤ h*(n), where h*(n) is the true optimal cost from node n to

the goal.

In the actual path search process, it is necessary to continuously

update the accumulated cost from the start point to the current

node. For grid environments, the update rule of this accumulated

cost is given in Equation 9

g(nneighbor) = g(ncurrent) + g(ncurrent , nneighbor) (9)

To extract key nodes from the original path obtained by A*

search, a path simplification method based on direction change

detection is used. Let the original path be P = P0,P1,P2 ⋯ ,Pmf g,
where pi = (xi,yi) denotes the i-th node on the path. The direction

vector of adjacent path segments is defined as shown in Equation 10

di
→
= (xi+1 − xi, yi+1 − yi) (10)
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When a change occurs between adjacent direction vectors, i.e.,

d
→

i−1≠d
→

i, the node pi is identified as a critical turning point and

retained in the simplified path.

Since the A* algorithm operates in discrete grid space, while

actual path planning applications often require continuous space,

coordinate system conversion becomes a necessary step. The

conversion from grid coordinates   (i,   j)   to continuous world

coordinates   (x,   y)   needs to consider the grid resolution and the

geometric characteristics of the map. The conversion formulas are

shown in Equations 11 and Equations 12

x = (i + 0:5)� resolution (11)

y = (gridheigh − j − 0:5)� resolution (12)

Where resolution denotes the grid resolution, and grid _ heigh

denotes the height of the grid map.

Based on the above path simplification and coordinate

transformation process, a complete mathematical framework for

key node extraction can be established. Let the simplified path

obtained by the A* algorithm be
FIGURE 1

Intermediate sampling point process.
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Psimplified = P0, P1, P2 ⋯, Pkf g, where P0 and Pk represent the

start and end points, respectively.

The key intermediate node set is defined as shown in Equation 13.

Nkey = pi i ∈ 1, 2,⋯, k − 1f g, pi ∈ Psimplified
�� ��

(13)

Each sub-problem is solved within a relatively small local space,

thereby significantly improving the overall planning efficiency.
2.6 Adaptive node allocation mechanism
oriented toward corner optimization

Although the aforementioned optimized intermediate node

selection algorithm has achieved significant improvements in

node filtering and redundancy elimination, it still faces issues of

uneven computational resource allocation and inaccurate path

complexity assessment in multi-stage path planning. To address

this, this study further proposes an adaptive node allocation

mechanism oriented toward corner optimization. By dynamically

evaluating the geometric characteristics of path segments and

the distribution of obstacles, this mechanism enables intelligent

allocation of computational resources, thereby improving planning

efficiency and path quality in complex environments. This

mechanism first establishes a node importance quantification

model based on corner angles. For any three consecutive nodes

on the path: Pi−1(xi−1, yi−1), Pi(xi, yi), and Pi+1(xi+1, yi+1), the corner

angle is defined and calculated as shown in Equation 14.

qi = arccos v
→
1 · v
→
2

v
→
1j j· v→2j j

� �
(14)

Forward vector and backward vector are respectively defined as

shown in Equation 15.

v
→
1= (xi − xi−1, yi − yi−1)

v
→
2= (xi+1 − xi, yi+1 − yi)

(
(15)

The magnitude of the vector is calculated as shown in Equation 16.

v
→
1

��� ��� = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xi − xi−1)

2 + (yi − yi−1)
2

p
v
→
2

��� ��� = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xi+1 − xi)

2 + (yi+1 − yi)
2

p
8><
>: (16)

The dot product of the vectors is calculated as shown in

Equation 17.

v
→
1 · v

→
2= (xi − xi−1)(xi+1 − xi) + (yi − yi−1)(yi+1 − yi) (17)

This equation determines the turning angle at a given path node

by applying the cosine law to the angle formed between vectors,

thereby accurately measuring the curvature at that location. Using

the calculated corner angle, a node importance scoring function is

defined, as presented in Equation 18.

Si =
qi
p + a · Di (18)
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Where Si denotes the importance score, a is the weighting

coefficient for obstacle imagery, and Di denotes the inverse of the

normalized distance between the node and its nearest obstacle. This

scoring function comprehensively considers the geometric features

of the path and environmental constraints, achieving accurate

identification of key key intermediate nodes.However, relying

solely on the importance score may lead to excessive clustering of

key nodes. Therefore, to prevent over-concentration of key nodes,

an adaptive constraint mechanism based on grid distance is

introduced. The grid distance between two nodes is defined as

shown in Equation 19

dgrid(Pi, Pj) = xi − xj
�� �� + yi − yj

�� �� (19)

During the node filtering process, a dynamic distance threshold

is applied, as shown in Equation 20

Tmin = max(Tbase,Tend · e
−
dend
Lref ) (20)

Where Tbase is the base distance threshold, Tend is the goal area

threshold, dend is the current distance from the node to the goal, and

Lref is the reference length. This formula achieves adaptive

adjustment of the distance threshold through an exponential

decay function, effectively avoiding redundant node distribution

near the goal point.

Considering that node filtering may result in uneven segment

lengths, a balancing mechanism based on Euclidean distance is

designed. For two adjacent key nodes Pk(xk, yk) and Pk+1(xk+1, yk+1),

the distance between them is calculated as shown in Equation 21.

Lsegment =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xk+1 − xk)

2 + (yk+1 − yk)
2

p
(21)

When Lsegment > Lmax , the system automatically inserts key

intermediate nodes into the original path. The quantity of

inserted nodes is calculated using the following expression, as

defined in Equation 22.

Ninsert =
Lsegment

Lmax
(22)

The index interval for the inserted nodes is given by Equation 23.

Didx = max 1, ⌊ idxend−idxstart
Ninsert+1

⌋
� 	

(23)

Where idxstart and idxend are the indices of the starting and

ending nodes in the original path. This algorithm ensures the

uniformity of segment lengths and improves the success rate of

subsequent RRT expansion.Finally, to achieve optimized allocation

of computational resources, a dynamic iterative resource allocation

strategy is established based on path segment geometric complexity

and obstacle distribution. For the j-th path segment, the complexity

weight is calculated as shown in Equation 24

wj = Lj − rj (24)

Where Lj is the path segment length and rj is the obstacle

difficulty coefficient.
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The number of iterations allocated to the j-th path segment follows

a weighted proportional distribution principle, as shown in Equation 25

Ij = max(Imin, ½ wj

oN
k=1

wk
· Imax�) (25)

The meanings of the parameters are as follows: Ij denotes the

number of iterations allocated to the j-th path segment, Imin denotes

the minimum guaranteed number of iterations for each path

segment, Imax denotes the upper limit of the total number of

iterations in the system, N denotes the total number of path

segments, and
wj

oN
k=1

wk
denotes the sum of complexity weights of

all path segments. This formula achieves proportional allocation of

computational resources through weight normalization, while the

minimum value constraint ensures that each path segment receives

a basic level of computational support, effectively balancing the

relationship between computational efficiency and planning quality.
2.7 Multi-stage bidirectional informed-RRT*
algorithm combined with A* algorithm

Although the above algorithms have made notable progress in

enhancing path planning efficiency and quality, they still face
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several challenges in agricultural operation scenarios. Specifically,

the expansion of the random tree often results in redundant nodes,

which diminishes algorithmic efficiency; moreover, the

optimization level of the generated paths remains insufficient. To

tackle these issues, this research introduces a segmented

bidirectional Informed-RRT* algorithm aimed at enhancing the

effectiveness of conventional path planning techniques. The

primary innovation of the proposed approach is the strategic

decomposition of the complex global planning task into multiple

locally solvable sub-problems that can be optimized in parallel. By

means of mathematical modeling, the initial problem space X is

partitioned into several sub-domains with clearly defined boundary

constraints. In each sub-domain, a dedicated bidirectional search

tree is initialized along with an elliptical sampling mechanism. If the

local search fails, the corresponding tree is reinitialized and

replanned. The complete procedure is illustrated in the flowchart

shown in Figure 2.

First, under the theoretical framework of the basic RRT

algorithm, given the start point x1 ∈ Xfree and the goal point x2 ∈
Xfree, the RRT* algorithm constructs a search tree T = (n , e), where
v is the set of nodes and e is the set of edges. For any node a ∈ n , the
accumulated cost from the root node to this node is defined as

shown in Equation 26:

ca = min
p∈
Q

(xroot ,a)
o pj j−1

i=0 ∥ xi − xi+1 ∥ (26)

Where p ∈
Q

(xroot , a) denotes the collection of all valid paths

extending from the root node to the given node a.

On this basis, to improve search efficiency, the algorithm adopts

a bidirectional search tree construction strategy. This strategy

maintains two search trees simultaneously: the forward search

tree is Tf = (nf , ef ) with the root node xstat , and the backward

search tree is Tb = (nb, eb) with the root node as the goal point xgoal .

The inter-tree connection condition is defined such that for af ∈ nf
and ab ∈ nb, a connection can be established when the following

condition is satisfied, as shown in Equation 27:

∥ af − ab ∥ ≤ rconnectandLine(af , ab) ⊂ Xfree (27)

Where rconnect is the connection radius threshold, and Line(af ,

ab) denotes the straight-line segment connecting the two points.

Furthermore, to address path planning problems in complex

environments, the algorithm establishes a segmented path planning

mathematical model. Given the start point xstat and the goal point

xgoal , a key path point sequence is obtained through the

intermediate node selection algorithm, as shown in Equation 28:

W = w0,w1,⋯,wk,wk+1f g (28)

Where w0 = xstat , wk+1 = xgoal , and wi ∈ Xfree are intermediate

key intermediate nodes. The global path planning problem is thus

decomposed into k + 1 sub-problems: Pi:refers to finding the

optimal path from wi to wi+1, i = 0, 1,⋯, k.

Subsequently, the global path is constructed by connecting the

path segments. Let the optimal path of the i-th path segment be:

p (i) = p(i)0 , p(i)1 ,⋯, p(i)ni
n o

, where p(i)0 = wi and p(i)ni = wi+1.
FIGURE 2

Main procedure of A*-MSRRT* algorithm.
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The global path is constructed by concatenating the path

segments, as shown in Equation 29:

Q
global = p (0) ⊕ p (0)⊕,⋯,⊕p (k) (29)

Finally, the global path is constructed by connecting the path

segments. The total cost of the global path is defined as shown in

Equation 30:

Jtotal =ok
i=0J

(i) (30)

Where the cost of the i-th path segment is given by Equation 31:

J(i) =ok
i=0 ∥ p

(i)
j − p(i)j+1 ∥ (31)

This segmented bidirectional Informed-RRT* algorithm

decomposes the complex global path planning problem into

multiple relatively simple local sub-problems. By applying an

efficient elliptical sampling strategy and bidirectional search

mechanism within each sub-problem, it achieves rational

allocation of computational resources and significantly improves

path quality.
3 Results

3.1 Experimental setup

To evaluate how well the A*-MSRRT* algorithm performs in

path planning within environments containing dense obstacles, and

to benchmark it against other methods, each algorithm was tested

independently 30 times, with the mean values used for comparison

across six approaches. The simulation settings encompassed both

2D and 3D environments, sized at 10 × 10 and 90 × 80 × 40,

respectively. The expansion step size was set to 0.5. All experiments

were conducted using a 2080Ti GPU with Python version 3.8.

UAVs were restricted from traversing the light blue obstacle regions

in the center. In the bidirectional search process, the blue lines
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represent the expansion of the tree from the start point, while the

purple lines correspond to the growth from the goal point. The

updated trajectory after the rewiring phase is indicated by a red

dashed line. All other parameters remained unchanged. The

proposed method was tested in three distinct scenarios, labeled as

Environment A, Environment B, and Environment C, as illustrated

in Figure 3.
3.2 Results and analysis

This study performed 30 independent trials for each algorithm

in complex scenarios to evaluate their stability, recording metrics

such as computation time, path length, and node count. The

simulation outcomes are presented in Figure 4. In Figure 4a,

while the RRT* algorithm successfully generates a feasible path,

the results reveal a lengthy computation time and a trajectory with

excessive twists, indicating poor smoothness. Figure 4b shows that

Bidirectional RRT* results in a shorter path compared to RRT*, but

the computation time increases, and path quality remains

suboptimal. In Figure 4c, Bi-Informed-RRT* requires more time

but yields improved path optimization. Figure 4d demonstrates that

PBi-RRT* produces paths that closely approach obstacles,

potentially causing UAV collisions in real-world applications,

despite the enhanced path refinement. The MS-Bi RRT*

algorithm, as shown in Figure 4e, requires fewer nodes, generates

shorter paths, and reduces computation time. In contrast, Figure 4f

illustrates that the A*-MSRRT* algorithm delivers the best overall

performance in terms of path length, computational efficiency, and

node usage, making it highly suitable for UAV flight tasks. A

summary of simulation results in a simplified environment is

provided in Table 1.

According to the tabulated data analysis, the proposed A*-

MSRRT* algorithm achieves a trajectory length of 11.71,

representing a 3.4% reduction compared to RRT* (12.12), and

outperforming all other baseline algorithms in terms of path
FIGURE 3

Three different obstacle density environments (A–C).
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optimality. In terms of computational efficiency, A*-MSRRT*

significantly reduces average computation time to 2.84 seconds,

which corresponds to a decrease of 81.7% relative to RRT* (15.55 s),

and a reduction ranging from 69.1% (vs. MS-Bi RRT) to 87% (vs. Bi
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RRT)* compared to other variants. Moreover, the total number of

sampled nodes is reduced to 2214, representing an 11.8% to 26.2%

decrease compared to all other methods evaluated. These results

clearly demonstrate that the proposed algorithm not only

minimizes unnecessary random point generation but also

achieves substantial improvements in planning efficiency and

trajectory quality under complex obstacle-dense environments.

In Environment B, the path trajectories generated by six distinct

algorithms are presented in Figures 5a–f, with the trajectory obtained

from the proposed method shown in Figure 5f. In comparison to other

approaches, the proposed algorithm produces fewer redundant nodes,

achieves a shorter flight path, and results in a smoother trajectory,

thereby aligning more effectively with UAV flight demands. According

to the data summarized in Table 2, the average trajectory generated by

the proposed method results in a 56.3% decrease in computation time

when compared to theMS-Bi RRT* algorithm. Furthermore, relative to

the Bi-Informed-RRT* approach, it reduces the path length by 2.5%

and the number of nodes by 25.3%, highlighting its enhanced search

efficiency in more complex environments.

In the more challenging obstacle-rich Environment C, the

strengths of the proposed algorithm are more clearly demonstrated.
FIGURE 4

Environment A: low-density obstacles. (a) RRT* algorithm, (b) Bidirectional RRT* algorithm, (c) Bi-Informed-RRT* algorithm, (d) PBi-RRT* algorithm,
(e) MS-Bi RRT* algorithm, and (f) A*-MSRRT* algorithm.
TABLE 1 Comparison of algorithm results in environment A.

Algorithm
Average path
length

Average
time

Average
nodes

RRT* 12.12 15.55 2801

Bidirectional RRT* 11.95 19.00 2781

Bi-Informed-RRT* 12.03 22.33 2617

PBi-RRT* 11.85 21.96 3002

MS-Bi RRT* 11.79 9.21 2511

A*-MSRRT* 11.71 2.84 2214
The asterisk suffix in algorithm names (e.g., RRT, Informed-RRT, A-MSRRT) denotes the
asymptotically optimal variant of the base algorithm. This notation originates from the
Rapidly-exploring Random Tree Star (RRT)* algorithm proposed by Karaman and Frazzoli
(2011), where the asterisk symbolizes its ability to converge to an optimal solution through
iterative refinement. In motion planning contexts, the * suffix universally indicates that the
algorithm guarantees asymptotic optimality.
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While bidirectional search combined with elliptical sampling can

reduce computation time, the generated paths still exhibit numerous

sharp turns and remain less than optimal, as illustrated in Figures 6a–e.

By contrast, the proposed method generates a significantly smoother
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trajectory under complex conditions, enables efficient bidirectional

exploration, greatly shortens search time, and removes a considerable

number of redundant nodes, as shown in Figure 6f. Based on the

analysis of Table 3 and Figure 7, the proposed algorithm achieves a

0.42% reduction in path length, a 68.5% decrease in computation time,

and a 19.6% drop in the average number of nodes when compared to

the MS-Bi RRT* algorithm. As a result, it effectively minimizes the

generation of low-quality random samples and substantially improves

computational efficiency.
3.3 3D simulation

To further demonstrate the proposed algorithm’s ability to reach

the target quickly and stably in high-density obstacle and complex

environments, the performance of six algorithms was compared in a

3D environment, as analyzed in Figure 8 and Table 4. The RRT*

algorithm exhibits faster computation time but requires a large

number of nodes and produces longer paths, while the PBi-RRT*

algorithm yields shorter paths but requires longer computation time.

Compared with the relatively better-performing MS-Bi RRT*
FIGURE 5

Environment B: medium-density obstacles. (a) RRT* algorithm, (b) Bidirectional RRT* algorithm, (c) Bi-Informed-RRT* algorithm, (d) PBi-RRT*
algorithm, (e) MS-Bi RRT* algorithm, and (f) A*-MSRRT* algorithm.
TABLE 2 Comparison of algorithm results in environment B.

Algorithm Average path
length

Average
time

Average
nodes

RRT* 12.18 20.99 4017

Bidirectional RRT* 12.71 15.03 3868

Bi-Informed-RRT* 11.93 40.27 3694

PBi-RRT* 11.74 25.87 3471

MS-Bi RRT* 11.87 8.01 3277

A*-MSRRT* 11.63 3.5 2761
The asterisk suffix in algorithm names (e.g., RRT, Informed-RRT, A-MSRRT) denotes the
asymptotically optimal variant of the base algorithm. This notation originates from the
Rapidly-exploring Random Tree Star (RRT)* algorithm proposed by Karaman and Frazzoli
(2011), where the asterisk symbolizes its ability to converge to an optimal solution through
iterative refinement. In motion planning contexts, the * suffix universally indicates that the
algorithm guarantees asymptotic optimality.
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algorithm, the A*-MSRRT* algorithm reduces computation time by

58.9%, path length by 5.7%, and the number of nodes by 12.3%. The

experimental results show that the A*-MSRRT* algorithm exhibits

strong robustness under different obstacle densities. With respect to

the three-core metrics—flight distance, computation time, and

number of search nodes—the A*-MSRRT* algorithm exhibits

consistent and stable performance, showing minimal sensitivity to

variations in environmental conditions.
4 Discussion

In the simulation setup, the environment is modeled on

agricultural scenarios, where elongated obstacles represent fruit

trees and other typical barriers found in such settings. To avoid

collisions, flight paths are restricted from passing through these
FIGURE 6

Environment C :high-density obstacles. (a) RRT* algorithm, (b) Bidirectional RRT* algorithm, (c) Bi-Informed-RRT* algorithm, (d) PBi-RRT* algorithm,
(e) MS-Bi RRT* algorithm, and (f) A*-MSRRT* algorithm.
TABLE 3 Comparison of algorithm results in environment C.

Algorithm Average path
length

Average
time

Average
nodes

RRT* 11.8 32.34 3674

Bidirectional RRT* 12.14 47.44 4137

Bi-Informed-RRT* 12.15 41.33 3916

PBi-RRT* 11.97 41.91 3000

MS-Bi RRT* 11.7 11.15 2873

A*-MSRRT* 11.65 3.51 2311
The asterisk suffix in algorithm names (e.g., RRT, Informed-RRT, A-MSRRT) denotes the
asymptotically optimal variant of the base algorithm. This notation originates from the
Rapidly-exploring Random Tree Star (RRT)* algorithm proposed by Karaman and Frazzoli
(2011), where the asterisk symbolizes its ability to converge to an optimal solution through
iterative refinement. In motion planning contexts, the * suffix universally indicates that the
algorithm guarantees asymptotic optimality.
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FIGURE 7

Comparison of result data.
FIGURE 8

Path results in 3D environment. (a) RRT* algorithm, (b) Bidirectional RRT* algorithm, (c) Bi-Informed-RRT* algorithm, (d) PBi-RRT* algorithm, (e) MS-Bi
RRT* algorithm, and (f) A*-MSRRT* algorithm.
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obstacle regions. The UAV trajectories planned using the A*-

MSRRT* algorithm in Environments A, B, C, and the 3D setting

are shown in Figures 4f, 5f, 6f, and 8f, respectively. To evaluate its

effectiveness, the A*-MSRRT* algorithm is compared against RRT*,

Bidirectional RRT*, Bi-Informed-RRT*, PBi-RRT*, and MS-Bi

RRT* algorithms. A*-MSRRT* yields lower fluctuations in results,

particularly in high obstacle density scenarios, where both the path

length and computation time remain within acceptable bounds,

reflecting strong stability. Additional experiments on maps of

varying dimensions further confirm the robustness of the A*-

MSRRT* approach. While all algorithms demonstrate a general

upward trend in average flight distance, processing time, and node

count as obstacle density increases, A*-MSRRT* continuously

outperforms others by maintaining a clear advantage in

computational efficiency.
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Experimental results from Figure 8 and data in Figure 9 reveal

that A*-MSRRT* achieves the shortest computation time, reducing

it by approximately 53.5% to 73.6%, while also decreasing path

length by 5.7% to 26.9% and lowering the number of search nodes

by 12.3% to 37.7%. Overall, the A*-MSRRT* algorithm

demonstrates a strong ability to balance path quality and

computational efficiency, consistently yielding reliable and

effective performance across diverse and complex environments.

The experiment first employs the A* algorithm to generate a

coarse global path, from which key turning points are extracted as

anchor nodes for segmenting the path. However, when applying the

multi-segment bidirectional Informed-RRT* algorithm based on

these key points, the resulting path exhibits pronounced angular

features due to the lack of smooth transitions at segment junctions,

thereby reducing path continuity and traversal efficiency. To

address this issue, the study introduces a B-spline interpolation

method for path optimization, utilizing a cubic interpolation

function. The optimized trajectory is illustrated in Appendix S1

(Supplementary Figure 5), and the interpolation function is defined

in Equation 32.

C(t) = o
n−1

i=0
Ni,k(t)Pi (32)

Note: k denotes the order of the B-spline function, which is set

to 3 in this study.、

To quantitatively evaluate the optimization effect of the path

smoothing strategy, this study compares the original A*-MSRRT*

algorithm with the improved approach incorporating B-spline

interpolation sampling, as illustrated in Appendix S1 (Supplementary

Figure 6). As shown in Appendix S1 (Supplementary Table 5), the

B-spline method demonstrates a slight yet consistent reduction in path

length across all tested environments. Specifically, in Environment A,
FIGURE 9

Comparison of path results in 3D environment.
TABLE 4 Comparison of algorithm results in 3D environment.

Algorithm Average path
length

Average
time

Average
nodes

RRT* 149.11 25.29 6748

Bidirectional RRT* 135.39 35.35 5852

Bi-Informed-RRT* 128.89 35.65 5331

PBi-RRT* 118.19 44.63 5003

MS-Bi RRT* 115.54 28.65 4791

A*-MSRRT* 109.00 11.76 4202
The asterisk suffix in algorithm names (e.g., RRT, Informed-RRT, A-MSRRT) denotes the
asymptotically optimal variant of the base algorithm. This notation originates from the
Rapidly-exploring Random Tree Star (RRT)* algorithm proposed by Karaman and Frazzoli
(2011), where the asterisk symbolizes its ability to converge to an optimal solution through
iterative refinement. In motion planning contexts, the * suffix universally indicates that the
algorithm guarantees asymptotic optimality.
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the average path length is reduced from 11.811 to 11.797,

corresponding to a relative improvement of approximately 0.12%.

Similar improvements are observed in Environment B (from 11.577

to 11.571, 0.052%) and Environment C (from 11.60 to 11.59, 0.086%).

These results indicate that the B-spline-based method effectively

enhances path continuity and execution efficiency without altering

the global path structure.
5 Conclusions

This paper presents an enhanced Informed-RRT* algorithm

designed to tackle the challenge of high obstacle density commonly

encountered by UAVs during plant phenotypic data collection. The

proposed A*-MSRRT* algorithm improves upon the RRT*

framework by introducing an intermediate node mechanism,

enabling efficient and stable path planning in densely obstructed

environments. During the path search process, obstacles are

categorized into three types, and the algorithm integrates the A*

strategy, a dynamic allocation mechanism for key intermediate

nodes, and elliptical sampling constraints to guide UAVs safely

toward their destinations. This improved method effectively

mitigates the drawbacks of the original RRT* algorithm, such as

excessive redundant points, high iteration counts, and unnecessarily

long paths, thereby improving search performance. Simulation

results demonstrate that the proposed A*-MSRRT* heuristic

fusion approach achieves a minimum reduction of 0.6% in path

length, 56.3% in computation time, and 11.8% in node count.

Consequently, the algorithm better aligns with UAV flight

requirements and outperforms the other five algorithms

evaluated, indicating strong application potential. Nevertheless,

the current implementation is limited to static 2D and 3D

environments and single-UAV path planning. In real-world

scenarios, the increasing prevalence of multi-UAV coordination

in dynamic environments presents a promising direction for future

research. In conclusion, this study provides not only robust

technical support for UAV path planning in smart agriculture but

also a solid theoretical foundation for the scalable application of

heuristic-sampling-based algorithms in complex agricultural

environments. By integrating deterministic search heuristics,

dynamic node allocation strategies, and geometric constraints into

the sampling-based planning framework, the proposed method

demonstrates strong adaptability to environments with high

obstacle density and spatial complexity. These properties suggest

that the algorithm holds considerable potential for extension to

multi-agent coordination, real-time replanning, and deployment in

diverse precision agriculture scenarios, thereby advancing the

practical adoption of UAV systems in real-world operations.
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