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Reliable detection and spatial localization of banana bunches are essential

prerequisites for the development of autonomous harvesting technologies.

Current methods face challenges in achieving high detection accuracy and

efficient deployment due to their structural complexity and significant

computational demands. This study proposes YOLO-BRFB, a lightweight and

precise system designed for detection and 3D localization of bananas in orchard

environments. First, the YOLOv8 framework is improved by integrating the

BasicRFB module, enhancing feature extraction for small targets and cluttered

backgrounds while reducing model complexity. Then, a binocular vision system

is used for localization, estimating 3D spatial coordinates with high accuracy and

ensuring robust performance under diverse lighting and occlusion conditions.

Finally, the system is optimized for edge-device deployment, achieving real-time

processing with minimal computational resources. Experimental results

demonstrate that YOLO-BRFB achieves a precision of 0.957, recall of 0.922,

mAP of 0.961, and F1-score of 0.939, surpassing YOLOv8 in both recall and mAP.

The average positioning error of the system along the X-axis is 12.33 mm, the

average positioning error along the Y-axis is 11.11 mm, and the average

positioning error along the Z-axis is 16.33 mm. The system has an inference

time of 8.6 milliseconds on an Nvidia Orin NX with a GPU memory requirement

of 1.7 GB. This study is among the first to focus on a lightweight approach

optimized for deployment on edge computing devices. These results highlight

the practical applicability of YOLO-BRFB in real-world agricultural scenarios,

providing a cost-effective solution for precision harvesting.
KEYWORDS

machine vision, detection and localization, banana bunches, lightweight model,
edge computing
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1 Introduction

Banana is a vital dual-purpose crop for food and fodder in

tropical regions, with a global harvested area of approximately 5

million hectares (Zheng et al., 2024a). As the most widely exported

fresh fruit worldwide, the modernization of the banana industry

plays an irreplaceable role in addressing global hunger and

promoting socioeconomic development (Thai et al., 2025).

Among the challenges to automation in banana production,

accurate and efficient localization of banana is a critical

bottleneck. However, existing systems for banana detection suffer

from low accuracy, slow processing speeds, and high costs, limiting

their applicability for widespread deployment. Hence, designing an

efficient and compact neural network-based approach for banana

fruit detection is essential to address automation challenges in

harvesting machinery and to promote the technological

advancement of the banana production sector.

Research on fruit recognition technologies has been conducted

extensively and can be broadly categorized into traditional machine

learning methods and deep learning approaches (Zheng et al.,

2021). Traditional image recognition techniques include threshold

segmentation (Tong et al., 2024), clustering-based edge detection

(Zhang et al., 2022b), and support vector machines (Liu et al., 2018).

Wang (2024) applied K-means clustering and the Sobel operator to

extract the contours of Rosa roxburghii fruits, achieving an average

size recognition error of as low as 1.22%. Wu et al. (2021) enhanced

the K-means clustering algorithm by optimizing its centers with a

disturbance-factor-modified gray wolf optimization algorithm,

resulting in an average fruit recognition rate of 89.2%. Liu et al.

(2019) segmented apple images into superpixel units using the

simple linear iterative clustering algorithm and classified them into

fruit and background categories with SVM, achieving a

segmentation accuracy of 92.14%. Wang (2017) processed kiwi

images using the Renyi entropy thresholding method, extracted

samples with a minimum enclosing matrix algorithm, and modeled

them with SVM, yielding a recognition rate of 87.67%. Fu et al.

(2019) employed an SVM-based method that combined local binary

pattern features and multi-feature fusion techniques for banana

detection, achieving an average single-scale detection rate of 89.63%

with a processing time of 1.325s. These studies demonstrated

effective fruit detection by leveraging hand-crafted features with

traditional machine learning methods. However, their robustness in

complex orchard environments remains limited, and the reliance on

manual feature extraction constrains the performance and efficiency

of such methods, hindering their practical applications.

In recent years, deep learning has gradually replaced traditional

methods and found applications in smart agricultural production

Zheng et al., 2024b; Zhang et al., 2022a; Zheng et al., 2023; Li et al.,

2022a; Ganesan et al., 2022; Li et al., 2022b; Bai et al., 2022). Themulti-

layered structure of convolutional neural networks enables the

extraction of high-level feature representations, offering significant

advantages in solving object detection problems (Hu et al., 2021).

Duan et al. (2018) developed Panicle Net, based on the SegNet fully
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convolutional network, for offline training. The network segmented

sub-images, which were then stitched together, overcoming irregular

panicle edges and interferences such as cultivar and environmental

factors. It operated at speeds approximately 35 times faster than

Panicle-SEG. Xu et al. (2021) used ExG factors and the Otsu algorithm

to segment rice images, followed by ResNet50, optimized with the

RAdam optimizer, for growth stage recognition, achieving 97.33%

accuracy with high network stability and rapid convergence. Fu et al.

(2020a) proposed YOLO-banana, a YOLOv4-based detection

network, attaining an AP of 99.55% for multi-class banana fruit

detection in orchard environments. Duan et al. (2022) enhanced the

YOLOv5 algorithm by integrating the CA attention mechanism into

its backbone network and creating the C3CA module. This achieved

an average precision of 99.29% for banana stalk-base localization. Zhu

et al. (2022) used a UNet model augmented with multi-scale atrous

convolution to increase receptive fields while preserving detail

sensitivity, achieving an average pixel classification accuracy of

97.32% for banana bunch segmentation. Cai et al. (2023) proposed

YOLOv7-FM, an improved YOLOv7 algorithm for detecting banana

pseudostems under various growth conditions, reporting an AP of

81.45% and an average inference time of 8.0 ms per image. Neupane

et al. (2019) employed Fast-RCNN to analyze UAV-collected images

for banana plant detection and counting, with accuracies of 96.4%,

85.1%, and 75.8% across three regions. Wang et al. (2023) utilized

YOLOv5 to recognize banana peduncles, achieving an AP of 98.034%

with an IoU threshold of 0.5. Despite the success of these methods,

most rely on high-performance workstations due to their high

parameter counts, making them unsuitable for the low-cost, high-

efficiency demands of agricultural operations. Additionally, these

studies primarily focus on fruit recognition, while further obtaining

3D coordinates is essential for precise localization and

automated harvesting.

The primary methods for obtaining 3D coordinates include

structured light (Zhou et al., 2024), Time of Flight (Fu et al., 2020b;

Wu et al., 2022, 2023; Gené-Mola et al., 2019), and stereo vision

(Xiong et al., 2018; Wang et al., 2019). For structured light, Zhou

et al. (2024) introduced a structured light-based technique aimed at

assessing the weight of banana clusters in orchards and pinpointing

the stem centers with precision. However, structured light is highly

sensitive to ambient light interference, and its accuracy decreases

significantly with increasing distance, making it unsuitable for

practical harvesting scenarios in banana orchards. For ToF, Wang

et al. (2019b) leveraged time-of-flight (ToF) imaging to map entire

apple tree environments, effectively acquiring precise three-

dimensional spatial data for apple localization. Yao (2023)

proposed a hand-eye calibration method integrating a ToF depth

camera, achieving an average positioning error of less than 4 mm.

Lai (2023) utilized ToF cameras to acquire depth images and

generate point clouds, applying the RANSAC algorithm to

compute the size and 3D position of fruits, with an average

correct recognition rate of 84.8%. However, ToF cameras

generally have low resolution, which hampers subsequent fruit

image recognition. Additionally, they are prone to interference
frontiersin.org
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from strong reflections and translucent objects; for example, banana

leaves could significantly affect their accuracy, rendering them

unsuitable for practical harvesting in banana orchards. For stereo

vision, Zheng et al. (2024) used a deep learning-based CREstereo

matching algorithm to establish a binocular vision system,

achieving an average 3D positioning error of 5.99 mm for cherry

tomato pedicels. Wang et al. (2019a) proposed a matching and

positioning method using a binocular vision system with a window-

scaling mechanism, achieving an average recognition accuracy of

96.33% under six different conditions. Compared to the other two

methods, stereo vision is less affected by ambient light, exhibits higher

robustness, and provides depth information with higher resolution,

making it highly advantageous for precise fruit positioning and

harvesting in complex banana orchard environments.

Unlike previous studies, this research introduces a novel banana

bunches detection model, named YOLO-BRFB, which is based on

active dual-infrared stereo vision technology. By incorporating

multi-point sampling and filtering optimization, the proposed

model enables accurate 3D positioning of targets during fruit

harvesting. By enhancing critical system modules, this research

presents a fully integrated and cost-effective solution for fruit

identification and localization. The primary contributions of the

work are outlined as follows:

(1) This study introduces YOLO-BRFB, a banana detection

model developed by integrating the BasicRFB module into the

YOLO framework.

(2) The research proposes a dual-infrared active stereo vision

system for precise 3D localization of banana clusters. This method

leverages multi-point sampling and advanced filtering techniques to

mitigate the effects of occlusion and environmental noise.

(3) The proposed system was optimized for deployment on edge

devices, achieving a balance between high detection performance

and resource efficiency.
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2 Materials and methods

2.1 Image collection and preprocessing

Banana fruit images were gathered from the plantation of the

South Subtropical Crops Research Institute (Zhanjiang,

Guangdong, China; 21°10′N, 110°16′E) during three time periods:

October and November 2023, and June 2024. Each banana plant

was individually photographed using handheld devices, including a

HUAWEI Mate 60 Pro and an iPhone 13, positioned approximately

70–80 cm from the target fruit. The images, stored in JPG format at

a resolution of 4032 × 3024 pixels, were captured under natural

lighting conditions. In total, 1500 high-resolution color images were

obtained. To enhance the dataset’s diversity, various environmental

scenarios such as strong illumination, shadowing, backlight,

occlusion, and clear visibility were included. Figure 1 illustrates

representative examples under these conditions.

Dataset quality significantly influences the precision of

recognition models and their reliability in real-world deployment

scenarios. To ensure clarity and representativeness, the collected

banana samples underwent a quality screening process. Images that

were excessively blurred, duplicated, or without visible banana fruits

were excluded, resulting in a dataset of 1450 valid banana images.

The selected images were manually annotated using LabelImg in

YOLO file format. During the annotation process, we followed a

consistent labeling protocol: (1) Bounding boxes were drawn to

tightly enclose the visible banana bunch area, including partial

occlusions when at least 60% of the bunch was visible. (2) In cases of

overlapping fruit or background clutter, annotators prioritized the

primary bunch in focus and excluded indistinct or heavily blurred

bunches. To ensure effective model training and validation, the

dataset was divided into training, validation, and testing sets in a

7:2:1 ratio. Specifically, 791 images were used for the training set,
FIGURE 1

Multiple complex scene images in orchard environment. (a) Direct lighting (b) Backlighting (c) Unocclusion (d) Occlusion.
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226 images for the validation set, and the remaining 114 images for

the testing set.
2.2 Methods

This section introduces the banana bunch visual perception

system, which integrates recognition and localization components

into a unified framework. The system is designed to provide

lightweight and real-time performance suitable for deployment on

edge devices in complex agricultural environments. A detailed

flowchart illustrating the overall system architecture is presented

in Figure 2.

The framework consists of two main stages: banana bunch

recognition and banana bunch localization. In the recognition stage,

a lightweight YOLO-BRFB model is designed to detect banana

bunches accurately. In the localization stage, a depth-based stereo

vision approach is applied to determine the 3D spatial coordinates

of detected banana bunches. The process begins with RGB-D image

acquisition, followed by detection, and concludes with 3D

coordinate extraction and refinement using filtering techniques.

2.2.1 Stage 1: Banana bunch detection
Accurate identification of banana bunches in real-world

orchard settings is fundamental for enabling autonomous

harvesting operations. Existing fruit detection frameworks are

typically categorized into two-stage models (e.g., R-CNN, Fast R-

CNN, Faster R-CNN) and one-stage detectors such as the YOLO

series. Unlike the two-stage pipeline that requires region proposal

generation via RPN, single-stage models directly infer object
Frontiers in Plant Science 04
locations and classes using convolutional neural networks,

achieving a favorable balance between speed and accuracy.

Given the relatively straightforward visual characteristics of

banana bunches and the need for high real-time performance in

field deployment, this study presents a streamlined detection

method built upon the YOLOv8 architecture. The YOLOv8

algorithm is a state-of-the-art solution for real-time object

detection, comprising four key components: input layer,

backbone, neck, and head. It integrates advanced assignment and

loss mechanisms, including Task Aligned Assigner, Binary Cross

Entropy for classification, and a combination of DFL and CloU

losses for box regression, thereby improving detection precision.

The architectural design of YOLOv8 is illustrated in Figure 3.

The YOLOv8 model employs the Mosaic data augmentation

technique at the input stage. This method enhances data diversity,

enriches image backgrounds, and increases the batch size, enabling

faster convergence of the training process. As a result, the efficiency

of training the model is significantly improved, reducing the time

required for banana recognition. Moreover, this approach facilitates

seamless deployment of the model to edge GPU platforms.

The backbone network of YOLOv8 is based on an enhanced

CSPDarknet architecture, incorporating three principal modules:

Conv, SPPF, and the newly introduced C2F. The substitution of the

original C3 block with C2F is a notable refinement that improves

gradient propagation while reducing computational overhead. The

model’s neck adopts a PAN-FPN hybrid topology, enabling efficient

fusion of multiscale features through a combination of upsampling

and downsampling pathways. This structure strengthens the

network’s ability to detect objects of various sizes. In the prediction

head, YOLOv8 replaces the traditional unified head with a decoupled
FIGURE 2

Flow chart of proposed algorithm.
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architecture to improve detection speed without sacrificing accuracy.

Furthermore, it transitions from an anchor-based mechanism to an

anchor-free one, thereby expediting post-processing steps such as

non-maximum suppression and boosting the model’s adaptability

and robustness—critical for detecting occluded or variably sized

banana bunches in complex environments.

2.2.2 Stage 2: YOLO-BRFB
To further optimize the network for low-computation

environments, this study replaces the SPPF module in the original

YOLOv8 architecture with the BasicRFB (Receptive Field Block)

module. The BasicRFB module is designed to enhance the feature

representation of lightweight convolutional neural networks by

simulating the varying receptive field sizes and eccentricities of

the human visual system. Compared with other lightweight

modules such as SimAM, CBAM, or Ghost modules, BasicRFB

offers a more effective trade-off between multi-scale feature

extraction capability and computational efficiency, making it

particularly suitable for deployment on edge devices in complex

orchard environments.

As illustrated in Figure 4, the process begins by applying three

separate 1×1 convolutions to the input image for channel reduction.

The resulting feature maps are then divided into three branches for

processing with 1×1, 3×3, and 5×5 convolutions, respectively, to

simulate receptive fields of varying sizes. For the first feature map, a

3×3 convolution with a dilation rate of 1 is used to extract feature

information. For the second feature map, a 3×3 convolution is first

applied to extract local information, followed by a dilated 3×3

convolution with a dilation rate of 3 to capture dispersed attention
Frontiers in Plant Science 05
around the center. Similarly, for the third feature map, a 3×3

convolution extracts local details, which is then followed by a

dilated 3×3 convolution with a dilation rate of 5 to further

disperse the attention. Finally, the three feature maps are

concatenated along the channel dimension, and a 1×1

convolution is applied to adjust the channel parameters. The

adjusted output is then combined with the input image using a

residual connection to preserve original information while

enhancing feature extraction.

The model leverages a multi-branch dilated convolution

structure and employs dilated convolutions to simulate

eccentricity adjustments, effectively expanding the receptive field.

This design enables simultaneous capture of multi-scale features,

significantly enhancing model performance without increasing

computational overhead. Its shallow network and narrow channel

characteristics also make it suitable for deployment on low-

computation-power edge devices. The overall structure of the

model is shown in Figure 5.

2.2.3 Stage 3: Banana Bunch Localization
To obtain RGB images and depth information, this study

utilizes Intel’s RealSense D455 camera. Leveraging the camera’s

active stereo vision technology, the 3D coordinates and depth

images of banana bunches are acquired.

2.2.3.1 RealSense D455

The RealSense D455 depth camera, with a measurement range

of 0.2 m to 10 m, is selected for its wider and broader field of view

compared to other models in the series, better suiting the
FIGURE 3

YOLOv8 network structure.
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requirements of banana plantation harvesting environments. The

platform’s RealSense 3D camera includes a pair of left and right

infrared cameras for structured light positioning, combined with an

infrared dot projector for TOF positioning, as well as an RGB

camera for capturing RGB images. This study specifically uses its

binocular infrared feature to acquire depth images.

As shown in Figure 6, the stereo systemmimics the human eye by

employing two identical cameras fixed at a baseline distance, with

their optical axes aligned parallelly. The positions of the left and right
Frontiers in Plant Science 06
cameras (Ol and Or), along with the pixel positions in each view (p

and p), are used to determine the real-world 3D position (P) of the

pixel. The disparity between the two views, caused by the horizontal

displacement of the object’s position in each camera’s field of view, is

calculated to derive the object’s depth. 3D coordinates based on the

disparity is calculated by Equation 1:

Z =
f � B
d

(1)
FIGURE 4

BasicRFB structure.
FIGURE 5

YOLO-BRFB network structure.
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Where Z represents the distance from a point to the camera, f is

the focal length of the camera, B is the baseline distance between the

two cameras, and d is the disparity. For each pixel in the image, a 3D

coordinate can be calculated using this method, thereby generating

a 3D point cloud for the entire scene.
2.2.3.2 Fruit localization

Since RGB images and depth images are sourced from different

sensors, image alignment is necessary to ensure accurate

correspondence between depth information and RGB data. This

study employs the built-in SDK of the RealSense D455 camera to

achieve the alignment process. This alignment utilizes the camera’s

intrinsic and extrinsic parameters to map each pixel in the depth

image to the corresponding pixel in the RGB image.

The alignment principle is based on the coordinate

transformation between the depth camera coordinate system and

the RGB camera coordinate system. Suppose the coordinates of a

pixel in the depth image are (xd , yd) with a depth value of Zd . Using

the intrinsic matrix Kd of the depth camera, the 3D point (X,Y,Z,) in

the depth camera coordinate system can be calculated by Equation 2:

X =
(xd − cdx ) · Zd

f dx
,  Y =

(yd − cdy ) · Zd

f dy
,  Z = Zd (2)

Where f dx and f dy are the focal lengths of the depth camera, and

cdx and cdy are the optical center positions. Then, using the extrinsic

transformation matrix [R∣T], the 3D point in the depth camera

coordinate system is converted to the RGB camera coordinate

system by Equation 3:
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Xr

Yr

Zr

2
664

3
775 = R ·

X

Y

Z

2
664

3
775 + T (3)

Finally, using the intrinsic matrix Kr of the RGB camera, the

corresponding 2D pixel coordinates (Xr , Yr) in the RGB image can

be computed as Equation 4:

xr =
f rx · Xr

Zr
+ crx , yr =

f ry · Yr

Zr
+ cry (4)

To improve the precision of 3D localization for banana

bunches, this study proposes a depth value extraction strategy

based on K-Means clustering. Starting with the 2D bounding box

detected by the YOLO-BRFB network, the center of the bounding

box is used as the sampling center, and a rectangular region is

defined by scaling the bounding box size by 0.5. Within this region,

100 depth points are randomly sampled, and points with a depth

value of 0 are removed to eliminate invalid data. The remaining

points are then clustered using the K-Means algorithm, where the

number of clusters, k, is set to 2. This step divides the points into

two clusters: one representing the primary region of valid depth

points and the other capturing outliers or background noise. After

clustering, the cluster with the larger number of points is selected as

the valid depth data. The median value of this cluster is then

calculated and used as the final depth of the banana bunch. This

approach minimizes the impact of noise while ensuring the depth

value reflects the majority of valid points. Compared to traditional

single-point methods, this K-Means-based strategy enhances

accuracy and robustness by leveraging clustering to exclude
FIGURE 6

Schematic diagram of infrared active stereo vision.
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spurious data points. It is computationally efficient and suitable for

real-time deployment on edge devices.
3 Experiments and results

3.1 Experimental configuration and training
protocol

All model evaluations were conducted under uniform conditions

to ensure consistent and unbiased performance comparisons. The

experimental platform consisted of a 13th Gen Intel Core i9-13900K

CPU (3 GHz, 24 cores/32 threads), NVIDIA GeForce RTX 4090

GPU, Ubuntu 18.04 OS, and supporting libraries including CUDA

11.1.74, OpenCV 4.8.0, and PyTorch 2.0.1.
Fron
1. Hyperparameter Setup: Images were resized to 640×640

pixels to strike a balance between computational efficiency

and visual detail. The training was executed over 500

epochs until performance metrics converged. A batch size

of 24 was selected to optimize memory usage without

overloading the GPU. Training commenced with a

learning rate of 0.01 and a momentum factor of 0.90 to

ensure fast yet stable convergence. A regularization term

(weight decay = 0.0005) was applied to mitigate

overfitting risks.

2. Training Enhancements: K-Means clustering was used to

determine optimal anchor box dimensions. Data

augmentation strategies included Mosaic to diversify

spatial contexts, Mixup to enrich training variation, and

horizontal flipping to enhance symmetry recognition. The

use of Exponential Moving Average (EMA) smoothed

parameter updates, and HSV adjustments were applied to

simulate lighting variations, all contributing to improved

model robustness.
3.2 Evaluation metrics

To comprehensively evaluate the performance of the banana

detection network, several key metrics were utilized, including

precision (P), recall (R), mean average precision (mAP), F1 score,

inference time, and model size. These metrics are defined as follows

Equations 5– 8:

P =
Tp

Tp + Fp
(5)

R =
Tp

Tp + FN
(6)

mAP = o
C
i=1APi
C

(7)
tiers in Plant Science 08
F1 =
2� P � R
P + R

(8)

Where TP represents the number of true positives correctly

identified by the model, FP represents the number of false positives

mistakenly classified as positive, and FN represents the number of

false negatives, positive samples missed by the model. P, R, mAP,

and F1 score serve as critical indicators for assessing detection

performance. Additionally, inference time evaluates the speed of

generating predictions for a given input, while model size reflects

the storage and computational resources required. These metrics

are essential for determining the effectiveness and feasibility of the

model in practical applications.
3.3 Comparison with state-of-the-art
algorithms

To verify the effectiveness of the YOLO-BRFB model, we

conducted a comparative analysis against several state-of-the-art

detection models, including the YOLO series (YOLOv5, YOLOv6,

and YOLOv8), YOLOv8_Biformer with a bidirectional feature

pyramid module, and YOLOv8_SwinTransformer, which

leverages a sliding window mechanism and hierarchical structure.

The evaluation was based on multiple performance metrics,

including precision (P), recall (R), mean average precision (mAP),

F1 score, inference time, and model size. Notably, inference time

and model size were emphasized to assess the model’s suitability for

real-time applications and its lightweight characteristics, both of

which are essential for deployment in practical scenarios. This

comparison offers a comprehensive perspective on the strengths

and limitations of the YOLO-BRFB model in relation to existing

advanced models.

As shown in Table 1, the proposed YOLO-BRFB network

achieves a precision of 0.957, a recall of 0.922, an mAP of 0.961,

and an F1 score of 0.939, demonstrating its superior performance in

detection tasks. Notably, YOLO-BRFB achieves the highest recall

and mAP among all compared models. Compared to YOLOv6, the

recall and mAP are improved by 2.33% and 2.67%, respectively,

while compared to YOLOv8, these metrics are further enhanced by

1.65% and 0.63%. In comparison with YOLOv8_Biformer, the

proposed model achieves a higher recall and mAP by 2.9% and

0.42%, respectively, while maintaining a smaller model size and

faster inference time. Although YOLOv8_Biformer achieves the

highest precision of 0.97, its recall is significantly lower than YOLO-

BRFB, resulting in an F1 score 0.8% lower than the proposed model.

Additionally, compared to YOLOv8_Swimtransformer, YOLO-

BRFB improves recall and mAP by 7.0% and 4.57%, respectively,

while reducing the inference time by 33.33% and the model size

by 13.78%.

In terms of efficiency, YOLO-BRFB achieves an inference time

of 8.6 ms and a model size of 89.0 MB, offering a balanced trade-off

between detection accuracy and computational efficiency.

Compared to YOLOv6, the inference time is reduced by 21.82%,

and the model size is compressed by 59.94%. While YOLOv8
frontiersin.org

https://doi.org/10.3389/fpls.2025.1650012
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2025.1650012
achieves a slightly faster inference time of 7.9 ms, YOLO-BRFB

reduces the model size by 12.97%. In comparison with

YOLOv8_Biformer, the inference time is reduced by 11.34% with

a 1.02% smaller model size, demonstrating superior real-time

performance. Although YOLOv8_Swimtransformer shows

competitive performance in precision, its recall and mAP are

significantly lower than YOLO-BRFB, and its model size and

inference time increase substantially by 15.96% and 50.0%,

respectively. These results indicate that YOLO-BRFB effectively

balances detection accuracy, computational cost, and model

compactness, making it highly suitable for real-time detection tasks.

YOLO-BRFB demonstrates an optimal combination of accuracy

and efficiency, outperforming other state-of-the-art models in both

detection precision and practical feasibility. This advantage stems

from the integration of the BasicRFB module, which replaces

standard convolution layers with dynamically adjustable kernels,

enhancing the model’s ability to capture intricate data features.

Additionally, the use of a multi-branch dilated convolution

structure expands the receptive field by simulating eccentricity

adjustments, enabling efficient multi-scale feature extraction.

These design innovations not only maintain high detection

accuracy but also reduce computational and structural

complexity, making YOLO-BRFB particularly suited for

deployment in resource-constrained environments. In the context

of banana harvesting robots, this ensures accurate fruit detection

and localization while meeting the real-time processing demands of

edge devices, thereby enhancing operational efficiency and

reliability in practical applications.

Figure 7 presents a comparative evaluation of the proposed

YOLO-BRFB model against the baseline YOLOv8 under

challenging conditions such as occlusion and suboptimal lighting.

The enhanced YOLO-BRFB network consistently outperforms its

counterpart, offering higher detection accuracy and more precise

localization of banana bunches. In occluded scenes, YOLOv8 tends

to produce redundant or misaligned bounding boxes, negatively

impacting detection reliability. Conversely, YOLO-BRFB effectively

mitigates these issues through refined feature extraction and

improved spatial awareness, leading to a significant reduction in

false positives and missed targets. Furthermore, under adverse

lighting scenarios-including high contrast, shadowing, and dim

illumination-YOLOv8 exhibits a marked decline in performance,

whereas YOLO-BRFB maintains stable and accurate predictions.

These results confirm that the proposed model demonstrates
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superior adaptability and resilience, making it particularly suitable

for deployment in dynamic agricultural environments such as

automated banana harvesting.
3.4 Field experiments

3.4.1 Deployment on edge computing devices
In practical orchard environments , l imitat ions in

computational resources and inconsistent network connectivity

pose significant challenges to achieving low-latency fruit

recognition. To address these issues, this study deploys the

proposed YOLO-BRFB model on an Nvidia Orin NX edge

computing device, enabling end-to-end detection and localization

of banana bunches without reliance on cloud processing. This

deployment enhances the system’s ability to deliver accurate and

stable results under resource-constrained conditions. A

comparative evaluation was conducted before and after

deployment to assess performance across diverse real-world

orchard scenarios.

As shown in Table 2, the YOLO-BRFB model exhibits

consistent detection performance across two devices, Nvidia

A6000 and Nvidia Orin NX, achieving a Precision (P) of 0.957,

Recall (R) of 0.922, and mAP of 0.961. This consistency underscores

the model’s robustness and adaptability in varying computational

environments. In terms of inference time, YOLO-BRFB achieves

8.60 ms on the A6000 and 109.80 ms on the Orin NX. Although the

Orin NX exhibits longer processing times due to its lower

computational capacity, the inference time still meets real-time

processing requirements. This demonstrates that the proposed

solution achieves satisfactory real-time performance even on

resource-constrained devices, offering a cost-effective alternative

without compromising operational efficiency. It is important to

note that the reported inference time reflects only the model

forward pass and excludes preprocessing and postprocessing

operations. The memory usage further highlights the advantages

of the model and device. On the Orin NX, YOLO-BRFB requires

only 1.700 GB of GPU memory compared to 1.975 GB on the

A6000. This improvement not only reflects the optimized design of

the model, including the efficient use of computational resources

and reduced structural complexity, but also the advanced inference

efficiency of the Orin NX hardware itself. Together, these factors

enable deployment on devices with limited memory and
TABLE 1 Comparison of detection performance of different networks.

Pattern Precision Recall mAP F1 Inference time/ms Model_Size/MB

YOLOv5 0.965 0.897 0.942 0.929 7.4 106.8

YOLOv6 0.922 0.901 0.936 0.911 11.0 222.2

YOLOv8 0.951 0.907 0.955 0.928 7.9 87.6

YOLOv8_Biformer 0.97 0.896 0.957 0.931 9.7 88.2

YOLOv8_Swimtransformer 0.965 0.852 0.919 0.904 12.9 103.2

YOLO-BRFB 0.957 0.922 0.961 0.939 8.6 89.0
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computational capabilities. Experimental results confirm that

YOLO-BRFB provides a practical solution for edge computing

scenarios, especially in the context of banana harvesting robots.

The model balances accuracy, efficiency, and cost-effectiveness,

making it well-suited for field applications requiring compact,

low-power, and reliable performance under resource constraints.

3.4.2 Performance evaluation under different
scenarios

Given the morphological structure of banana bunches, frequent

overlap between leaves and fruits is common in natural orchard

settings. In addition, varying illumination conditions—such as

strong sunlight, shading, and backlighting—further complicate

visual detection tasks. To comprehensively assess the robustness

of the proposed model, practical scenes were divided into four

representative categories: occlusion, clear visibility, backlit, and

high-exposure lighting. This classification enables a detailed
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evaluation of the model ’s adaptability under real-world

environmental complexity.

As shown in Table 3, under non-occlusion conditions, the

YOLO-BRFB model achieves outstanding results, with precision,

recall, mAP, and F1-score of 0.995, 0.960, 0.991, and 0.977,

respectively. These values highlight the model’s ability to perform

optimally when fruits are fully visible. In occlusion scenarios, the

precision decreases by 7.0% to 0.925, and the recall drops by 3.1% to

0.930. Despite these reductions, the model still maintains a high

mAP of 0.966 and an F1-score of 0.927, demonstrating its capacity

to detect partially obscured fruits effectively. For direct lighting

conditions, the precision, recall, mAP, and F1-score reach 0.991,

0.965, 0.989, and 0.978, respectively, with minimal changes

compared to non-occlusion scenarios, showing strong robustness

against high-intensity lighting. Under backlighting conditions, the

performance decreases slightly, with precision and recall dropping

to 0.921 and 0.905, respectively. This results in an mAP of 0.967 and
FIGURE 7

Comparison before and after YOLOv8 network improvement. (a) YOLOv8 network (b) YOLO-BRFB network.
TABLE 2 Performance comparison of YOLO-BRFB on A6000 and Nvidia Orin NX.

Device Precision (P) Recall (R) mAP Inference time (ms) GPUmemory usage (GB)

A6000 0.957 0.922 0.961 8.60 1.975

Nvidia Orin NX 0.957 0.922 0.961 109.80 1.700
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an F1-score of 0.913, reflecting the model’s adaptability to

challenging lighting environments, though with a marginal

impact on detection accuracy. These results highlight the YOLO-

BRFB model’s ability to adapt to diverse real-world conditions,

ensuring reliable and accurate fruit detection in scenarios

commonly encountered in banana orchards.

As illustrated in Figure 8, the YOLO-BRFB model delivers

reliable detection outcomes across multiple environmental

settings, effectively identifying banana bunches under diverse

visual conditions.

3.4.3 Three-dimensional banana bunch
localization

An experimental protocol was developed to validate the

system’s localization accuracy under actual deployment scenarios.

As shown in Figure 9, the setup included a Realsense D455 depth

camera, a Jetson Orin NX module for on-device processing, a

display unit for visual feedback, and a laser rangefinder to

establish ground-truth coordinates. The depth sensor, mounted

on a stable tripod, acquired real-time depth images, which were

processed by the YOLOv8-BRFB network on the edge device to
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compute 3D spatial coordinates. The true positions of the banana

bunches were independently measured using the rangefinder, and

these values were compared against the predicted outputs. Metrics

such as positional error and localization accuracy were recorded to

assess the reliability of the 3D positioning pipeline.

As shown in Table 4, it was observed that when the distance

between the sensor and the fruit was less than 0.3 meters, the fruit was

within the blind spot of the depth camera, making it impossible to

obtain depth data, as seen in the first and second trials where no 3D

coordinates were detected. When the distance exceeded 1.2 meters,

the error significantly increased, resulting in inaccurate positioning,

as reflected in the data from the 10th and 11th trials. This indicates

that the effective working range for accurate positioning is between

0.3 and 1.2 meters. Excluding the first and second trials, the data from

Table 4 shows that the coordinate errors are presented in millimeters

(mm) and are listed in the format (X, Y, Z), corresponding

respectively to the horizontal (X-axis), vertical (Y-axis), and depth

(Z-axis) deviations between predicted and actual values. Specifically,

the maximum error along the X-axis was 33mm, while the minimum

was 4 mm, with an average error of 12.33 mm. For the Y-axis, the

maximum error was 35 mm, the minimum was 1 mm, and the

average error was 11.11 mm. For the Z-axis, the maximum error was

46 mm, the minimum was 4 mm, and the average error was 16.33

mm. Although some errors were observed, they remain within an

acceptable range for practical applications.

Localization discrepancies can be attributed to several factors,

such as sensor resolution limitations, the irregular geometry of

banana clusters, and variations in ambient lighting. Despite these

challenges, the system consistently achieved accurate positioning

within the defined operational range. Moreover, as depicted in

Figure 10, the detection and localization framework maintained

reliable performance under diverse conditions, including occlusion
TABLE 3 Comparison of model performance under different scenarios.

Scenes Precision Recall mAP F1

Occlusion 0.925 0.93 0.966 0.927

Non-occlusion 0.995 0.96 0.991 0.977

Backlighting 0.921 0.905 0.967 0.913

Direct lighting 0.991 0.965 0.989 0.978
FIGURE 8

Recognition renderings in different scenarios. (a) Occlusion (b) Non-occlusion (c) Backlighting (d) Direct lighting.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1650012
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2025.1650012

Frontiers in Plant Science 12
and variable lighting, reinforcing its suitability for real-

world applications.

4 Discussion

This research presents a lightweight and efficient banana bunch

detection and localization framework, YOLO-BRFB, specifically

designed to overcome the challenges posed by complex lighting

and occlusion in orchard environments. By integrating the

BasicRFB module into the YOLOv8 architecture, the model

achieves a favorable trade-off between detection accuracy and

computational cost. The system was successfully implemented on

the Nvidia Orin NX edge device, where it demonstrated strong real-

time performance and low resource consumption.

Additionally, we incorporated binocular active vision to enhance

3D localization, achieving high spatial accuracy validated through field

experiments. Compared to earlier studies—such as those by Duan et al.

(23), Cai et al. (25), and Wang et al. (27) - that utilized YOLO-based

networks for fruit detection, our approach significantly reduces model

complexity while enabling edge-side deployment. Prior 3D localization
FIGURE 9

Working scene diagram of the banana bunch visual perception system.
TABLE 4 3D Coordinate comparison and errors for banana
bunch localization.

No. Real 3D
coordinates

(m)

Detection 3D
coordinates

(m)

Coordinate
error (mm)

1 (0.113, 0.143, 0.086) (0.000, 0.000, 0.000) /

2 (-0.125, 0.146, 0.135) (0.000, 0.000, 0.000) /

3 (-0.097, 0.055, 0.325) (-0.102, 0.042, 0.331) (5, 13, 6)

4 (-0.044, 0.080, 0.459) (-0.058, 0.071, 0.463) (14, 9, 4)

5 (0.106, 0.051, 0.575) (0,101, 0.064, 0.581) (5, 13, 6)

6 (0.067, 0.145, 0.671) (0.059, 0.152, 0.688) (8, 7, 17)

7 (0.098, 0.239, 0.751) (0.094, 0.229, 0.760) (4, 10, 9)

8 (-0.127, 0.370, 0.829) (-0.134, 0.369, 0.835) (7, 1, 6)

9 (0.327, 0.338, 0.967) (0.341, 0.342, 0.987) (14, 4, 20)

10 (0.144, 0.346, 0.1199) (0.165, 0.354, 0.1238) (21, 8, 39)

11 (-0.167, 0.289, 0.1293) (-0.134, 0.324, 0.1339) (33, 35, 46)
FIGURE 10

System working effect diagram in complex orchard scenes. (a) Occlusion and direct light scenes (b) Non-occlusion and Backlighting scenes.
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attempts, including Zhou et al. (28) with structured light and Yao et al.

(36) with TOF sensors, have been constrained by environmental

sensitivity and distance limitations. In contrast, our binocular

infrared vision method offers robust depth perception across a wider

range of conditions.

The core contribution of this work lies in combining lightweight

object detection with practical edge deployment and robust 3D

localization under real orchard constraints. Nonetheless, some

limitations remain: performance degradation under extreme lighting

—especially backlighting—and slight latency increases under high-

throughput conditions. Future improvements will focus on optimizing

model inference efficiency, enhancing low-light robustness, and

integrating complementary sensing technologies such as LiDAR or

multispectral imaging to further improve adaptability across diverse

agricultural settings.

5 Conclusions

In this study, we proposed a lightweight and efficient banana

bunches detection and localization system, YOLO-BRFB, designed to

address the challenges of complex lighting conditions in banana

orchards. By integrating the BasicRFB module into the YOLOv8,

YOLO-BRFB achieves a balance between high accuracy and model

compactness. Experimental results demonstrated its superiority,

achieving a precision of 0.957, a recall of 0.922, an mAP of 0.961,

and an F1-score of 0.939, outperforming state-of-the-art models such

as YOLOv6 and YOLOv8. Notably, compared to YOLOv6, YOLO-

BRFB improves recall and mAP by 2.33% and 2.67%, respectively,

while reducing inference time by 21.82% and model size by 59.94%.

The deployment on the Nvidia Orin NX edge device further

validates its practicality, achieving an inference time of 109.80 ms

and requiring only 1.700 GB of GPUmemory, which is 14% lower than

on the Nvidia A6000. Despite the lower computational capacity of the

Orin NX, YOLO-BRFB maintains real-time processing capabilities,

highlighting its suitability for resource-constrained environments.

Additionally, the binocular active vision module enables precise 3D

localization of banana bunches, with an effective range of 0.3–1.2

meters. Within this range, the average localization error was 12.33 mm

along the X-axis, 11.11 mm along the Y-axis, and 16.33 mm along the

Z-axis, meeting the accuracy requirements for practical applications.

The system demonstrates robust detection performance under

diverse orchard conditions. For non-occlusion scenarios, it achieves a

precision of 0.995 and anmAP of 0.991. Under occlusion, backlighting,

and direct lighting conditions, it maintains high accuracy, with mAP

values of 0.966, 0.967, and 0.989, respectively. These results underscore

the model’s robustness and adaptability to varying environmental

factors, ensuring reliable detection in real-world orchards. By

balancing performance and cost-effectiveness, YOLO-BRFB provides

a practical solution for banana harvesting robots.
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