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CropPhenoX: high-throughput
automatic extraction system
for wheat seedling phenotypic
traits based on software
and hardware collaboration
Jinxing Wang, Baohua Yang*, Pengfei Wang, Runchao Chen,
Hongbo Zhi and Zhiyuan Duan

School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, China
Accurately quantifying wheat seedling phenotypic traits is crucial for genetic

breeding and the development of smart agriculture. However, existing

phenotypic extraction methods are difficult to meet the needs of high-

throughput and high-precision detection in complex scenarios. To this end,

this paper proposes a high-throughput automated extraction system for wheat

seedling phenotypic traits based on software and hardware collaboration,

CropPhenoX. In terms of hardware, an architecture integrating Siemens

programmable logic controller (PLC) modules is constructed to realize

intelligent scheduling of crop transportation. The stability and efficiency of data

acquisition are guaranteed by coordinating and controlling lighting equipment,

cameras, and photoelectric switches. Modbus transmission control protocol

(TCP) is used to achieve real-time data interaction and remote monitoring. In

terms of software, the Wheat-RYNet model for wheat seedling detection is

proposed, which combines the detection efficiency of YOLOv5, the lightweight

architecture of MobileOne, and the efficient channel attention mechanism (ECA).

By designing an adaptive rotation frame detection method, the challenges

brought by leaf overlap and tilt are effectively overcome. In addition, a

phenotypic trait extraction platform is developed to collect high-definition

images in real time. The Wheat-RYNet model was used to extract wheat

seedling phenotypic traits, such as leaf length, leaf width, leaf area, plant

height, leaf inclination, etc. Compared with the actual measured values, the

average fitting determination coefficient reached 0.9. The test results show that

CropPhenoX provides an intelligent integrated solution for crop phenotyping

research, breeding analysis and field management.
KEYWORDS

CropPhenoX, phenotypic trait, software-hardware collaboration, wheat,
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1 Introduction

The phenotypic traits of wheat seedlings directly reflect their

growth status, physiological characteristics, and genetic potential

(Crain et al., 2017). Accurate acquisition of these phenotypic traits

is crucial for predicting wheat yield, evaluating quality, and

formulating field management strategies (Pour-Aboughadareh

et al., 2020; Akram et al., 2008). However, traditional methods are

insufficient in terms of efficiency and automation to meet the needs

of accelerating breeding, transforming production methods, and

ensuring food security. Therefore, it is necessary to develop an

automated phenotypic trait monitoring platform (Zhang et al.,

2024), which is of great significance for shortening the breeding

cycle and accelerating genetic improvement.

Traditional methods for obtaining crop phenotypic parameters

often rely on manual measurement. They have problems like strong

subjective interference, low efficiency and poor real-time

performance. These greatly limit the efficiency of large-scale

genetic breeding screening (Mohanty et al., 2016). Studies have

shown that crop phenotypic detection methods based on three-

dimensional information can better reflect the morphological and

structural characteristics of crops. Shlyakhter et al. (2001) used the

L-system to simulate tree growth and used stereo matching and

calibration of binocular vision. Andújar et al. (2016) used the Kinect

v2 depth camera to collect lettuce images from multiple angles for

three-dimensional reconstruction. Yang et al. (2017) used the TOF

(Time-of-Flight) depth camera to collect serial point cloud images

of red peppers to achieve automatic extraction of phenotypic

parameters. The above research shows that 3D models can

accurately describe the spatial morphology of crops. However,

high equipment costs, time costs, and complex algorithms often

limit their widespread promotion. Visible light imaging, with its low

cost and high efficiency, is better suited for measuring

morphological parameters (Li et al., 2014).

Recently, computer vision and deep learning have advanced

rapidly. This has brought unprecedented opportunities for

automated phenotyping, breaking traditional limitations

significantly (Koh et al., 2021). These technologies efficiently

process large-scale image data and extract diverse phenotypic

features. Notably, convolutional neural networks, with strong

nonlinear modeling and complex data pattern mining capabilities,

enable automated extraction of crop phenotypic parameters (Xiong

et al., 2021). Previous studies have shown that convolutional neural

network (CNN) are widely used in image-based plant phenotyping

analysis (Arya et al., 2022). Lee et al. (2017) also used CNN to

successfully train a model for effectively distinguishing 44 plant

leaves. Deep learning-based wheat ear detection, such as fully

convolutional networks (FCN) (Wang et al., 2019), Faster-RCNN

(Madec et al., 2019), and dual-stage target detection network

models, such as EfficientDet-D0 (Wang et al., 2021), YOLO v3

(Yang et al., 2019b), YOLO v4 (Yang et al., 2021), and YOLO v5

(Dandrifosse et al., 2022; Zang et al., 2022), can all achieve accurate

wheat ear detection. Deep learning enables wheat phenotypic

parameter acquisition. But existing studies use horizontal

bounding boxes for wheat ear detection, failing high-throughput
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needs. These boxes lack angle regression and target directionality,

hindering accurate extraction of wheat seedling phenotypes (Nie

and Huang, 2022). Moreover, during training and inference with

horizontal boxes, candidate targets generate numerous redundant

bounding boxes, which easily incorrect detection and missed

detection of wheat leaves, leading to inaccurate positioning (Liu

et al, 2022). Therefore, wheat leaf positioning and detection, as a

prerequisite for phenotypic parameter extraction, still face

many challenges.

In fact, rotating target detection can obtain the precise position

and direction information of the target by detecting the target with a

rectangle with a rotation angle (Chen et al., 2024), which provides a

new path to improve the accuracy and robustness of wheat leaf

detection. Sun et al. (2022) proposed an improved rotating bounding

box wheat head detection and counting model to detect and count

wheat ears in the field environment from a bird’s-eye view. The

research shows that rotating bounding box detection is helpful for

extracting wheat phenotypic parameters. In addition, there are other

rotated bounding box detectionmodels, such as Roi trans (Ding et al.,

2018), SCRDet (Zhao et al., 2023), and R-YOLOv5 (Li et al., 2022),

which have been paid attention to and applied by many scholars.

However, the effect of wheat seedling detection based on these

detection models with rotated bounding box is still unknown. In

particular, the detection and phenotypic parameter extraction of

wheat seedlings face the following problems. On the one hand, the

leaves of wheat seedlings are small, with different shapes and arbitrary

growth directions, making it difficult for traditional detection

methods based on horizontal bounding boxes (HBBs) to accurately

capture the complete outline and posture of the leaves. On the other

hand, the shape of wheat leaves is narrow and has a large aspect ratio,

which causes typical horizontal detectors to miss detection, thereby

affecting the extraction accuracy of key phenotypic parameters such

as leaf area, length, and width (Li et al., 2024; Chen et al., 2024).

Therefore, it is necessary to design an efficient rotating bounding box

detection model to realize the automatic and accurate identification

and positioning of wheat leaves in the seedling stage, which has

become a current technical challenge.

To this end, the Wheat-RYNet, a detection model for wheat

leaves based on rotated bounding boxes, is proposed in this study.

Meanwhile, an automated analysis platform and a high-throughput

phenotyping system are developed to achieve accurate detection of

wheat leaves and efficient extraction of phenotypic traits. The

specific contributions are as follows:
1. The Wheat-RYNet, a detection model for wheat seedlings

based on rotated detection boxes, is proposed. By utilizing

the precise information of the rotated bounding boxes, it is

able to accurately calculate the core traits of wheat

seedlings, such as leaf area, leaf length, and leaf width.

2. An automated platform for wheat image acquisition and

phenotypic traits extraction has been constructed. The

platform incorporates the rotation bounding box

detection and trait extraction algorithms, features a user-

friendly interface, and enables batch processing of images

as well as visualization of the results.
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3. A high - throughput crop phenotyping system has been

developed, which incorporates high-resolution imaging and

intelligent controlmodules. Through non-contact scanning and

automated assembly lines, it enables quick capture of images of

wheat seedlings. Combined with detection models and

extraction algorithms, it efficiently outputs phenotypic data,

providing hardware support for breeding and monitoring.
2 Hardware system and software
platform

2.1 CropPhenoX: high-throughput crop
phenotyping system

2.1.1 Hardware components of high-throughput
crop phenotyping system

To further realize the automatic collection and intelligent

analysis of phenotypic information of wheat seedlings, we

developed a high-throughput crop phenotyping system,
tiers in Plant Science 03
CropPhenoX, as shown in Figure 1. The system is built on the

Siemens SIMATIC S7–200 SMART series PLC (Programmable

Logic Controller) module, which is designed for automated crop

transmission track control and crop data collection processes, and

has high integration and flexibility. In terms of automated crop

transmission track control, the PLC module uses logic

programming to achieve precise scheduling of the transmission

track, ensuring that potted crops can be automatically transported

to the designated workstation according to the preset path, and

supports dynamic path planning to avoid conflicts when multiple

workstations work together.

In the process of crop data collection, the PLC module

integrates the linkage control function of bar light sources,

industrial cameras and photoelectric switches. Through high-

speed pulse output technology, the system can synchronously

control camera exposure and light source brightness, and

combine the precise triggering of photoelectric switches to build a

stable lighting and triggering environment in the darkroom, so as to

efficiently collect key traits such as crop morphology and color.

To meet the needs of data transmission and remote monitoring,

the PLC module uses the Modbus TCP protocol as the
FIGURE 1

Electrical diagram of high-throughput crop phenotyping system.
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communication interface to establish a real-time data link with the

workstation. The system can upload the collected data and

equipment status information to the monitoring platform, and

supports multi-level data processing and analysis functions. The

workstation can perform real-time analysis, storage and

visualization of the transmitted data.

In terms of flexible control, the system dynamically adapts the

flexible plate chain and the camera moving module through the

PLC module. This design significantly improves the scalability and

adaptability of the system, and provides solutions for the diversified

scenarios of agricultural production.

2.1.2 Software platform for extracting crop
phenotypic traits

To achieve batch acquisition of wheat phenotypic traits, we

developed a phenotypic extraction system, as shown in Figure 2.

This software system is implemented using Qt Creator 4.11.1, the

QT framework uses version 5.14.2, and the C++ compiler uses

MinGW 64-bit. The system mainly extracts crop phenotypic

information using a rotating target detection model, and mainly

includes a toolbar, an operation bar, a file directory management

area, an image display area, a hardware operation area, a result

display area, and a console.

Among them, the toolbar is used for some basic operations and

parameter settings. The operation bar is used for basic operations

required by the platform. The file directory management area is

used to display the basic distribution of file directories. The image

display area is used for image preview, display of shooting, and

detection results. The hardware operation area mainly controls the
Frontiers in Plant Science 04
basic operations of the device, and the result display area is used to

display plant phenotypic detection results, crop storage conditions,

and statistical information. The console is used to output console

information during the operation of the platform.

The plant phenotype extraction system based on the rotating

object detection model has a user-friendly and concise interface.

The system can obtain real-time images of crops and extract crop

phenotypic traits based on a certain hardware platform, such as

industrial cameras and other image acquisition devices, and display

the parameters in real time.

2.1.3 Hardware and software collaboration
In the “CropPhenoX” system, the deep integration of hardware

and software is the core of realizing the automated and accurate

detection of wheat phenotypes. As shown in Figure 3, through the

coordinated operation of hardware and software platforms, data

collection, transmission, and analysis and processing are realized.

In particular, when multiple pots of wheat seedlings are

transported to the dark box along the ring chain, the camera

automatically captures images, which are uploaded to the server

through the wheat phenotyping system and saved in the specified

path (Figure 3b). The Phenotype extraction system not only

displays these images in real time, but also uses our innovative

deep learning model to automatically extract the phenotypic traits

of the wheat seedlings. On the one hand, the phenotypic traits

acquisition device (Figure 3a) integrates a mechanical structure,

power management system, motion control module, human-

computer interaction interface and sensor system. The core is the

image acquisition part. To collect images of wheat, an industrial
FIGURE 2

Phenotypic traits extraction platform.
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camera (MV-HP120GCe, Weishi, Xi’an, China) is installed on the

lifting platform in the dark box. The industrial camera has a built-in

advanced metal oxide semiconductor (CMOS, Weishi, Xi’an,

China) photosensitive element and a lens model BT-

23C0814MP5 (8 mm focal length) to ensure image clarity and

detail capture. The camera has a resolution of up to 4508 × 4096

pixels, providing a solid foundation for accurate analysis of crop

phenotypic characteristics. The camera is installed on the front

liftable platform, keeping it horizontally facing the ground,

capturing crop images at an optimal shooting distance of 0.5

meters to ensure data accuracy and consistency.

On the other hand, to further improve user experience and data

processing efficiency, we independently developed a crop

phenotypic traits extraction system (Figure 3c). The system not

only supports real-time image preview, allowing users to instantly

adjust imaging parameters to obtain the best image quality, but also

realizes automated shooting control, flexible parameter

configuration, and convenient server startup functions. The

integration of this series of functions greatly simplifies the

operation process and accelerates the entire process from image

acquisition to phenotypic traits extraction, providing strong
Frontiers in Plant Science 05
technical support for research and practice in crop genetic

improvement, precision agricultural management, etc.
2.2 Data acquisition, labeling, and
augmentation

2.2.1 Collection of wheat images
Wheat phenotypic data collection relies on the hardware system

of the self-developed CropPhenoX platform. Considering the

compact size and moderate height of wheat plants, the camera

installation position does not require frequent adjustments. In the

initial zero state, the camera is placed at a horizontal distance of

950 mm and a vertical height of 180 mm from the wheat plant to

ensure that the imaging field of view fully covers the crop. During

data collection, wheat is transported to the darkroom detection area

at a uniform speed via a flexible plate - chain conveyor, which

triggers the industrial camera to synchronously capture image data.

To ensure image quality, the system is equipped with a strip light

source for uniform fill lighting, and the image gain parameter is set

to 5.0, effectively enhancing image contrast and detail clarity.
FIGURE 3

CropPhenoX: High-throughput crop phenotyping system: (a) Process of wheat phenotypic traits extraction, (b) CropPhenoX: high-throughput
automatic extraction system, (c) Software platform for extracting crop phenotypic traits.
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Meanwhile, to achieve efficient and stable data transmission, the

data transmission packet size is configured as 2400 bytes to prevent

data packet loss and transmission delays. The flexible plate - chain

conveyor continues to operate in a loop until the data collection task

for the entire batch of wheat samples is completed, ensuring the

integrity and consistency of data acquisition.

The wheat samples used in this study include “Annong 0711”

and “Annong 1589”. Annong 0711 is of the upright type, with a

compact plant type at the seedling stage;, and Annong 1589 is of the

semi-upright type, with a relatively loose plant type at the seedling

stage. To systematically improve the diversity of experimental

samples, a multi-dimensional acquisition strategy was adopted: on

the one hand, images of single, double, triple and quadruple wheat

plants were collected; on the other hand, the same plant was

photographed from multiple angles, and a total of 269 original

images were obtained. After strict manual screening and quality

assessment, a total of 244 high-quality wheat images were retained.

All images were standardized to a resolution of 3072×3072 pixels

and stored in.jpg format to ensure data consistency and availability.

2.2.2 Data annotation with rotated bounding box
In the rotating box positioning technology, the more accurate the

label annotation method, the less redundant information is provided

to the network training. To accurately capture the unique properties

of the rotating wheat leaf target, the label not only covers the category

of the wheat leaf target and the coordinate information of the axis-

aligned bounding box, but also specifically includes the crucial

parameter of the rotation angle. As one of the annotation methods,

the long side definition method uses five parameters (x, y,w, h, q) to
accurately describe the rotating box, as shown in Figure 4. Among

them, (x, y) is the coordinate of the center point, w is the horizontal

width, h is the vertical height, and s is the counterclockwise rotation

angle around the center point (q∈ [−90, 90]).

To improve detection efficiency, the original wheat image was

uniformly cropped to 640×640 pixels. Due to the narrow shape and
Frontiers in Plant Science 06
dense distribution of wheat leaves, the use of rotation box

annotation can more accurately represent the wheat ear area and

avoid more background in the box. In this study, the roLabelImg

(https://github.com/cgvict/roLabelImg) annotation tool was used to

annotate the area where each wheat ear leaf in the original image

was located with a rotation box.

The annotation file (.xml) was generated in the PASCAL VOC

format. The information of the rotation box annotation is

represented as (x, y,w, h, q), which respectively represents the

coordinates of the center point of the wheat leaf bounding box (x,

y), the length of the short side and the long side (w, h), and the

rotation angle q compared to the horizontal box. An example of

wheat annotation is shown in Figure 5. Due to the need of model

training, the PASCAL VOC annotation file (.xml) is converted into

a DOTA annotation file (.txt). The position of the rotation box is

represented by eight parameters, namely the four vertex coordinates

(x1, y1), (x2, y2), (x3, y3), (x4, y4).

2.2.3 Data argument
To enhance the diversity and richness of the data, we adopted a

variety of strategies. Firstly, starting from the perspective of image

capture, we obtained multi-view images of wheat leaves by rotating

them at different angles (such as 45°, 90°, 135°, and 180°). Secondly,

we applied a series of image preprocessing methods, including

image flipping, mirroring, brightness adjustment, image

denoising, and random cropping, to further increase the

variability of the samples. Through these methods, we expanded

the original 244 wheat image data to 1220. These methods not only

help to improve the generalization ability of the model, but also

alleviate the challenges brought by data imbalance to a certain

extent, ensuring that the model can fully learn the characteristics of

wheat leaves during training. The augmentation wheat data set was

divided into training set, test set, and validation set in a ratio of

7:2:1, resulting in 854 training sets, 244 test sets, and 122

validation sets.
FIGURE 4

Five parameters annotation method. Where (x, y) is the coordinate of the center point, h is the length of the long side, w is the length of the short
side, and q is the counterclockwise rotation angle around the center point.
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2.3 Wheat seedling detection model

2.3.1 MobileOne
MobileOne is a lightweight network architecture built on the

foundation of MobileNet (Vasu et al., 2023). It inherits the efficient

depthwise separable convolution module of MobileNet to simplify

network parameters and computation, and uniquely introduces the

concept of overparameterization to enhance the network’s

expressiveness and adaptability.

In MobileOne, the depthwise separable module of MobileNet is

replaced by a reparameterized depthwise separable module.

Specifically, the depthwise convolution module of MobileOne

consists of three parallel processing paths. The first is an

overparameterized 3×3 convolution path, which contains k

reparameterized 3×3 convolution kernels, where k is the number

of input channels. The second path is a 1×1 convolution path, and

the third path is a normalized skip - connection path. This is the

architecture of the depthwise convolution module during the

training phase. During the testing phase, the reparameterized

structure is used for prediction.

The pointwise convolution module of MobileOne consists of

two parallel paths. One is an overparameterized 1×1 convolution

path, where the number of convolution kernels is determined by the

number of input channels. The other is a standardized skip

connection path. During testing, the reparameterized structure is

also used for prediction.

2.3.2 ECA attention module
The ECA module first performs global average pooling on the

input feature map, aiming to extract the global feature vector of

each channel (Wang et al., 2020). For the input feature map X ∈
RB�C�H�W , where B is the batch size, C is the number of channels,
Frontiers in Plant Science 07
H and W are the height and width of the feature map, respectively,

the calculation formula is shown in Equation 1, where zc is the

pooling value of the c-th channel.

zc =
1

H �Wo
H

i=1
o
W

j=1
Xc,i,j (1)

The ECA module extracts the global feature vector through

global average pooling, and then adaptively selects an odd-sized

one-dimensional convolution operation to perform information

interaction along the channel dimension to share weights and

generate a weight vector. Subsequently, the weight vector is

converted into an attention weight using the Sigmoid activation

function to achieve dynamic adjustment of the importance of each

channel feature. Finally, the attention weight is multiplied by the

original input feature map channel by channel to obtain a weighted

output feature map, which enhances the network’s sensitivity to key

wheat leaf features. The ECA mechanism has become an

indispensable attention module in modern convolutional neural

networks with its efficient computing and significant feature

enhancement capabilities (Xue et al., 2021).
2.3.3 Improved target frame positioning method
In rotated bounding box detection, the design of the localization

loss needs to take into account the periodicity of the rotation angle.

The loss function LCIoU of detection model mainly consists of three

parts: classification loss (Lclass), confidence loss (Lconf ) and

positioning loss (Lloc). The details are shown in Equations 2-4.

LCIoU = Lclass + Lconf + Lloc (2)

The classification loss uses binary cross entropy loss, and the

specific loss function formula is:
FIGURE 5

Annotation of wheat seedling images.
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yi = Sigmoid(xi) =
1

1 + e−xi
(3)

Lclass = o
Nclass

n=1
y*i log(yi) + (1 − y*i )log(1 − yi) (4)

Where: Sigmoid is the name of the activation function; Nclassis

the total number of categories; xiis the predicted value of the current

category; yiis the probability of the current category after the

activation function; y*i is the true value of the current category (0

or 1); Lclass is the classification loss.

The confidence loss also uses cross entropy loss, as shown in

Equation 5.

Lconf =o
s2

i=0
o
B

j=0
bobj
ij ½(Ci − Ĉ )2� + lnoobjo

s2

i=0
o
B

j=0
bobj
ij ½(Ci − Ĉ )2�  (5)

Where: S2 represents the prediction box; Ci is the confidence

score; Ĉ is the intersection of the prediction box and the true box.

When there is an object in a cell, bobj
ij takes 1, otherwise takes 0, that

is, bnoobj
ij takes 0; lnoobj represents the weight coefficient, which can

reduce the weight of the object-free loss calculation part.

The positioning loss function is as follows:

Lloc =
l1
N o

N

n=1
objn o

j∈ x,y,w,h,qregf g
Lreg (v

0
nj, vnj)

+
l2
N o

Nanchor

n=1
LCSL(q

0
n, qn) +

l3
N o

N

n=1
Lclass(pn, tn) (6)

Where: Nanchor is the number of anchor points; objn is a binary

value, which takes 1 for positive samples and 0 for negative samples;

vnj is the target true value; v
0
nj is the predicted offset; qn is the angle

of the annotation box; q
0
n is the angle of the prediction box; tn is the
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type label of the identified object; pn is the distribution of the

identified object label value calculated by the Sigmoid function; l1,
l2, l3 are hyperparameters, where l1 =1, l2 = 0.5, l3 =1; Lreg
represents the regression loss; LCSL represents the cross entropy loss

calculated by the Sigmoid function.

2.3.4 Wheat-RYNet model
Wheat leaf detection is an important prerequisite for obtaining

wheat seedling phenotypic trait. To improve the accuracy of wheat

seedling phenotypic traits extraction, the Wheat-RYNet model is

proposed to enhance its performance in wheat leaf detection and

thus improve the accuracy of phenotypic traits extraction. The

structure of the model is shown in Figure 6.

Firstly, the backbone network of the model is replaced. YOLO

v5 is selected as the basic model, and the original backbone network

is replaced with the MobileOne network, which uses deep separable

convolution technology to decompose traditional convolution into

deep convolution and point-by-point convolution, effectively

reducing the number of parameters and reducing the

computational complexity, thereby ensuring high accuracy of

wheat leaf detection.

Secondly, in the neck component of the Wheat-RYNet

architecture, specifically after the CSP2_x module and before the

final convolutional layer of the detection head, the network

incorporates the ECA (Efficient Channel Attention) attention

mechanism. The ECA module avoids the use of global pooling

and fully connected layers by directly interacting with features

locally in the channel dimension, thereby reducing the

computational cost. At the same time, the ECA module can

intelligently analyze the importance of each channel feature, give

higher weights to key wheat leaf features, weaken the influence of

irrelevant features, and improve the network’s sensitivity to target
FIGURE 6

Structure of Wheat-RYNet.
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features. In addition, the ECA module structure is simpler,

achieving dual optimization of model complexity and attention

learning efficiency.

As the core component of the Wheat-RYNet model, the output is

set to adapt to specific detection tasks. In the study, for the

directionality and morphological diversity of wheat and seedling

leaves, the output of the detection not only includes the category

confidence of the leaves and the coordinates of the axis-aligned

bounding box, but also specifically introduces the rotation angle

parameter, so that the model can more accurately capture the

position, direction and morphology of the leaves, effectively reducing

the interference of background information, thereby improving the

accuracy and reliability of wheat leaf target positioning.

Finally, the loss function of the model was optimized. The

original loss function of the YOLO v5 model was GIoU, which

could not accurately reflect the distance between the real box and

the predicted box in some cases. In contrast, the CIoU loss function

takes into account multiple factors such as the overlapping area of

the box, the scale, direction of the box, and the center point
Frontiers in Plant Science 09
distance, which can more accurately measure the difference

between the boxes in wheat leaf detection, further improving the

accuracy of wheat leaf detection.
2.4 Wheat leaf detection based on Wheat-
RYNet model

2.4.1 Technical route
Figure 7 shows in detail the high-throughput wheat phenotypic

traits extraction process based on the Wheat-RYNet model. The

specific steps are as follows:

To begin with, a comprehensive wheat sample dataset was

meticulously curated. Each sample within this dataset underwent

a rigorous and professionally guided semantic annotation process,

ensuring a high - quality data foundation that would serve as the

bedrock for subsequent model training endeavors.

In the subsequent phase, the Wheat - RYNet model was

employed to undertake the crucial task of wheat seedling target
FIGURE 7

Technical route of wheat leaf detection based on Wheat-RYNet model. (a) Dataset, (b) Model Training, (c) Model testing and evaluation, (c1) Model
comparison, (c2) Ablation experiment.
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detection. A thorough and systematic comparative analysis was

then conducted between the Wheat-RYNet model and several

mainstream target detection models, including Roi_trans, R-

CenterNet, R_YOLOv5. This analysis focused on evaluating the

performance of each model in the specific context of wheat

phenotypic feature recognition. The evaluation was carried out

from two key dimensions: detection accuracy, which reflects the

model’s ability to correctly identify wheat seedlings, and feature

extraction capability, which determines how effectively the model

can capture the relevant phenotypic traits of the wheat seedlings.

Additionally, ablation experiment was put into practice. This

experiment involved the strategic removal or substitution of core

components within the models, such as CSPDarkNet53,

MobileOne, and ECA. By doing so, it was possible to conduct a

quantitative analysis of the impact these components had on both

the detection accuracy and generalization ability of the models. This

process played a pivotal role in the optimization and iterative

refinement of the Wheat - RYNet model’s structure, ensuring that

it was as efficient and effective as possible.

Finally, a comprehensive assessment was performed on the

Wheat - RYNet model. The evaluation encompassed several critical

metrics, namely detection accuracy, the F1 value, the recall rate, and

the inference frame rate (FPS), which measures the model’s speed in

processing images. This evaluation was essential to guarantee the

model’s reliability and effectiveness when deployed in real - world

agricultural production scenarios.

2.4.2 Model evaluation metrics
For the wheat leaf detection task, five core evaluation indicators

are used to comprehensively and deeply analyze the performance of

different models, as shown in Equations 7-11. These five indicators

are: average precision (AP), which not only measures the model’s

ability to detect wheat leaves at different intersection-over-union

(IoU) thresholds, but also provides a more comprehensive

performance evaluation through averaging. Recall, which

intuitively reflects the model’s ability to identify and mark all

wheat leaf samples. Precision, that is, the proportion of real wheat

leaves in the samples predicted by the model as wheat leaves, is an

important yardstick for evaluating classification accuracy. F1-Score,

as a comprehensive indicator that balances precision and recall, is

particularly suitable for evaluating possible category imbalances in

wheat leaf detection. Finally, frames per second (FPS) directly

measures the speed of the model in processing wheat leaf images,

and is a key parameter for evaluating the actual application

efficiency of the model. The comprehensive consideration of these

five indicators ensures our comprehensive and accurate evaluation

of the performance of the wheat leaf detection model. Mean average

precision (mAP) is the average of the AP values of all categories,

which indicates the overall detection performance of the model on

all categories.

Precision =
TP

TP + FP
(7)
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Recall =
TP

TP + FN
(8)

F1� score =
2� Precision� Recall
Precision + Recall

(9)

mAP =
1
kj jo

k
i APi (10)

 AP =
Z 1

0
Precision(Recall)dR (11)

In the formula, k represents the number of categories of the

target to be detected, TP indicates the number of wheat leaves

correctly detected and located by the model, FP indicates the

number of wheat leaves incorrectly detected by the model, and F

N indicates the number of wheat leaves not detected by the model.

2.4.3 Experimental environment
The hardware equipment of the experiment was mainly configured

with Intel Core i7–8700 CPU @ 3.20GHz and NVIDIA GeForce RTX

2080 Ti GPU with 16GB video memory. The operating system used

was Windows 11 with Python 3.8 and Pytorch 1.12.1 installed. The

hyperparameters of network training are as follows: the training

process is 300 epochs, each batch contains 8 samples; the learning

rate is 0.01, the momentum is 0.937, and SGD is used as the

optimization algorithm; at the same time, the weight decay is set to

0.0005, and the size of all images is uniformly adjusted to 640×640.
3 Results

3.1 Wheat leaf detection results based on
Wheat-RYNet

A self-built dataset containing 1220 wheat images was used as

the training set of the Wheat-RYNet model to improve the model’s

ability to detect wheat leaves. After the training was completed, the

optimal weight of the model was used to test the wheat test set

containing 122 images to verify its generalization ability. The test

results showed that the model performs well in wheat leaf detection.

The detection result example is shown in Figure 8. We can

intuitively see from Figure 8 that the model can accurately locate

and select the wheat leaves in the image. Even small leaves can be

effectively identified, which fully demonstrates the effectiveness and

reliability of the model in practical applications.
3.2 Extracting phenotypic traits based on
image detection

To quickly and accurately extract the diverse phenotypic traits

of wheat leaves, we innovatively integrated the Wheat-RYNet
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rotation target detection model to achieve fine recognition and

precise positioning of each leaf in the wheat leaf image. The specific

process is shown in Figure 9.

Firstly, Wheat-RYNet is used for detection to obtain the

detection confidence of the crop. Then, the posture of the crop is

described by the eight-parameter notation method (EIPN) to obtain

the coordinates of each point. Finally, based on this coordinate

information, the phenotypic traits of the crop are extracted, such as

leaf width, leaf inclination, leaf area, leaf length, leaf length ratio,

and leaf number. The model accurately detected wheat leaves and

calculated the relevant parameters according to the formula

in Table 1.

Among them, q is the leaf inclination angle, h is the leaf length,

w is the leaf width, h=w is the leaf length-to-width ratio, S is the

wheat leaf area, (x1, y1), (x2, y2), (x3, y3), (x4, y4) are the coordinates

of the four vertices of the leaf detection box.

To evaluate the accuracy of the Wheat-RYNet model in wheat

phenotypic analysis, 10 wheat plants were selected as test samples

and tested using this model. The number of detection bounding

boxes was counted as the total number of predicted wheat leaves.

Subsequently, 24 rotated detection bounding boxes of wheat leaves

were randomly selected. The vertex coordinates of these rotated

detection bounding boxes were calculated using formulas and

normalized to obtain the model calculation results of leaf

inclination angle, leaf length, leaf width, length-width ratio, and

leaf area. Finally, these data were compared and evaluated with the
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ground truth values. The specific evaluation results are shown

in Figure 10.

As can be seen from Figure 10, the R2 value is 0.9593, 0.9637,

0.8297, 0.9575, 0.8374, and 0.9842, respectively, indicating that the

Wheat - RYNet rotation target detection model can well detect

wheat plant phenotypic traits with high accuracy. From Figure 10,

we also found that the prediction accuracy of leaf width is slightly

lower, probably because the image obtained is a side view. This

perspective makes it difficult to accurately capture the true width of

the leaf, the fact which in turn affects the estimation accuracy of the

leaf area. To improve this situation, although obtaining a top view

may be an effective way because it can provide more accurate leaf

width information, doing so may also bring challenges to the

estimation of leaf length. RGB cameras have been widely used in

many application fields due to their low cost, convenient operation,

reliable imaging quality and excellent environmental adaptability

(Wu et al., 2022). For example, the accurate extraction of rice plant

height information benefits from the combination of the server and

the RGB camera (Sritarapipat et al., 2014). In recent years, deep -

learning - based technologies have made significant progress in

using RGB images for wheat phenotyping and have yielded a series

of results. For example, Mask R - CNN is used to accurately extract

wheat information from RGB images (Machefer et al., 2020).

Therefore, in the future, it is necessary to consider various factors

and find ways to improve the accuracy of leaf width estimation

while maintaining the accuracy of leaf length estimation.
FIGURE 8

Detection results of the Wheat-RYNet model.
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4 Discussion

4.1 Detection results based on different
rotation box models

Most deep learning-based object detection (Girshick et al., 2014;

He et al., 2015; Ren et al., 2015) implements target detection based

on horizontal bounding box (HBB). However, rotated bounding

box (RBB) (Yang et al., 2019a) greatly improves the detection

efficiency of objects by introducing angle parameters. To
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comprehensively and fairly evaluate the performance advantages

of the Wheat-RYNet model in the wheat leaf detection task, a wheat

leaf detection comparison experiment on four detection models was

designed, including the rotation target detection model Roi_trans

(RoI Transformer), the key point-based R-CenterNet, the R-

YOLOv5, and the Wheat-RYNet proposed in this study. All

models were trained and tested in a unified experimental

environment using the same wheat leaf image set to eliminate the

influence of external factors on the evaluation results. The

experimental results are summarized in Table 2, which shows in

detail the specific performance of each model in key indicators such

as mAP (mean average precision), Recall, Precision, and F1-Score,

which intuitively reflects the excellent performance of the Wheat-

RYNet model in the wheat leaf detection task.

According to the detailed data analysis in Table 2, the Roi_trans

rotation object detection model performed poorly in the wheat leaf

detection task, with its F1-Score (0.795) and AP (0.738) at the

lowest level, showing lower detection performance compared with

the other three models. In contrast, the R-CenterNet model has

made progress in wheat leaf detection, with an F1-Score of 0.813

and an AP of 0.764, which are 1.8% and 2.6% higher than the

Roi_trans model, respectively. Furthermore, the YOLOv5 rotation

object detection model surpassed the R-CenterNet in detection

effect, with an F1-Score of 0.836 and an AP of 0.805, achieving a

significant increase of 2.3% and 4.1% over the R-CenterNet model.

The Wheat-RYNet rotation target detection model proposed in this
FIGURE 9

Flow chart of wheat plant phenotypic traits extraction: (a) Detection based on Wheat-RYNet; (b) Eight-parameter notation (EIPN); (c) Extraction of
wheat phenotypic trait.
TABLE 1 Formula for extracting phenotypic trait.

Wheat plant
phenotypic

trait
Calculation formula

q arctan (
y2 − y3j j
x2 − x3j j )

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2 − x3)

2 + (y2 − y3)
2

q

w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x4 − x3)

2 + (y4 − y3)
2

q

h=w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2 − x3)

2 + (y2 − y3)
2

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x4 − x3)

2 + (y4 − y3)
2

q

S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2 − x3)

2 + (y2 − y3)
2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x4 − x3)

2 + (y4 − y3)
2

q
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study, while maintaining the high efficiency of R- YOLOv5, has

achieved a further leap in performance by introducing optimization

methods such as MobileOne and ECA. Specifically, the model has

improved 4.4% (reaching 0.857) compared with R-YOLOv5 and

6.6% compared with R-CenterNet in F1-Score; it has improved

2.8% (reaching 0.833) compared with R-YOLOv5 and 8.5%

compared with R-CenterNet in AP. In summary, the Wheat-

RYNet rotation target detection model stands out among all

compared models with its excellent F1-Score and AP values, fully
Frontiers in Plant Science 13
demonstrating its applicability and efficiency for wheat leaf

detection tasks.

To intuitively and specifically demonstrate the actual effect of

each model in the wheat leaf detection task, we randomly selected

several wheat pictures from the dataset and presented the detection

results of different models on these images, as shown in Figure 11.

The models are compared in terms of recognition accuracy,

bounding box positioning accuracy, and the ability to handle

complex backgrounds.
FIGURE 10

The test results of wheat phenotypic traits, including (a) leaf inclination angle; (b) leaf length; (c) leaf width; (d) leaf length-to-width ratio; (e) leaf
area; and (f) leaf count, where R2 is the absolute coefficient.
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Figure 11 intuitively shows the significant improvement in

target detection confidence of the Wheat-RYNet rotating target

detection model compared with Roi_trans, R-CenterNet and

YOLOv5. As the number of wheat plants increases, the occlusion

between leaves intensifies, and the difficulty of rotating target

detection also increases, which often leads to problems such as

false detection, re-detection and missed detection. Specifically, in

Figure 11, the false detection of the Roi_trans model (as shown by

the red arrow in c2) reveals its limitations in complex scenes. The R-

CenterNet and YOLOv5 models face the challenge of re-detection

(green arrows in d3, d4, and d5), indicating that these models still

need to be optimized when dealing with dense and occluded targets.

In addition, the YOLOv5 model also has missed detection (blue

arrow in c4), further highlighting the importance of improving

detection accuracy.

However, after the introduction of theWheat-RYNet model, the

model can still maintain a high detection performance even when

the number of wheat leaf increases and the leaves are severely

occluded. The confidence of the detected target is generally above

0.9, which is mainly due to the introduction of the ECA attention

mechanism. The ECA mechanism effectively emphasizes the key

feature channels related to wheat detection, while suppressing the

interference of irrelevant background information, thereby

improving the discrimination ability of the model. In addition,

the adoption of the CIoU loss function further optimizes the

regression process of the bounding box and ensures the accuracy

and stability of the detection box. In summary, the Wheat-RYNet

model significantly improves the wheat leaf detection ability in

complex scenes by combining the ECA attention mechanism and

the CIoU loss function, effectively reducing the occurrence of false

detection, re-detection and missed detection, and providing strong

support for the accurate extraction of wheat leaf phenotypic traits.
4.2 Ablation experiment

Studies have shown that YOLOv5 combines different backbone

networks, such as CSPNet (Wang et al., 2020a), EfficientNet (Tan

and Le, 2019), and different Neck networks, such as PANet (Liu

et al., 2018), FPN (Lin et al., 2017), etc., to significantly improve its

capabilities in image feature extraction and object detection. In this

study, to enhance the detection accuracy and speed of YOLOv5, the

Wheat-RYNet model is proposed, which uses the MobileOne

network as the backbone and introduces the attention mechanism.
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To fully and deeply verify the performance advantage of the

Wheat-RYNet model in the target rotation detection task, we

designed a set of ablation experiments. The experiment is divided

into 4 groups, C1-C4, for training: C1 is the YOLOv5 model; C2 is

the feature backbone network of the YOLOv5 model replaced with

the Mobileone module; C3 is the ECA attention mechanism

embedded in the neck network of the YOLOv5 model; C4 is the

ECA attention mechanism embedded in the neck network of the

YOLOv5 model, and the CIoU loss function is used. The

experiment focuses on three modules: the MobileOne network,

the ECA attention mechanism, and the CIoU loss function. The

ablation experiment is carried out using the same wheat leaf dataset

under the same experimental environment to clarify the specific

contribution of each module to the overall performance of the

model. The performance comparison results of the ablation

experiment are shown in Table 3.

From the experimental results in Table 3, it can be seen that the

YOLOv5 model (classification: C1) shows good performance in the

wheat leaf detection task, with mAP and F1-score reaching 80.5%

and 83.6%. To further improve the model in real-time processing,

the MobileOne module is introduced into the backbone network of

the model. As a result, the mAP and F1-score dropped by 0.75% and

0.72% respectively, but the accuracy loss was controlled within 1%,

maintaining a high detection level. However, the introduction of the

MobileOne module significantly improved the computational

efficiency of the model, with the FPS increased by 40.5%,

achieving a leap in running speed.

Furthermore, the ablation experiment results show that the

model performance has been significantly improved by combining

the MobileOne backbone network, with mAP and F1-score

increased by 3.5% and 1.9% respectively. The experiment shows

that the MobileOne module has a significant effect in optimizing

computing resources and accelerating the computing process. In

addition, the ECA attention module is introduced to model the

long-range dependencies between channels through learnable one-

dimensional convolution operations (Khotimah et al., 2022),

thereby enhancing the feature expression of important channels

and suppressing the influence of unimportant channels.

In terms of loss function, CIoU is selected to replace the

traditional GIoU. CIoU comprehensively considers the overlap,

center point distance and aspect ratio difference, and is more

suitable for processing the variable shape, size and field

distribution of wheat leaves. Experiments have shown that after

using CIoU as the loss function, the mAP and F1-score of the model

are improved by 3.4% and 2.5% respectively, significantly reducing

false detection and missed detection, and improving detection

accuracy and efficiency.
4.3 Limitations and prospects

4.3.1 Limitations
Although the “CropPhenoX” system leveraging YOLOv5 has

achieved significant progress in wheat leaf detection and phenotypic

traits extraction, substantial opportunities for enhancement remain
TABLE 2 Performance comparison of different rotating target
detection models.

Model mAP Recall Precision F1-score

Roi_trans 0.738 0.783 0.808 0.795

R-CenterNet 0.764 0.795 0.832 0.813

R_YOLOv5 0.805 0.825 0.847 0.836

Wheat-RYNet 0.833 0.851 0.863 0.857
The bold part indicates the best effect among several models.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1650229
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2025.1650229
in both system performance and functionality. Currently, the

system’s exclusive reliance on RGB image data limits its capacity

to integrate multimodal information, impeding comprehensive

analysis of crop physiological states. Additionally, the absence of

multi-user collaborative operation and cross-platform data sharing

capabilities within the software platform restricts data exchange

efficiency and collaborative productivity.

Specifically, the choice of YOLOv5 over YOLOv8 and

subsequent versions for wheat leaf detection within the
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“CropPhenoX” system was meticulously informed by three key

factors. Firstly, the YOLOv5 community is rich in resources, with a

large number of practical experiences, code examples and pre-

trained models for agricultural image analysis, which allows the

research team to quickly learn from them to solve problems.

However, newer versions such as YOLOv8 have fewer mature

application cases in the agricultural field and insufficient

reference. Secondly, YOLOv5 has a variety of lightweight versions

that can adapt to hardware with different computing capabilities at
FIGURE 11

Detection results of different numbers of wheat leaves. (a) One plant, (b) Two plants, (c) Three plants, (d) Four plants.
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low computing costs and fast reasoning speeds, ensuring that the

system runs efficiently in high-throughput detection scenarios (Xu

et al., 2023). In contrast, YOLOv8 and above versions have higher

requirements for hardware resources, which may affect

performance when hardware is limited (Yan et al., 2024). Finally,

the YOLOv5 code structure is clear, which is conducive to the

modification and expansion of the “CropPhenoX” system to meet

the special needs of wheat leaf detection.

In fact, during the application process, the stability of

technology is far more highly valued than new functions.

Especially in scenarios where real - time performance is

prioritized and hardware resources are limited, a lightweight

version should be chosen (Liu et al., 2024). Therefore, the

lightweight YOLOv5 model is selected in this article. Thus,

optimal system performance in specific scenarios can only be

ensured by comprehensively considering the technical ecology,

hardware adaptability, and development flexibility. Of course,

with the deepening of agricultural phenotyping research and the

iterative upgrading of hardware technology, the dynamic

optimization and cross - version integration of the model also

needs to be continuously explored in the future, so that the

detection accuracy and application universality of the system can

be further enhanced.

4.3.2 Prospects
To further expand the depth and breadth of the research, the

following four dimensions can be explored in the future:

Firstly, to enhance model interpretability, we will systematically

analyze the feature extraction logic and decision-making

mechanism of the Wheat-RYNet model using advanced

visualization technologies such as Grad-CAM and SHAP. We will

intuitively present the model’s recognition patterns for phenotypic

features like wheat leaf morphology and texture, transforming the

“black-box” process of deep learning into interpretable visual results

to provide a scientific basis for breeding decisions.

Secondly, to expand cross-crop application boundaries, we will

optimize the model’s feature extraction module for major crops

such as rice and maize. Combining domain adaptation algorithms

and few-shot learning techniques, we will transfer the rotated box

detection strategy to phenotypic analysis scenarios of different

crops, constructing a universal crop phenotyping framework to

further broaden the technical application scope.

Thirdly, to improve phenotyping measurement accuracy, we

will adopt a fusion scheme of 3D point cloud and multi-view
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imaging. By using top-view imaging to reduce the interference

of angle deviations on leaf width measurement, and fusing

3D point cloud data to reconstruct the three-dimensional

morphology of leaves, we aim to enhance the extraction accuracy

of phenotypic traits such as leaf width from a stereoscopic

perspective, thereby improving the accuracy and robustness of

crop phenotyping analysis.
5 Conclusion

In this study, a software-hardware collaborative automated

phenotypic extraction system for wheat was successfully constructed.

High-throughput acquisition of wheat seedling images was achieved

through the CropPhenoX hardware platform. The Wheat-RYNet

detection model and the automated extraction system enabled

accurate identification of phenotypic parameters, effectively

overcoming the efficiency and accuracy bottlenecks of traditional

methods. Experimental results demonstrate that the system

outperforms existing technologies in terms of phenotypic parameter

extraction, target detection, and other related indicators, providing

reliable technical support for wheat genetic breeding and field

management. Nevertheless, limitations exist in multimodal data

fusion and multi-user collaboration. In future research, efforts will be

made to enhance the hardware’s environmental adaptability, improve

algorithm generalization capabilities, and expand software

functionality, thereby advancing wheat phenotyping technology

towards greater intelligence and standardization.
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