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Hariom Kumar Sharma1, Vijay Veer Singh1, Shravani Sanyal2,
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Navin Chandra Gupta4, Anubhuti Sharma1 and
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Institute of Biotic Stress Management, Raipur, Chhattisgarh, India, 3Watershed Organization Trust,
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Sclerotinia rot (SR), caused by Sclerotinia sclerotiorum, poses a significant threat

to Indian mustard (Brassica juncea L.), cultivated across major oilseed-growing

regions in India. A long-term field study was conducted from 2009–2010 to

2021–2022 to investigate the role of key agrometeorological parameters on

influencing SR incidence under three sowing windows, namely, 8 October (early),

29 October (timely), and 19 November (late sown). Weekly meteorological

variables, including maximum and minimum temperature (°C), relative humidity

(RH) (%) during morning (07:20 h) and afternoon (14:20 h), rainfall (mm), wind

speed (km/h), evaporation (mm), and bright sunshine hours (BSSH), were

collected and used to develop regression-based weather indices and random

forest models to develop robust predictive models for effective forecasting.

Results revealed that the 29 October sowing windowwas consistently associated

with the highest predicted SR risk (up to 39.4%), when maximum temperature

hovered at approximately 18–20 °C, RH exceeded 94% in themorning, and BSSH

fell below 3.8 hours. A strong negative correlation (R2 = 0.86) was observed

between BSSH and SR incidence, particularly in the 29 October sowing window.

Petal infestation studies confirmed early colonization pressure, with percent

petal infection peaking at 20.7% during the second week of January area under

the petal progress curve (AUPPC), which provides condensed weekly petal

infestation trajectories into a single measure of inoculum pressure and depicts

the highest epidemic pressure in the mid-sowing window. Disease forecasting

models incorporating weighted weather indices demonstrated high predictive

accuracy with R2 values of 0.75, 0.76, and 0.78 for early, timely, and late sowing

dates, respectively, when validated with 2022–2023 observations. Future

predictions using the random forest model (2025–2030) indicated that the 29

October sowing remains the most vulnerable, while the 19 November sowing

consistently exhibited lower disease risk due to less favorable microclimatic

conditions to support apothecial formation and ascospore release. The study

emphasizes that sowing time, in conjunction with real-time meteorological
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variables, significantly governs the epidemic potential of SR. The predictive

models developed herein offer a reliable decision support system for major

mustard growing states of the country, enabling proactive disease forecasting

and sustainable crop protection strategies.
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1 Introduction

Indian mustard (Brassica juncea L.) is an important oilseed crop

contributing significantly to the country’s edible oilseed production.

Out of the total global production, India contributes 13.7 mt of

produce from an area of 10.7 Mha with a productivity of 1,444 kg/

ha (ICAR-DRMR, 2024). The production and productivity are often

affected by both biotic and abiotic stresses among which Sclerotinia

rot (SR) is one of the important disease (Boomiraj et al., 2010). It is

caused by Sclerotinia sclerotiorum (Lib) de Bary, which is a globally

distributed and highly destructive soil borne fungal pathogen

having a broad host range (Sharma et al., 2015). The pathogen

has been reported to infect more than 500 host species across a wide

range of phylogenetic lineages, encompassing 278 genera and 75

dicotyledonous families along with several economically important

monocotyledonous plants (Boland and Hall, 1994; Sharma

et al., 2015).

In mustard-growing regions, only a small proportion of farmers

(less than 10%) opt for early sowing during first week of October.

The majority, however, sow their crop in the third to fourth week of

October, which is considered timely sowing, as it coincides with

favorable soil temperature conditions for crop growth. A few

farmers, whose fields are not ready due to the delay in harvesting

of the previous crop, resort to late sowing in mid-November.

During its cultivation, the disease poses a significant threat

particularly in major mustard-growing states such as Rajasthan,

Madhya Pradesh, Haryana, Uttar Pradesh, West Bengal, Bihar, and

Gujarat (Aggarwal et al., 1997). In Rajasthan state, which accounts

for 48% of the area and 47% of the production of the country, SR

has been reported to cause up to 40% yield loss when the disease

incidence reaches 60% during the crop maturity stage.

The pathogen S. sclerotiorum belongs to the ascomycetes group.

The infection is initiated through two primary sources of inoculum,

namely, airborne ascospore and soil-borne hyphae. The

development of apothecia requires continuous soil moisture

approximately for 10 days, whereas even slight moisture stress

inhibits their formation. Additionally, infection by ascospores

typically requires 2–3 days of uninterrupted leaf wetness,

underscoring the crucial influence of environmental conditions

on disease initiation and progression. Furthermore, in the context

of B. juncea, petal infestation and soil moisture have been

recognized as critical parameters for inclusion in the predictive
02
disease model. Additionally, increased relative humidity (RH) and

soil moisture during flowering significantly influences SR incidence

(Sharma et al., 2009). The ascospore germination, subsequent

mycelial growth, and lesion initiation and development are key

factors necessary for the onset of epidemics (Abawi and

Grogan, 1975).

Sharma et al. (2010) documented the infection of petals by

ascospores during the full bloom stages and highlighted rainfall as a

crucial factor in the development of carpogenic infection of S.

sclerotiorum in B. juncea. Notably, ascospores do not germinate

upon landing on leaf surfaces; however, when they come in contact

with petals, they germinate, colonize the petal tissues for their

nutrition, and subsequently infect the plant upon contact with the

leaves (Jamaux and Spire, 1994). The amount and distribution of

rainfall during these stages were also identified as critical factors in

creating microclimate within the canopy that favored disease

development. In a subsequent study, Hall and Mwiindilila (2000)

provided quantitative insights into the magnitude and duration of

key epidemiological factors such as canopy density, flowering,

moisture, and apothecia germination within the field, all of which

were found to be closely associated with the development and

progression of the disease. Predictions of SR based on early bloom

petal infestation were generally accurate under conditions of low

disease risk and incidence. However, their reliability decreased

when disease risk and incidence levels were moderate to high

(Turkington et al., 1991a). Forecasts of SR based on petal

infestation during early bloom were generally accurate under low

disease risk and incidence but become less reliable under moderate-

to high-risk conditions (Turkington et al., 1991a). Crop canopy

density and rainfall, which influence ascospore production and

release, were found to affect the correlation between petal

infestation and Sclerotinia disease incidence (Turkington et al.,

1991a; Hall and Mwiindilila, 2000).

Despite the recognized economic importance of SR in Indian

mustard, there is a scarcity of quantitative, long-term field-based

epidemiological studies conducted under Indian agro-climatic

conditions, and most of the existing literature are limited to

short-term observational trials. Secondly, weather-based

forecasting models for SR remain underdeveloped and are rarely

customized for mustard cropping systems in India. In addition,

there is limited understanding of how different sowing windows

influence disease development over multiple crop seasons. This
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study is premised on the hypothesis that the SR incidence is

significantly influenced by specific weather variables, namely,

temperature, RH, rainfall, and bright sunshine hours (BSSH),

p a r t i c u l a r l y d u r i n g t h e fl ow e r i n g p e r i o d . T h e s e

agrometeorological parameters when monitored over time and

across sowing windows can be used to develop statistically

reliable models for forecasting disease incidence. In light of these,

the present study aims to quantify long-term trends in SR incidence

under three major sowing windows in Indian mustard cultivation,

to examine the relationship between petal infestation by S.

sclerotiorum and subsequent field-level disease incidence under

natural conditions, to develop and validate predictive models

using both weather-based weighted indices and machine learning

techniques for accurate forecasting of SR incidence, and, lastly, to

project future disease risk scenarios for the period 2025 to 2030,

based on historical weather trends and model output, thereby

assisting in strategic planning for disease avoidance through

optimized sowing schedules.
2 Materials and methods

2.1 Experimental setup

An Indian mustard field measuring 26 × 23.7 m was established

at the experimental farm of ICAR-Indian Institute of Rapeseed-

Mustard Research (IIRMR) in Bharatpur, India (77°27° E, 27°12° N;

178.13 mMSL). The loamy soil plot with an alkaline pH of 8.0 and a

history of SR was used after tilling and leveling following the rainy

season. To assess the incidence of SR, three sowing dates were

selected: two in October (8 and 29), representing early and timely

sowing, and 19 November as a late sowing date. For this purpose, B.

juncea cv DRMR IJ-31 was used and data on SR incidence along

with relevant meteorological parameters were systematically

collected from the 2009–2010 to 2021–2022 crop seasons. The

field experiment was conducted with three sowing dates

considered as treatments with four replications using a

randomized block design (RBD). Each plot measured 4.8 × 5.0 m

with seeds sown at a spacing of 45 × 20 cm, maintaining row-to-row

and plant-to-plant distances, respectively. The 13-year dataset was

validated using observations from the 2022–2023 seasons through a

suitable modeling approach, namely, the random forest method.
2.2 Weather-based analysis of Sclerotinia
rot incidence

To understand the epidemiology of SR in Indian mustard, long-

term weather data and disease observations were systematically

recorded. Weekly data on rainfall (mm), maximum and minimum

temperature (°C), morning (07:20 h) and afternoon (14:20 h) RH

(%), wind speed (km/h), evaporation (mm), and BSSH were

collected from the agrometeorological observatory of the Indian

Meteorological Department located within 100 m of the

experimental site at ICAR-IIRMR, Bharatpur. Maximum and
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min imum tempera ture ( °C) were recorded us ing a

hygrothermograph placed within a Stevenson screen, rainfall (mm)

was recorded using a standard rain gauge, BSSH (h) was documented

with a Campbell–Stokes sunshine recorder, and daily average

evaporation (mm) was measured with a Class A evaporation pan.

Model interpretability outputs were generated using both partial

dependence plots (PDPs) and SHAP (Shapley Additive

Explanations) summaries. Disease incidence (%) was monitored in

a field plot from the onset of flowering and continuing until the

completion of petal abscission. To determine the initial infection

pressure, 20 petals from each replication were sampled weekly

during flowering in the early morning. The petals were stored at

4 °C and cultured within an hour of collection. Four petals were

placed on each Petri plate and replicated three times per

experimental plot. The samples were cultured on rose Bengal agar

prepared using 39 g/L potato dextrose agar (HiMedia) supplemented

with 30 ppm rose Bengal (Eastman Organic Chemicals, Rochester,

NY) and streptomycin sulfate (Sigma Chemical Co., St. Louis, MO).

Plates were incubated at 22 ± 2 °C for 3–5 days.

PPI( % ) =
Number   of   infected   petals

Total   number   of   petals   plated
� 100

Simultaneously, field-level disease incidence (%) was assessed

prior to crop windrowing by recording the number of symptomatic

plants and expressing it as a percentage of the total plants present in

each plot. This integrated approach combining weather variables,

petal infestations, and field incidence provided a comprehensive

basis for analyzing the epidemiological relationship between

microclimate and SR development across sowing windows.
2.3 Weighted weather indices for disease
forecasting models

To address the influence of weather parameters on SR

incidence, both simple and correlation-weighted weather indices

were developed and used as predictor variables. The response

variable (Y) in all models was the percent SR incidence recorded

at physiological maturity for each plot in a given year and

sowing windows.

Predictor variables (Xi) included weekly mean maximum

temperature (°C), minimum temperature (°C), morning RH (% at

07:20 h), afternoon RH (% at 14:20 h), rainfall (mm), BSSH (h),

wind speed (km/h), and evaporation (mm). These were selected

based on prior epidemiological studies and their relevance to

pathogen development (Agrawal et al., 1986; Agrawal and Mehta,

2007; Bom and Boland, 2000; Desai et al., 2004; Dhar et al., 2007;

Kamal et al., 2015; Kumar, 2013; Mehta, 2019; Mehta, 2021).

Two types of indices were computed for each weather parameter:
1. Simple index (SI): cumulative values of the parameter over

epidemiologically relevant weeks (n1 to n2).

2. Weighted index (WI): cumulative values weighted by the

week-specific correlation coefficient (riw) between the

parameter in week (w) and the response variable.
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Additionally, interaction indices (products of two variables)

we r e c a l cu l a t ed t o c ap t u r e s yne r g i s t i c e ff e c t s on

disease development.

The weighted index for variable i was calculated as:

Zi o
n2

(w=n1)

riw*Xiw
Fron
where:

Xiw = value of the ith weather variable in the wth week.

riw = correlation coefficient between Y and Xiw.

n1, n2 = first and last weeks considered for the model.

p = number of weather variables.
The general forecasting model was expressed as:

Y = a0 +o
p

i=1
aiZi +o

i≠j
bij(Zi*Zj) + E
where:

Y = forecasted disease incidence.

ao, ai, bij = regression coefficients.

E = error term.
2.3.1 Data structure and observations
The dataset comprised 13 years (2009–2010 to 2021–2022) × 3

sowing windows × 4 replications, yielding 156 plot-level annual

observations for model development. The 2022–2023 dataset (12

observations) was excluded from model development and used

solely for independent validation.
2.3.2 Modeling by sowing date
Separate models were developed for early (8 October), timely

(29 October), and late (19 November) sowing windows to account

for distinct epidemiological windows. While this reduced the

number of observations per model (n = 52), it avoided

c on f o und i n g f r om sow i n g - d a t e - s p e c ifi c w e a t h e r–

disease relationships.

In addition to R2, model performance was evaluated using root

mean square error (RMSE), mean absolute error (MAE), and mean

absolute percentage error (MAPE).

These additional metrics quantified both absolute and relative

prediction errors, ensuring robust evaluation.
2.3.3 Area under the petal progress curve
To condense weekly petal infestation trajectories into a single

measure of inoculum pressure, we computed area under the petal

progress curve (AUPPC) using the trapezoidal rule over the three

standard weeks of petal bloom sampling.

AUPPC = o
n−1

i=1

Pi + Pi+1
2

Dt,
tiers in Plant Science 04
where Pi is percent petal infestation (PPI) in week i and

Dt = 1 week.
2.4 Future prediction of Sclerotinia
incidence

Future prediction from 2025 to 2030 was done using the

random forest method. A random forest is an ensemble of

decision trees. Each tree makes an independent prediction based

on input features and data samples, and final output is derived

through mean prediction. Forward-looking weather sequences were

generated using a stochastic weather generator calibrated on the

2009–2010 to 2021–2022 IMD station data recorded at the ICAR-

IIRMR agrometeorological observatory (100 m from the field).

Future predictions were generated using an ensemble of 500

simulations by default, and uncertainty bands were computed

through a multivariate first-order autoregression with Cholesky-

coupled innovations, at uncertainty intervals of 50%, 80%, and 95%

around the predicted line.

The formula for the random forest method for future prediction

is given below:

Y base = 1Noi = 1Nfi(x)y base = N1oi = 1Nfi(x)

where:
Y^base = final prediction from the random forest model.

N = total number of decision trees in the forest.

fi(x) = prediction of the ith tree for the input feature vector x.
During the study, the input features include minimum and

maximum temperature, RH at morning (07:20 h) and afternoon

(14:20 h), bright sunshine hours [BSSH (X1 to X5)], and rainfall in

order to obtain the final output prediction of SR incidence from

2025 to 2030.
3 Results

3.1 Weather-based analysis of Sclerotinia
rot incidence

A multivariate and non-linear relationship between climatic

variables and disease manifestation was established by evaluating

meteorological characteristics throughout time and how they

interacted with SR incidence in mustard. Analysis across 13 crop

seasons (2009–2010 to 2021–2022) outlined that disease occurrence

was often favored under a specific thermal envelope. Seasons

characterized by maximum temperature near the long-term mean

of 18.3 °C and minimum temperature above the average threshold

of 6.11 °C demonstrated markedly higher SR incidence. Years such

as 2014–2015 (16.8 °C; 7.5 °C), 2015–2016 (19.7 °C; 7.2 °C), and

2021–2022 (18.2 °C; 7.8 °C) recorded disease incidence of 39.4%,

33.9%, and 28.4%, respectively (Table 1). In contrast, reduced

disease occurrences were evident in years where either or both
frontiersin.org
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the temperature extremes deviated significantly from their

respective temperature means. For instance, in 2017–2018 (19.7 °

C; 4.3 °C) and 2018–2019 (20.8 °C; 4.9 °C), SR incidence remained

relatively subdued at 13.7% and 13.0% respectively (Table 1).

RH plays an important role in the development and progression

of SR with both morning and afternoon humidity levels influencing

disease severity. The average morning (07:20 h) and afternoon

(14:20 h) RH across the years was 94.6% and 76.6% respectively

(Table 1). Seasons exceeding these humidity thresholds were

generally associated with the development of apothecia, and

sclerotia formation leads to enhanced disease pressure. For

instance, in 2009–2010 (98% and 79%) and 2014–2015 (98.3%

and 76.9%), the disease incidence was high (30.1% and 39.4%). In

contrast, in 2017–2018 (90.6%; 57.5%) and 2018–2019 (90.8%;

66.6%), SR incidence remained relatively subdued at 13.7% and

13.0%, respectively. Interestingly, in 2016–2017, the morning RH

was above average (97%) and afternoon RH dropped to below
Frontiers in Plant Science 05
threshold (60%), resulting in low disease intensity (Figure 1).

Rainfall also demonstrated an episodic but important role in

disease dynamics. With a long-term mean of 2.1 mm during the

observation period, the data revealed no consistent linear

correlation between RF and disease severity. However,

intermittent rainfall likely enhanced microclimatic wetness, which

facilitates germination of apothecia, ascospore release and sclerotial

germination. Remarkably, in 2011–2012 and 2020–2021, despite

receiving higher than usual rainfall, disease incidence was moderate

(37.9%) and low (16.2%), respectively, due to other unfavorable

weather conditions (Table 1).

The climate weather index (CWI), which reflects both

temperature and RH dynamics, showed a strong alignment with

disease incidence trends. The multi-year average CWI stood at 10.

Elevated values as observed in 2014–2015 (10.6), 2015–2016 (10.8),

and 2021–2022 (11.2) corresponded with disease levels of 39.4%,

33.9%, and 28.5%, respectively (Figure 1).
TABLE 1 Average of one to three standard meteorological weeks of sowing of Sclerotinia rot incidence (2009–2010 to 2022–2023).

Year Tmax Tmin
RH (07:20

h)
RH (14:20

h)
BSSH

RF
(mm)

WS (km/
h)

EVA
(mm)

TI RHI CWI
Scl incidence

(%)

2009–
2010

16.4 5.7 98.0 79.0 3.1 3.3 0.54 0.67 11.05 88.5 9.77 30.1

2010–
2011

17.5 4.4 98.0 67.0 4.0 0.1 0.8 1.93 10.95 82.5 9.03 24.6

2011–
2012

18.6 5.6 94.0 63.0 4.5 8.2 1.26 1.46 12.1 78.5 9.5 37.9

2012–
2013

17.8 4.0 97.0 63.0 4.4 0.0 1.96 0.86 10.9 80 8.7 27.1

2013–
2014

17.3 5.8 97.1 69.7 3.5 0.0 2.9 0.56 10.9 83.4 9.09 30.3

2014–
2015

16.8 7.5 98.3 76.9 2.5 2.1 0.8 0.26 12.15 87.6 10.6 39.4

2015–
2016

19.7 7.2 97.9 63.8 3.8 0.0 1.56 1.36 13.4 80.85 10.8 33.9

2016–
2017

19.8 6.7 97.1 60.2 5.0 2.1 1.03 0.93 13.2 78.6 10.3 9.7

2017–
2018

19.7 4.3 90.6 57.5 5.4 0.0 6.13 1.93 13.2 74.05 9.7 13.7

2018–
2019

20.8 4.9 90.8 66.6 6.6 0.0 1.1 2.43 12.8 78.7 10 13.0

2019–
2020

19.1 7.0 91.4 78.3 4.1 1.3 1.6 0.8 13.05 84.8 11.06 18.3

2020–
2021

19.2 8.4 90.5 81.8 3.2 8.3 2.7 1 13.8 86.15 11.8 16.2

2021–
2022

18.2 7.8 91.5 81.8 4.1 4.2 2.2 0.53 13 86.6 11.25 28.4

2022–
2023

15.5 5.6 92.0 79.6 2.4 0.0 0.73 0.82 10.5 85.8 9 29.9

Average 18.3 6.1 94.6 70.6 4 2.1 1.8 1.1 12.2 82.6 10 25.2
Average of one to three standard weather weeks (critical period of Sclerotinia rot).
Tmax (°C), Maximum temperature; Tmin (°C), Minimum temperature; RH (07:20 h), Morning relative humidity; RH (14:20 h), Afternoon relative humidity; BSSH, Bright sunshine hours; RF
(mm), Rainfall; WS (km/h), Wind speed; EVA (mm), Evaporation; TI, Temperature index; RHI, Relative humidity index; CWI, Climate weather index.
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BSSH influences canopy drying and surface moisture

persistence, which, in turn, affect the pathogen’s ability to infect

host tissues. With an average of 4 h infection period, BSSH

appeared to be inversely correlated with disease incidence. Higher

solar irradiance is likely to accelerate canopy drying and reduces

surface wetness necessary for infection and apothecial development.
Frontiers in Plant Science 06
Years with above average BSSH such as 2016–2017 (5.0 h), 2017–

2018 (5.4 h), and 2018–2019 (6.6 h) were associated with reduced

disease incidence of 9.7%, 13.7%, and 13.0%, respectively (Table 1),

whereas below average BSSH in 2013–2014 (3.5 h), 2014–2015

(2.5 h), and 2015–2016 (3.8 h) coincided with elevated disease

expression of 30.3%, 39.4%, and 33.9%, respectively (Figure 1).
FIGURE 1

Trends in weather variables and Sclerotinia rot incidence.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1650230
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sharma et al. 10.3389/fpls.2025.1650230
3.2 Percent petal infestation across
standard weeks

The analysis of PPI data averaged over 14 years reveals

significant differences in early infection pressure of S. sclerotiorum

across different sowing dates. Among the three planting windows,

the crop sown on 29 October consistently exhibited the highest PPI

values across all the three standard weeks recording 14.75%,

20.70%, and 12.81%, respectively (Table 2). In contrast, early

sown crops (8 October) showed moderate infestation levels, with

PPI values of 8.61% in the first week, rising to 14.72% in the second

week and decreasing to 8.79% in the third week. Late sown crops

(19 November) recorded the lowest PPI across all weeks—5%, 7%,

and 3.7%, respectively (Table 2). AUPPC (integral petal pressure)

under differentiated sowing window showed that 29 October had

the highest AUPPC (approximately 34.5%), followed by 8 October

(early, approximately 23.4%) and 19 November (late, approximately

11.4%), which is 1.5 and 3 times higher than early and late sowing,

respectively. This integral mirrors the observed seasonal SR

incidence patterns and aligns with microclimate thresholds

supporting the canopy–petal–epidemic pathway (Figure 2).
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3.3 Epidemiological analysis by sowing
dates

The analysis of SR incidence across different sowing dates, 8

October, 29 October, and 19 November, reveals distinct temporal

patterns that are captured through weather–sowing date

interactions in our unified modeling approach. The feature

importance analysis demonstrated that while week dominates as

the primary predictor, humidity–sowing date interaction provides

critical refinement for disease prediction (Figure 3). Among the

three sowing periods, crops sown on 29 October consistently

experienced higher disease incidence, particularly in the years

leading up to 2015–2016. Peaks were observed in 2011–2012 and

2014–2015, with the incidence rising close to 40%, making this

sowing period the most vulnerable to SR incidence outbreak during

those years. This vulnerability is captured in our model through

significant interaction terms, particularly Avg RH × October 29 and

RH_07:20 _× October 29 sowing, which demonstrate how humidity

conditions interact differently with specific sowing timings.

In comparison, the 8 October sowing showed moderate disease

incidence and relatively lower peaks, suggesting that early sowing

might avoid critical infection periods. The RH 14:20 × October 8

sowing interaction indicates that afternoon humidity patterns have

distinct effects depending on sowing date, contributing to these

differential disease outcomes. Meanwhile, the 19 November sowing

exhibited the lowest and most stable disease levels throughout the

years, rarely crossing the 10%mark after 2012–2013 (Figure 3). This

natural escape mechanism is reflected in our model’s interaction

terms, where late sowing creates less favorable humidity–pathogen

combinations. The wind speed × 19 November sowing interaction

further supports how environmental conditions interact with

sowing timing to influence disease development.
TABLE 2 Percent petal infestation (PPI) from 2009–2010 to 2022–2023.

Percent petal infestation (PPI)

Standard
week

8
October

29
October

19
November

1 8.61 14.75 5.0

2 14.72 20.70 7.0

3 8.79 12.81 3.7
FIGURE 2

Condensed weekly petal infestation trajectories into a single measure of inoculum pressure using the AUPPC model.
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3.4 Forecasting Sclerotinia incidence using
multi-level model

The single multi-level model with sowing date as a categorical

factor demonstrates exceptional predictive capabilities across

different planting windows with performance metrics revealing

distinct patterns for each sowing period during the 2022–2023

growing season. The random forest model applied across all sowing

windows achieved outstanding training performance (R2 = 0.78)

but showed moderate generalization to test data (R2 = 0.69),

maintaining reasonable prediction accuracy with a test RMSE of

1.9, an MAE of 1.54, and a MAPE of 13.7% (Figure 3). For early

sowing (8 October), the multi-layer perceptron (MLP) model
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showed strong performance with training R2 = 0.75 and test R2 =

0.67, indicating robust generalization (Table 3). However, the Ultra

ensemble approach achieved near-perfect training performance (R2

= 0.76) with exceptional precision (Train MAPE = 12.3%), though

test performance was moderate (R2 = 0.67). This suggests that early

sowing conditions create complex non-linear relationships that

benefit from ensemble approaches but may be sensitive to

overfitting. In contrast, mid-sowing (29 October) demonstrated

the most predictable conditions, where the random forest tuned

model achieved excellent performance with training R2 = 0.76 and

test R2 = 0.74, maintaining strong generalization capabilities with

the lowest test RMSE (3.6) and MAE (2.92) among all approaches.

The Ultra ensemble mid-model showed exceptional training
FIGURE 3

Important base weather features for Sclerotinia rot incidence and their interaction.
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performance (R2 = 0.75) with outstanding precision (Train

MAPE = 8.9%) and maintained good test performance (R2 = 8.6),

indicating that mid-sowing conditions are the most predictable and

stable (Figure 4).

Model interpretability analyses using PDPs and SHAP value

summaries highlighted the marginal influence of key meteorological

factors on disease risk (Figure 5). Afternoon RH exhibited a

pronounced non-linear effect, with predicted risk increasing

sharply once values exceeded approximately 75%–80%. Similarly,

reduced BSSH (< 4 h/day) was consistently associated with elevated

disease incidence probabilities. Maximum temperature displayed a

threshold response, with the 18–20 °C range coinciding with peak

predicted severity (Figure 6). Notably, these model-estimated
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thresholds align closely with the timing of petal infestation peaks

in the 29 October sowing window, thereby reinforcing the proposed

epidemiological pathway linking canopy microclimate → petal

colonization → epidemic development. The model structure

effectively captures these sowing-specific responses, where early

sowing shows high sensitivity to environmental variations

requiring sophisticated ensemble methods, mid-sowing

demonstrates the most consistent and predictable disease–weather

relationship, and late sowing benefits from a natural escape

mechanism, reducing the model complexity requirement. The

superior performance of the ensemble method confirms that

disease prediction relies on the complex interaction between

seasonal timings and weather–agricultural practice combination,
FIGURE 4

Performance across categories and sowing windows.
TABLE 3 Single multi-level model with sowing date as a categorical factor with different performance indices.

Category Model
Sowing
window

Train
R2

Test
R2

Train
(RMSE)

Test
(RMSE)

Train
(MAE)

Test
(MAE)

Train
(MAPE)

Test
(MAPE)

Best combined
model

Random forest All 0.78 0.69 1.2 1.9 0.96 1.54 11.2 13.7

Best early
sowing

MLP Early 0.75 0.67 1.5 2.2 1.2 1.76 10.8 11.3

Best mid-
sowing

Random forest
tuned

Mid 0.76 0.74 2.1 3.6 1.69 2.92 9.8 10.2

Best late
sowing

Random forest Late 0.78 0.73 0.86 1.32 0.69 1.06 10.1 10.5

Ultra ensemble
early

Ultra
ensemble

Early 0.76 0.67 0.91 1.53 0.73 1.23 12.3 13.4

Ultra ensemble
mid

Ultra
ensemble

Mid 0.75 0.79 2.3 3.9 1.86 3.14 8.9 8.6
fr
MLP, Multi-layer perceptron; R2, Coefficient of determination; RMSE, Root mean square error; MAE, Mean absolute error; MAPE, Mean absolute percentage error.
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with different sowing windows requiring a tailored modeling

approach for optimal forecasting accuracy.
3.5 Future prediction

The random forest model predictions for SR incidence from

2025 to 2030 indicate a generally low disease pressure with an
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overall average incidence of 1.04% (±2.01%) across the 6-year

period. The predictions show considerable year-to-year variation,

with 2025 expected to have the lowest disease incidence at 0.14%

average, while 2027 and 2029 are projected to experience higher

disease pressure with average incidences of 1.57% and 1.49%,

respectively. The model forecasts occasional disease outbreaks

with maximum predicted incidences reaching up to 8.71% in
FIGURE 6

SHAP (Shapley Additive Explanations) summaries illustrating the marginal effects of key weather drivers on pathogen SR incidence on B. juncea..
FIGURE 5

Partial dependence plots illustrating the marginal effects of key weather drivers on pathogen SR incidence on B. juncea.
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2029, though most predictions remain below 3%. These predictions

are based on stochastically generated weather sequences calibrated

from 14 years of historical IMD meteorological data (2009–2022),

incorporating key environmental factors including maximum and

minimum temperatures, morning and afternoon RH, BSSH, and

rainfall patterns (Figure 7). The random forest ensemble method,

utilizing 100 decision trees, demonstrates that maximum

temperature (43.7% importance) and afternoon RH (39.6%) are

the most critical factors influencing SR development, suggesting

that warm, humid afternoon conditions create the most favorable

environment for disease progression during the predicted period

(Figure 8). Across all years, the models show a prominent incidence

peak immediately following this sowing window, with median

values reaching 12%–15% before declining sharply. This early

surge and higher magnitude of disease risk are notably greater

compared to other sowing periods, confirming that the October

29th sowing window is associated with enhanced pathogen pressure

and increased epidemic potential. These findings reinforce the role

of optimal microclimate conditions during late October in driving

elevated SR infection rates (Figure 9).
4 Discussion

The present investigation establishes a robust framework for SR

of Indian mustard through comprehensive analysis of weather–

disease interactions across 14 crop seasons (2009–2023). The

multivariate and non-linear relationship between climatic
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variables and disease manifestations demonstrates that SR is

governed by weather parameters like Tmax, Tmin, RH, wind speed,

and BSSH, consistent with the findings of Goswami et al. (2012) and

Sharma et al. (2015). The identified optimal temperature range of

16–20 °C for maximum disease expression aligns with the

physiological requirements for apothecia development and

ascospore release reported by Sun and Yang (2000), who

demonstrated that sclerotial development accelerates under low

light intensity conditions at temperatures exceeding 20 °C. The

critical role of RH in disease progression, with a morning RH

threshold of 85% and an afternoon RH of 76.6%, corroborates the

moisture-dependent nature of Sclerotinia pathogenesis.

Chattopadhyay et al. (2007) similarly reported that enhanced

petal infestation by ascospore under reduced BSSH supports our

observation that BSSH below 5 h creates a favorable condition for

disease development. The episodic influence of rainfall, despite

showing no consistent linear correlation with disease severity,

likely enhances microclimatic wetness essential for sclerotial

germination and apothecial formation as documented by Gugel

(1986) and Boland and Hall (1988a, b). These apothecia formed

from sclerotinia when they receive the ideal temperature, RH, and

BSSH. Apothecium development occurs at a faster pace when low

light intensity greater than 20°C was available (Sun and

Yang, 2000).

The CWI integration of temperature and humidity dynamics

provides a holistic approach to disease risk assessment. Years with

elevated CWI values corresponded with peak disease incidence, while

reduced CWI values have subdued disease levels. Interpretability
FIGURE 7

Historical vs. predicted Sclerotinia rot incidence.
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FIGURE 9

Uncertainty bands via a multivariate first-order auto-regression weather ensemble (N = 500) with Cholesky-coupled innovations.
FIGURE 8

Future prediction of Sclerotinia rot incidence.
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analyses using PDPs and SHAP summaries further confirmed these

insights. Afternoon RH displayed a sharp non-linear increase in

disease risk once values exceeded 75%–80%, while BSSH cutoffs

below 4 h/day consistently predicted higher incidence. Maximum

temperature exerted a threshold influence, with the 18–20°C band

marking peak severity. These model-estimated thresholds aligned

precisely with observed petal infestation peaks in the 29 October

sowing window, thereby strengthening the epidemiological linkage of

canopy microclimate, and petal colonization leads to epidemic

development. The integration of weekly petal infestation data into

an AUPPC metric provided an additional, epidemiologically integral

measure of inoculum pressure. Across sowing windows, the AUPPC

succinctly summarized epidemic potential, with the October 29

sowing showing threefold greater cumulative petal infestation

pressure compared to 19 November. This integral measure

correlates directly with field disease incidence and offers a valuable

complementary index to weather-based predictors, enabling

comparison of sowing windows on a single, interpretable scale.

This integrated approach addresses the limitation of single-

parameter models and provides a more robust foundation for

predictive modeling as advocated by Turkington and Morrall

(1993). However, it is important to note that point forecasts may

obscure inherent uncertainty. By incorporating multiple stochastic

realizations, our ensemble forecasts produced uncertainty bands

(50%, 80%, and 95% intervals) around the prediction trajectories.

While the central tendency suggested generally low baseline disease

pressure (<2% mean incidence), the uncertainty bands reveal

occasional possibilities for localized outbreaks (>8%). Assumptions

in the weather generator, particularly regarding extremes of Tmax and

humidity persistence, may modestly bias outbreak probability

estimates. Explicit communication of these uncertainty envelopes

provides a more balanced risk outlook for farmers and policy

planners than point predictions alone.

The comparative analysis of three showing windows reveals

distinct disease risk profile that fundamentally alters the

management strategy. The 29 October sowing window emerges as

the highest-risk period, with a mean incidence of 5.89% and a

maximum value reaching 30.13%, attributed to the convergence of

optimal pathogenic conditions like moderate maximum temperature,

exceptionally high RH, and consistently low BSSH. This risk profile

aligns with the findings of Sharma et al. (2010), who documented

apothecial presence under similar conditions. The intermediate risk

profile of an 8 October sowing demonstrates partial disease escape

through suboptimal temperature conditions that frequently exceed the

critical 20 °C threshold. The moderately elevated BSSH value

occasionally surpasses the critical 5-h period threshold providing

intermittent unfavorable condition for pathogen development. This

temporal disease escape mechanism represents a practical compromise

between agronomic requirements and disease management objectives.

The 19 November sowing consistently exhibited the lowest disease risk

representing 6.4-fold reduction compared to the 29 October window.

The reduced RH and elevated BSSH create consistently unfavorable

conditions for pathogen establishment and proliferation. The higher

average temperature further contributes to disease suppression through

thermal stress on the pathogen, supporting the disease’s escape strategy
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documented in late-sown crops (Turkington, 1988). In this context, the

prediction model developed using environmental and weather

variables can provide reliable forecasts and timely warnings, enabling

farmers to make informed decisions and stay prepared. The present

study also reinforces that petal-based forecasts, while valuable, achieve

maximum reliability when integrated with contemporaneous weather-

based indices, as demonstrated in Canadian and European forecasting

systems (Turkington et al., 1991a: Hall and Mwiindilila, 2000).

Although there is reduction in the yield of seeds and vegetative

growth (Patel et al., 2017; Pattam et al., 2017) when there is a delay

in sowing, this yield reduction can be compensated if there is lesser

incidence of SR in Indian mustard. Early sowing hastens the

reproductive period (Tripathi and Singh, 2007). When the mustard

crop is sown early, it reaches its flowering period earlier than the

ascospores are released. Thus, it avoids the overlap between the petals

that are available and the load of ascospores on B. juncea. In this case,

there is a chance that ascospores were present, but due to the limited

number of petals, the chances of the incidence lessened. A slight delay

in sowing time reduces the chances of Sclerotinia incidence as the

flowering occurs a bit later than the period of maximum ascospore

release. Thus, there will be fewer chances of petal infestation and stem

infection (Jurke, 2003). Percent Sclerotinia incidence peaked with

maximum Tmax and evening RH. This was similar to the results

recorded by Singh et al. (2022). This study’s data also supports that

specific weather combinations Temperature between 18–20°C,

morning, RH≥ 94%, and BSSH< 4h are critical thresholds for

epidemic development. Such findings align with multi-year

epidemiological analyses in oilseed rape, which have consistently

linked dense canopies, low irradiance, and high humidity during boll

development to severe Sclerotinia outbreaks. Such findings align with

multi-year epidemiological analyses in oilseed rape, which have

consistently linked dense canopies, low irradiance, and high

humidity during bloom to severe Sclerotinia outbreaks (Twengstrom

et al., 1998; Clarkson et al., 2004).

The random forest ensemble approach demonstrates superior

predictive capability with training and test R2, maintaining robust

generalization with minimal overfitting. The model’s ability to

capture complex non-linear interaction between weather

parameters and disease development addresses the limitation of

traditional linear regression approach. The Ultra ensemble mid-

model’s exceptional performance for mid-sowing conditions

indicates that the 29 October window provides the most

predictable disease–weather relationships, likely due to consistent

environmental conditions favoring pathogen development. The

sowing-specific model performance variations reflect the underlying

biological complexity of host–pathogen–environment interactions.

Early sowing shows high sensitivity to environmental variations

requiring sophisticated ensemble methods, while late sowing

benefits from natural escape mechanisms that reduce model

complexity requirements. This differential predictive accuracy has

practical implications for targeted advisory systems, where high-risk

periods require more frequent monitoring and intervention.

The 2025–2030 projection indicates stable disease risk ranking

across sowing windows with minimal year-to-year variation within

each window. This seasonal predictability enables precision
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agriculture approaches, where fungicide application and

monitoring efforts can be concentrated during high-risk periods,

optimizing resource utilization and minimizing environment

impacts. The identification of critical weather thresholds enables

the development of real-time risk assessment protocols. Integration

of these thresholds with operational agrometeorological advisories

can form the farmer-friendly decision support system for major

mustard production regions. The petal sampling methodology,

validated through correlation with the disease incidence, provides

an early warning system that complements weather-based

prediction. The study demonstrated that optimal environmental

conditions must align with adequate inoculum pressure for

significant disease development, emphasizing the importance of

integrated management approaches. Combining predictive model

with field monitoring enables targeted fungicide applications,

reducing unnecessary treatment and associated cost while

maintaining effects to disease control. Future research should

focus on and develop a weather-based advisory system that

integrates real-time weather data with predictive models,

providing farmers with actionable recommendations for sowing

date optimization and intervention timing. The establishment of

this comprehensive prediction system enhances the precision and

effectiveness of SR management in Indian mustard, contributing to

sustainable crop production and food security objectives in the

Indian subcontinent.
5 Conclusion

The long 13-year field trial in the experimental field of ICAR-

IIRMR, Bharatpur leveraged precision agriculture analytics to unravel

how sowing time and weather synergistically govern SR in Indian

mustard. Using a split-plot layout (4.8 × 5 m, four replications) of cv.

DRMR IJ-31 sown on 8 October, 29 October, and 19 November,

researchers coupled weekly disease surveys, laboratory-confirmed

petal infestation tests, and meteorological records that included

temperature, humidity, rainfall, and BSSH captured 100 m from

the plots. They transformed raw weather variables into simple and

correlation-weighted indices, then built stepwise multiple-regression

and modified quadratic models to quantify disease–weather relations,

validating them with an independent 2022–2023 dataset. A random

forest ensemble extrapolated these relations to 2025–2030, revealing

that SR risk peaks due to two major factors, which are maximum

temperature and afternoon RH.

Conclusively, the study demonstrates that integrating long-term

micro-meteorological monitoring with correlation-weighted indices

and machine learning forecasts can pinpoint sowing windows and

weather thresholds that tip the balance between epidemic and

escape. BSSH, maximum temperature, and RH emerged as the

most reliable, easy-to-measure predictors; when monitored in real

time, they can trigger site-specific advisories on sowing date

adjustment, canopy management, and timely fungicide

application. By coupling such decision rules with routine petal

sampling, growers can shift from calendar-based to data-driven
Frontiers in Plant Science 14
management, minimizing losses to SR while preserving the yield

gains of optimum planting schedules—an actionable template for

precision plant-protection services across India’s oilseed belts.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.
Author contributions

PS: Writing – review & editing, Conceptualization, Writing –

original draft, Resources, Investigation, Methodology, Supervision,

Data curation, Visualization. PR: Writing – original draft, Project

administration, Funding acquisition, Writing – review & editing,

Formal Analysis. PM: Project administration, Writing – review &

editing, Writing – original draft. HS: Writing – review & editing,

Validation, Writing – original draft. VS: Writing – original draft,

Resources, Writing – review & editing. SS: Writing – original draft,

Writing – review & editing, Validation. NP: Methodology, Data

curation, Writing – review & editing, Writing – original draft.

JK: Writing – original draft, Methodology, Writing – review &

editing. NG: Writing – review & editing, Writing – original draft.

AS: Writing – review & editing, Writing – original draft,

Methodology. NB: Writing – original draft, Writing – review &

editing, Formal Analysis, Data curation.
Funding

The author(s) declare that no financial support was received for

the research and/or publication of this article.
Acknowledgments

The research was supported by the Indian Council of

Agricultural Research, Department of Agricultural Research and

Education, Government of India.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1650230
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sharma et al. 10.3389/fpls.2025.1650230
Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated
Frontiers in Plant Science 15
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2025.1650230/

full#supplementary-material
References
Abawi, G., and Grogan, R. (1975). Source of primary inoculum and effects of
temperature. Phytopathology. 65, 300–309. doi: 10.1094/Phyto-65-300

Aggarwal, R. A. K., Kumar, A., and Thakur, H. L. (1997). Effect of Sclerotinia rot on
oil quality in low erucic acid cultivars of rapeseed. Crucif. Newslett. 19, 103–104.

Agrawal, R., Jain, R. C., and Jha, M. P. (1986). Models for studying rice crop-weather
relationship. Mausam. 37, 67–70. doi: 10.54302/mausam.v37i1.2153

Agrawal, R., and Mehta, S. C. (2007). Weather based forecasting of crop yields, pests
and diseases-IASRI models. J. Ind. Soc Agril. Statist 61, 255–263.

Boland, G. J., and Hall, R. (1988a). Numbers and distribution of apothecia of
Sclerotinia sclerotiorum in relation to white mold of white bean (Phaseolus vulgaris).
Can. J. Bot. 66, 247–252. doi: 10.1139/b88-042

Boland, G. J., and Hall, R. (1988b). Relationships between the spatial pattern and
number o apothecia of Sclerotinia sclerotiorum and stem rot of soybean. Plant Pathol.
37, 329–336. doi: 10.1111/j.1365-3059.1988.tb02082.x

Boland, G. J., and Hall, R. (1994). Index of plant hosts of Sclerotinia sclerotiorum.
Can. J. Plant Pathol. 16, 93–108. doi: 10.1080/07060669409500766

Bom, M., and Boland, G. J. (2000). Evaluation of disease forecasting variables for
sclerotinia stem rot (Sclerotinia sclerotiorum) of canola. Can. J. Plant Sci. 80, 889–898.
doi: 10.4141/P99-071

Boomiraj, K., Chakrabarti, B., Aggarwal, P. K., Choudhary, R., and Chander, S.
(2010). Assessing the vulnerability of Indian mustard to climate change. Agric. Ecosyst.
Environ. 138, 265–273. doi: 10.1016/j.agee.2010.05.010

Chattopadhyay, C., Meena, R. L., Roy, S., Rana, U. S., and Kumar, A. (2007). “Effect
of abiotic factors on incidence of Sclerotinia rot on Indian mustard,” in The 12th

International Rapeseed Congress, (Wuhan, China: GCIRC), 127.

Clarkson, J. P., Phelps, K., Whipps, J. M., Young, C. S., Smith, J. A., and Watling, M.
(2004). Forecasting Sclerotinia disease on lettuce: toward developing a prediction
model for carpogenic germination of sclerotia. Phytopathology 94, 268–279.
doi: 10.1094/PHYTO.2004.94.3.268

Desai, A. G., Chattopadhyay, C., Agrawal, R., Kumar, A., Meena, R. L., Meena, P. D.,
et al. (2004). Brassica juncea, powdery mildew epidemiology and weather based
forecasting models for India—a case study. Z. für Pflanzenkrankheiten und
Pflanzenschutz/ JPDP 111, 429–438.

Dhar, V., Singh, S. K., Kumar, M., Agrawal, R., and Kumar, A. (2007). Prediction of
pod-borer (Helicoverpa armigera) infestation in short-duration pigeonpea (Cajanus
cajan) in central Uttar Pradesh. Indian J. Agric. Sci. 77, 701–704.

Goswami, K., Tewari, A. K., and Awasthi, R. P. (2012). Cultural, morphological and
pathogenic characteristics and carpogenic germination of Sclerotinia sclerotiorum, the
cause of Sclerotinia rot of rapeseed-mustard. Pantnagar J. Res. 10, 40–45.

Gugel, R. K. (1986). Inoculum-disease relationships in Sclerotinia stem rot of
rapeseed in Saskatchewan. Can. J. Plant Sci. 8, 89–96. doi: 10.1080/07060668609501848

Hall, R., and Mwiindilila, C. N. (2000). Patho system parameters associated with
severe white mold of white bean. Ann. Rep. Bean Improv Coop. 43, 154–155.

ICAR-DRMR (2024). Annual report 2023–24: Indian Council of Agricultural
Research. Available online at: https://www.drmr.res.in/director_desk.php.

Jamaux, I., and Spire, D. (1994). Development of a polyclonal antibody-based
immunoassay for the early detection of Sclerotinia sclerotiorum in rapeseed petals.
Plant Pathol. 43, 847–862. doi: 10.1111/j.1365-3059.1994.tb01629.x

Jurke, C. J. (2003). Evaluation of components of sclerotinia stem rot (Sclerotinia
sclerotiorum) management in canola: seeding rates, avoidance mechanisms, and
physiological resistance screening methodologies. University of Mannitoba,
Winnepeg, 149.

Kamal, M., Alam, M., Savocchia, S., Lindbeck, K., and Ash, G. (2015). Prevalence of
sclerotinia stem rot of mustard in northern Bangladesh. Int. J. BioRes 19, 13–19.

Kumar, A. (2013). Forewarning Models for Alternaria blight in mustard crop.
sclerotiorum in Punjab. Indian J. Agric. Sci. 81, 116–119.

Mehta, N. (2019). Development of prediction models for the management of
rapeseed-mustard diseases-Current scenario. Plant Dis. Res. 34, 81–112. doi: 10.5958/
2249-8788.2019.00018.0

Mehta, N. (2021). Epidemiology and prediction models for the management of
rapeseed–mustard diseases: current status and future needs. Indian Phytopathol. 74,
437–452. doi: 10.1007/s42360-021-00353-z

Patel, A., Singh, A. K., Singh, S. V., Sharma, A., Raghuvanshi, N., and Singh, A. K.
(2017). Effect of different sowing dates on growth, yield and quality of various Indian
mustard (Brassica juncea L.) varieties. Int. J. Curr. Microbiol. Appl. Sci. 4, 71–77.

Pattam, K., Pannu, R. K., Dhaka, A. K., and Sharma, K. D. (2017). Effect of dates of
sowing and nitrogen levels on growth and yield of Indian mustard. Int. J. Curr.
Microbiol. Appl. Sci. 6, 1029–1036.

Sharma, P., Meena, P. D., Kumar, A., Chattopadhyay, C., and Goyal, P. (2009). “Soil
and weather parameters influencing Sclerotinia rot of Brassica juncea,” in Proceedings
of 5th International Conference of IPS at Indian Agricultural Research Institute (New
Delhi: Indian Pathological Society), 10–13.

Sharma, P., Meena, P. D., Kumar, A., Kumar, V., and Singh, D. (2015). Forewarning
models for Sclerotinia rot (Sclerotinia sclerotiorum) in Indian mustard (Brassica juncea
L.). Phytoparasitica 43, 509–516. doi: 10.1007/s12600-015-0463-4

Sharma, P., Meena, P. D., Rai, P. K., Kumar, S., and Siddiqui, S. A. (2010). “Relation
of petal infestation to incidence of Sclerotinia sclerotiorum in Brassica juncea,” in
National Conference, IPS SKRAU (Bikaner: Indian Pathological Society), 27–28.

Singh, M., Avtar, R., Lakra, N., Pal, A., Singh, V. K., Punia, R., et al. (2022). Early
oxidative burst and anthocyanin-mediated antioxidant defense mechanism impart
resistance against Sclerotinia sclerotiorum in Indian mustard. Phy Mol. Pl Path. 120,
101847. doi: 10.1016/j.pmpp.2022.101847

Sun, P., and Yang, X. B. (2000). Light, temperature, and moisture effects on
apothecium production of Sclerotinia sclerotiorum. Plant Dis. 84, 1287–1293.
doi: 10.1094/PDIS.2000.84.12.1287

Tripathi, N., and Singh, R. S. (2007). Cultivation impacts nitrogen transformation in
Indian forest ecosystems. Nutrient Cycling Agroecosystems 77, 233–243. doi: 10.1007/
s10705-006-9061-7

Turkington, T. K. (1988). Using ascospore infestation of petals to forecast Sclerotinia
stem rot of rapeseed. (Saskatoon, Saskatchewan, Canada: University of Saskatchewan),
152.

Turkington, T. K., and Morrall, R. A. A. (1993). Use of petal infestation to
forecast Sclerotinia stem rot of canola: the influence of inoculum variation over the
flowering period and canopy density. Phytopathology. 83, 682–689. doi: 10.1094/Phyto-
83-682

Turkington, T. K., Morrall, R. A. A., and Gugel, R. K. (1991). Use of petal infestation
to forecast Sclerotinia stem rot of canola: Evaluation of early bloom sampling 1985-90.
Can. J. Plant Pathol. 13, 50–59.

Twengström, E., Sigvald, R., Svensson, C., and Yuen, J. (1998). Forecasting
Sclerotinia stem rot in spring sown oilseed rape. Crop Prot. 17, 405–411.
doi: 10.1016/S0261-2194(98)00035-0
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2025.1650230/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2025.1650230/full#supplementary-material
https://doi.org/10.1094/Phyto-65-300
https://doi.org/10.54302/mausam.v37i1.2153
https://doi.org/10.1139/b88-042
https://doi.org/10.1111/j.1365-3059.1988.tb02082.x
https://doi.org/10.1080/07060669409500766
https://doi.org/10.4141/P99-071
https://doi.org/10.1016/j.agee.2010.05.010
https://doi.org/10.1094/PHYTO.2004.94.3.268
https://doi.org/10.1080/07060668609501848
https://www.drmr.res.in/director_desk.php
https://doi.org/10.1111/j.1365-3059.1994.tb01629.x
https://doi.org/10.5958/2249-8788.2019.00018.0
https://doi.org/10.5958/2249-8788.2019.00018.0
https://doi.org/10.1007/s42360-021-00353-z
https://doi.org/10.1007/s12600-015-0463-4
https://doi.org/10.1016/j.pmpp.2022.101847
https://doi.org/10.1094/PDIS.2000.84.12.1287
https://doi.org/10.1007/s10705-006-9061-7
https://doi.org/10.1007/s10705-006-9061-7
https://doi.org/10.1094/Phyto-83-682
https://doi.org/10.1094/Phyto-83-682
https://doi.org/10.1016/S0261-2194(98)00035-0
https://doi.org/10.3389/fpls.2025.1650230
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Predictive modelling and epidemiological forecasting of sclerotinia rot in Brassica juncea under climatic variability in Indian conditions
	1 Introduction
	2 Materials and methods
	2.1 Experimental setup
	2.2 Weather-based analysis of Sclerotinia rot incidence
	2.3 Weighted weather indices for disease forecasting models
	2.3.1 Data structure and observations
	2.3.2 Modeling by sowing date
	2.3.3 Area under the petal progress curve

	2.4 Future prediction of Sclerotinia incidence

	3 Results
	3.1 Weather-based analysis of Sclerotinia rot incidence
	3.2 Percent petal infestation across standard weeks
	3.3 Epidemiological analysis by sowing dates
	3.4 Forecasting Sclerotinia incidence using multi-level model
	3.5 Future prediction

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


