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Sucrose synthase (SuSy) is a key enzyme in plant carbohydrate metabolism,

catalyzing the reversible conversion of sucrose into UDP-glucose and fructose.

SuSy is central to several developmental and metabolic processes, where its

activity is closely linked to biomass accumulation, pollen viability, grain filling, and

seed development. This review explores the role of SuSy, in comparison with

invertase, examines its enzymatic interactions, and highlights its contribution to

metabolic adaptation under heat stress, while emphasizing its critical role in

strengthening sink capacity. Elevated temperatures negatively impact sucrose

metabolism and source–sink relationships, disrupting yield formation in cereal

crops. SuSy, with its distinct isoforms and subcellular localizations, adapts flexibly

to thermal stress, maintaining sucrose flux and stabilizing energy supply in

developing tissues. Its stress-responsive expression patterns suggest that

specific isoforms could be targeted to enhance thermotolerance. Overall,

understanding the spatial, temporal, and regulatory dynamics of SuSy offers

promising avenues for developing climate-resilient crops. Harnessing its full

potential through targeted breeding and gene editing could be pivotal in

mitigating the adverse effects of rising temperatures on global food security.
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1 Introduction

Sucrose is the principal form of transported carbohydrate in higher plants and plays a

vital role in regulating growth, development, and stress responses. Its metabolism is tightly

controlled to balance energy supply with the demands of various physiological processes. In

plants, the cleavage of sucrose constitutes the major route of carbon flux, making it the

primary pathway for carbon turnover (Ruan, 2014). This process is catalyzed either by

invertases (INV) or by sucrose synthase (SuSy, EC 2.4.1.13). While INV catalyzes irreversibly,

the SuSy enzyme has the unique capability to cleave as well as synthesize sucrose in a nearly

energy-neutral way (Ruan, 2014; Kleczkowski and Decker, 2015). The relative activities of

these enzymes determine the direction and efficiency of carbon partitioning and are critical
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for plant adaptation under various environmental conditions. Plants

create a spatial and temporal system of sucrose sources and sinks,

enabling effective sucrose transport, by controlling the activity levels

of the enzymes involved in synthesis or cleavage at different stages of

growth, across various plant organs, and within distinct cellular

compartments. SuSy catalyzes a process that combines respiration,

the production of carbohydrates, and the utilization of carbohydrates.

This interaction makes it possible to quickly transform a sucrose sink,

like the growing endosperm of cereals, into a sucrose source without

requiring the production or breakdown of enzymes. Although INV

plays an important role in normal plant growth, SuSy is particularly

involved in processes such as pollen tube growth, the establishment of

nitrogen fixation, biomass production, and the maturation of fruits

and seeds, especially under abiotic stress conditions. SuSy is typically

found in the cytoplasm of both photosynthetic and non-

photosynthetic cells, including the vascular tissues of various plants,

which suggests a potential role in sucrose translocation (Tomlinson

et al., 1991; Geigenberger and Stitt, 1993; Chen et al., 2017). It was

previously believed to be exclusively cytosolic; however, recent studies

have revealed its presence in the cytoskeleton and tonoplasts, as well

as in various organelles such as plastids, vacuoles, Golgi apparatus,

and mitochondria. This diverse localization supports SuSy’s various

functions, such as providing carbon for starch synthesis in plastids,

facilitating solute exchange with mitochondria, and interacting with

the cytoskeleton (Winter and Huber, 2000; Subbaiah et al., 2006).

SuSy is a major carbohydrate-metabolizing enzyme, alongside ADP-

glucose pyrophosphorylase (AGPase), sucrose phosphate synthase

(SPS), sucrose phosphate phosphatase, soluble starch synthase (SSS),

and starch branching enzyme (SBE), all of which are crucial for

regulating the metabolic status of source leaves (Ruan, 2014). From

source leaves, sucrose is transported to maintenance and storage sites

based on the sink strength. Sink strength is one of the several

characteristics that determine yield, especially in cereal crops. Sink

organs have the capacity to import carbohydrates; for example,

during wheat grain formation, the carbohydrate is transferred as

sucrose and uploaded into growing grains, where it is converted into

starch by enzymes. Therefore, the importance of enzymes related to

sucrose metabolism and starch synthesis becomes all the more

important, especially in the context of abiotic stresses. Plant

response to a particular abiotic stress is a complex regulatory

procedure involving roles played by enzymes, other biomolecules,

and hormones and the crosstalk among them that facilitates

providing a survival toolkit to the plant. This review explores the

multifaceted role of SuSy, its comparison with INV, how SuSy activity

changes during heat stress, and whether or not it is important to be

considered for conducting studies revolving around heat stress faced

by plants in general and cereal crops in particular.
2 Structure, function and evolution of
sucrose synthase in higher plants

Sucrose synthase is an extensively characterized enzyme. It is

encoded by a minor multigene family in the higher plants. SuSy

genes of various species have been studied, and a conclusion
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regarding the structural conservation among them is drawn, while

they still express differentially and depict functional divergence,

alongside the evolution of this gene family. SuSy is a member of the

broader metal-independent GT-B glycosyltransferase superfamily,

specifically the retaining GT-4 subfamily. In both bacteria and

plants, this enzyme usually exists as homotetramers (in some

species it exists as heterotetramers), with each monomeric subunit

having a molecular mass of approximately 90 kDa (Porchia et al.,

1999; Wu et al., 2015). It may range between 53 and 110 kDa in

different plant species. The proposed structure was established by

the X-ray crystallography of SuSy of Arabidopsis thaliana (AtSus1)

and Nitrosomonas europaea (Zheng et al., 2011; Wu et al., 2015),

both of which have demonstrated structural conservation and a

50.3% identical sequence. A conventional SuSy encompasses two

domains that are highly conserved: an N-terminal domain

dedicated to sucrose synthesis, comprising roughly 550 amino

acids, which facilitates cellular localization, and a C-terminal

domain, consisting of approximately 175 amino acids, that

exhibits glycosyltransferase activity (Zheng et al., 2011). These

domains undergo phosphorylation at critical sites, which plays a

significant role in the precise modulation of their functional activity.

For further detailed explanation on the structure of SuSy, refer to

Schmölzer et al. (2016). The phosphorylation at Ser 13 and Ser 167

modulates the biochemical properties of plant SuSy. Initial

phosphorylation at Ser15 activates SuSy and primes it for further

phosphorylation at Ser170, leading to ubiquitin-mediated

degradation (Huber et al., 1996). The first phosphorylation,

driven by Ca²+-dependent protein kinases (CDPKs) or a Ca²+-

independent SnRK, is responsive to sugar levels (Zhang et al., 1999;

Chikano et al., 2001). However, only CDPKs perform the second

phosphorylation. ENOD40 proteins can prevent SuSy breakdown

by blocking the second phosphorylation site, impacting vascular

function, phloem transport, and assimilate flow, particularly in

high-sink areas with active phloem unloading (Kouchi et al.,

1999; Hardin et al., 2003).

SuSy catalyzes the reversible conversion of sucrose and nucleoside

diphosphates (NDPs) into fructose and NDP-glucose, where N

represents thymidine, uridine, guanosine, adenosine, cytidine, or

inosine (Figure 1). Most studies have concluded UDP is the

preferred substrate due to its role in producing UDP-glucose

(UDPG) (Curatti et al., 2008), but ADP also functions effectively and

produces ADP-glucose (Schmölzer et al., 2016; Zhang et al., 2019).

A key feature of SuSy is its ability to catalyze the formation of glycosidic

bonds in sucrose with an energy content of -29.3 kJ/mol (Neufeld and

Hassid, 1963), making the reaction nearly as efficient as those involving

nucleotide-activated sugars. This allows the reaction to be reversible,

which makes it valuable for industrial applications, such as recycling

UDPG in Leloir GT reactions (Ardevol and Rovira, 2015). However, in

in vivo conditions, the reaction favoring sucrose breakdown is

dominant over synthesis owing to decreased overall energy

requirements (Geigenberger and Stitt, 1993; Lee and Jeon, 2020).

The reaction equilibrium is pH-dependent, showing optimal activity

for sucrose synthesis between pH 7.5 and 9.5, while lower pH values

(5.5 to 7.5) favor the reverse reaction (Bieniawska et al., 2007; Almagro

et al., 2012). Although plant SuSy enzymes have temperature optima
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between 40°C and 55°C, their stability decreases above 30°C. In

contrast, bacterial SuSy exhibits higher temperature optima, ranging

from 60°C to 80°C (Figueroa et al., 2013; Diricks et al., 2015). These

temperature and pH sensitivities influence SuSy’s role in metabolic

processes. SuSy is tightly regulated at both transcriptional and post-

transcriptional levels. This regulation ensures that its expression and

activity are modulated in response to various developmental cues and

environmental conditions (Hu et al., 2024; Shah et al., 2025).
2.1 Sucrose synthase isoforms and their
evolution

The SuSy gene is hypothesized to have emerged in

proteobacteria or a shared progenitor of both proteobacteria and

cyanobacteria, with the possibility that plants acquired it through

cyanobacteria (Lunn, 2002). SuSy was discovered in 1955 in wheat

germ (Cardini et al., 1955), but it was maize’s Shrunken (Sh) gene

that was first cloned and sequenced (Werr et al., 1985). It is one of

the three maize SuSy isoforms: SUS1, SH1, and SUS2 (previously

called SUS3), which are encoded by the Sus1, Sh1, and Sus2 loci,

respectively (Carlson et al., 2002). Sh1 and Sus1 are paralogous

genes containing 16 exons/14 introns and 15 exons/14 introns,

respectively, having virtually identical structure with only a

difference in the last intron (Shaw et al., 1994). Sus2-Sus1 forms

hetero-oligomers, and Sh1 exists as a homo-oligomer in maize

kernel (Duncan et al., 2006). Orthologous genes corresponding to

Sh1 and Sus1 have been reported in both barley and hexaploid

wheat (Martinez de Ilarduya et al., 1993; Volpicella et al., 2016). In

barley, these genes are located on chromosomes 7HS and 2HS,

respectively (de la Hoz et al., 1992). In wheat, the Sus1 and Sus2

genes have been mapped to the short arms of chromosomes in

homoeologous group 7 (Maraña et al., 1988). Additionally, a partial

sequence of the Sus3 gene has been identified in wheat (Mukherjee

et al., 2015). Notably, the expression profiles of these genes differ

between tissues: Sus2 is specifically expressed in the endosperm,

whereas Sus1 transcripts are detected in roots and leaves (Maraña

et al., 1990; Martinez de Ilarduya et al., 1993). The number of SuSy

genes can differ among plant species, with two genes found in

Amborella trichopoda (Zhang et al., 2013); five in grapes (Zhu et al.,

2017), pomegranate (Liu and Zheng, 2022), litchi (Wang et al.,

2021), sorghum (Lu et al., 2022), and sugarcane (Noman et al.,
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2022); and six in Arabidopsis (Baud et al., 2004), rice (Hirose et al.,

2008), tomato (Goren et al., 2017; Duan et al., 2021), rubber tree

(Xiao et al., 2014), cacao (Li et al., 2015), peach (Zhang et al., 2015),

citrus (Islam et al., 2014), Nicotiana sylvestris (Wang et al., 2015),

pineapple (Wu et al., 2024), and kiwi fruit (Liao et al., 2022).

Meanwhile, seven SuSy genes are found in cotton (Chen et al.,

2012), bamboo (Huang et al., 2018), and Nicotiana tomentosiformis

(Wang et al., 2015). In apple, eleven SuSy genes have been identified

(Tong et al., 2018); twelve in Glycine max (Xu et al., 2019); fourteen

have been discovered in Nicotiana tabacum (Wang et al., 2015) and

Brassica juncea (Koramutla et al., 2019; Li et al., 2021); and fifteen in

poplar (Zhang et al., 2011) and Dendrobium catenatum (Jiang et al.,

2022). Cultivated sweet potato contains nine SuSy genes, with seven

each in its wild diploid relatives I. trifida and I. triloba (Jiang et al.,

2023; Hu et al., 2024). Chinese pear has at least thirty SuSy genes

(Abdullah et al., 2018), though at least five of these genes are likely

non-functional due to incomplete SuSy and GT domains. Due to

the presence of multiple isoforms, Susy genes exhibit varied tissue-

specific functions and differential expression patterns depending on

the developmental stage. For example, in peas, SuSy1 is expressed in

seeds, SuSy2 in leaves, and SuSy3 in floral tissues. Mutational

studies, such as those involving the rug4 (rugosus) mutant,

demonstrate that the absence of SuSy1 leads to phenotypic

consequences that are not alleviated by the presence of SuSy2 or

SuSy3, underscoring the non-redundant roles of these isoforms.

However, partial redundancy (as noted by studies such as

Bieniawska et al., 2007; Zheng et al., 2011) and slight functional

compensation by the VIN gene (Wan et al., 2018) can make it

difficult to find individual genes. Now whether such functional

divergence occurred independently across lineages or has its origins

in early angiosperm evolution remains an open question

(Thirugnanasambandam et al., 2019; Zhu et al., 2017).

The evolutionary information about this gene family remains

largely unexplored, as most of these were derived from studies on

individual angiosperm species. SuSy genes in plants form a

monophyletic group, indicating their origin from a common

ancestor. Phylogenetic analyses based on evolutionary

relationships and distinct intron–exon architectures have

categorized them into three anciently diverged subfamilies: SUS I,

SUS II, and SUS III. Evidence suggests that SuSy genes evolved

independently in monocots and dicots, with whole genome

duplication events significantly influencing their diversification.
FIGURE 1

The reversible reaction catalyzed by sucrose synthase (SuSy). The enzyme shows the highest activity with UDP-glucose (UDP-G), followed by dTDP-
glucose, ADP-glucose, and CDP-glucose, with relative activities of 100%, 26%, 17%, and 2%, respectively (Römer et al., 2004; Zheng et al., 2011).
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The three subfamilies display varied expression profiles across plant

species, implying that functional divergence likely preceded the

monocot-dicot split. Among these, the SUS I and SUS II genes are

more evolutionarily conserved, exhibiting broader expression

across tissues and maintaining similar intron–exon structures. In

contrast, SUS III genes appear to have undergone relaxed purifying

selection, enabling them to develop novel functions and show more

tissue-specific expression. Notably, even within monocots like rice,

SUS III genes retain such tissue-specific patterns. The GT-B

domain, associated with catalytic activity, is more conserved

across SuSy genes compared to the regulatory domains,

suggesting that these regions have been subject to different

selective pressures (Xu et al., 2019). Further phylogenetic

reconstruction, including gymnosperms, by Stein and Granot

(2019), revealed early duplication events, highlighting the

evolutionary trajectory of SuSy genes before the divergence of

angiosperms and gymnosperms. SuSy shares similarities with SPS

and glycogen synthases, with multiple isoforms found across

different tissues. These isoforms have 50-70% similarity with each

other but less than 25% with SPS. The study of SuSy gene families in

plants has been greatly enhanced by advances in genome

sequencing, assembly, and annotation. While molecular genetic

studies have significantly advanced our understanding of the

functions of individual proteins, evolutionary analyses offer the

potential to provide deeper insights into the origins and

diversification of the SuSy gene family, revealing further

functional implications (Huang et al., 2021).
3 Role of sucrose synthase in plant
growth

Sucrose synthase is a key player in sugar metabolism and

regulates sucrose flux. Sucrose metabolism is crucial for

development, yield production, and stress adaptation, primarily

by producing various sugars that serve as energy sources and

building blocks for the synthesis of vital compounds (Xiao et al.,

2024; Aluko et al., 2021). Sucrose, primarily synthesized in mature

leaves, can also be resynthesized within sink tissues. Its synthesis

and degradation play important roles in maintaining energy

balance, as enzymatic cleavage of sucrose into hexoses provides

essential carbon and energy for the growth and development of sink

organs. Physiological conditions and an increase in sucrose

concentration in the storage and vascular tissues favor SuSy to

cleave sucrose rather than synthesize it (Verma et al., 2019). SuSy is

soluble in the cytoplasm and contributes readily to an adenylate-

conserving path of respiration and for starch synthesis (Xu et al.,

1989; Thirugnanasambandam et al., 2019). However, it can also

associate and dissociate quickly from membrane and cytoskeletal

sites, suggesting additional roles at the plasma membrane and Golgi

apparatus related to cell wall formation (Hong et al., 2001;

Lampugnani et al., 2018). It also has a possible role at the

tonoplast related to the use and/or storage of vacuolar sucrose

(Fugate et al., 2019). SuSy has been identified as an actin-binding

protein, and this association presumably promotes plastid
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proximity, thereby facilitating starch biosynthesis (Winter and

Huber, 2000; Kunjumon et al., 2024). SuSy also transiently

associates with the plasma membrane-bound cellulose synthase

complex, enabling the direct channeling of UDPG into cellulose

biosynthesis, with concurrent recycling of UDP (Schneider et al.,

2016). Cellulose production is crucial for forming secondary cell

walls in xylem tissues, which contribute to mechanical support and

overall structural integrity in plants. Furthermore, the subcellular

localization of SuSy appears responsive to sugar signals and other

metabolic cues, suggesting a regulatory mechanism that fine-tunes

the enzyme’s role between biosynthetic and respiratory functions

(O’Leary and Plaxton, 2018). Although SuSy exhibits general

membrane affinity, evidence indicates that its membrane

association is influenced by reversible phosphorylation at a

conserved serine residue (Takeda et al., 2017; Mareri et al., 2021).

This regulation is supported by kinase activity that responds to

cellular signaling pathways (Chikano et al., 2001).

In maize, Sh1 provides UDPG for the cell wall synthesis during

the developmental phase of kernels; however, Sus2 is highly

expressed in various tissues and differs from Sus1 and Sh1 by

lacking membrane association, suggesting a unique role in

cytoplasmic sucrose degradation (McCarty et al., 1986; Chourey

et al., 1998). In rice, OsSUS1 shows high expression levels in the

internodes, and its expression pattern closely aligns with that of

cellulose synthase genes (Hirose et al., 2014). Elevated expression of

OsSUS3 has also been associated with increased accumulation of

structural carbohydrates, including cellulose and hemicellulose

(Cho et al., 2011; Fan et al., 2019). SuSy also plays a role in the

formation of mixed-linkage poly-glycans and in the production of

callose near the phragmoplast or in localized exoplasmic zones

(Stass and Horst, 2009; Nedukha, 2015). In Arabidopsis, AtSUS5

and AtSUS6 exhibit phloem-specific expression and are functionally

involved in the synthesis of callose (Bieniawska et al., 2007). Callose

synthesis is instrumental in the assembly of sieve plates and

plasmodesmata, both of which are vital for nutrient transport.

Research indicates that genes in the SUS III clade may also be

involved in the vascular development for differentiating xylem in

higher plants, possibly coevolving with tissue-specific expression

patterns. In young maize roots, both Sh1 and Sus1 are mainly

expressed within the vascular cylinder (Chen and Chourey, 1989).

In transgenic tobacco plants carrying the GUS reporter gene under

the control of the maize Sh1 promoter, Sh-GUS activity was

specifically observed in phloem cells, with no detectable

expression in other vegetative tissue cell types (Yang and Russell,

1990). Also, QTL analyses in maize endosperms have now provided

the genetic evidence highlighting SuSy’s role in starch production

and determining sink strength in heterotrophic organs (Thévenot

et al., 2005). This significant role in phloem unloading and

modulation of sink strength ensures that non-photosynthetic

tissues receive sufficient sucrose necessary for their metabolic

requirements and helps stabilize membranes and proteins under

abiotic stresses (Julius et al., 2017; Durand et al., 2018). A knockout

of AtSUS2 and AtSUS3 in Arabidopsis led to a reduction in starch

accumulation during the early- to mid-developmental stages

(Angeles-Núñez and Tiessen, 2010). In rice, both OsSUS1 and
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OsSUS3 are involved in seed starch accumulation and cell division

to enhance grain weight and husk size. There was significant starch

reduction in sh1 maize mutants (Chourey and Nelson, 1976;

Duncan et al., 2006), a 26% decrease in carrot (Tang et al., 1999),

and a 34–63% reduction in genetically modified potato tubers

(Zrenner et al., 1995) due to reduced SuSy activity.

In Arabidopsis, SuSy is localized within the companion cells

located in the silique wall during the final phases of seed

maturation, indicating that its activity in the embryo could utilize

sucrose to generate precursors necessary for the synthesis of storage

proteins and lipids (Fallahi et al., 2008). Similar patterns of

localization have been observed in citrus fruits (Nolte and Koch,

1993) and radish hypocotyls (Rouhier and Usuda, 2001), indicating

that SuSy may also contribute to energy supply for phloem loading

and unloading in these tissues (Yao et al., 2020). Additionally, SuSy

is associated with various developmental processes, including the

functioning of meristems, where it may affect sugar and hormonal

signaling pathways that are indispensable for growth and

development. This gene is among the earliest to exhibit increased

expression during the differentiation of leaf primordia from the

apical meristem and has a role in auxin signaling (Pien et al., 2001;

Chaudhary and Singh, 2024). In cucumber, the down-regulation of

Susy4 impedes the growth and development of fruits and flowers

(Fan et al., 2019). A 70% suppression of SuSy activity in the ovule

epidermis led to a fiberless phenotype in cotton (Ruan et al., 2003).

Potato tubers with elevated levels of SuSy show notable agronomic

benefits, including a marked increase in antioxidant activity and

enhanced resistance to enzymatic browning compared to non-

modified tubers. This reduction in browning is believed to result

from SuSy’s role in safeguarding UDPG, which is crucial for the

glycosylation and stabilization of polyphenolic compounds (Bahaji
Frontiers in Plant Science 05
et al., 2014). Furthermore, SuSy has been associated with various

metabolic pathways, which encompass nitrogen fixation (Baier

et al., 2007; Kolman et al., 2015) and maintenance of

mycorrhizae. For example, inhibition of nitrogen fixation in a

rug4 pea mutant with reduced SuSy levels in seeds and nodules.

The converse is also true, as SuSy is not induced in soybean if the

nodule symbionts fail to fix nitrogen (Gordon et al., 1999; Wang

et al., 2025a). During the early development phase, it is induced

specifically in root cells that have mycorrhizal arbuscules and

sometimes also in the adjacent cells (Blee and Anderson, 2002;

Kosová et al., 2023). Sus1 from both Zea mays (Hardin et al., 2004)

and Glycine max (Komina et al., 2002) binds to early nodulin 40

(ENOD40) peptides, which function as hormone-like peptides in

the formation of root nodules in legumes (Zheng et al., 2011). A

monomeric form of SuSy was identified as the nodulin-100 protein,

which accumulates in soybean nodules (Zhang et al., 1999;

Wienkoop et al., 2008). Therefore, the investigation of Susy genes

in plants is pivotal for comprehending the complexities of plant

physiology (Lu et al., 2022). The various roles of SuSy have been

summarized in Figure 2.
3.1 Role of sucrose synthase in starch
synthesis

In most higher plants, starch occurs in two primary forms:

storage starch, which accumulates in amyloplasts as a long-term

energy reserve, and transient starch, which is synthesized and

degraded in chloroplasts of photosynthetic tissues in accordance

with the diurnal light-dark cycle (Lloyd and Kossmann, 2015). In

the leaves of crop plants, starch is synthesized from sucrose via two
FIGURE 2

Multifaceted role of sucrose synthase.
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distinct pathways (Bahaji et al., 2014; Griffiths et al., 2016). In the

first pathway, fructose-6-phosphate (F6P), generated from triose

phosphates (TP), a key intermediate of the Calvin cycle, is

converted to glucose-6-phosphate (G6P) inside the plastid, and

this G6P serves as a substrate for starch biosynthesis. In the second

pathway, TP is exported from the plastid to the cytosol, where it is

converted into G6P or sucrose and subsequently transported back

into the plastid for starch production (Figure 3). The role of SuSy

comes in the latter one, in which sucrose is catabolized to ADP-G,

which then re-enters the chloroplast to form starch, which is

responsible for preventing carbon starvation during the night

(Arias et al., 2014; MacNeill et al, 2017). This transitory starch

biosynthesis model links the sucrose and starch metabolic pathways

through the involvement of SuSy, which operates when cytosolic

sucrose temporarily accumulates under light conditions and an

ADP-glucose translocator is situated in the chloroplast envelope

membranes. The controversy surrounding this has emerged, as a
Frontiers in Plant Science 06
study conducted on Arabidopsis challenged the previous consensus

by negating the role of SuSy and concluding ADPG

pyrophosphorylase to be synthesizing the starch in chloroplasts

(Baroja-Fernández et al., 2003; Crevillén et al., 2003; Fünfgeld et al.,

2022). In most plant species, ADPG and starch biosynthesis

typically occur within chloroplasts in photosynthetic tissues and

in amyloplasts in heterotrophic organs. However, an exception to

this pattern is observed in the endosperm of cereals and other

members of the Poaceae family (Tetlow and Emes, 2017) Starch

formation in wheat grains requires the sugar import, primarily in

the form of sucrose transported from source tissues, a process

facilitated by sucrose transporter (SUT) proteins (Aoki et al., 2004;

Deol et al., 2013). Within the grains, SuSy plays a crucial role in

starch biosynthesis by converting sucrose into UDPG, which is

subsequently transformed into ADPG, the direct precursor for

starch formation (Neuhaus and Emes, 2000; Hayashi et al., 2017).

In cereal crops, a significant portion of ADPG is produced in the
FIGURE 3

A simplified overview of sucrose synthase (SuSy) role in source-sink dynamics, cell wall and grain starch formation. SuSy facilitates the production of
ADP-glucose (ADPG), connecting sucrose metabolism and starch synthesis in leaves. The enzyme’s activity channels UDP-glucose towards cellulose
formation via transient association with membrane-bound cellulose synthase (CeSy), allowing efficient recycling of UDP (Uridine Diphosphate). In
the phloem, SuSy supports callose deposition during protective plugging, while its reaction products contribute to ATP generation, maintaining
sucrose gradients essential for transport. During grain development, SuSy breaks down sucrose into UDP-glucose for starch synthesis and fructose
for pyruvate and ATP (Adenosine Tri-phosphate) production, coordinating energy supply for grain filling. Besides the plastid-localized isoform
present in many plant tissues, cereals also contain a cytosolic version of ADP-Glucose-pyrophosphorylase (AGPase). SuSy also facilitates Triose 6
Phosphate (T6P) signaling which has an important role in plant growth and development. (Other enzymes involved in starch biosynthesis are not
shown as they are beyond the scope of this review). G6P, Glucose 6 Phosphate; G1P, Glucose 1 Phosphate; F6P, Fructose 6 Phosphate; F1,6BP,
Fructose 1,6 Bisphosphate; TP, Triose Phosphate; SnRK1, Sucrose non-fermenting 1- related protein kinase 1; UTP, Uridine Tri-phosphate; TCA,
Tricarboxylic Acid Cycle. Created in BioRender.
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cytosol by AGPase and then transported into the amyloplasts

through specific ADPG transporters, likely in exchange for AMP

(Rösti et al., 2006; Figueroa et al., 2022).

The formation of storage starch in seeds, which serves as a

carbon reserve for the next generation, depends on the availability

of carbon in maternal tissues. Starch stored in leaves and other

source organs, such as developing buds, flowers, siliques, and

embryos, is remobilized to support reproductive development

(Carlson et al., 2002; Lee et al., 2021). Studies favoring this

hypothesis were found in potato and Arabidopsis leaves in which

SuSy was found to be significantly exceeding its minimum activity

required for starch accumulation during photosynthesis (Baroja-

Fernández et al., 2012). Recent studies indicate that transient starch

can also accumulate in storage plastids of non-photosynthetic cells,

providing temporary carbon reserves for quick mobilization. This

has been observed in the parenchyma of wheat peduncles (Scofield

et al., 2009; Martıńez-Peña et al., 2023) and in the floral organs of

Arabidopsis during flower development (Hedhly et al., 2016). Even

stomatal guard cells can function heterotrophically, relying

primarily on sugars imported from the leaf mesophyll for starch

synthesis, when excess sucrose is accumulated during stress (Dang

et al., 2024). There is also an ongoing debate between SuSy and INV

activity, as different studies offer varying conclusions that require

further verification. During potato tuber development, starch

accumulation is associated with an increase in SuSy activity and a

decrease in acid INV activity (Appeldoorn et al., 1999), with the

latter being regulated post-translationally by a proteinaceous

inhibitor (Bracho and Whitaker, 1990). RNA profiling studies

have suggested an inverse relationship between SuSy and acid

INV expression (Zrenner et al., 1995; Zhang et al., 2024). It seems

that the SuSy and acid INV-mediated sucrose cleavage pathways

may be co-regulated in response to similar signals, and the balance

between these pathways plays a key role in determining starch

accumulation. A high-starch and low-starch phenotype were

observed in SuSy-overexpressing and SuSy-antisensed potato

tubers, respectively (Baroja-Fernández et al., 2009). Similarly,

transgenic maize expressing expression of ZmSUS1 has been

associated with greater amylose content and larger seed size,

accompanied by higher ADPG levels (Li et al., 2023). Research on

wheat endosperm development reveals that the expression of

cytoplasmic INVs does not align with starch biosynthesis gene

expression. In contrast, SuSy showed a consistent expression

pattern with starch accumulation, suggesting that sucrose is

primarily processed by SuSy rather than cytoplasmic INVs during

starch biosynthesis (Gu et al., 2021).
3.2 Role in sink-source dynamics

When sugar concentration increases in photosynthetic tissues,

genes related to sucrose formation and amino acid synthesis in

source tissues are upregulated, facilitating sugar translocation to

sink tissues, which is essential for grain yield in crops like wheat

(Aluko et al., 2021). Sucrose metabolism varies among different

photosynthetic organs, potentially triggering molecular changes
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(Koch, 2004; Molero and Reynolds, 2020). Efforts to enhance

sucrose-starch conversion have focused on increasing SuSy

activity, as this sucrolytic enzyme plays a key role in determining

sink strength and starch accumulation in both monocotyledonous

and dicotyledonous plants (Jhandai et al., 2022). SuSy consistently

exhibits higher activity than AGPase during seed development,

aligning with ADPG and starch accumulation, further underscoring

its importance in enhancing sink strength. Different SuSy genes

exhibit diverse expression profiles and functions during the

development of sink organs. SuSy is thus regarded as a reliable

biochemical marker for sink strength and carbon allocation

efficiency in plants, particularly those derived from SUS I (Xu

et al., 2019). Generally, high SuSy activity is exhibited by source

tissues as compared to sink tissues. However, increased biomass

production and/or sucrose content was reported in switchgrass,

tobacco, cotton, poplar, and rice due to overexpression of SuSy

(Coleman et al., 2009; Jiang et al., 2012; Poovaiah et al., 2015; Fan

et al., 2019). Additionally, plants with reduced SuSy expression

showed noticeable changes in their phenotype (Craig et al., 1999;

Ruan et al., 2003). Consistent with this proposition, Dehigaspitiya

et al. (2021) found increased expression of Sus1 in the pericarps of

the three wheat genotypes during the grain enlargement stage, an

interval marked by peak carbon assimilation and rapid biomass

accumulation. This stage is characterized by heightened sink

activity in wheat grains, including intense starch and amino acid

synthesis. To meet the metabolic demands of these processes,

increased sucrose cleavage is necessary, which aligns with the

observed upregulation of Sus1 in the pericarp at this phase. The

resulting cleavage products are subsequently transported from the

pericarp to the developing grain.
3.3 Sucrose synthase and sugar signals

Sucrose-cleaving enzymes can influence plant development by

generating sugar signals. Beyond providing metabolic

intermediates, the specific location and pathway of sucrose

breakdown can produce unique sugar signaling patterns, which

can significantly impact developmental processes (Mehdi et al.,

2024). Starch is consequential for plant carbon metabolism and is,

in fact, osmotically inert. Therefore, soluble sugars can serve as

signals for carbon status, allowing plants to sense energy availability

and integrate this information into developmental decision-making.

Sucrose acts as an osmolyte in stomatal movement (Flütsch and

Santelia, 2021) and as a metabolic substrate and signaling molecule,

linking transpiration with sugar production and utilization. Sugar-

induced stomatal closure appears to be evolutionarily conserved

and biologically significant (Granot and Kelly, 2019). Increased

sucrose cleavage enhances stomatal aperture. Guard cells in tobacco

and Arabidopsis show higher SuSy activity than whole leaves,

indicating its key role in sucrose metabolism (Bates et al., 2012).

Overexpression of SUS3 in guard cells of transgenic tobacco

increased SuSy activity, stomatal aperture, conductance,

transpiration, photosynthesis, and overall growth (Daloso et al.,

2016; Piro et al., 2023). Within the entire plant system, hexose
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sugars encourage cellular proliferation and growth, whereas sucrose

is more closely associated with cell specialization and tissue

maturation. These observations, together with evidence from

various plant systems, have contributed to the development of the

INV/SuSy control hypothesis, which proposes a regulatory

framework for key developmental transitions (Cosgrove, 1997).

According to this concept, INV plays a crucial role in initiating

and promoting the expansion of new sink organs, with vacuolar

invertase activity often occurring before cell wall invertase becomes

active. The function of cwINV frequently aligns with increased

expression of hexose transporter genes in certain contexts (Feng

et al., 2021). As development progresses toward storage and

maturation phases, this shift is reflected in changes to the hexose-

to-sucrose ratio (or the cell’s overall ‘sugar status’) and a switch

from invertase-dominated to SuSy-mediated pathways for sucrose

breakdown. During the early stages of seed development, INV and

hexose transporters are more actively expressed (Weschke et al.,

2003), while SuSy becomes essential for starch biosynthesis in the

later grain-filling stages (Chen and Chourey, 1989; Yu et al., 2022).

However, in certain localized regions, high levels of cwINV can

remain active throughout maturation (Smeekens and Rook, 1997).

These developmental processes are likely influenced by SuSy’s

ability to modulate hexose-based sugar signals, especially at times

when these signals might negatively affect differentiation or

maturation (Lee et al., 2021). Overall, a wide range of evidence

indicates that the relative activities of INV and SuSy can modulate

plant development by differentially shaping sugar signaling

pathways. Moreover, the interaction between sucrose cleavage

products and hormone signaling, along with the hormonal

regulation of sucrose metabolism itself, provides a mechanism for

coordinating responses at the cellular level with the overall

functioning of the whole plant. Simple sugars, such as sucrose

and glucose, are potent inducers of SuSy gene expression (Quick

and Schaffer, 2017). Studies in maize and rice reveal distinct

responses among SuSy isomeric genes: while Sus-1 enzyme levels

increased tenfold in response to high carbohydrate concentrations,

Sh-1 did not show this increase, as sucrose can act as a repressor for

it (Karrer and Rodriguez, 1992). The promoter region of SuSy, like

other sucrose-inducible genes, contains a specific sucrose response

element that promotes gene transcription through a yet-unknown

mechanism. A wide range of sugar-responsive genes have been

discovered, with their encoded proteins playing roles in various

processes such as plant metabolism, light sensing, and regulation of

the cell cycle (Lalonde et al., 1999; Dahiya et al., 2017). In several

plant species, the genes for SuSy and INV are subjected to sugar

regulation. During the developmental process in maize, SuSy and

acid INV genes exhibit differential expression patterns. Genes

activated by sugars, such as Sus1 and Ivr2, are mainly expressed

in tissues that import carbohydrates, while genes that are repressed

by sugars and induced under starvation conditions, like Sh1 and

Ivr1, show increased expression particularly during reproductive

stages. These expression patterns shift in response to changes in

assimilate allocation, indicating a coordinated regulation of genes

that respond differently to fluctuations in carbohydrate supply
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(reflecting ‘feast or famine’ scenarios) and developmental cues

(Xu et al., 1996).
3.4 Role of sucrose synthase in abiotic
stress tolerance

There is convincing proof that sucrose and starch metabolism

are amongst the major regulatory systems granting resistance to

abiotic stress, with UDPG playing a prominent role (Bala et al.,

2010; Li et al., 2022). Decreases in non-reducing sugars and starch

in cereal grains under stress suggest that more carbohydrates are

being used to cope with stress. The sucrose metabolism may

improve resistance to water deficit, but the relative contributions

of these substances may differ depending on the genotype and the

growth stage (Kumari and Asthir, 2016). Sucrose plays a critical role

in conferring water stress tolerance under aerobic conditions in rice,

with enhanced SuSy expression observed in both leaves and grains

(Cheng et al., 2005; Fukuda et al., 2008). Reduction in grain and leaf

starch content in some rice varieties indicates that sucrose

metabolizing enzymes got significantly disrupted in them at all

stages of plant growth (Kumari and Asthir, 2016). While those that

showed an increased activity of SuSy in relation to protein and

amino acid content coped better under stress conditions (Ruan,

2014). This upregulation suggests a coordinated downregulation of

sucrose utilization pathways, promoting sucrose retention during

stress. Under optimal oxygen conditions, SuSy expression is

typically lower, but under severe stress, altered oxygen availability

modulates sucrose metabolism through the regulation of SuSy

activity. In hypoxic conditions, such as those encountered during

seed germination under flooding, SuSy facilitates sucrose cleavage

to support glycolysis and seedling growth by supplying

intermediates (Yao et al., 2020). Unlike INVs, SuSy functions

efficiently under oxygen-deficient conditions, conserving

adenylate energy by generating UDPG instead of hexoses, which

require ATP for subsequent glycolytic steps (Bologa et al., 2003;

Tetlow and Emes, 2017). Under such situations, SuSy responds to

cytosolic calcium spikes, supporting the biosynthesis of essential

compounds like cellulose and callose (Schneider et al., 2016).

During anaerobic stress in plants, a metabolic shift occurs from

aerobic respiration to fermentation to sustain energy production.

This shift involves increased glycolysis, driven in part by elevated

sucrose cleavage via SuSy. For example, in maize seedlings, Sh1

mRNA levels rise under prolonged anoxia, and Sus1 quickly

responds to hypoxia, boosting SuSy enzyme activity during long-

term stress. Similarly, in cucumber, hypoxia stress from flooding

induces CsSUS3 expression and increases soluble SuSy activity,

especially in lateral roots (Wang et al., 2014). In rice and

Arabidopsis, the expression of Sus1, AtSUS1, and AtSUS4,

respectively, is also enhanced under anaerobic conditions

(Bieniawska et al., 2007).

Environmental stress can suppress photosynthesis, reducing

sugar supply to sink tissues and impacting phloem function by

disrupting callose deposition, which may in turn hinder sugar
frontiersin.org

https://doi.org/10.3389/fpls.2025.1652076
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Parihar et al. 10.3389/fpls.2025.1652076
transport (Ceusters et al., 2016). Although excess sugars can protect

membranes and proteins from stresses like cold, drought, salinity,

and heat, they become largely unavailable for growth and can

ultimately inhibit photosynthesis, limiting further sugar

production. The balance between synthesis and breakdown of

sugars, modulated by various enzymes, appears to influence sugar

accumulation, as seen in rice and other cereals (Saeedipour, 2011;

Kumari and Asthir, 2016). The involvement of sugars in enhancing

abiotic stress tolerance is well established (Amist and Singh, 2020).

However, several studies report that elevated starch biosynthesis

under stress conditions provides carbon skeletons for the synthesis

of compatible solutes, aiding plants in coping with such stresses

(Thalmann and Santelia, 2017; Dong and Beckles, 2019). In many

plants, starch metabolism serves as a crucial link between

carbohydrate availability in source tissues and its allocation to

sinks. Stress-induced shifts in carbon allocation may facilitate

selective starch metabolism, as seen in cereals where stored

carbon is redirected to essential functions or may bypass

reproduction to prioritize survival during unfavorable conditions

(Sulpice et al., 2009; Dong and Beckles, 2019). Efficient

management of starch metabolism can enhance carbon use

efficiency and help mitigate the negative impacts of stress. This is

achieved through the selective or stepwise breakdown of starch in

source tissues, sink tissues, or both. For instance, in sink organs,

converting sugars into starch helps maintain low local sugar

concentrations, which promotes a continued flow of assimilates

from source tissues, where sugar levels remain high. Whether starch

in a given tissue functions as a ‘sugar reservoir’ or a ‘sugar

consumer’ during stress adaptation depends partly on the plant’s

developmental phase, which is influenced by hormonal signaling

pathways (Xiao-Li et al., 2022). In heterotrophic tissues such as

roots, tubers, and seed endosperms, sucrose acts as a critical energy

supply for metabolic processes and also contributes to the

stabilization of cellular membranes and proteins under abiotic

stress conditions (Sulpice et al., 2009; Julius et al., 2017; Durand

et al., 2018). This SuSy-driven starch synthesis supports energy

storage and resilience under stress (Figueroa et al., 2013; Saddhe

et al., 2021). The semi-crystalline nature of starch makes it water-

insoluble and osmotically inactive (Goren et al., 2018). By storing

carbohydrates in a water-insoluble form, plants prevent excessive

water uptake that could otherwise disrupt cellular function under

stress. Typically, cereal endosperm starch adopts an A-type

allomorph, characterized by densely packed, shorter glucan chains

that repel water (Hsein-Chih and Sarko, 1978; Imberty et al., 1988),

making it less capable of water absorption. This structure supports

energy storage without increasing water content, which is

advantageous for stress tolerance, especially in dry or low-water

conditions. In contrast, transient starch in leaves and tubers usually

exhibits the B-type allomorph with loosely packed, longer a-glucan
chains that can absorb more water (Imberty and Pérez, 1988). This

structure helps buffer against sudden water fluctuations, which can

be beneficial for stress avoidance by maintaining water balance

during temporary water availability changes.

Adaptive responses in stress-tolerant lines may involve

accelerated starch-to-sugar conversion to prevent sugar depletion
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without inducing sugar injury and reducing sink strength (Dong

and Beckles, 2019). However, under mild water deficit, enzymes in

the sucrose-to-starch pathway, including SuSy, are often

upregulated in cereal grains, contributing to enhanced starch

reserves (Luo et al., 2021). Water deficits increase SuSy activity in

both drought-sensitive and resistant rice varieties, suggesting SuSy’s

role in osmotic adjustment (Wang et al., 2025b). In drought-

resistant varieties, higher starch content around root vascular

tissues suggests an adaptive response to water stress (Singh et al.,

2013). In maize, overexpression of ZmSUS1 in maize kernels, leaves,

and roots enhances drought resistance by modulating sucrose

metabolism and increasing soluble sugar content, which helps

maintain cellular osmotic balance and energy under stress. In

drought-adapted plants like Arabidopsis, mutants with reduced

guard cell sugar content show limited stomatal opening,

enhancing drought tolerance by conserving water (Prasch et al.,

2015). The Sus3 isoform has been specifically identified in the guard

cells of Arabidopsis (Bieniawska et al., 2007) and has also been

detected in potato, particularly under drought stress conditions

(Kopka et al., 1997). Studies indicate that SuSy isoforms are

regulated by distinct mechanisms that depend on sugar

concentrations, as observed in maize (Koch et al., 1992) and

citrus (Komatsu et al., 2002). They showed higher SuSy activity,

relative water content, proline, and abscisic acid levels in leaves

(Xiao et al., 2024). Notably, several studies have highlighted the

involvement of specific SuSy isoforms in cold stress tolerance. For

instance, upregulation of SUS3 in tomato (Li et al., 2024), BjuSUS08

in mustard (Brassica juncea) (Li et al., 2021), and HbSus5 in roots

and leaves of Hevea brasiliensis on exposure to low temperature

(Xiao et al., 2014). In mustard, however, BjuSUS03 is significantly

upregulated under multiple abiotic stresses (Li et al., 2021). In

sorghum, SbSusy1, SbSusy3, SbSusy4, and SbSusy5 are induced at

the seedling stage under drought and salt stress, but their expression

is suppressed under high osmotic pressure (Lu et al., 2022).

Collectively, these results underscore the functional diversity of

SuSy isoforms in mediating plant responses to various

abiotic stresses.
4 Role of sucrose synthase in heat
stress tolerance

Heat stress impacts various cellular and physiological processes,

including cell growth and macromolecule interactions. With rising

global temperatures, understanding these effects is crucial for

selecting plants better suited to a changing climate (Teixeira et al.,

2013). According to the IPCC’s synthesis report, global

temperatures are expected to surpass 1.5°C between 2021 and

2040 (Lee et al., 2024). Heat stress refers to temperatures that

surpass critical limits, negatively impacting crop yield and quality.

In bread wheat (Triticum aestivum), temperatures rising above the

optimal range of 17–25°C, particularly daytime temperatures

exceeding 32°C during grain filling, can induce stress responses

that compromise both yield and grain quality (Frieler et al., 2017;

Telfer et al., 2018; Zampieri et al., 2018). The reduced yield is due to
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disruptions in floret initiation, including floral deformities like pistil

overdevelopment and stamen underdevelopment, as well as

decreased pollen viability. SuSy has been identified as playing a

role in plant responses to heat stress.
4.1 Reproductive development and pollen
viability under heat stress

Pollen formation is a temperature-sensitive developmental stage,

and key stages like microsporogenesis and microgametogenesis can

be disrupted if temperature rises above threshold, especially in cereals

(Chaturvedi et al., 2021; Shi et al., 2022). A temperature above 30°C

during meiosis till pollen maturation negatively impacts pollen

viability, reducing fertilization and seed production (Ullah et al.,

2022). In maize, heat stress before or during tassel emergence can

cause tassel desiccation and death, as well as reduced pollen

production (McNellie et al., 2018). Limited photo assimilate

availability in source leaves and sensitivity to photoperiod changes

hinder floret formation and grain development under heat stress,

emphasizing the need for sufficient assimilate reserves in vegetative

tissues (Aiqing et al., 2018; Jagadish, 2020). The maize transcriptomic

analysis showed a correlation between reduced pollen viability and

significant reductions in Sh-1 and sus1 gene expression under heat

stress as compared to control conditions (Li et al., 2022). These

reductions likely caused lower UDPG and higher sucrose levels (Kaur

et al., 2019). Heat-tolerant tomato cultivars, unlike heat-susceptible

genotypes, sustain pollen starch content and reduced sucrose

metabolism under stress, which supports improved fertility (Nepi

et al., 2001; Firon et al., 2006; Kumar et al., 2015). Enhanced SuSy

activity has been observed in the anthers of heat-tolerant tomato,

alfalfa (Mo et al., 2011), and rice (Guan et al., 2023). Although some

studies have reported no significant changes in tomato and potato

under similar conditions (Lorenzen and Lafta, 1996; Li et al., 2012).

However, a decline or impairment in INV activity was observed, with

development proceeding via the SuSy-mediated pathway, which is

considered more energy-efficient (Guan et al., 2023). Enzymatic

assays also verified that SuSy activity is positively related to pollen

viability, highlighting the importance of carbohydrate metabolism in

sustaining pollen function (Begcy et al., 2019; Jagadish, 2020). Sucrose

restriction to female reproductive parts also hinders pollen tube

growth as observed in cotton (Hu et al., 2019) and maize (Wang

et al., 2023). In gametophytes like pollen grains and ovaries, starch

biosynthesis initially boosts sink capacity but later breaks down to

release sugars, providing energy for growth—a key factor for

reproductive success.

SuSy abundance, distribution, and functionality depend on

cytoskeleton and membrane activity (Cai et al., 2011). Heat shock

may alter cytoskeleton integrity, impacting proteins reliant on

cytoskeleton dynamics for localization, including those that

interact directly with it. Heat stress can thus disrupt SuSy

localization in the cell wall, as seen in pollen tubes post-heat
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shock, where it redistributes differentially (Parrotta et al., 2016).

SuSy is vital in pollen tubes, as it is required for cellulose and callose

synthesis. Disruption in it can therefore jeopardize the plant’s

growth and development, potentially preventing the plant from

reaching maturity or producing a viable harvest (Figure 4). Heat

stress may redirect SuSy within the cell, reducing its role in cell wall

synthesis to conserve energy. To rebalance carbohydrate content,

SuSy may either be redirected to the cytoplasm or remain inactive

within the endomembrane system, affecting the enzyme’s

association with actin and its location in the cell (Hardin et al.,

2004; Duncan and Huber, 2007). Vesicle delivery disruptions might

also impact SuSy’s distribution and, consequently, cell wall

synthesis. This suggests that altering SuSy distribution may help

pollen tubes adapt to environmental changes caused by the

inhibition of metabolic pathways in heat-stressed pollen grains.
4.2 Sucrose synthase activity in guard cell
signaling pathway

SUS3 plays a pivotal role in guard cell metabolism, especially

towards the end of the day when sugar levels are high. It is thought

to participate in a proposed sucrose futile cycle (Figure 4), where

continuous flux of sucrose synthesis and degradation occur

simultaneously, balancing cytosolic sugar levels and preventing

excess starch formation (Daloso et al., 2016). Rather than

contributing significantly to starch, most SUS3-derived

metabolites are likely funneled into the tricarboxylic acid (TCA)

cycle and oxidative phosphorylation, generating ATP and organic

acids essential for respiration (Figure 4). Experimental reduction of

SUS3 expression in guard cells led to decreased CO2 assimilation

and transpiration, underscoring its importance in regulating

stomatal function and overall plant productivity (Antunes et al.,

2017; Piro et al., 2023). Enhancing SUS3 activity could thus

represent a promising strategy for improving water-use efficiency

and growth. Disruption of the sucrose futile cycle, such as in sus3

mutants, may lead to starch overaccumulation by redirecting

intermediates like G1P into plastids via G1PT transporters. More

broadly, starch accumulation is tightly linked to metabolite

homeostasis, with key regulators including G6P, F6P, UDPG, and

sucrose. G6P levels, which influence both starch synthesis and

degradation, are modulated by sucrose metabolism and transport

across the amyloplast (Getz and Klein, 1994; Nguyen-Quoc and

Foyer, 2001). Water use efficiency can also be increased by the

activity of arbuscular mycorrhizal fungi, which is linked with abiotic

stress tolerance, as suggested by a study on bread wheat (Bernardo

et al., 2019). SuSy, along with other enzymes involved in cell wall

remodeling, is modulated by these fungi as part of their regulation

of carbohydrate metabolism, cytoskeleton dynamics, and stress- or

defense-related proteins (Kosová et al., 2023). Thus, SuSy

contributes to stress tolerance through complex and diverse

mechanisms, underscoring its potential for further exploration.
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4.3 Source-sink remobilization and grain
filling under heat stress

High night temperatures led to increased proteinogenic amino

acids and sugars like sucrose and raffinose in winter wheat spikes

(Impa et al., 2019), supporting cell division but hindering starch

accumulation in early seed stages (Weber et al., 1997). The

formation of endosperm cells occurs during the early seed-filling

stage, and their number and final size are governed by the rate and

duration of seed filling, both of which are negatively impacted by

high temperatures (Nicolas et al., 1985; Dong et al., 2021). Heat

stress reduces the levels of total non-structural carbohydrates

(NSC), impacting the balance between soluble sugars and starch

(Kumar et al., 2023). Heat-tolerant wheat varieties transported NSC

from stems and leaves to the kernel more efficiently than susceptible

varieties, maximizing grain yield and securing reserves for seedling

germination (Kumar et al., 2017). Similarly, heat-tolerant rice

cultivars exhibited lower NSC content in the stem culm due to

enhanced remobilization to the grain under high temperatures

(Tanamachi et al., 2016). During late seed development, starch

synthesis in the endosperm suffers due to limited assimilate supply

or disruptions in starch biosynthesis, which leads to loosely packed

starch grains (Barnabás et al., 2008). Paradoxically, a brief initial
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exposure to high temperatures can temporarily boost starch levels

in cereal grains, as observed in barley (Wallwork et al., 1998), rice

(Bahuguna et al., 2017), and wheat (Nicolas et al., 1985; Dong and

Beckles, 2019). In barley this increase is linked to heightened

activity of starch biosynthetic enzymes, including SuSy (Wallwork

et al., 1998). However, prolonged heat stress can alter the structure

of storage products in barley and disrupt starch accumulation in

wheat (Ullah et al., 2022) and rice (Zhang et al., 2018) by decreasing

the transcription and activity of essential starch biosynthetic

enzymes, which raises the sugar content within the grains (Dong

and Beckles, 2019). In rice an accelerated endosperm development

under heat stress leads to the formation of chalky grains (Wada

et al., 2019). A study by Takehara et al. (2018) found that OsSus3,

which is highly expressed during seed ripening, may help protect

against the chalky grain phenotype in brown rice caused by heat

stress. The gene underlying the QTL Apq1 (Appearance quality of

brown rice 1) is the thermos-responsive Sus3 allele, whose increased

expression during ripening enhances rice tolerance to high

temperatures. Post-anthesis heat stress significantly reduces the

grain-filling duration and disrupts assimilate allocation, resulting

in yield losses ranging from 6–51% under controlled conditions and

2–27% under field conditions in wheat (Bergkamp et al., 2018). A

shorter grain-filling period often results from limited sucrose supply
FIGURE 4

Sucrose synthase (SuSy) exhibits dynamic localization depending on the metabolic environment and plays a critical role in cereal crops’ response to
heat stress (HS). During HS, stomatal closure reduces water loss, a process influenced by SuSy through sucrose degradation in guard cells into UDP-
glucose and fructose. These sugars are phosphorylated by hexokinase, triggering ABA signaling that leads to stomatal closure. While increased
sucrose concentration provides osmotic protection, prolonged accumulation can damage photosynthesis. SuSy regulates a sucrose futile cycle to
mitigate this stress. Heat stress impairs SuSy activity, disrupting cell wall biosynthesis, growth, and floral development, ultimately compromising grain
formation in a heat susceptible genotype. Additionally, SuSy facilitates the remobilization of transient starch from tissues like the peduncle to sink
organs and the endosperm for starch synthesis under HS. Root architecture and water use efficiency, supported by arbuscular mycorrhizal fungi,
further influence SuSy activity and help plants cope with heat stress. (S, Sucrose; G, UDP-Glucose; F, Fructose; P, Phosphate; SUS3, SuSy isoform;
HXK, Hexokinase; ABA, Abscisic Acid) Created in BioRender.
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to the developing kernels and decreased activity of key enzymes

responsible for sugar and starch metabolism. Efficient transport of

photoassimilates from source tissues like leaves, stems, and spikes to

grains is essential for effective grain filling, highlighting the

importance of optimizing source-sink relationships (Abdelrahman

et al., 2020). Grain yields are significantly affected by both the

availability of assimilates (source limitation) and the grain’s

capacity to store them (sink limitation). Although some research

minimizes the impact of source limitation under heat stress, it

supports sink limitation, pointing to reductions in grain size and

number as primary causes of yield decline (Kumar et al., 2017;

Hütsch et al., 2019). Strengthening grains to assimilate storage

capacity, particularly by enhancing starch synthesis enzyme activity,

is vital for achieving optimal yield potential (Borrill et al., 2015).

While the negative impact of heat stress on yield is well-

documented (Mendanha et al., 2018; Fan et al., 2018; Zhang

et al., 2018), metabolic responses, especially in source-sink

dynamics and yield, are less understood (Abdelrahman et al.,

2020). The impact of heat stress on crop yield is influenced by

plant genetics and physiological responses, which vary with the

developmental stage and regulation of nitrogen and carbon fluxes

(Sehgal et al., 2018).

The majority of studies have found that heat stress repressed

SuSy activity and decreased sucrose levels in wheat grains (Asthir

et al., 2012), especially in late-sown conditions (Dale and Housley,

1986). In thermo-sensitive lines, SuSy was disrupted in both the flag

leaf (source) and spikes (sink), which resulted in low sugar content

in the rachis but high levels in the spikelet. In the tolerant cultivar,

the enzyme activity remained relatively high, with only a slight dip

at the vegetative stage (Bahuguna et al., 2017). The fluctuations in

SuSy activity are correlated with the changes in starch content in

grain of both heat-susceptible and tolerant cultivars (Bala et al.,

2010). Its activity in the synthesis direction peaks around 7 days

after anthesis (DAA) under both normal and late sowing

conditions, with a steady decline toward grain maturity (Zhao

et al., 2008). The expression patterns of three SuSy genes were

examined during grain filling, and it was found that TaSuSy2

showed elevated expression during early to mid-filling. SuSy is

critical in wheat endosperm development, showing peak activity

during the rapid grain-filling phase (8–25 DAA) (Mukherjee et al.,

2015). Histochemical assays reveal that SuSy in the endosperm

shifts progressively from the apical to the basal region, aligning with

the areas of starch synthesis during kernel development (Wittich

and Vreugdenhil, 1998). Grains with greater water content and

maximal dry weight also show elevated SuSy activity, indicating its

role in determining kernel weight (Dale and Housley, 1986; Zi et al.,

2018). This correlation suggests that SuSy contributes to enhanced

carbohydrate partitioning and starch accumulation, impacting

grain filling and final yield under varying growth conditions

(Figure 4) (Sekhar et al., 2015; Berahim et al., 2019). Gene

diversity analyses across wheat accessions have identified specific

TaSuSy1 and TaSuSy2 haplotypes that are linked to variations in

thousand-grain weight (Jiang et al., 2011; Hou et al., 2014). In

durum wheat, SuSy2 expression peaks during the seed’s milk stage,

supporting its role in starch accumulation (Volpicella et al., 2016).
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Additionally, in barley, changes in starch accumulation under

drought correlate with SNPs in SuSy1 and SuSy2 genes, indicating

their role in sucrose hydrolysis during stress (Worch et al., 2011). In

rice endosperm, SuSy activity is lower in inferior spikelets compared

to superior ones and is positively linked to the grain’s ability to take

up sucrose, thereby acting as a potential indicator of high grain yield

(Counce and Gravois, 2006; Panda et al., 2015; Zhang et al., 2018).

Increased SuSy activity has also been reported in heat-tolerant

chickpea genotypes and sugarcane along with an elevated sucrose

level, highlighting the importance of maintaining sucrose during

stress (Kaushal et al., 2013; Noman et al., 2022; Shanthi et al., 2023).

Heat-tolerant Agrostis grass accumulated SuSy, possibly to provide

protective metabolites that contribute to enhanced root heat

tolerance (Xu et al., 2008). In maize, heat stress led to

downregulation of SuSy genes without impacting enzyme activity

(Duke and Doehlert, 1996; Wilhelm et al., 1999). In contrast, recent

studies indicated that an early stress exposure led to decreased SuSy

activity in maize kernels during the filling stage (Liu et al., 2022).

During grain development, SuSy predominates over INV, favoring

pathways based on tissue-specific processes (Sung et al., 1994; Wang

et al., 2023). In rapidly growing and storage tissues, SuSy-driven

pathways are predominant, while acid INV activity is more

prominent in expanding tissues. Sucrose-metabolizing enzymes

(SPS, SuSy, and INV) function together to sustain growth by

synthesizing sucrose and providing hexoses for development

(Nguyen-Quoc and Foyer, 2001).
4.4 Contrasting carbohydrate storage
strategies in crop plants

Species like tobacco, Arabidopsis, tomato, and potato are

categorized as having ‘starch leaves,’ while wheat, rice, and barley

are considered to have ‘sugar leaves’—a distinction based on the leaf

starch-to-sugar ratio and the function of transitory starch (Cook

et al., 2012; Okamura et al., 2014). Despite being classified as sugar-

leaf plants, rice utilizes leaf starch primarily to enhance source

capacity under high light conditions, such as full sunlight in paddy

fields, rather than serving as a nighttime carbon reserve for growth

(Okamura et al., 2017). Starch formation in the leaf also leads to

transcriptional upregulation of stress-related genes (Xue et al.,

2008). One potential strategy for enhancing starch production in

heterotrophic organs involves the ectopic expression of SuSy in

plastids, as seen in cyanobacteria. Cyanobacterial SuSys show strong

affinity for ADP. Therefore, an innovative approach to boost starch

content in crop plants where a significant portion of sucrose is

localized within plastids could involve expressing cyanobacterial

SuSy in plastids to generate ADPG (Curatti et al., 2000; Figueroa

et al., 2013). The pathway for starch degradation in storage organs

differs from that in leaves (Zeeman et al., 2007, 2010), with some

starch turnover likely persisting throughout the development of

storage tissues. This turnover may be more pronounced in organs

that store transient starch, such as lotus embryos and tomato fruits,

reflecting starch’s adaptive role across plant organs (Lloyd and

Kossmann, 2015; Thalmann and Santelia, 2017).
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In C3 cereals, ear photosynthesis plays a crucial role in

supplying photoassimilates, particularly under unfavorable

environmental conditions (Tambussi et al., 2007; Sanchez-

Bragado et al., 2020). Stems and leaf sheaths serve as temporary

carbon storage sites, which remobilize stored carbon to

reproductive tissues and significantly aid grain filling during later

growth stages (Mathan et al., 2021). In temperate cereals like wheat,

fructans and sucrose are the primary storage carbohydrates,

although some starch accumulates before anthesis (Schnyder

et al., 1993; Scofield et al., 2009). This stored starch may support

early reproductive organ development or peduncle growth. In

wheat peduncles, one region functions as a starch source, while

another serves as a sink (Figure 3) (Scofield et al., 2009;

Ntawuguranayo et al., 2024). Unlike wheat, rice lacks fructan

biosynthesis enzymes, relying instead on transient starch storage

sites (Livingston et al., 2009). During vegetative growth, the rice

stem acts as a sink, accumulating starch from leaf photosynthates.

Post-head development, the stem shifts to a source, remobilizing

starch for grain filling, contributing approximately 25% of rice grain

carbohydrates (Perez et al., 1971; Hirose et al., 2014). These

carbohydrate reserves in vegetative tissues are vital for reducing

yield losses under stress conditions, especially during the grain-

filling stage. In rice, high temperature led to an increase in SuSy

activity during early developmental stages, whereas the activity

decreased in middle to later stages (Chaturvedi et al., 2017).

AGPase activity responded to temperature changes; however, its
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effect was less pronounced than that of SuSy activity (Kato et al.,

2007). Heat-induced repression of SuSy protein may impair its

catalytic function, reducing the production of precursor monomers

essential for generating AGPase substrates, as observed in rice

(Cheng et al., 2005) and barley (Macleod and Duffus, 1988).
4.5 Positioning SuSy amongst ROS, NO,
ABA, and auxin signaling for plant heat
stress response

Plants employ a range of strategies to mitigate heat stress,

including the activation of antioxidant defense systems, synthesis

of heat shock proteins (HSPs), modulation of phytohormone levels,

and regulation of sugar metabolism (Figure 5). Heat stress impairs

photosynthesis by disrupting PSII efficiency, reducing Rubisco

activity, and enhancing photorespiration. This leads to excessive

generation of reactive oxygen species (ROS), which compromise

cellular function and integrity (Dwivedi et al., 2017; Telfer et al.,

2018). However, the role of ROS is complex, and increasing

evidence suggests that they also function as critical signaling

molecules. They can regulate plant development and stress-

responsive gene expression (Mittler et al., 2022), including the

activation of genes encoding antioxidant enzymes and those

involved in hydrogen peroxide (H2O2) production (Suzuki et al.,

2011; Xue et al., 2020). Nevertheless, excessive ROS accumulation
FIGURE 5

Schematic illustration of interactions among sucrose synthase (SuSy), abscisic acid (ABA), reactive oxygen species (ROS), nitric oxide (NO), and other
signaling molecules in heat stress tolerance. Blue arrows indicate stomatal signaling; green arrows represent phytohormonal regulation of SuSy
expression; red blunt-ended arrows denote inhibition; bold red arrows show increases/decreases; and black arrows represent activation or
metabolic progression. HS triggers multiple physiological changes that are regulated by phytohormones (e.g., ABA, auxin) and signaling molecules
(e.g., NO). Hexokinase (HXK) not only suppresses RUBISCO activity, leading to reduced photosynthesis, but also activates the ABA signaling pathway.
The enhanced activity of these signaling components initiates cascades that induce stress-responsive gene expression and heat shock protein (HSP)
synthesis. These responses are also associated with increased SuSy activity, highlighting its potential role in conferring HS tolerance. For a detailed
description, see Section 4.5. INV, invertase; bZIP11, basic leucine zipper; SnRK1, sucrose non-fermenting 1-related protein kinase 1; PP2C, protein
phosphatase 2C; T6P, triose-6-phosphate; PS I, photosystem I; PS II, photosystem II; RUBISCO, ribulose-1,5-bisphosphate carboxylase/oxygenase;
PEP, phosphoenolpyruvate; TCA, tricarboxylic acid cycle; ATP, adenosine triphosphate; PCD, programmed cell death; H2O2, hydrogen peroxide;
CaM, calmodulin; CDPK, calcium-dependent protein kinases; MAPK, mitogen-activated protein kinases; RBOH, respiratory burst oxidase homolog;
Ca²+, calcium; HSP, heat shock protein; WRKY, transcription factor; ARF, Auxin responsive factors.
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under heat stress can be detrimental, affecting cell differentiation,

root elongation, and stomatal behavior (Muhlemann et al., 2018).

Stomatal closure is a well-known adaptive response to heat stress,

aimed at reducing transpiration water loss. Abscisic acid (ABA)

plays a key role in heat stress signaling as well, particularly in

mediating stomatal responses. Another important signaling

molecule, nitric oxide (NO), influences guard cell function by

altering ion fluxes and water movement, thereby modulating

turgor pressure and stomatal aperture (Lau et al., 2021). NO is

thought to act downstream of ABA in this signaling cascade,

reinforcing stomatal closure during thermal stress (Sun et al.,

2019). While SuSy has a role in stomatal closure (discussed in

subsection 4.2), the proposed way it interacts with ROS, NO, and

ABA has been illustrated in Figure 5.

ROS and NO are key signaling molecules in pollen-pistil

recognition and pollen tube directional growth. Elevated ROS and

NO levels facilitate communication between pollen and stigma cells,

while NO helps modulate ROS during pollen arrival. These

processes are highly heat-sensitive; elevated temperatures can

disrupt programmed cell death (PCD) needed for tapetal

disruption for pollen development. Due to the high mitochondrial

activity in pollen and tapetal cells, excess ROS under heat stress can

lead to uncontrolled PCD and damage reproductive tissues. Thus,

tight regulation of ROS is essential for supporting necessary PCD

for fertilization while preventing heat-induced cellular damage.

Several studies have shown that NO levels increase in response to

elevated temperatures across various plant species and depend on

the intensity and duration of heat exposure (Nabi et al., 2019).

Exogenous NO application has been found to alleviate heat-induced

cellular and oxidative damage in wheat callus cultures and plants

(Bavita et al., 2012). Under heat stress, increased NO accumulation

has been associated with elevated sucrose levels in leaves and

anthers, indicating a potential protective role in preserving

reproductive function (Choukri et al., 2022). NO also promotes

the expression of key metabolic enzymes, including Rubisco and

SuSy, as reported in heat-stressed lentils (Sita et al., 2021).

Enhanced SuSy activity in NO-treated plants may help maintain

cellular function in both leaves and reproductive tissues.

Additionally, the accumulation of reducing sugars such as hexoses

supports osmotic balance, energy supply, and structural

carbohydrate synthesis under heat stress.

Studies have shown that auxin contributes to heat stress

tolerance in cereals such as rice by safeguarding spikelet fertility

and grain yield (Sharma et al., 2018; Chen et al., 2024) and in wheat

as well (Abeysingha et al., 2021). Auxin and its signaling pathways

modulate thermomorphogenic responses, enabling plants to

balance growth and stress defense under elevated temperatures.

Recent findings indicate that auxin also promotes starch

accumulation (Ross and McAdam, 2025). Interestingly,

suppression of SuSy has been linked to altered auxin signaling

and changes in leaf morphology in tomato (Goren et al., 2017).

Plant hormones, particularly ABA, serve as crucial internal signals

in mediating heat stress responses during grain filling in wheat

(Kumar et al., 2015). ABA has been shown to induce

thermotolerance in both wheat and rice (Hu et al., 2018; Zhang
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et al., 2014). It enhances the expression of genes involved in the

ascorbate–glutathione cycle, contributing to ROS detoxification.

Under heat stress, ABA also upregulates sucrose transporters and

metabolism-related genes such as SuSy and INV, supporting ATP

production and maintaining energy balance (Chen et al., 2019).

ABA contributes significantly to the grain filling process by

enhancing starch accumulation efficiency. This effect is largely

attributed to its regulation of SuSy activity (Tang et al., 2009).

SuSy is a critical enzyme in grain filling, and its function is tightly

regulated by both sucrose and ABA at the levels of enzyme activity

and protein expression. Exogenous ABA application boosts SuSy

activity and the expression of starch synthesis genes, improving

carbohydrate content—including soluble sugars, starch, and NSCs.

These changes contribute to better thermotolerance through

enhanced HSP expression and antioxidant activity. ABA-

mediated regulation of sugar metabolism has also been linked to

improved spikelet protection under heat stress, suggesting a tightly

coordinated system that supports reproductive resilience. SnRK1 is

a key regulator of ABA signaling and is involved in stress adaptation

(Tsai and Gazzarrini, 2014). It plays a pivotal role in coordinating

plant responses to stress and regulating carbon signaling pathways,

affecting the expression of thousands of genes in mesophyll cells

(Baena González et al., 2007; Nunes et al., 2013). Its activity is

specifically suppressed by G6P, G1P, and T6P, which tend to

accumulate during active photosynthesis (Nunes et al., 2013). In

potatoes, SnRK1 has been shown to enhance SuSy expression in

developing tubers and leaves in response to sucrose availability

(Purcell et al., 1998) and is also implicated in regulating starch

breakdown via bZIP transcription factors and microRNAs

(Confraria et al., 2013). Additionally, SnRK1 and hexokinase

(HK) independently contribute to increased starch synthesis by

activating AGPase through redox-based mechanisms when sucrose

and glucose levels rise (McKibbin et al., 2006). Generally, genes

upregulated by SnRK1 are downregulated by T6P. The inhibition of

SnRK1 by T6P regulates sink tissue development rates by

controlling SnRK1’s influence on vINV and SuSy (Martıńez-

Barajas et al., 2011; Lin et al., 2015). However, the interplay

between SnRK1, T6P, and starch metabolism remains complex

and not fully understood. Evidence suggests that long-distance

signaling may coordinate responses between heat-exposed and

non-exposed tissues, linking heat stress mechanisms with carbon

transport between source and sink tissues (Suzuki and Katano,

2018). ROS-dependent signals are proposed to integrate with heat-

induced long-distance signaling, potentially enhancing ABA

synthesis while downregulating sugar metabolism intermediates

in leaves not directly exposed to heat. Additionally, a transient

rise in cytosolic Ca²+ levels is a well-established response to heat

stress, and calcium signaling may converge with ABA and SnRK1

pathways (Wasilewska et al., 2008; Goswami et al., 2015). Bhatia

and Asthir (2014) reported that SuSy activity increased with a Ca²+

spike at ambient temperature, and in certain wheat varieties, this

enhancement was also observed under heat stress. This Ca²+

signaling has also been shown to interact with ROS-mediated

systemic responses to localized abiotic stimuli (Fichman and

Mittler, 2021). Microarray analyses have identified sugar-
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responsive elements in the promoters of several heat-inducible

genes, suggesting that sugar signaling contributes to the

development and maintenance of acquired thermotolerance.

Together, these findings highlight the complex integration of ROS

production, Ca²+ signaling, metabolite sensing, and hormonal

regulation in balancing plant growth and thermotolerance. A

detailed crosstalk among them is described in Figure 5.
5 Conclusion

Extensive research conducted over the past decades has

unequivocally established the multifaceted contributions of SuSy,

positioning it as a central regulator in source–sink dynamics and a

key player in conferring abiotic stress tolerance in plants. The

equilibrium between sucrose and glucose maintained by SuSy is

essential for plant adaptation to heat stress. SuSy’s diverse

localization within the cell and its regulation of sucrose metabolism

make it indispensable to the plant’s adaptive response. Apart from its

central role in metabolism, this enzyme also participates in a wide

range of physiological processes, including stomatal regulation,

pollen–pistil interaction, and adaptation of growth and development

under environmental stress. While many other molecular players are

important in these stress responses, SuSy’s distinct ability to function

across multiple cellular contexts and developmental stages makes it an

especially compelling focus of study. However, much of our current

knowledge remains fragmented, with the molecular details of SuSy’s

interactions and regulatory networks still only partially understood.

Bridging these knowledge gaps will require integrated research to

unravel the comprehensive mechanisms by which SuSy, in concert

with other metabolic and signaling pathways, supports plant resilience

under stress.
6 Future prospects

Future research on SuSy should focus on elucidating isoform-

specific functions, regulatory mechanisms, and interactions within

broader metabolic networks to enhance crops. A single gene can

have different haplotypes, influencing agronomic traits in different

ways. The versatility of SuSy isoforms and distinct gene types in

conferring abiotic stress tolerance makes them promising

candidates for crop improvement programs. Interactions between

these isoforms and environmental factors create a complex

metabolic regulatory network, which likely impacts plant growth

and development under stress conditions. Moreover, the differential

transcriptional responses of SuSy isoenzymes to environmental and

metabolic stimuli are likely driven by variations in their promoter

regions, an insight that opens new avenues for targeted

biotechnological interventions. Notably, SuSy may play an

unexpectedly important role in human nutrition: the amino acid

profile of this protein, along with its high abundance in mature

grains, positions it as a major contributor to lysine—a nutritionally

limiting amino acid in maize kernels (Azama et al., 2003). Together

with two other cytoskeletal proteins, UDPG starch glucosyl
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transferase and fructose 1,6-bisphosphate aldolase, SuSy supplies

roughly 75% of the total lysine content in maize kernels (Koch,

2004). Thus, research in the emerging non-canonical roles of SuSy

could support nutritional enhancement and stress adaptation.

Field-level validation under diverse environmental conditions

remains essential to translate laboratory findings into climate-

resilient, high-performing cultivars. Ultimately, expanding

knowledge of SuSy’s molecular mechanisms and harnessing its

versatility may unlock new strategies for crop improvement,

enabling plants to thrive in changing climates.
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