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Aureobasidium pullulans is a globally distributed fungus commonly found in

plant-associated and anthropogenic environments. Known for its antagonistic

activity against plant pathogens, it is widely used as a biocontrol agent in

sustainable agriculture. Despite its prevalence in edible plant tissues and

frequent environmental exposure, its broader role within microbiomes and

potential relevance for human health remain underexplored. In this perspective

article, we highlight the global distribution of A. pullulans based on publicly

available sequencing data and examine its ecological function from a

microbiome-based viewpoint. Our synthesis supports the view of A. pullulans

as a safe, plant-beneficial symbiont with high value for sustainable crop

protection and potential relevance for the One Health framework. Future

microbiome research should further explore its functional roles within plant

and human-associated microbiomes to better harness its benefits while ensuring

biosafety across ecosystems.
KEYWORDS

one health, crop protection, global occurrence, Aureobasidium pullulans,
edible microbiome
Introduction

The fungus Aureobasidium pullulans (DE BARY) ARNAUD, commonly known as the

‘black yeast’, was first described 150 years ago (Cooke, 1959). At that time, like the majority

of microorganisms, A. pullulans was subjected to an anthropocentric perspective on the

microbial world, i.e., the mere presence of a microorganism implies disease (Heidenreich

et al., 1997). Though ahead of the times, Cooke discussed the ecological life history of A.

pullulans in 1959 and highlighted that more intense studies may demonstrate its

independence from saprobic and pathogenic strains (Cooke, 1959). The discovery of the
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2025.1652366/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1652366/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1652366/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1652366/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2025.1652366&domain=pdf&date_stamp=2025-09-24
mailto:Birgit.wassermann@tugraz.at
https://doi.org/10.3389/fpls.2025.1652366
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2025.1652366
https://www.frontiersin.org/journals/plant-science


Bziuk et al. 10.3389/fpls.2025.1652366
microbiome, a term first defined by Whipps et al. (1988) and newly

conceptualized by Berg et al. (2020) has provided an alternative to

the anthropocentric perspective on microbial life. Microorganisms

are ubiquitous providers of key ecosystem services and are, thus,

intrinsically associated with the health of eukaryotic hosts. This has

led to the definition of the holobiont, which refers to a host

organism together with all of its associated microorganisms,

including bacteria, archaea, fungi, viruses, and protists, forming a

complex ecological unit (Vandenkoornhuyse et al., 2015). This

concept emphasizes that the biology, evolution, and health of the

host cannot be fully understood without considering its microbial

interactions and co-evolutionary dynamics. Furthermore, the

microbiome interconnects holobionts; for example, plant-

associated bacteria in food can withstand human digestion

(Wicaksono et al., 2022) and may inhabit the human gut,

representing an underexplored but important component of the

exposome (Wicaksono et al., 2023a), which is defined as the sum of

exposures to which an individual is subjected during their lifespan.

A. pullulans is a frequent member of the environmental

microbiome. Due to its targeted antagonistic activity, the fungus

can protect crops against various plant pathogens, such as Monilinia

laxa, Botrytis cinerea, Alternaria alternata, and Fusarium spp (Zajc

et al., 2020; Iqbal et al., 2021; Wachowska et al., 2021; Di Francesco

et al., 2023). Initially, A. pullulans was categorized into four

subspecies: A. pullulans var. pullulans, var. melanogenum, var.

subglaciale, and var. namibiae (Zalar et al., 2008). However,

significant genomic differences among these groups warranted their

reclassification as four distinct species: A. pullulans, A. subglaciale, A.

namibiae, and A. melanogenum (Gostinčar et al., 2014). This revised

taxonomy is particularly important for biotechnological applications

in agriculture, as it clearly distinguishes A. melanogenum – a species

with strains that may possess pathogenic potential for humans – from

the agriculturally relevant species A. pullulans (Gostinčar et al., 2014;

Černosǎ et al., 2025).A. pullulans has been considered safe for various

agricultural applications (European Food Safety Authority, 2013;

Prasongsuk et al., 2018), and its unparalleled global distribution

and use for a sustainable economy (Rensink et al., 2024) calls for

studying it in relation to the One Health concept. The importance of

A. pullulans as an effective biocontrol agent, as well as its applicability

in diverse sectors of the sustainable food industry, has been

comprehensively reviewed by Di Francesco and colleagues (Di

Francesco et al., 2023). However, a microbiome-based perspective

on the global and host-associated role of A. pullulans is still missing.

In this perspective paper, we review the literature on A. pullulans

occurrence from a microbiome-based perspective to gain new

insights into its global prevalence in different biomes and the

potential for human exposure by representing a common member

of the edible plant microbiome.
A. pullulans is prevalent in
anthropogenic environments

A. pullulans is known for its host- and non-host-associated

lifestyles. The fungus has been detected in numerous ecosystems,
Frontiers in Plant Science 02
ranging from soils (Ignatova et al., 2015; Ademakinwa and Agboola,

2016; Bennamoun et al., 2016), freshwater and marine environments

(Gunde-Cimerman et al., 2000; Wang et al., 2009), deserts and

drylands (Coleine et al., 2021), glaciers’ ice and permafrost (Branda

et al., 2010; Sannino et al., 2020), as well as in the air and atmosphere

(Shelton et al., 2002; Griffin, 2007). A. pullulans survives in acidic and

alkaline surroundings (Cooke, 1959), and saline soils (Bennamoun

et al., 2016). Due to its prevalence in extreme habitats, the fungus was

described as a polyextremotolerant microorganism (Gostinčar et al.,

2023) because it can survive cold as well as hot temperatures up to 50°

C (Zajc et al., 2020). However,A. pullulans does not growwell at 37°C

(Zajc et al., 2020). Interestingly, the fungus does not show substantial

specialization in any of these habitats at the genomic level (Gostinčar

et al., 2019). Frequent recombination between A. pullulans strains

could diminish the structuring of the global A. pullulans population

(Gostinčar et al., 2019).

We conducted a taxonomy-based search for A. pullulans in the

GlobalFungi database (Větrovský et al., 2020), which contains high-

throughput sequencing metabarcoding studies, to illustrate its global

distribution (Figure 1). We used two search terms to query the

database: (i) an empty prompt to retrieve all samples and (ii)

“Aureobasidium pullulans” to obtain samples where A. pullulans

was detected. These two tables were merged, and a total of 57’184

samples were obtained (as of 02.11.2023). We included only samples

from 515 studies that were not flagged as “manipulated”, used non-

nested primers (covering ITS1, ITS2, or full-length ITS), and

contained at least 500 samples per study. This resulted in a total of

(i) 50’084 total samples and (ii) 10’191 samples in which A. pullulans

was detected. Due to the compositional nature of the sequencing data

and the high variability among reads between the different primers

(Supplementary Figures 1, 2), we used presence/absence to delineate

the global distribution of A. pullulans. Nonetheless, with an increasing

number of reads, the detection ofA. pullulanswasmore likely, and this

was reflected in an increased prevalence (Supplementary Figure 3).

Hence, we used prevalence for the purpose of delineating the

occurrence probability of A. pullulans globally.

Our analysis demonstrates that A. pullulans can occur in

various environments. Although A. pullulans occurred on all

continents, it was more often detected in anthropogenic

environments (51% of n = 707 samples) and croplands (36%, n =

2’713) compared to natural environments (19%, n = 46’664).

Interestingly, A. pullulans was most prevalent in atmospheric

samples, including air and dust. The high prevalence in soil (24%,

n = 28’433), organic matter (28%, n = 3043), and atmospheric

samples (34%, n = 838) suggests that it is often present in our

surroundings. Hence, we expect frequent human exposure to A.

pullulans across different environments with a low risk for hazard

incidents (Prasongsuk et al., 2018).
A. pullulans is an effective biological
agent in agriculture

The prevalence of A. pullulans in croplands is likely attributable

to its broad use as an effective biocontrol agent against bacterial and
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fungal phytopathogens. Several organic disease control products

based on A. pullulans are already on the market (e.g., Boni Protect,

Blossom Protect, Botector) and are highly promising alternatives to

problematic chemicals in viticulture and horticulture, both pre- and

postharvest. This is of high importance considering, for instance,

the European Green Deal proposing a reduction of the use and risk

of pesticides by 50% by 2030.

Over the past decades, A. pullulans strains have been applied as

single organisms, and in combination with other organisms and

chemical peptides (Zajc et al., 2020). Nevertheless, most studies

focus on fruit crops, whereas the potential impact of A. pullulans on

cereals and legumes is less explored. Pre-harvest applications have

shown effectiveness against pathogens such as Erwinia amylovora in

apples (Slack et al., 2019; Zeng et al., 2023), Diplodia seriata in

grapevines (Pinto et al., 2018), and Verticillium dahliae in olive trees

(López-Moral et al., 2021, 2022). Post-harvest studies have focused

mainly on fruits, demonstrating biocontrol of Botrytis cinerea in

strawberries, apples, and grapes (Schena et al., 2003; Mari et al.,

2012; Iqbal et al., 2022),Monilinia laxa in stone fruits (Zhang et al.,

2010; Di Francesco et al., 2018), or diverse Penicillium species in

tropical and non-tropical fruits (Ippolito et al., 2000; Janisiewicz
Frontiers in Plant Science 03
et al., 2000; Zhang et al., 2010, p. 20; Mari et al., 2012; Parafati et al.,

2017), just to name some examples. In some cases, it has been used

successfully in microbial consortia with Bacillus subtilis (Bellamy

et al., 2022). In a recent study, A. pullulans was transmitted via bees

to strawberry flowers, resulting in decreased strawberry post-

harvest infections with B. cinerea (Iqbal et al., 2022). The

potential impact of A. pullulans on insects and their microbiome

has not been assessed so far (Davis and Landolt, 2013; Hung et al.,

2015). Overall, A. pullulans is mainly used as a direct antagonist

towards phytopathogens, and the main mode of action of A.

pullulans is referred to as a competition for space and nutrients.

However, A. pullulans might also have the ability, due to its wide

genetic equipment, to induce systemic resistance in plants, which

was shown lately by Zeng et al. (2023), demonstrating increased

gene expression of pathogenesis-related genes. Further evidence for

A. pullulans’ broad spectrum application potential is given by its

postulated function in abiotic stress management of coniferous trees

under drought stress (Mannaa et al., 2023), underlining the global

potential of A. pullulans.

Another important consideration for the use of biocontrol

agents is their interaction with the native microbiome in plants
FIGURE 1

Global occurrence of A. pullulans. (A) Percentage of samples with A. pullulans out of 515 studies based on ITS sequences (ITS1, ITS2, full-length ITS),
showing a total of 57’184 samples. (B) Latitudinal occurrence patterns in different environments (mean ± SE). (C) Distribution of samples with the
presence/absence of A. pullulans in different environments and sample types. (D) Total number of samples in different environments and (E) sample
types; percentages are represented by the colored part of the bars and indicate the fraction of samples with A. pullulans. The 50’084 samples were
obtained from the GlobalFungi database (02.11.2023; Větrovský et al., 2020).
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and soil, although this aspect has been less explored to date. A

recent study showed that the dominance of A. pullulans on fruit

surfaces resulted in a decreased abundance of naturally occurring

phytopathogenic fungi and an increased proportion of bacteria with

plant growth-promoting properties (Shi et al., 2022). Since the

application and occurrence of A. pullulans seems to potentially

result in benefits for the plant, we suggest that A. pullulans could be

considered a fungal soterobiont. This term has recently been

postulated to describe microorganisms – artificially applied or

native to the plant – that can extend the host plant´s immune

system by providing active protection against pathogens, which

results in resistant phenotypes (Cernava and Berg, 2022). However,

both genetic and functional aspects of A. pullulans, the host plant,

and other members of the plant microbiota must be considered to

build a comprehensive understanding of the dynamics within

the holobiont.
A. pullulans is a native member of the
plant and the edible microbiome

The native plant microbiome assists the host plant in acquiring

nutrients, suppressing pathogens, enhancing stress tolerance, and

regulating plant hormones (Sánchez-Cañizares et al., 2017; Berg

et al., 2022; Gross, 2022). Thus, plants rely on their associated

microbiota and are unlikely to survive without them under natural

conditions (Paasch et al., 2023). A. pullulans displays a plethora of

properties and was observed to natively colonize various plants,

including wheat (Wachowska et al., 2020), apple (Abdelfattah et al.,

2022), grapevine (Wassermann et al., 2021), olive trees (López-

Moral et al., 2021), Ficus (Singh and Saini, 2008), wildflowers

(Choudhury et al., 2011), and seeds of native alpine plants

(Wassermann et al., 2019a). In addition, A. pullulans was

frequently documented to occur in the edible parts of fresh

produce, such as apples (Wassermann et al., 2019b; Abdelfattah

et al., 2021; Zhimo et al., 2022), cherries (Schena et al., 2003;

Molnárová et al., 2014), peaches (Zhang et al., 2010; Molnárová

et al., 2014), citrus (Ferraz et al., 2016), and strawberries (Adikaram

et al., 2002), and a large body of literature observed A. pullulans in

berries of grapevine (Fleet, 2003; Martini et al., 2009; Verginer et al.,

2010; Grube et al., 2011; Barata et al., 2012; Pinto et al., 2014).

However, these observations are mainly based on PCR-based

marker gene profiling or microbial cultivation methods, which do

not provide direct information regarding actual microbial loads.

Based on the global data set, we found a wide range of sequence

reads of A. pullulans across the different samples, reaching high

percentages in certain samples (Supplementary Figure 2). However,

microbiome-based quantitative data on the fungal plant microbiota

remain limited. To estimate the load of A. pullulans in plant tissues,

we analyzed a previously published dataset on the apple

microbiome (Abdelfattah et al., 2022). The data includes marker

gene sequences (ITS) and quantitative real-time PCR (ITS gene
Frontiers in Plant Science 04
copy numbers (GCN) per centimeter of shoot length)

measurements for the endophytic microbiota of 61 apple

accessions from 11 Malus species. The total fungal load ranged

from 106 GCN cm-1 to 109 GCN cm-1 in domesticated apples

(Abdelfattah et al., 2022), and A. pullulans sequences accounted for

36% to 51% of all fungal GCN in these samples, indicating that the

fungus is a native and significant member of the apple microbiome.

This example supports A. pullulans’ environmental prevalence and

shows its potential for host interaction, as microbial abundance is a

key determinant of ecological relevance and functional impact on

the host (Lloréns-Rico et al., 2021).

In general, while all niche-specific microbiota play a functional

role for the plant (Trivedi et al., 2020), and for humans as

consumers, microbes associated with the edible parts of a plant

can pose health benefits and risks (Berg et al., 2015; Kim et al.,

2020). The risks are deeply studied, yet human pathogens causing

food-borne outbreaks, as well as opportunistic pathogens that cause

healthcare-associated infections (Mehta et al., 2017), are still of

global concern, accelerated by the drivers of the Anthropocene

(Flandroy et al., 2018). However, edible plants are colonized by a

huge diversity of microorganisms, and only a very small fraction

may have adverse impacts on healthy humans (Berg et al., 2015).

Those microbes represent the edible plant microbiome and are an

important component of the exposome (Berg et al., 2015;

Wicaksono et al., 2023a). Studies suggest that the edible

microbiome may positively impact the gut microbiome and

human health. Fruit and vegetable-derived bacteria are, despite

their low abundance, consistently present in the human gut,

enriching the functional diversity of the gut microbiota due to the

presence of genes associated with benefits for human health

(Wicaksono et al., 2023b). Besides bacteria, eukaryotic organisms

are important components of the gut microbiome (Zhang et al.,

2022); yet, to our knowledge, no comparable studies on fruit- and

vegetable-transmitted fungi in the human gut have been conducted

so far (Laforest-Lapointe and Arrieta, 2018). Nonetheless, A.

pullulans has been detected in stool samples of healthy humans

(Maas et al., 2023). In addition, it is known that fungal b-glucans
play an important role in the human immune system (Zhang et al.,

2022) and also the compounds produced by A. pullulans may have

potential health benefits for humans (Ikewaki et al., 2023; Raghavan

et al., 2023). Analyzing the diversity of fungi and other eukaryotes in

the human gut and whether they are delivered via plant

consumption will help uncover those microorganisms’ roles for

host health.
Conclusion

A. pullulans is a globally distributed fungus commonly found in

anthropogenic environments and croplands. Research indicates

that A. pullulans pose minimal health risks to humans (Gostinčar

et al., 2014). Yet, given its widespread occurrence in food and the
frontiersin.org
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environment, animal and human exposure is probable,

necessitating comprehensive risk assessments to ensure safety.

The fungus’s beneficial properties for plants, including pathogen

suppression and crop protection, along with its native abundance in

wild plants and crops, underscore its potential relevance for future

agricultural practices aligned with the One Health framework.

Future research should focus on its interaction with the native

plant and the environmental microbiome. Further, its role

within the human exposome and gut microbiome needs to be

explored to better understand its interactions and any potential

health implications.
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