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Introduction: Existing facility environment prediction models often suffer from

low accuracy, poor timeliness, and error accumulation in long-term predictions

under multifactor nonlinear coupling conditions. These limitations significantly

constrain the effectiveness of precise environmental regulation in

agricultural facilities.

Methods: To address these challenges, this paper proposes a novel facility

environment prediction model (LSTM-AT-DP) integrating Long Short-Term

Memory networks with attention mechanisms and advanced data

preprocessing. The model architecture employs: (1) a Data Preprocessing (DP)

module combiningWavelet Threshold Denoising (WTD) for noise elimination and

Sliding Window (SW) technique for feature matrix construction; (2) an LSTM core

for deep temporal modeling; and (3) an Attention Mechanism (AT) for dynamic

feature weighting to enhance critical temporal feature extraction.

Results: In 24-hour prediction tests, the model achieved determination

coefficients (R²) of 0.9602 (temperature), 0.9529 (humidity), and 0.9839

(radiation), representing improvements of 3.89%, 5.53%, and 2.84% respectively

over baseline LSTM models. Corresponding RMSE reductions were 0.6830,

1.8759, and 12.952 for these parameters.

Discussion: The results demonstrate that the LSTM-AT-DP model significantly

enhances prediction accuracy while effectively suppressing error accumulation

in long-term forecasts. This advancement provides robust technical support for

precise facility environment regulation, with particular improvements observed in

humidity prediction. The integrated attention mechanism proves particularly

effective in identifying and weighting critical temporal features across all

measured environmental parameters.
KEYWORDS

LSTM, attention mechanism, wavelet threshold denoising, multi-factor time series
forecasting, environmental prediction
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1 Introduction

Facility agriculture, a vital mode of modern agricultural

production, addresses the limitations imposed by external

environmental conditions on crop growth by creating controlled

environments through engineering and technological interventions

(Gao et al., 2022). The microclimate within these facilities—

encompassing temperature, relative humidity, and radiation—

plays a critical role in determining crop growth, yield, and quality

(Tang et al., 2022; Islam et al., 2023). Specifically, temperature

fluctuations can disrupt metabolic processes, excessive humidity

promotes pest and disease outbreaks, and inadequate or excessive

light negatively impacts photosynthesis, leading to stunted growth

or leaf damage (Jeong et al., 2020; Cheng et al., 2021). These factors

exhibit multifactor nonlinear coupling, significantly complicating

environmental regulation. Consequently, developing accurate

predictive models for facility environments is essential to enable

dynamic and precise control.

Early environmental control systems in agricultural facilities

primarily depended on expert knowledge to determine optimal

parameters. These systems employed manual adjustments or timed

controls based on real-time environmental monitoring to maintain

stable growing conditions. While this approach offers operational

simplicity and has been widely adopted in facility-based production,

its effectiveness is limited by significant variations in facility types

and crop requirements. Such limitations often lead to delayed

responses and control inaccuracies (Kow et al., 2022), causing

undesirable environmental fluctuations that may disrupt plant

growth and yield stability.

The advancement of sensor networks and communication

technologies has led to significant improvements in agricultural

environmental monitoring systems and automated control

equipment. Modern facility environmental control methods have

evolved from traditional manual and timed operations to setpoint-

based and intelligent control approaches (Subahi and Bouazza,

2020; Maraveas and Bartzanas, 2021). While these advanced

methods demonstrate superior control accuracy, enhanced plant

growth performance, and reduced resource consumption compared

to conventional methods, they still lack the capability for dynamic

feedback control in response to environmental variations. One of

the key issues that need to be addressed to realize real-time feedback

control is how to achieve accurate time-by-time and day-by-day

prediction of environmental factors.

The rapid development of sensor networks and communication

technologies has revolutionized agricultural environmental

monitoring and automated control systems. Contemporary

methods of controlling facility environments have transitioned

from traditional manual and timed operations to setpoint-based

regulation and intelligent control strategies (Subahi and Bouazza,

2020; Maraveas and Bartzanas, 2021). Although these modern

approaches exhibit significantly improved control precision, better

crop growth outcomes, and enhanced resource efficiency relative to

traditional methods, they remain incapable of implementing

adaptive feedback control in dynamic environmental conditions.

A critical research challenge for achieving real-time feedback
Frontiers in Plant Science 02
control involves developing reliable prediction models capable of

accurate hourly and daily forecasting of environmental parameters.

Current environmental prediction models can be categorized

into three primary types: mechanistic models, computational fluid

dynamics (CFD) models, and data-driven models (Zhang et al.,

2024). Mechanistic models employ thermodynamic principles to

analyze dynamic energy and mass transfer processes within

agricultural facilities, characterizing system behavior through

fundamental conservation laws (Zhang et al., 2020). For instance,

Zhang developed an energy balance-based thermal environment

model for glass greenhouses that achieved precise air temperature

prediction (Zhang et al., 2020). Similarly, Liu established a transient

microclimate model using thermodynamic theory to evaluate

temperature and humidity variations in solar greenhouses (Liu

et al., 2021). CFD models represent a specialized subset of

mechanistic modeling approaches (Bournet and Rojano, 2022). A

notable application by Mao demonstrated successful integration of

CFD simulations with experimental measurements for

comprehensive greenhouse temperature and humidity field

analysis (Mao and Su, 2024).

The rapid advancement of artificial intelligence technologies

has catalyzed significant progress in data-driven modeling for

environmental prediction. These data-driven approaches establish

predictive mapping relationships by extracting latent patterns from

historical datasets, with model accuracy being critically dependent

on both data quality and algorithmic architecture (Sansa et al., 2020;

Mehdizadeh, 2018). A representative example is the model

predictive control framework developed by Mahmood which

demonstrates robust performance in facility temperature

prediction under uncertain conditions, thereby validating the

practical efficacy of data-driven methods in environmental

forecasting applications (Mahmood et al., 2023).

In the initial development phase of data-driven approaches,

researchers predominantly employed conventional machine

learning models for environmental prediction, including

regression models, backpropagation (BP) neural networks,

recurrent neural networks (RNN), and radial basis function

neural networks. These methods typically required manual

preprocessing of environmental factor data (e.g., noise filtering

and feature selection) prior to conducting short-term predictions

through classifier training. However, the predictive performance of

these early models was constrained by both the scale of input data

and temporal distribution characteristics, making them inadequate

for capturing the nonlinear dynamics inherent in complex

environmental systems.

Addressing the intricate challenges posed by dynamically

evolving environmental systems with multifactorial interactions,

deep learning methods have demonstrated significant potential in

environmental prediction due to their superior capability in

characterizing high-order nonlinear relationships (Torres et al.,

2021). Distinguished from conventional approaches, deep

learning architectures not only autonomously extract high-level

abstract features through multilayer nonlinear networks (Li et al.,

2021), but also exhibit enhanced nonlinear approximation capacity,

substantially reducing dependence on manual feature engineering.
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Among various deep learning models, the Long Short-Term

Memory (LSTM) neural network (Hochreiter and Schmidhuber,

1997) has proven particularly effective in capturing temporal

dependencies among environmental factors owing to its unique

gating mechanism (Hou et al., 2023). Consequently, LSTM-based

approaches have been extensively adopted for facility environment

prediction. A notable application is the GCP_LSTM greenhouse

climate prediction model developed by Liu, which effectively

leverages LSTM networks to model nonlinear interactions among

historical environmental parameters (Liu et al., 2022).

Experimental investigations have revealed that current facility

environment prediction models often demonstrate inadequate

accuracy and poor timeliness when handling complex nonlinear

systems. Particularly as prediction time spans increase, traditional

models exhibit significant accuracy degradation due to error

accumulation effects. This study presents an LSTM-AT-DP based

multi-step prediction framework for facility environments, focusing

on temperature, humidity, and radiation parameters. Leveraging

deep learning’s strengths in temporal modeling, our approach first

employs a data preprocessing module to eliminate high-frequency

noise from sensor-acquired time-series data, thereby mitigating

error propagation risks in long-term forecasting. The denoised

temporal data is then transformed into feature matrices for deep

temporal pattern extraction via gated LSTM networks.

Furthermore, an attention mechanism dynamically enhances

feature weights at critical temporal nodes. Through multi-step

prediction parameter optimization, we ultimately construct a

temporally continuous prediction model. This methodology

establishes a high-fidelity mapping between environmental time-

series data and multi-step prediction targets, forming an intelligent

deep learning-based prediction system. The proposed framework

provides reliable technical support for long-cycle precision

regulation strategies in controlled agricultural environments.
2 Materials and methods

2.1 Overview of the facility environment
prediction model testing process

The facility environment prediction model developed in this

study addresses the complex challenge of multivariate time-series

forecasting for greenhouse environmental parameters (temperature,

humidity, and radiation) through advanced deep learning

techniques. The framework operates through five key phases:

First, distributed sensors collect real-time raw time-series data

encompassing critical environmental variables including air

temperature, relative humidity, and solar radiation intensity.

Second, a dedicated data preprocessing stage performs noise

reduction and outlier removal to enhance data quality,

establishing a robust foundation for subsequent analysis. Third,

the cleansed temporal data undergoes structural transformation

into feature matrices for LSTM network processing, where the gated
Frontiers in Plant Science
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architecture provides fundamental temporal modeling capacity.

Fourth, an integrated attention mechanism dynamically weights

the denoised multidimensional features, enabling selective focus on

critical temporal patterns while maintaining responsiveness to

short-term fluctuations. Finally, the LSTM’s sophisticated gating

mechanism performs deep temporal modeling and future-state

prediction, complementing the attention module to achieve

balanced short- and long-term dependency capture. The system

outputs multi-horizon predictions (6h, 12h, and 24h) for all target

environmental parameters, providing essential decision-support for

precision environmental control (see Figure 1).
2.2 Overview of the experiment

The experimental study was conducted at the Xinjiang Kashgar

(Shandong Shuifa) Vegetable Industry Demonstration Park (39.35°

E, 76.02°N). The research facility consisted of a north-south

oriented double-film double-arch greenhouse measuring 120 m in

length and 18 m in width, equipped with comprehensive

environmental control systems including:
1. External and internal thermal insulation screens

2. Sidewall and roof ventilation systems

3. Internal circulation fans

4. High-pressure mist cooling systems
The study utilized tomato seedlings grown in a substrate

mixture of peat moss and vermiculite (2:1 v/v ratio).

Experimental periods spanned from March to August 2024 and

March 9 to June 26, 2025. During the early experimental phase

(March), when temperatures were low, both insulation curtains

were activated synergistically to maintain optimal temperatures. In

the later phase (May-July), high temperatures prompted

implementation of an integrated cooling strategy combining

ventilation (side/top), internal air circulation, and misting

systems. Throughout the study period, these precisely controlled

environmental conditions were maintained to meet the

developmental requirements of tomato seedlings.
2.3 Data acquisition

The experimental data acquisition system employed a multi-

parameter environmental monitor (Nongxin Technology, Beijing)

specifically designed for greenhouse applications. The system

continuously recorded three critical parameters: air temperature,

relative humidity, and solar radiation intensity. Eleven monitoring

nodes were strategically distributed throughout the greenhouse to

ensure comprehensive spatial coverage, with their precise locations

illustrated in Figure 2. The complete technical specifications of all

deployed sensors are systematically presented in Table 1.
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2.4 Data preprocessing

To address data quality issues arising from sensor acquisition

and transmission anomalies, we implemented a rigorous two-step

data preprocessing protocol:

Outlier detection using box-whisker plots with statistically

defined thresholds, as shown in Equations 1 and 2:

U = P75 + 1:5� IQR (1)
Frontiers in Plant Science 04
L = P25 − 1:5� IQR (2)

where U is the upper bound, L is the lower bound, P75 is the

75th percentile, and P25 is the 25th percentile. IQR (interquartile

range) represents the difference between the 75th and 25th

percentiles (Ritter, 2023).

All identified outliers were treated as missing values.

(2) Missing Data Imputation:

For ≤5 consecutive missing points: Linear interpolation
FIGURE 1

Technology roadmap.
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For >5 consecutive missing points: Historical data-based

imputation using nearest neighbors under identical weather conditions

This scheme is mathematically expressed by (Equation 3)

(Ritter, 2023), which effectively avoids errors caused by long-span

interpolation while ensuring data continuity.

yt =
ya +

(yb−ya)�(t−ta)
tb−ta

, (t ≤ 5)

yh,                             (t > 5)  

(
(3)

where yt is the missing value, ya, ta and yb, tb are the time and

value of the first valid point before and after the missing segment, t

is the time to be interpolated, and yh is the nearest neighbor with the

same weather conditions of the historical data.

To address scale discrepancies among heterogeneous data types,

all input variables were normalized to a [0,1] range using min-max

normalization as formalized in (Equation 4) (Wang et al., 2024).

The normalized dataset was subsequently partitioned into training,

validation, and test subsets following a 7:2:1 ratio, ensuring proper

model development and evaluation.

y = d−dmin
dmax−dmin

(4)
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where d is the original data, dmin and dmax are the minimum and

maximum values in the original data, respectively, and y is the data

after normalization.
3 Model construction

3.1 Long short-term memory

Temperature, humidity, and radiation exhibit strongly

nonlinear temporal characteristics (Gao et al., 2023). The LSTM

architecture, as a specialized variant of recurrent neural networks

(RNN), demonstrates exceptional capability in modeling such

nonlinear temporal dependencies while effectively learning long-

range patterns (Fan et al., 2021; Hu et al., 2025). LSTM models

demonstrate superior capability in processing long-sequence data

while effectively addressing the gradient vanishing issue inherent in

traditional RNN architectures (Chen et al., 2020; Hong et al., 2025),

as illustrated in Figure 3.

Therefore, the LSTM model effectively processes long-term

sequential data and mitigates the gradient vanishing problem
FIGURE 2

(A) Sensor layout diagram (front view). (B) Sensor layout diagram (side view). (C) Sensor test layout diagram.
TABLE 1 Technical specifications of sensors.

Measured parameter Model Resolution Accurate Measurement range

Temperature sensor SHT41 0.01°C ± 0.2°C -30∼70°C

Humidity sensor SHT41 0.01%RH ± 2%RH 0~100%RH

Radiation sensor ISL89013 1W/m2 ± 5% 0~1800W/m2
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inherent in traditional RNNs. The underlying mechanism is

described by the following equations (Umutoni et al., 2025):

ft = s (Wf · ½Ht−1,Xt � + bf ) (5)

ut = s (Wu · ½Ht−1,Xt � + bu) (6)

~ct = tanh(Wc · ½Ht−1,Xt � + bc) (7)

Ct = ft · Ct−1 + ut · ~ct (8)

ot = s (Wo · ½Ht−1,Xt � + bo) (9)

Ht = ottanh(Ct) (10)

where ft,ut, ~ct , ct , ot and Ht denote the forgetting gate, updating

gate, candidate cell state, current cell state, output gate, and hidden

layer state, respectively; Wf, Wu, Wc, and Wo denote the weights of

the forgetting gate, updating gate, cell state, and output gate; and bf,

bu, bc and bo denote the bias matrices of the forgetting gate,

updating gate, cell state, and output gate; tanh is the activation

function and s is the sigmoid activation function.

(Note: Ct-1 is the cell state at moment t-1; Ct is the cell state at

moment t; Ht-1 is the output at moment t-1; Ht is the output at

moment t.)
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3.2 The LSTM-AT-DP model

To address the limitations of traditional models in long-term time

series forecasting, particularly their declining accuracy and poor

timeliness, this study proposes an LSTM-AT-DP model: Long Short-

TermMemory (LSTM), AttentionMechanismModule (AT), and Data

Preprocessing Module (DP). The model’s process is divided into four

stages: (1) The WTD unit in the DP module first applies wavelet

denoising technology to the raw time series data, significantly

improving the signal-to-noise ratio; (2) the SW unit then uses sliding

window technology to restructure the denoised data into a feature

matrix; (3) the LSTM network extracts long-term temporal

dependencies from the processed data; (4) the AT module

dynamically focuses on key features and optimizes weight

distribution. This model is specifically designed for facility agriculture

environments and can achieve high-precision predictions of key

parameters (temperature, humidity, and radiation) in greenhouse

environments. Figure 4 shows the complete architecture of this model.

The proposed LSTM-AT-DP architecture includes: data

preprocessing module, input layer, hidden layer, attention

mechanism module, fully connected layer, and output layer. The

specific description is as follows:
1. Data preprocessing (DP) module: This module consists of

two steps. First, the wavelet threshold denoising (WTD)
FIGURE 3

LSTM structure diagram.
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Fron
unit performs denoising on the original multidimensional

time series features. Then, the sliding window (SW) unit

reorganizes the denoised sequence into a feature matrix

with optimal time dependency and feeds it into the

subsequent network layers.

2. Input Layer: The model takes multi-dimensional time series

features as input, formatted as a 3D tensor (S, T, X) for

LSTM processing, where:
S (Sample size): Sliding window length, determined by the

prediction horizon:24 steps for 6-hour prediction (1 step = 15-

min interval);48 steps for 12-hour prediction;96 steps for 24-

hour prediction

T (Time steps): Prediction horizon (6/12/24 hours in

this study).

X (Feature dimension): Three environmental parameters

(temperature, humidity, and radiation).
3. Hidden Layer: Comprising multiple stacked LSTM units,

this layer performs deep feature extraction and temporal

dependency modeling. Through (Equations 5–10), the

input information is stored in hidden states h1 to h2 and

subsequently propagated to the next layer.

4. Attention Module: This module dynamically computes

weight distributions over hidden-layer outputs to amplify

the model’s focus on critical timesteps. Specifically:

(Equations 14–16) derive the Query (Q), Key (K), and

Value (V) vectors for each hidden state; (Equation 17)

computes Q-K similarity scores, which are normalized via

softmax to generate attention weights; (Equation 18)

performs a weighted summation of V using these weights,

producing the attention-enhanced output.

5. Fully connected layer: local feature integration and data

dimension transformation of the output of the

attention module.

6. Output Layer: The terminal component generates the

model’s final predictions through linear transformation of
tiers in Plant Science 07
the processed features, producing time-series forecasts with

optimized temporal dependencies.
This study employs three evaluation metrics to assess model

performance: the coefficient of determination (R²), mean absolute

error (MAE), and root mean square error (RMSE). As a core

indicator of regression model fitness, R² quantifies the proportion

of variance in the dependent variable explainable by the model,

representing the contribution of independent variables to dependent

variable variation. MAEmeasures prediction bias, with smaller values

indicating closer alignment between predicted and actual values.

RMSE demonstrates particular sensitivity to peak prediction errors,

where reduced values correspond to improved model accuracy. The

calculation formula is as follows (Equations 11–13) (Yang et al.,

2023):

R2 = 1 −
o
N

i=1
(y0 − y)

o
N

i=1
(y − �y)

(11)

MAE = 1
No

N

i=1
y0 − y
�� �� (12)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N

i=1
(y0 − y)

s
(13)

(Note: where y’ is the model predicted value, y is the true value,

and �y is the average of the true values.)

In evaluating the performance of environmental prediction

models, R² and adjusted R² are key indicators for assessing model fit.

As shown in Table 2, a systematic comparison of temperature,

humidity, and radiation prediction results at three time scales (6

hours, 12 hours, and 24 hours) revealed that the Adjusted R² was

slightly lower than the R² in all scenarios. This difference stems from

the penalty adjustment that Adjusted R² applies to the number of

features. In this study, three features were used: temperature, humidity,
FIGURE 4

Structure diagram of the LSTM-AT-DP model.
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and radiation.When the number of features is fixed and the sample size

is sufficient, the difference between the two values is less than 0.2%,

indicating that the impact of model complexity on explanatory power

can be ignored. Furthermore, the R² value for radiation predictions

consistently exceeds 0.98, with the smallest difference from the adjusted

R² value, which confirms the model’s strong explanatory power for

radiation changes. Due to the stability of feature engineering, the

sufficient sample size, and R²’s more intuitive interpretability in this

study, it was ultimately selected as the core evaluation metric. This

choice aligns with the numerical stability characteristics presented in

Table 2 and facilitates horizontal comparisons with similar studies.
3.3 Attention mechanism module

The AT Module dynamically weights and aggregates input

information through the coordinated interaction of three vectors:

Query (Q), Key (K), and Value (V) (Guo et al., 2022; Tian et al.,

2022). These vectors are generated by trainable weight matrices

(WQ, WK, WV) that project input features into respective latent

spaces, rather than using random initialization. The Q vector

encapsulates the current task’s informational requirements,

actively retrieving relevant sequence elements. The K vector

serves as a feature identifier for each input element, computing

relevance scores through matching with Q. The V vector contains

the actual content information that undergoes weighted aggregation

based on Q and K matching results. In short, attention weights are

calculated through three consecutive operations: (1) Calculate the

dot product similarity between the Q vector and the K vector, (2)

Standardize the operation to obtain the weights of each element of

the K vector, (3) Use these normalized attention weights to perform

weighted aggregation on the V vector to obtain the final result.

The specific flowchart of the attention module is shown

in Figure 5:

The main steps in its calculation process are as follows (Zou

et al., 2024):
Frontiers in Plant Science 08
Q : qi = WQxi (14)

K :Ki = WKxi (15)

V :KVi = WVxi (16)

ai = softmax(KTqi) (17)

ci = V · softmax(KTqi) (18)

Where Q is the query vector, K is the key vector and V is the

value vector; WQ, WK, WV are the parameter matrices; qi is the

element of vector Q, ki is the element of vector K and vi is the

element of vector V; ai is the attention distribution; ci is the final

output; i is the feature order number, ranging from 1 to i.
3.4 Data preprocessing module

The DP module comprises two core components: (1) the

Wavelet Threshold Denoising (WTD) unit that eliminates noise

from raw time-series data to enhance signal-to-noise ratio, and (2)

the Sliding Window (SW) unit that restructures the denoised data

into equal-length continuous sequences through temporal

windowing. This processing pipeline ultimately generates high-

dimensional feature matrices optimized for deep feature

extraction in subsequent prediction models.
3.4.1 Wavelet threshold denoising unit
The WTD unit uses multiscale wavelet analysis to suppress

noise through coefficient threshold processing. The process

involves: decomposing the input signal into multi-band wavelet

coefficients, applying optimal threshold processing to high-

frequency (noise-dominated) coefficients, and reconstructing the

signal from the processed coefficients (Dong et al., 2024; Li et al.,

2025). WTD unit demonstrates excellent denoising capabilities due

to its computational efficiency and adaptive properties (Jiang et al.,

2025). As shown in Figure 6, noise reduction performance critically

depends on three fundamental parameters: (i) choice of wavelet

basis functions, (ii) threshold optimization strategy, and (iii)

number of decomposition levels (Wu et al., 2024). These

parameters collectively form the core foundation of the entire

data preprocessing pipeline.

This study selected the sym4 wavelet for analysis and denoising

to address the significant periodicity (e.g., diurnal cycles and

seasonal variations) exhibited by facility environmental

parameters (e.g., temperature, humidity, and radiation), multi-

parameter coupling effects, and non-stationarity caused by noise

artifacts resulting from control operations (e.g., ventilation and

shading). The sym4 wavelet possesses approximate symmetry and

excellent time-frequency locality. Experimental results show that,

when set to a decomposition level of 2 and using the minimax

threshold strategy, the Sym4 wavelet outperforms other wavelet
TABLE 2 Comparison of R² and adjusted R².

Time Features R2 Adjusted
R²

Difference

6h

Temperature 0.9723 0.9714 0.0009

Humidity 0.9650 0.9639 0.0011

Radiation 0.9868 0.9864 0.0004

12h

Temperature 0.9673 0.9662 0.0011

Humidity 0.9570 0.9556 0.0014

Radiation 0.9850 0.9845 0.0005

24h

Temperature 0.9602 0.9589 0.0013

Humidity 0.9529 0.9513 0.0016

Radiation 0.9839 0.9834 0.0005
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FIGURE 6

Flow diagram of the wavelet threshold denoising unit.
FIGURE 5

Attention module flowchart.
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basis functions in terms of noise reduction performance (ASNR =

40.23 dB, RMSE = 0.0681, and CC = 0.9999). This selection

improves the signal-to-noise ratio and preserves more of the

original signal’s features, providing a reliable foundation for

subsequent signal processing. The following mathematical

formulas (Equations 19, 20) (Dong et al., 2024) illustrate this point:

cAL½n� =o
k

x½k� · fL,n(k) (19)

cDL½n� =o
k

x½k� · yL,n(k) (20)

where cAL[n] is the jth layer approximation coefficient (low

frequency part) and cDL[n] is the jth layer detail coefficient (high

frequency part); x is the original signal, y is the wavelet function,

and f is the scale function.

The soft thresholding method was selected for processing

facility environmental data due to its superior performance

characteristics: continuous shrinkage properties that maintain

signal smoothness, effective suppression of low-amplitude noise

components, robust preservation of transient features, and optimal

output smoothness. These advantages make it particularly suitable

for analyzing non-stationary environmental parameters. The

mathematical expression for this thresholding method is shown

in Equation 21 (Li et al., 2025):

hs(a, l) =

a − l,  a > l

0,    aj j ≤ l

a + l,   a < −l

8>><
>>: (21)

where a is the wavelet coefficient and is the wavelet threshold l.
The process of restoring the processed wavelet coefficients to the

original signal is given by Equation 22 (Jiang et al., 2023):

xr =o
k

cAL½k� · fL,k(t) +o
L

j=1
o
k

cDj½k� · yj,k(t) (22)
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where xr is the reconstructed signal.

The reconstructed denoised signal xr is used as an input to the

sliding window, whereby the sliding window unit generates the

input data required for the prediction model.
3.4.2 Sliding window unit
The monitoring and prediction of facility environmental

parameters (temperature, humidity, solar radiation) constitute a

characteristic multivariate time series forecasting problem. This

problem presents two fundamental challenges: (1) strong temporal

dependencies (e.g., thermal inertia effects, radiative accumulation),

and (2) complex cross-variable dynamics (e.g., humidity-

temperature coupling, radiation-driven cross-effects). Naive

approaches using instantaneous independent observations fail to

capture the temporal continuity of environmental evolution,

leading to inaccurate predictions of future facility states.

The SW unit systematically segments multivariate time series

data to establish temporal correlations between historical

observations (e.g., continuous hourly temperature, humidity, and

radiation measurements) and future target values (e.g., predicted

values for subsequent hours), thereby forming structured input-

output pairs (Yang et al., 2023). This methodological framework

helps the model explicitly learn complex cross-variable coupling

relationships and multi-scale dynamic evolution patterns at

different time intervals, as shown in Figure 7.

where xt denotes the environment variable temperature, xh
denotes the environment variable humidity, and xr denotes the

environment variable radiation; i denotes the length of the input

window; o denotes the length of the output window; and t denotes

the current time point.

The DP module uses WTD units for initial noise reduction

processing, followed by reconstruction of the noise-reduced time

series based on SW units to generate a feature matrix. This

architecture enhances the model’s predictive capabilities by

extracting underlying patterns in the dynamic facility
FIGURE 7

Sliding window unit structure diagram.
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environment, significantly improving the accuracy and reliability of

predictions for future environmental parameters (temperature,

humidity, solar radiation).
4 Results and analysis

4.1 Parameterization

The facility environment prediction model of this study was run

on a hardware environment of Intel(R) Core(TM) i5-9300HF

central processor and NVIDIA GeForce GTX 1650 graphics card,

coded in Python 3.7, with an integrated development environment

of PyCharm2024.1.2, under the framework of Pytorch1.8.1

Development and evaluation were carried out. After extensive

testing, the optimal number of layers and neurons for the model

was determined, with the following specific parameter settings: 2

LSTM layers, 100 hidden layer units, a learning rate of 0.001, the

Adam optimizer selected, a batch size of 64, and 100 epochs.
4.2 Explainability and computational
overhead analysis of attention mechanisms

Figure 8 illustrates how visualizing the distribution of attention

weights across the time dimension can intuitively present the

model’s dynamic attention patterns toward the input sequence.

The Y-axis of the heatmap represents a single attention head, the X-
Frontiers in Plant Science 11
axis corresponds to consecutive time steps, and the color gradient

(from light yellow to dark red) reflects the model’s attention

intensity toward features at each time step. The experimental

results show that the prominent red regions align spatially and

temporally with key feature changes, such as sudden temperature

changes. This indicates that the model can effectively capture

sudden temporal events. The light yellow regions correspond to

periods of feature stability. Their low attention weights are

statistically significantly associated with states of low information

content. This visualization validates AT’s capability to dynamically

focus on key temporal segments, as there is a quantifiable positive

correlation between attention weights and feature importance.

The introduction of the AT module significantly improves the

performance of temporal modeling, primarily due to its ability to

dynamically model non-local dependencies across time steps in

long sequences. While the standard LSTM model has basic

temporal feature extraction capabilities, the AT module provides

more refined temporal feature selection at the lightweight cost of a

4.15% increase in parameters (122,901 to 128,002). This

enhancement enables the model to adaptively focus on

discriminative features at critical time steps, showcasing its

superior temporal pattern modeling capabilities in complex

environmental prediction tasks. As shown in Table 3 using a 24-

hour temperature prediction task as an example, experimental

results demonstrate that AT significantly improves the model’s

accuracy in capturing nonlinear temporal dynamics by establishing

global temporal context associations, thereby enhancing the

robustness and reliability of prediction results. These
FIGURE 8

Attention weight heat map.
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characteristics make AT a key component for addressing long-

sequence dependency issues, particularly in scenarios requiring

precise modeling of temporal dynamics, such as weather

forecasting and industrial equipment monitoring.
4.3 Choosing and comparing small wave
functions

In wavelet threshold denoising methods, the selection of wavelet

basis functions, decomposition levels, and threshold strategies are

key performance factors. This study selected three representative

wavelet basis functions—sym4, db4, and coif1—and three threshold

strategies—universal threshold, maximum-minimum threshold,

and SURE (Stein unbiased risk estimate) threshold—to

systematically evaluate the impact of different parameter

combinations on denoising performance. Comparative

experiments were conducted at three decomposition levels (2, 4,

and 6). Three objective evaluation metrics—improved signal-to-

noise ratio (ASNR), root mean square error (RMSE), and

correlation coefficient (CC)—were introduced to quantitatively

assess denoising performance (see Table 4). Using temperature

data as an example, experimental data show that the system

achieves optimal denoising performance when using the sym4

wavelet basis function, decomposition level 2, and the minimum-

maximum threshold strategy: The ASNR improves to 40.23 dB, the

RMSE decreases to 0.0681, and the CC reaches 0.9999. This

parameter combination significantly outperforms other

experimental groups across all evaluation metrics and is therefore

established as the standard configuration for subsequent research.

This optimized scheme effectively preserves the feature information

of the original signal while improving the signal-to-noise ratio and

providing a reliable foundation for subsequent signal processing.
4.4 LSTM-AT-DP model ablation test

This study evaluates the effectiveness of model optimization by

analyzing three key environmental parameters (temperature,

humidity, and radiation). Specifically, it analyzes the individual

and synergistic enhancement effects of the AT and DP modules on
Frontiers in Plant Science 12
LSTM performance and compares the differences in prediction

accuracy between isolated improvement methods and integrated

improvement methods.

4.4.1 Optimization evaluation of AT and DP
modules on temperature prediction performance
of LSTM models

As shown in the experimental data in Table 5, The Bi-LSTM

model exhibits clear limitations in short-term forecasting.

Compared to the original LSTM model, the R² value decreased by

0.31% for 6-hour forecasts and by 0.31% for 12-hour forecasts.

Additionally, the MAE value increased by 0.0420 for 6-hour

forecasts and by 0.0386 for 12-hour forecasts, while the RMSE

value increased by 0.0612 for 6-hour forecasts and by 0.0600 for 12-

hour forecasts. While the bidirectional structure improves long-

term forecasting performance, it actually leads to a decline in

accuracy when handling short-term forecasting tasks. For 24-hour

forecasts, R² increases by 3.13%, MAE decreases by 0.5417, and

RMSE decreases by 0.5309. Integrating the AT module into the

LSTM model resulted in significant improvements across multiple

metrics. Specifically, the R² values for 6-hour, 12-hour, and 24-hour

predictions increased by 0.41%, 0.81%, and 3.53%, respectively,

while the MAE decreased by 0.1333, 0.1565, and 0.5812,

respectively, and the RMSE decreased by 0.0841, 0.1674, and

0.6084, respectively. These results indicate that AT significantly

enhances the stability of long-term predictions. When the DP

module is added, the R² values for the corresponding time

intervals increased by 0.22%, 0.08%, and 3.33%, respectively,

MAE decreased by 0.0445, 0.0195, and 0.5705, respectively, and

RMSE decreased by 0.0448, 0.0161, and 0.5688, respectively.

Notably, the DP module demonstrated particularly significant

noise reduction effects in long-term forecasts. The model

combining LSTM-AT-DP achieved the most significant

improvements: R² increased by 1.64%, 1.33%, and 3.89%,

respectively, while the MAE decreased by 0.3435, 0.1631, and

0.6272, respectively, and the root RMSE decreased by 0.3673,

0.2847, and 0.6830, respectively. It is worth noting that the R²

value for the 24-hour forecast increased by 3.89%, which

significantly surpasses the improvement achieved by using the AT

module (3.53%) or the DP module (3.33%) alone, thereby

confirming the synergistic optimization effect between the AT

module and the DP module.
4.4.2 Optimization evaluation of AT and DP
modules on humidity prediction performance of
LSTM models

As shown in Table 6, the experimental results reveal distinct

performance characteristics across different humidity prediction

models. The Bi-LSTM model clearly demonstrates temporal

dependency in its predictive capabilities. It underperforms the

base LSTM model for short-term 6-hour and 12-hour forecasts,

with R² reductions of 0.95% and 0.69%, respectively. This is

accompanied by increased mean absolute error (MAE) of 0.5339

and 0.3363 and root mean squared error (RMSE) of 0.3742 and

0.2762, respectively. However, the Bi-LSTM model’s performance
TABLE 3 Comparison and analysis of computational overhead of
attention mechanisms.

Indicator LSTM LSTM-AT
Difference

(%)

Inference
time (ms)

1.4635 1.5573 6.40

Params 122901.00 128002.00 4.15

GPU memory 240.17 256.65 6.86

R2 0.9213 0.9566 3.83

MAE 2.1202 1.5390 37.76

RMSE 2.3673 1.7589 34.59
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TABLE 4 Performance comparison of wavelet denoising under different parameter combinations.

Wavelet basis Decomposition level Threshold rule DSNR (dB) RMSE CC

sym4

2

universal 37.50 0.0932 0.9999

minimax 40.23 0.0681 0.9999

sure 29.22 0.2416 0.9994

4

universal 35.27 0.1204 0.9999

minimax 38.34 0.0846 0.9999

sure 22.60 0.5182 0.9973

6

universal 34.76 0.1277 0.9998

minimax 37.91 0.0889 0.9999

sure 20.63 0.6497 0.9963

db4

2

universal 37.39 0.0944 0.9999

minimax 40.16 0.0686 0.9999

sure 28.89 0.2511 0.9994

4

universal 35.16 0.1220 0.9998

minimax 38.24 0.0855 0.9999

sure 22.45 0.5271 0.9972

6

universal 34.64 0.1295 0.9998

minimax 37.82 0.0899 0.9999

sure 20.60 0.6522 0.9964

coif1

2

universal 35.25 0.1208 0.9999

minimax 37.97 0.0883 0.9999

sure 27.69 0.2883 0.9991

4

universal 32.97 0.1570 0.9997

minimax 36.04 0.1103 0.9999

sure 21.19 0.6096 0.9962

6

universal 32.45 0.1667 0.9997

minimax 35.61 0.1159 0.9999

sure 19.58 0.7330 0.9952
F
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Bolded values represent the optimal results under each evaluation metric, indicating the most effective strategy for the given task.
TABLE 5 The impact of improvements to the LSTM-AT-DP model on temperature prediction performance.

Forecast duration Model Bi AT DP R2 MAE RMSE

6h

LSTM × × × 0.9559 1.5325 1.7713

Bi-LSTM ✓ × × 0.9528 1.5745 1.8325

LSTM+AT × ✓ × 0.9600 1.3992 1.6872

LSTM+DP × × ✓ 0.9581 1.4880 1.7265

LSTM+AT+DP × ✓ ✓ 0.9723 1.1890 1.4040

12h

LSTM × × × 0.9540 1.5573 1.8103

Bi-LSTM ✓ × × 0.9509 1.5959 1.8703

LSTM+AT × ✓ × 0.9621 1.4008 1.6429

(Continued)
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substantially improves for 24-hour predictions, achieving a 3.76%

R² improvement while reducing MAE by 1.3127 and RMSE by

1.1932.In comparison, the AT-enhanced LSTM model shows

consistent performance gains across all time horizons. It achieves

R² improvements ranging from 0.30% to 3.88%, with MAE

reductions between 0.0364 and 0.7231 and RMSE decreases

between 0.1241 and 1.2346. The DP module notably improves

long-term accuracy, providing a 3.05% R² increase for 24-hour

forecasts while maintaining stable short-term performance. The

combined LSTM-AT-DP model is the most effective solution,

delivering superior performance across all prediction windows. It

achieves R² improvements of 1.46%, 0.62%, and 5.53% for 6-, 12-,

and 24-hour forecasts, respectively. The model’s most significant

enhancement is evident in 24-hour predictions, where it reduces

MAE by 1.4276 and RMSE by 1.8759. This demonstrates the

synergistic benefits of integrating attention mechanisms and

denoising processes. This evaluation clearly shows that, although
Frontiers in Plant Science 14
Bi-LSTM offers long-term advantages, the LSTM-AT-DP

combination provides more reliable and consistent improvements

across all prediction timeframes.

4.4.3 Optimization evaluation of AT and DP
modules on radiation prediction performance of
LSTM models

As shown in Table 7, the experimental results demonstrate

significant variations in radiation prediction performance across

different model architectures and time horizons. The Bi-LSTM

model exhibits inconsistent performance characteristics. For six-

hour predictions, it achieves performance gains, with R² increasing

by 1.25 percentage points, and reducing both MAE and RMSE.

However, its predictive capability deteriorates for 12-hour forecasts,

showing reduced accuracy across all metrics. The model regains its

predictive advantage for 24-hour forecasts, delivering an improved

R² value and substantial reductions in error metrics. In comparison,
TABLE 6 The impact of improvements to the LSTM-AT-DP model on humidity prediction performance.

Forecast duration Model Bi AT DP R2 MAE RMSE

6h

LSTM × × × 0.9504 2.8078 4.0569

Bi-LSTM ✓ × × 0.9409 3.3417 4.4311

LSTM+AT × ✓ × 0.9571 2.5643 3.7751

LSTM+DP × × ✓ 0.9564 2.7594 3.8039

LSTM+AT+DP × ✓ ✓ 0.9650 2.6023 3.4069

12h

LSTM × × × 0.9508 2.8037 4.0417

Bi-LSTM ✓ × × 0.9439 3.1400 4.3179

LSTM+AT × ✓ × 0.9538 2.7673 3.9176

LSTM+DP × × ✓ 0.9509 2.7711 4.0364

LSTM+AT+DP × √ ✓ 0.9570 2.7078 3.7780

24h

LSTM × × × 0.8976 4.5554 5.8316

Bi-LSTM ✓ × × 0.9352 3.2427 4.6384

LSTM+AT × ✓ × 0.9364 3.8323 4.5970

LSTM+DP × × ✓ 0.9281 3.6984 4.8858

LSTM+AT+DP × ✓ ✓ 0.9529 3.1278 3.9557
Bolded values represent the optimal results under each evaluation metric, indicating the most effective strategy for the given task.
TABLE 5 Continued

Forecast duration Model Bi AT DP R2 MAE RMSE

LSTM+DP × × ✓ 0.9548 1.5378 1.7942

LSTM+AT+DP × ✓ ✓ 0.9673 1.3942 1.5256

24h

LSTM × × × 0.9213 2.1202 2.3673

Bi-LSTM ✓ × × 0.9526 1.5785 1.8364

LSTM+AT × ✓ × 0.9566 1.5390 1.7589

LSTM+DP × × ✓ 0.9546 1.5497 1.7985

LSTM+AT+DP × ✓ ✓ 0.9602 1.4930 1.6843
Bolded values represent the optimal results under each evaluation metric, indicating the most effective strategy for the given task.
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the AT-enhanced LSTM model demonstrates more stable

improvements across all prediction windows. It consistently

increases R² values and achieves significant decreases in MAE and

RMSE across 6-, 12-, and 24-hour forecasts. The DP module

exhibits comparable yet slightly less pronounced enhancement

effects, especially in longer-term predictions. The integrated

LSTM-AT-DP model is the most robust solution, providing

superior performance that surpasses the improvements of its

individual components. This combined architecture achieves the

highest R² values and the most substantial reductions in error

metrics across all time horizons. Its 6-hour prediction performance

is particularly noteworthy, as the RMSE reduction significantly

outperforms what either module achieves independently. These

results clearly demonstrate the complementary nature and

synergistic effects of combining attention mechanisms with

denoising processes for radiation prediction tasks.
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4.5 Exploration of the performance of the
LSTM-AT-DP model in comparison with
the classical model

To validate the efficacy of the enhanced LSTM-AT-DP model,

this study performed comparative experiments against several

classical baseline models, including RNN, LSTM, and GRU

architectures. The experimental results demonstrate that our

proposed model achieves superior performance across all

evaluation metrics.

4.5.1 Comparison and evaluation of temperature
prediction performance of LSTM-AT-DP model
and classical models

As shown in the data in Figure 9, the LSTM-AT-DP model

achieved significant R² values of 0.9723, 0.9673, and 0.9602 for 6-
TABLE 7 The impact of improvements to the LSTM-AT-DP model on radiation prediction performance.

Forecast duration Model Bi AT DP R2 MAE RMSE

6h

LSTM × × × 0.9564 18.7291 32.1908

Bi-LSTM ✓ × × 0.9689 17.4412 27.2083

LSTM+AT × ✓ × 0.9845 11.7840 19.2188

LSTM+DP × × ✓ 0.9784 12.2100 22.6659

LSTM+AT+DP × ✓ ✓ 0.9868 11.2566 17.6814

12h

LSTM × × × 0.9569 18.6673 31.9918

Bi-LSTM ✓ × × 0.9560 18.8199 32.3436

LSTM+AT × ✓ × 0.9812 13.1067 21.1537

LSTM+DP × × ✓ 0.9780 14.5867 22.8860

LSTM+AT+DP × ✓ ✓ 0.9850 12.1266 18.8853

24h

LSTM × × × 0.9555 18.8610 32.5265

Bi-LSTM ✓ × × 0.9664 17.7508 28.2504

LSTM+AT × ✓ × 0.9802 13.5160 21.7183

LSTM+DP × × ✓ 0.9725 16.1093 25.5568

LSTM+AT+DP × ✓ ✓ 0.9839 12.5898 19.5745
Bolded values represent the optimal results under each evaluation metric, indicating the most effective strategy for the given task.
FIGURE 9

Comparison of the temperature prediction performance of the LSTM-AT-DP model and the classical model.
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hour, 12-hour, and 24-hour predictions, respectively, representing

improvements of 1.7% to 4.2% compared to the traditional LSTM

model. Additionally, the model achieved significant reductions in

MAE and RMSE, decreasing by 22.4% to 29.6% and 20.7% to 28.8%,

respectively. Notably, the 24-hour prediction performance of the

LSTM-AT-DP model achieved an MAE of 1.4930, significantly

outperforming the LSTM (2.1202) and GRU (2.0924) benchmarks.

This performance improvement can be attributed to the model’s

innovative architecture: the AT module mitigates gradient decay

issues in long-term predictions by dynamically focusing on key

temporal features, while the DP module provides robust multi-scale

signal processing capabilities. The synergistic integration of these

components enables the LSTM-AT-DP model to achieve higher

accuracy and stability in temperature forecasting tasks.

4.5.2 Comparison and evaluation of humidity
prediction performance of LSTM-AT-DP model
and classical models

Figure 10 shows a comprehensive performance comparison of

various models in a humidity prediction task characterized by

highly nonlinear dynamics and significant noise interference. The

LSTM-AT-DP model performs exceptionally well, achieving an R²

value of 0.9529 for 24-hour predictions, representing a 6.2%

improvement over the baseline LSTM model’s R² value of 0.8976.

Notably, the MAE is reduced to 3.1278, a significant 31.4% decrease

compared to the LSTM baseline model. Comparing the prediction

curves shows that the LSTM-AT-DP model exhibits significantly

reduced prediction fluctuations in low signal-to-noise ratio regions,

confirming the DP module’s exceptional noise separation

capability. These results collectively indicate that the LSTM-AT-

DP model possesses a clear advantage in handling noisy humidity

prediction scenarios, achieving more accurate predictions of

humidity changes through its effective noise suppression and

feature extraction mechanisms.

4.5.3 Comparison and evaluation of radiation
prediction performance of LSTM-AT-DP model
and classical models

Figure 11 demonstrates the outstanding performance of the

LSTM-AT-DP model in radiation prediction tasks with frequent
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mutation characteristics. The model achieved an excellent R² value

of 0.9868 in 6-hour predictions, with a corresponding MAE of

11.2566, representing a significant reduction of 39.9% compared to

the MAE (18.7291) of the LSTM baseline model. Detailed curve

analysis shows that the LSTM-AT-DP model consistently achieves

prediction errors below 5% during the midday radiation peak

period, significantly outperforming traditional models (error

range of 8% to 12%). This performance advantage stems from

two core mechanisms: the AT module enhances feature weights

during sudden changes, and the DP module improves transient

response accuracy through advanced high-frequency signal

decomposition techniques. For 24-hour predictions, the model’s

MAE is 12.5898, which is 49.2% lower than XGBoost’s MAE

(24.7675), and the R² is improved by 5.4%, further validating the

superiority of this deep learning architecture in spatio-temporal

nonlinear modeling.
5 Discussion

Figure 12 shows a comprehensive comparison of the predictive

performance of the proposed LSTM-AT-DP model and traditional

models in facility environments under different environmental

parameters (temperature, humidity, radiation) and different

forecast lead times (6 hours, 12 hours, 24 hours). Through a

systematic analysis of Figures 8-11, the LSTM-AT-DP model

demonstrates significant advantages, specifically as follows:

The LSTM-AT-DP model demonstrates excellent temporal

stability when the prediction time is extended from 6-hour to 24-

hour, with only a minimal decline in performance. In terms of

temperature prediction, the model exhibits excellent consistency,

with an R² value fluctuation of only 0.0121, which is 63.5% and

55.8% higher than the LSTM model (0.0346) and GRU model

(0.0274), respectively. In humidity prediction, the model achieves a

24-hour MAE of 3.1278, an improvement of 46.4% over RNN

(5.8399), while maintaining an RMSE of 3.9557, which is 32.2%

lower than LSTM’s 5.8316. In radiation forecasting, the model

demonstrated near-perfect temporal consistency, with R² values

for 6 hour (0.9868) and 24 hour (0.9839) predictions differing by

less than 0.3%, significantly outperforming the 1.6% performance
FIGURE 10

Comparison of the humidity prediction performance of the LSTM-AT-DP model and the classical model.
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degradation of the XGBoost model. These results collectively

validate the model’s unprecedented stability in multi-variable

long-term environmental forecasting.

The LSTM-AT-DP model demonstrates superior cross-variable

prediction performance across all three environmental parameters

(temperature, humidity, and radiation). For 24-hour predictions,
Frontiers in Plant Science 17
the model achieves MAE values of 1.4930 (temperature) and 3.1278

(humidity), with a remarkably small inter-variable difference of

merely 1.6348 significantly lower than the 2.4352 observed in the

baseline LSTM model. This substantial 32.9% reduction in

performance variance clearly indicates the model’s enhanced

capability to balance the learning of coupling relationships
FIGURE 12

Comparison of prediction results in multi-model environments.
FIGURE 11

Comparison of the radiation prediction performance of the LSTM-AT-DP model and the classical model.
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between different environmental factors. In radiation forecasting,

the model’s 12-hour MAE of 12.1266 represents a 51.1%

improvement over XGBoost (24.7902), while its RMSE of 18.8853

is only 47.6% of conventional models. These results provide

compelling evidence that the LSTM-AT-DP architecture

effectively captures high-frequency transient components while

maintaining both high efficiency and accuracy in multi-variable

prediction tasks, owing to its sophisticated feature extraction and

noise suppression mechanisms.

The LSTM-AT-DP model demonstrates significant advantages in

modeling different environmental factors. In 24-hour radiation forecasts,

the model achieved a MAE of 12.5898, a 49.2% reduction compared to

XGBoost (24.7675), while increasing the coefficient of determination R²

by 5.4 percentage points. This significant improvement clearly

demonstrates the superior ability of deep learning architectures to

capture the inherent spatio-temporal nonlinear relationships in

complex radiation data. In humidity prediction, the model achieved

an R² value of 0.9529 within 24 hours, which is 7.9% higher than GRU

(0.8829), while reducing the MAE value by 36.7%. These improvements

clearly indicate that the integration of the AT module and DP module

effectively enhances feature selection and noise suppression capabilities,

enabling more precise identification of key humidity patterns while

minimizing interference from noise signals, thereby significantly

improving prediction accuracy.

Data analysis indicates that the DP module significantly improves

data quality through the synergistic integration of the WTD unit and

SW unit. The WTD unit utilizes the time-frequency localization

characteristics of the sym4 wavelet basis function to achieve precise

separation of signals and noise in facility environmental monitoring

data, particularly excelling in suppressing high-frequency noise

components. Experimental results show that in radiation prediction

tasks, the independent DP module achieved error reductions of 6.5191

W/m² (MAE) and 9.5249 W/m² (RMSE), confirming its dual

capabilities in noise elimination and high-frequency signal retention.

In 24-hour temperature forecasts, the DP module increased the R²

coefficient by 3.33% while reducing MAE and RMSE by 0.5705 and

0.5688, respectively. These metrics collectively validate the module’s

exceptional performance in handling non-stationary signals and its

robust capability to optimize data quality. The SW unit operates by

dividing continuous time series into a structured mapping from

historical states to future targets. This architectural approach enables

the LSTM network to capture the systematic spatiotemporal dynamics

of environmental processes rather than discrete-time features,

significantly enhancing the model’s ability to learn complex

spatiotemporal dependencies among environmental variables.

By integrating the AT module, the model can dynamically adjust

feature weights at critical time points, significantly enhancing its ability

to detect sudden environmental events. In experiments verifying

humidity forecasts, the AT module reduced the MAE of 24-hour

predictions by 36.7% and increased the R² by 5.53%. These metrics

confirm the module’s dual functionality: it can both precisely allocate

attention to key features and effectively suppress noise, thereby

improving prediction accuracy. The AT module automatically

enhances feature extraction during crop-sensitive phenological

periods by calculating the similarity between Q and K. This
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architecture ensures that prediction performance remains robust

even under low signal-to-noise ratio conditions. Notably, in the 24-

hour humidity forecast task, the model incorporating the AT module

achieved an MAE of just 3.1278% RH, representing a 36.7%

improvement over the traditional GRU model. This comparative

advantage fully demonstrates the effectiveness of the AT module in

strategic information focusing and noise suppression.

The synergistic integration of the DP module and the AT module

has effectively broken through the bottleneck of declining accuracy in

long-term forecasts. The DP module ensures high signal-to-noise ratio

input data, while the AT module dynamically enhances feature

representation capabilities at critical time points through adaptive

weight allocation. This dual optimization strategy significantly

alleviates the error propagation issue in sequence prediction.

Experimental results show that compared to the baseline LSTM

model, the integrated model achieves R² improvements of 3.89%,

5.53%, and 2.84% in 24-hour temperature, humidity, and radiation

forecasts, respectively, while reducing MAE by 29.6% to 39.9%.

Notably, the model’s ability to detect sudden events has significantly

improved: for 6-hour radiation forecast peaks, theMAE percentage has

dropped to 3.2%–4.8%, representing a significant improvement over

the 8%–12% range observed in traditional models. These findings not

only validate the accuracy improvements achieved through the

synergistic effects of DP-AT but also highlight the model’s stability

and ability to capture sudden events.

The multi-factor time series modeling method establishes a

unified representation of the coupled relationships between

temperature, humidity, and radiation through multivariate

reconstruction and deep feature extraction driven by the DP

module based on LSTM-AT, thereby demonstrating outstanding

performance. The model maintains excellent stability, with

R² values for all three factors remaining above 0.95 in both 6-hour

and 24-hour forecasts. Compared to the baseline model, cross-factor

performance variability is significantly reduced (LSTM-AT-DP

exhibits 1.46% variability in humidity forecasts, while GRU

shows 7.9%). Under low signal-to-noise ratio conditions, the

synergistic effect of the DP module and AT module ensures robust

performance: the DP module maintains data reliability by effectively

suppressing noise, while the AT module dynamically optimizes

feature weights. This combination achieves an MAE value as low as

3.1278% RH in 24-hour humidity forecasts, representing a 36.7%

improvement over GRU. These results validate the model’s ability to

balance learning cross-factor coupling relationships and capturing

high-frequency mutations. In radiation prediction, the LSTM-AT-DP

model achieved an R² of 0.9868 and a 6-hour MAE of 11.2566W/m²,

representing a 39.9% improvement over the LSTM model. This

indicates that the AT module focuses more on transient events,

while the DP module enhances the resolution of high-frequency

signal components through advanced decomposition techniques.
6 Conclusion

This study proposes a model based on LSTM-AT-DP, which

achieves significant improvements in accuracy and stability in time
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series prediction of multiple factors (temperature, humidity, and

radiation) in controlled agricultural environments through the

collaborative optimization of the DP module and the AT module.

The DP module effectively removes data noise and improves data

quality using WTD and SW units, thereby providing structurally

optimized inputs for subsequent modeling. Experimental results show

that in the temperature prediction task, the independent DP module

improves the 24-hour prediction R² metric by 3.33%, confirming its

exceptional adaptability to non-stationary signals. Meanwhile, the AT

module amplifies feature representations at critical time points through

dynamic weight allocation, significantly enhancing themodel’s ability to

detect sudden environmental changes. This effect was quantitatively

verified in a humidity prediction task, where the integration of the AT

module reduced the 24-hour MAE metric by 36.7%, fully

demonstrating its accuracy in focusing on time-sensitive information.

Comprehensive experimental evaluations demonstrate that the

proposed LSTM-AT-DP architecture outperforms traditional models

across all evaluationmetrics (R²,MAE, and RMSE), particularly in long-

term forecasting tasks. Specifically, the model achieved R² values of

0.9602 for temperature, 0.9529 for humidity, and 0.9839 for radiation in

24-hour forecasts, representing improvements of 3.89%, 5.53%, and

2.84%, respectively, compared to the baseline LSTM model. More

notably, the model achieved significant error reduction, with the

MAE for temperature prediction decreasing from 2.1202 to 1.4930 (a

reduction of 29.6%) and the RMSE decreasing from 2.3673 to 1.6843 (a

reduction of 28.9%). These quantitative results clearly demonstrate the

model’s exceptional ability to handle multi-factor coupling relationships

and noise interference in controlled agricultural environments.

Especially under harsh conditions with low signal-to-noise ratios, the

model still maintains robust prediction accuracy—this finding provides

empirical validation for the synergistic optimization between the noise

suppression DP module and the feature enhancement AT module.

In summary, the LSTM-AT-DP model provides a solid technical

foundation for precise environmental control in facility agriculture.

The model’s superior performance in terms of prediction accuracy

(parameter-average R² improved by 4.09%), temporal stability (MAE

reduced by 39.9%), and transient event detection capability (peak

error reduced to 3.2–4.8%) has been rigorously validated through

comprehensive experimental data. In the future, the application of

this model can be further expanded to different types of facilities and

crop varieties to verify its universality and promotional value. At the

same time, more advanced deep learning technologies and data

processing methods can be explored to further improve the model’s

predictive performance and practicality.
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