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Introduction: COBRA-Like (CBL) genes encode glycosylphosphatidylinositol

(GPI) -anchored proteins specific to plants that play important roles in

cellulose biosynthesis in primary and secondary cell walls.

Methods: This study used a bioinformatics approach to characterize the CBL

family genes in Sorghum bicolor (S. bicolor) at the genome-wide level to

investigate their potential functions in S. bicolor development.

Results: The results revealed the identification of 10CBL genes in the BTx623 and

E048 S. bicolor genomes, respectively. A comparative analysis of conserved

Motifs revealed that all CBL family genes in S. bicolor possess CCVS conserved

structural domains. Phylogenetic analysis revealed that the family can be divided

into two subfamilies, with genes within each subfamily exhibiting similar gene

structures and physicochemical properties. Whole Genome Duplication (WGD)

played an important role in the expansion of SbCBL gene family. The tissue-

specific expression patterns of SbCBL genes suggest varying expression levels

across different organs and tissues in S. bicolor, with SbCBL1, SbCBL5, and

SbCBL9 showing significantly higher expression levels in roots. PEG and NaCl

treatments significantly affected SbCBL expression levels. SbCBL4 expression

increased after PEG treatment, while SbCBL9 expression decreased after

NaCl treatment.

Conclusions: Overall, this study provides new insights into the role of the CBL

gene family in S. bicolor.
KEYWORDS

SbCBL gene family, systematic evolution, whole genome duplication, abiotic stresses,
SbCBL4/9
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1 Introduction

The COBRA-Like (CBL) gene family encodes a class of

glycosylphosphatidylinositol (GPI)-anchored proteins that act as

cell surface receptors localized directly to the outer surface of plant

plasma membranes and are involved in the perception and

transduction of cell wall remodeling signals (Schindelman et al.,

2001; Roudier et al., 2002; Ringli, 2010). CBL gene family was

originally identified in mutants of Arabidopsis thaliana (A.

thaliana) root cells that are abnormally expanded (Benfey et al.,

1993). The number of members of the CBL gene family varies

considerably among species: A. thaliana, Oryza sativa (O. sativa),

Zea mays (Z. mays), andGossypium hirsutum (G. hirsutum) contain

12, 11, 9, and 39 members, respectively (Roudier et al., 2002; Li

et al., 2003; Brady et al., 2007; Fu et al., 2024). Typical structural

features include an N-terminal signal peptide that mediates

endoplasmic reticulum localization, an aromatic amino acid-rich

region that constitutes the cellulose binding site, a central CCVS

structural domain (containing cysteine clusters) that maintains

protein conformation, and a C-terminal GPI-anchored signal

sequence (containing a w-site) that mediates membrane

localization (Roudier et al., 2002).

The cob mutant in A. thaliana exhibits abnormal root

cell expansion and a dwarfing phenotype (Roudier et al., 2005).

In situ hybridization results showed that the COB gene is highly

expressed in the root elongation region, suggesting its

involvement in regulating cellulose deposition during cell

elongation (Roudier et al., 2005). Further studies revealed that

COB gene mutations disrupt the orientation of cellulose

microfilament arrangement, triggering a decrease in cellulose

content (Roudier et al., 2005). The COBL4 mutant, homologous

to COB, exhibited a significant decrease in secondary wall cellulose

content (Brown et al., 2005). In addition to CBL, five other cloned

A. thaliana family members (e.g., AtCOBL4, AtCOBL9 and

AtCOBL2) are involved in cell wall synthesis. The AtCOBL4

affects secondary wall cellulose synthesis (Brown et al., 2005);

the AtCOBL9 mutation results in defective polar root hair growth

(Jones et al., 2006); and the AtCOBL2 is involved in seed coat

cellulose deposition (Ben et al., 2015). Notably, complete deletion

of the COB gene triggers plant growth arrest and aberrant

expression of defense-related genes (Ko et al., 2006). In

monocotyledonous plants, a mutant of the O. sativa BC1 gene

(which encodes a CBL protein) exhibits a “brittle rod” phenotype

and has 60.7% amino acid sequence homology with the A.

thaliana COB protein (Li et al., 2003). This mutation results in

reduced cell wall thickness, decreased cellulose content, abnormal

lignin deposition, and decreased mechanical strength (Li et al.,

2003). Wu Lab identified the OsBCL4 gene, which encodes a CBL

protein containing a typical GPI structural domain. Its T-DNA

insertion mutant exhibits cell expansion, cellulose reduction, and

pectin accumulation (Dai et al., 2011). In addition, the OsBCL5

mutation affects male gametophyte transport (Dai et al., 2009),

OsBC5 is involved in secondary wall formation in stem nodes

(Aohara et al., 2009), and OsBC6 encodes a CESA-related protein

that affects secondary wall synthesis (Kotake et al., 2011).
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In maize, ZmBK2L3, a member of the ZmBK2L family, is

closely related to AtCOB, and its encoded protein retains

conserved structural domains and is widely expressed at

different developmental stages (Brady et al., 2007; Cao et al.,

2012). Recent studies have confirmed that ZmBK2L1 is involved

in the regulation of root hair development (Hochholdinger et al.,

2008). Studies have shown that COBL genes play a role in how

plants respond to abiotic stresses. For instance, DROT1 encodes a

COBL protein. It was discovered that DROT1 increases cellulose

content and maintains cellulose crystallinity in rice. This

modulates the cell wall structure and enhances the plant’s

resistance to drought (Sun et al., 2022). In A. thaliana,

overexpressing PtCOBL12 promotes plant growth and increases

cellulose content and relative crystallinity (Geng et al., 2023). It

also improves growth under drought stress conditions.

Additionally, the GhCOBL22 gene plays a pivotal role in

cotton’s response to drought stress (Fu et al., 2024).

Sorghum bicolor (S. bicolor), as the fifth largest cereal crop in the

world, is an important energy and forage crop with excellent

agronomic traits such as high photosynthetic efficiency, high

nutritional value, high adaptability, and resistance to drought and

salinity, and an important model crop for the study of other energy

crops (Silva et al., 2022). BTx623 and E048 are two distinct sorghum

varieties. BTx623 was the first variety for which a high-quality

whole genome was sequenced and assembled (Paterson et al., 2009).

Its genome has become a universal “reference template” for

sorghum research, providing an important foundation for gene

targeting and editing (e.g., CRISPR) as well as functional validation.

E048, on the other hand, is derived from Sudanese tropical

germplasm (Early Hegari) and differs significantly from BTx623

in terms of disease resistance gene clusters and metabolic pathways.

These differences make E048 ideal for comparative genomics

studies. For these reasons, BTx623 and E048 were selected for

this study. In this study, we identified members of the S. bicolor CBL

gene family at the genome-wide level using bioinformatics methods,

analyzed their gene structures, evolutionary relationships, selective

pressures, and expression patterns, and laid the groundwork for

elucidating the functions of this gene family in the stress response of

S. bicolor.
2 Materials and methods

2.1 Identification of gene family members

In this study, HMMER 3.3.2 software was used to perform a

homology search (E-value threshold of 1e-5) based on the Hidden

Markov Model (HMM) of the CBL domain (PF04833) in the Pfam

database (https://pfam.xfam.org/) (Mistry et al., 2021) for S. bicolor

BTx623 and E048 protein sequences downloaded from the

Phytozome v13 (https://phytozome-next.jgi.doe.gov/) (Goodstein

et al., 2012) and SGMD databases (https://S.bicolor.genetics.ac.cn/

SGMD, accessed on 5 May 2025) (Chen et al., 2025), respectively.

The gene sequences obtained from the initial screening were further

validated for conserved structural domains using NCBI Conserved
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Domain Database (CDD) (https://www.ncbi.nlm.nih.gov/

Structure/bwrpsb/bwrpsb.cgi) to ensure that the identified

sequences contained complete and typical CBL domains, thus

accurately identifying members of the S. bicolor CBL gene family.
2.2 Analysis of gene structure and
conserved motifs

The coding sequences (CDS) of the genes were aligned with the

corresponding genomic sequences and visualized using TBtools

software (Chen et al., 2023) to show the exon-intron structure of the

SbCBL genes. Then, the conserved motifs of S. bicolor CBL proteins

were predicted using MEME Suite 5.5.3 (https://meme-suite.org/

meme/tools/meme) (Bailey et al., 2009) software, setting the

maximum number of motifs to 10, the motif length range from

6-50 amino acids, and other parameters as default. In addition, the

conserved structural domains of the S. bicolor CBL gene family were

predicted by NCBI-CDD. Finally, the gene structures, conserved

motifs, and conserved structural domains of S. bicolor CBL gene

family members were comprehensively analyzed using TBtools

software (Chen et al., 2023).
2.3 Phylogenetic tree construction

The amino acid sequences of S. bicolor CBL gene family

members and CBL protein sequences of A. thaliana, O. sativa, Z.

mays, Solanum lycopersicum (S. lycopersicum) and Setaria italica (S.

italica) were subjected to multiple sequence comparison using

MEGA 7.0 software (Kumar et al., 2016). Neighbor-joining (NJ)

was then used to construct the phylogenetic tree. In the parameter

settings, the number of bootstrap tests was 1000, and the Poisson

correction model was selected to calculate the genetic distance.

Finally, the evolutionary tree was embellished by iTOL (https://

itol.embl.de/) online website to show the evolutionary relationship

between S. bicolor CBL gene family and members of this gene family

in other plants, and to analyze the evolutionary pattern and

classification of the gene family.
2.4 Analysis of replication events and
selection pressure

Tandem and genome-wide replication events of the S. bicolor

CBL gene family were analyzed using MCScan X (Wang et al.,

2012). The Simple Ka/Ks Calculator module in TBtools software

was used to input the coding sequences (CDS), protein sequences,

and immediately homologous gene pairs of the genes, respectively,

and the Ka (non-synonymous substitution rate)/Ks (synonymous

substitution rate) values between homologous genes were calculated

to estimate the selection pressure. In addition, MCScan X (Wang

et al., 2012) was applied to analyze the covariation events between S.

bicolor and A. thaliana, S. lycopersicum, O. sativa, and S. italica CBL

gene families.
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2.5 Gene expression analysis

Transcriptome data of different tissues of S. bicolor (including

seedlings, leaves, roots, stems, inflorescences, and seeds, etc.) at

different developmental stages were obtained from the S. bicolor

Genome and Mutant Bank SGMD database (Chen et al., 2025).

Then, we utilized Tbtools software to analyze gene expression data

from various tissues, screening for CBL genes that exhibited high

expression levels across different tissues and developmental stages.

The data are shown in a heatmap with gene expression in different

tissues with row-scaled transcriptome atlas (TPM values). Red and

blue boxes indicate high and low expression levels of SbCBL genes.
2.6 RT-qPCR

S. bicolor was grown in a growth chamber at Yan’an University

with 16.0 hours of light, temperature maintained at 25°C and 70%

humidity. To determine the expression level of CBL gene after NaCl

and PEG treatments, S. bicolor seedlings at the three-leaf-one-heart

stage were selected and treated with 150 mM NaCl and 15% PEG,

respectively, followed by collection of S. bicolor root samples 7 days.

All experiments were performed in three biological replicates

(Three biological replicates and three technical replicates per

biological sample were performed.). Total RNA was isolated using

the Plant Total RNA Kit from Beijing Zhuangmeng International

BioGenetics Co. Ltd. and reverse transcription was performed using

HiScript IV All-in-One Ultra RT SuperMix for qPCR from

Novozymes. The RT-qPCR amplification reaction system

consisted of 5 mL 2×SYBR, 3 mL ddH2O, 1 mL cDNA template,

and 0.5 mM forward and reverse primers in a total volume of 10 mL.
The expression level of SbCBL gene was analyzed by the 2-DDCT

method in response to different stress treatments (Xue et al., 2024),

and SbACTIN was used as an internal reference gene to analyze the

expression level of SbCBL gene under different stress treatments.
3 Result

3.1 Identification of S. bicolor CBL gene
family members

Using HMMER 3.3.2 software based on the HiddenMarkovModel

of the CBL conservative domain (PF04833) in the Pfam database, we

searched and validated S. bicolor protein sequences using NCBI-CDD.

Finally, we identified ten CBL gene family members. These genes were

named SbCBL1-SbCBL10 and SbECBL1-SbECBL10 based on their

location on the chromosomes. The distribution of these 20 genes on

the S. bicolor chromosomes was visualized using TBtools software, and

the results are shown in Figure 1. S. bicolor CBL gene family members

were unevenly distributed across three chromosomes: five genes

(SbCBL1-SbCBL5) were found on chromosome 1; four genes were

found on chromosome 2; and one gene was found on chromosome 6.

This uneven distribution patternmay be related to the evolution of gene

families, chromosome structure, and gene function.
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This study systematically analyzed the amino acid length,

molecular weight, isoelectric point, instability index, and

hydrophilicity of these members. The results showed that the

lengths of the amino acid sequences encoded by the S. bicolor

CBL gene family members differed significantly. For instance,

SbCBL1 encodes 187 amino acids, whereas SbCBL7 encodes a

protein consisting of 673 amino acids (Figure 2A). Additionally,

the amino acid lengths of CBL homologous genes differed between

the two S. bicolor varieties. For instance, SbCBL9 corresponds to

SbECBL9, which has 446 and 686 amino acids, respectively. This

difference in length may reflect the functional complexity of

different members. In terms of molecular weight, members of the

S. bicolor CBL gene family exhibited similar diversity. The results

showed that family proteins have a wide range of molecular weights.

For example, SbCBL1 has a molecular weight of 46.832 kDa, while

SbCBL7 has a molecular weight as high as 74.62 kDa. There are also

members with a predicted molecular weight of about 36.72 kDa

(Figure 2B). This difference in molecular weight may be closely

related to the structural and functional diversity of the proteins.

Notably, 70% of the SbCBL gene family members in Sorghum

bicolor exhibit an isoelectric point (pI) exceeding 7. This prevalence

of basic pI values underscores the potential functional adaptations

of these proteins for operating in alkaline cellular environments or

interacting with negatively charged macromolecules (Figure 2C).

Additionally, 70% of SbCBL proteins were predicted to be unstable

(PI ≥ 40), while 30% were stable (Figure 2D). This result establishes
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a foundation for the subsequent in-depth study of this family’s

protein functions. Through computational predictions of

subcellular localization, all members of the SbCBL protein family

exhibited exclusive targeting to the plasma membrane, indicating a

highly conserved localization pattern. This striking uniformity in

membrane association strongly suggests that SbCOBL proteins may

play specialized roles in cell wall-plasma membrane interactions,

potentially regulating cellulose deposition patterns or mediating

mechanical stress responses at the cell surface.
3.2 Systematic evolutionary analysis

To resolve the evolutionary classification of the S. bicolor CBL

gene family, this study used MEGA 7.0 software to conduct a

phylogenetic analysis of the amino acid sequences of 10 SbCBL and

10 SbECBL members. The results showed that the CBL proteins of

the two S. bicolor varieties can be categorized into three subfamilies:

Group I, Group II, and Group III (Figure 3A). Group I contains 12

members: SbCBL1, SbCBL2, SbCBL3, SbCBL4, SbCBL7, SbCBL8,

SbECBL1, SbECBL2, SbECBL3, SbECBL4, SbECBL7, and SbECBL8.

Group II includes SbCBL10 and SbECBL10, and Group III includes

SbCBL5, SbCBL6, SbCBL9, SbECBL5, SbECBL6, and SbECBL9.

To further elucidate the phylogenetic position of the S. bicolor

CBL genes, this study integrated CBL protein sequences from S.

bicolor, A. thaliana, S. lycopersicum, O. sativa, S. italica and Z. mays
FIGURE 1

Chromosomal distribution of CBL genes in S. bicolor. (A) Chromosomal distribution of CBL genes in S. bicolor BTx623. (B) Chromosomal distribution
of CBL genes in S. bicolor E048.
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for a multiple comparison analysis (Figure 3B). Phylogenetic trees

constructed using the neighbor-joining method showed that the

CBL genes of all species could be divided into three significant

branches (Figure 4B). Group I mainly included six SbCBLs, six

SbECBLs, five AtCBLs, ten SlCBLs, seven OsCBLs, five ZmCBLs,

and six SiCBLs. Group II mainly consisted of three SbCBLs, three

SbECBLs, five AtCBLs, five SlCBLs, three OsCBLs, three ZmCBLs,

and two SiCBLs. Group III mainly consisted of one SbCBL, one

SbECBL, one AtCBL, two SlCBLs, one OsCBL, one ZmCBL, and

one SiCBL. The results of the phylogenetic analysis showed that the

S. bicolor CBL gene family has evolved to be related to CBL genes

from other plants while maintaining its own specificity. ZmBk2L3, a

COBRA family protein, functions in the regulation of cell wall

dynamics and carbohydrate partitioning (Julius et al., 2021).

Phylogenetic analysis revealed that its clustering with SbCBL1/2

and SbECBL1/2 suggests involvement in cell membrane-associated

signaling or cell wall modification via similar mechanisms. ZmBk2

maintains the flexibility of plant organs by modulating the lignin-

cellulose interaction pattern (Sindhu et al., 2007). Additionally,

phylogenetic analyses revealed that ZmBk2 clusters with SbECBL4

and SbCBL4, indicating that the protein may perform similar

functions via conserved molecular mechanisms.
3.3 Gene structure and conserved motif
characterization

A gene structure and conserved Motif analysis of S. bicolor CBL

genes revealed significant structural and functional differences.
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Gene structure revealed notable variations in exon-intron structure

among different subgroups. Specifically, members of subgroup I have

three to seven exons and exhibit structural diversity. Members of

subgroup II, such as SbCBL10 and SbECBL10, have six and four exons,

respectively. Notably, subgroup III members have a more concise gene

structure with only one or two exons. This diversity in gene structure

may be closely related to functional differentiation and the evolutionary

history of genes (Figures 4A, B). Different exon-intron structures may

lead to variations in gene transcription and translation processes, which

may affect gene function and expression regulation.

Conserved motif analysis performed by MEME Suite 5.5.3

identified a total of 10 characteristic motifs (Motif1-Motif10).

Systematic analysis revealed that all motifs were intact in

subgroup I, suggesting that these core elements may collectively

maintain the basal biological functions of CBL proteins. Subgroup II

exhibited a distinct motif deletion pattern: SbCOBL10 lacked

Motif9, and SbECOBL10 lacked Motifs 1 and 9 (Figure 4C).

Members of the third subgroup contained only Motifs 1, 2, 3, and

4, which were distributed in a manner that may be related to the

functional differentiation of gene family members. The distribution

of motifs 1, 2, 3, and 4 is specific and may be related to the

functional differentiation of gene family members (Figure 4C).

Analysis of gene structure and conserved motifs revealed that S.

bicolor CBL gene family members are structurally conserved yet

diverse. These conserved structural features may ensure the gene

family’s basic function, while diverse structures provide the basis for

the genes’ functional differentiation and evolution, enabling

different gene members to play unique roles in S. bicolor growth,

development, and environmental adaptation.
FIGURE 2

Analysis of physicochemical properties of S. bicolor CBL protein. (A) Statistics of amino acid length of S. bicolor CBL protein. (B) Statistics of
molecular weights of S. bicolor CBL protein. (C) Statistics of Isoelectric point of S. bicolor CBL protein. (D) Statistics of Instability Index of S. bicolor
CBL protein.
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3.4 Analysis of duplication events

To reveal the expansion mechanism of the S. bicolor CBL gene

family and its evolutionary constraints, this study systematically analyzed

the types of replication events and selection pressures that characterize its

members. As shown in the Figure 5, tandem duplication (TD) events

drove the clustered distribution of CBL3 and CBL4. Meanwhile, Whole

Genome Duplication (WGD) events contributed to the generation of

two paralogous gene pairs: CBL3/CBL7 and CBL5/CBL9.

Further analysis of the ratio of non-synonymous to

synonymous substitution rates (Ka/Ks) revealed that the Ka/Ks

values of these replication events were significantly less than one

(CBL3/CBL7: Ka/Ks = 0.1; CBL5/CBL9: Ka/Ks = 0.27), suggesting

that these genes underwent strong purifying selection

(Supplementary Table 2). This indicates that these genes

experienced strong purifying selection during evolution.
3.5 Synteny analysis of S. bicolor and other
species

To elucidate the evolutionary trajectory of the CBL gene family

in S. bicolor, this study performed whole-genome synteny analysis
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using MCScan X between S. bicolor and representative species,

including the dicot model plant A. thaliana, monocot crops O.

sativa and S. italica, as well as the solanaceous crop S. lycopersicum.

A total of 3 (S. bicolor–A. thaliana), 10 (S. bicolor–S. lycopersicum),

10 (S. bicolor–O. sativa), and 10 (S. bicolor–S. italica) CBL

homologous gene pairs were identified (Figure 6). Notably, O.

sativa, S. italica and S. bicolor, as closely related species within

the Gramineae family, exhibited significantly more syntenic gene

pairs than A. thaliana, indicating that the CBL gene family retained

higher genomic structural conservation after monocot–dicot

divergence. Further analysis revealed “one-to-many” homologous

relationships between certain S. bicolor CBL genes and multiple

species. For instance, SbCBL3 showed synteny with both SlCBL1

and SlCBL1 in S. lycopersicum. Similarly, SbCBL3 corresponded to

three homologs in S. italica (SiCBL2 and SiCBL7) and two in O.

sativa (OsCBL1 and OsCBL6).
3.6 Analysis of promoter cis-acting
elements of the S. bicolor CBL gene family

To analyze the transcriptional and regulatory features of the

S. bicolor CBL gene family, this study systematically analyzed the cis-
FIGURE 3

Phylogenetic analysis of CBL proteins. (A) Phylogenetic analysis of CBL proteins in S. bicolor. The evolutionary tree was constructed using the
neighbor-joining (NJ) method with 1,000 bootstrap replicates in MEGA 7. CBL proteins were classified into three subfamilies: Group I, Group II, and
Group III, represented by purple, blue and pink branches, respectively. (B) Phylogenetic analysis of CBL proteins in S. bicolor, A thaliana,
S. lycopersicum, O. sativa, S. italica and Z. mays. The evolutionary tree was constructed using the neighbor-joining (NJ) method with 1,000
bootstrap replicates in MEGA 7. CBL proteins were classified into three subfamilies: Group I, Group II, and Group III, represented by purple, blue and
pink branches, respectively.
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acting elements in the upstream promoter region (2,000 bp prior to the

transcriptional start site) of the gene using the PlantCARE database.

The results showed that the CBL gene promoter region contained

abundant regulatory elements, mainly categorized into four groups:
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hormone response, abiotic stress response, light signaling regulation,

and growth and development (Figure 7; Supplementary Table 3). All

members carried abscisic acid (ABA) response elements (ABRE,

ACGTG) and methyl jasmonate (MeJA) response elements (TGACG
FIGURE 4

Phylogenetic, conserved motif, domain, and gene structure analysis of S. bicolor, A thaliana, S. lycopersicum, O. sativa, S. italica and Z. mays CBL
proteins. (A) Phylogenetic analysis of S. bicolor, A thaliana, S. lycopersicum, O. sativa, S. italica and Z. mays CBL proteins. The neighbor-joining (NJ)
tree was constructed using MEGA 7 with 1,000 bootstrap replicates. (B) Intron-exon structure of S. bicolor, A. thaliana, S. lycopersicum, O. sativa,
S. italica and Z. mays CBL genes. Visualization was performed using TBtools. (C) Conserved motif analysis of S. bicolor, A. thaliana, S. lycopersicum,
O. sativa, S. italica and Z. mays CBL proteins. Ten motifs were identified using the online tool MEME with default parameters.
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FIGURE 6

Synteny analysis of CBL genes with other species. Synteny between S. bicolor BTx623 and A. thaliana CBL genes. Synteny between S. bicolor and S.
lycopersicum CBL genes. Synteny between S. bicolor and O. sativa CBL genes. Synteny between S. bicolor and S. italica CBL genes.
FIGURE 5

Analysis of gene duplication events of CBL genes in S. bicolor. (A) Gene duplication events of S. bicolor BTx623 CBL genes. Whole-genome
duplication (WGD) events are indicated by purple lines, and tandem duplicated genes are labeled with purple gene IDs. (B) Gene duplication events
of S. bicolor E048 CBL genes. Whole-genome duplication (WGD) events are indicated by purple lines, and tandem duplicated genes are labeled with
purple gene IDs.
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motif, TGACG), indicating that the S. bicolor CBL gene family may be

involved in regulating adversity acclimatization through ABA and

MeJA signaling pathways. Additionally, some members contained

cis-regulatory elements related to growth hormones, salicylic acid,

and gibberellin, implying that these members may be involved in

multiple stress responses through hormone crosstalk. Abiotic stress

response elements included the drought response element MBS

(CAACTG), the low temperature response element LTR

(CCGAAA), the anaerobic-induced element ARE (AAACCA), and

the mechanical damage response element. Members of subgroup III

(e.g., SbCBL7/9) showed a notably high frequency of the low-

temperature response element LTR (CCGAAA) in the promoter

region. This density was significantly higher than that of the other

subgroups. This suggests that subgroup III may enhance cold hardiness

by activating low-temperature acclimation pathways. Meanwhile,

subgroups II and III specifically carried the mechanical damage

response element, the WUN motif (AAATTACCT), which may

respond to physical stress by regulating the cell wall.
3.7 Analysis of gene expression patterns

We analyzed the expression patterns of 10 S. bicolor CBL gene

family members based on transcriptome data of different S. bicolor

tissues (e.g., roots, stems, leaves, flowers, and seeds) at different

developmental stages in the SGMD database (Supplementary

Table 4). The data are presented in a heatmap illustrating gene

expression across various tissues, utilizing a row-scaled transcriptome

atlas based on TPM (Transcripts Per Million) values. In this

visualization, red boxes signify high expression levels of SbCBL

genes, while blue boxes indicate low expression levels. As illustrated

in Figure 8, various CBL genes exhibited significant expression
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variations across different S. bicolor tissues and developmental

stages. In root tissues, the expression levels of SbCBL1, SbCBL5 and

SbCBL9 were relatively high, suggesting that these genes play

important roles in root growth and development. The normal

development of roots is crucial for plant growth and survival

because they are an important organ for water and nutrient uptake

in plants. These genes may promote root growth and development by

regulating cell wall synthesis and modification in root cells, as well as

affecting cell elongation and differentiation. In stem tissues, SbCBL2,

SbCBL4 and SbCBL8 exhibited high expression levels, suggesting

their involvement in stem elongation and thickening processes. Stem

growth and development play a key role in supporting the plant and

transporting materials. These genes may regulate the arrangement

and deposition of cellulose microfilaments in stems, enhancing their

mechanical strength to support the plant during growth. SbCBL6,

SbCBL7 and SbCBL10 are expressed at significantly higher levels in

inflorescence tissues than in other tissues, suggesting that they play

important roles in flower development and reproduction.

The expression level of SbCBL3 was significantly higher in the seed

grain than in other tissues, suggesting that this gene plays an important

role in seed grain development. Because material accumulation and

maturation directly affect S. bicolor yield and quality, SbCBL3 may

influence seed grain size, shape, and starch accumulation by regulating

cell wall synthesis and modification, ultimately affecting S. bicolor yield

and quality. Gene expression pattern analysis revealed that members of

the S. bicolor CBL gene family exhibit distinct expression patterns in

various tissues and developmental stages. This differential expression

may be closely related to the functional differentiation of these genes.

These gene family members play unique roles in different stages of S.

bicolor growth and development, as well as in different tissues. They are

involved in plant growth, development, and reproduction by regulating

cell wall synthesis and modification.
FIGURE 7

Analysis of cis-regulatory elements in the promoter regions of S. bicolor CBL gene.
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3.8 Expression profile of SbCBL in S.
bicolor in response to NaCl and PEG

To explore the expression pattern of the CBL gene in S. bicolor

under drought and salt stress, we selected a CBL gene with high

expression levels in the roots and performed RT-qPCR analysis. As

shown in Figure 9, the expression levels of several CBL genes changed

significantly under NaCl and PEG treatment. Under NaCl treatment,
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the expression level of SbCBL4 increased, while the expression levels of

SbCBL3, SbCBL5, SbCBL7, SbCBL8 and SbCBL9 decreased. Conversely,

PEG treatment up-regulated the expression of genes such as SbCBL4

and SbCBL8, while down-regulating the expression of SbCBL1, SbCBL2,

SbCBL3, SbCBL5 and SbCBL9. Notably, the SbCBL3, SbCBL5 and

SbCBL9 genes were down-regulated following both drought and salt

stress treatments. These results suggest that the CBL gene in S. bicolor

plays a role in the S. bicolor response to salt and drought stress.
FIGURE 9

Analysis of the expression levels of CBL1, CBL2, CBL3, CBL4, CBL5, CBL6, CBL7, CBL8, CBL9 and CBL10 after treatment with NaCl and PEG. All data
are means ± sd ( n ≥ 3). Letters a, b and c represent statistical significance, P < 0.05.
FIGURE 8

The heat map shows the expression level of the S. bicolor CBL gene in different tissues. Red and blue boxes indicate high and low expression levels
of SbCBL genes.
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4 Discussion

4.1 Structural and functional speculation of
the CBL gene family in S. bicolor

In this study, 10 members of the CBL gene family were identified

from the S. bicolor BTx623 and E048 genomes, respectively

(Figure 1). Gene structure analysis showed that the number of

exons of these members ranged from 1-7, and there were

differences in exon lengths and intron phases (Figure 3). Through

conserved motif analysis, we identified 10 conserved motifs, of which

Motif1, Motif2, Motif3 and Motif4 were distributed among all

members, indicating that these motifs are important for

maintaining the basic structure and function of CBL proteins

(Figure 3). The structural features of genes are usually closely

related to their functions (Sajjad et al., 2023). The diversity in

exon-intron structure of S. bicolor CBL gene family members

implies that they may be functionally differentiated. For example,

SbCBL2, SbCBL3, SbCBL4, SbCBL7 and SbCBL8, which have a higher

number of exons, may encode proteins with more complex structures

and functions, which are involved in the regulation of multiple

processes in S. bicolor growth and development, whereas SbCBL5,

SbCBL6 and SbCBL9, which have a relatively low number of exons,

may encode proteins that are simpler. This phenomenon has been

observed in other species (Sajjad et al., 2023). Based on gene structure

and conserved motif analyses combined with existing research

reports, it is hypothesized that members of the S. bicolor CBL gene

family are involved in several aspects of S. bicolor growth and

development. However, these functional speculations require

further experimental validation. Future studies could knock out or

overexpress members of the S. bicolor CBL gene family using gene

editing techniques, such as CRISPR-Cas9, to observe their effects on

growth and development, cell wall structure, and related physiological

processes. Simultaneously, proteomics and biochemical methods will

be used to thoroughly study the interaction mechanism between CBL

proteins and other molecules and clarify their specific functions and

pathways of action within the cell.
4.2 Comparison with CBL gene families of
other species

In this study, we identified a total of 10 CBL genes in S. bicolor,

which aligns closely with the number of genes in this family

reported in other monocotyledonous plants. For instance, O.

sativa has 11 CBL genes (Li et al., 2003), Z. mays has 9 (Brady

et al., 2007). In contrast, among dicotyledonous plants, A. thaliana

possesses 12 CBL genes (Roudier et al., 2002), S. lycopersicum has 17

(Cao et al., 2012), P. trichocarpa 14 (Sajjad et al., 2023), and G.

hirsutum has 39. This indicates a significant variation in the number

of CBL family genes across different plant species.This suggests that

the CBL gene family is highly conserved across monocotyledonous.

Phylogenetic tree analysis revealed that the CBL genes of S. bicolor

are interspersed with those of O. sativa and Z. mays, forming several

small sub-branches (Figure 4). This indicates that S. bicolor is
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evolutionarily related to O. sativa and Z. mays in the CBL gene

family and may share some functions with them. For instance,

SbCOBL5, SbCOBL9, SbECOBL5, and SbECOBL9 clustered with

OsBC1L1 and OsBC1L8, as well as ZmBK2L1 and ZmBK2L8,

forming a sub-branch with some maize CBL genes (Figure 4).

By comparing the conserved motifs of CBL genes in different

species, it was found that several species have Motif1, Motif2, Motif3,

and Motif4 (Figure 3). These motifs are found in CBL proteins from S.

bicolor, A. thaliana, O. sativa and Z. mays. This suggests that they play

important roles in the basic functions of the CBL gene family. Theymay

be involved in the interaction of CBL proteins with other molecules or

in maintaining the proteins’ structural stability. A comparative analysis

of the CBL gene family with CBL gene families of other species reveals

the evolutionary conservation and specificity of the S. bicolor CBL gene

family. This conservation is reflected in similarities with other plants in

terms of gene structure, conserved motifs, and evolutionary

relationships. These similarities provide important clues for a deeper

understanding of the CBL gene family’s basic functions.
4.3 Relationship between gene expression
patterns and S. bicolor growth and
development

Gene expression pattern analysis revealed that members of the

S. bicolor CBL gene family exhibit distinct expression patterns in

various tissues and developmental stages (Figure 8). Root growth

and development is a complex process involving cell division,

elongation, and differentiation, and CBL genes may affect cell

morphogenesis and physiological functions by regulating cell wall

synthesis and modification in root cells (Shao et al., 2020). In A.

thaliana and O. sativa, it has been shown that CBL genes regulate

the initiation and growth of root hairs (Roudier et al., 2005; Ben

et al., 2015; Li et al., 2022). In root tissues, the high expression of

SbCBL1, SbCBL5 and SbCBL9 may regulate root growth and

development (Figure 8). For instance, these genes may regulate

the orientation of cellulose microfilaments, affecting root cell

elongation and differentiation. The highly expressed CBL genes in

S. bicolor root tissues may have similar functions and play an

important role in regulating root growth and development.

SbCBL2, SbCBL4, and SbCBL8 are highly expressed in stem

tissues (Figure 8). The mechanical strength of stems is crucial for

upright growth and material transportation, as they are an important

support structure in plants (Zhao et al., 2020; Zhang et al., 2022).

SbCBL2, SbCBL4, and SbCBL8 may enhance cell wall strength and

toughness by regulating cellulose microfilament arrangement and

deposition in the stem, thus promoting elongation and thickening.

Phylogenetic analyses confirmed this hypothesis, showing that

ZmBk2 maintains plant organ flexibility by regulating the

interaction between lignin and cellulose (Sindhu et al., 2007).

ZmBk2 clusters with SbECBL4 and SbCBL4, suggesting that it may

perform similar functions through conserved molecular mechanisms.

Different SbCBL genes showed differential expression patterns under

drought and salt stress conditions (Figure 9). Specifically, NaCl

treatment significantly increased the expression level of SbCBL4
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while decreasing the expression of SbCBL3, SbCBL5, SbCBL7, SbCBL8

and SbCBL9. Conversely PEG treatment increased the expression of

SbCBL4 and SbCBL8 while decreasing the expression of SbCBL1,

SbCBL2, SbCBL3, SbCBL5, and SbCBL9. Analysis of the cis-acting

elements of the SbCBL promoters revealed that SbCBL5, SbCBL7,

SbCBL8 and SbCBL9 contain regulatory elements related to drought

response. These results suggest that the SbCBL gene family plays a

critical role in sorghum’s response to drought and salt stress. This role

has also been confirmed in other plants, such as rice and cotton (Sun

et al., 2022; Fu et al., 2024). This finding is consistent with previous

research indicating that CBL genes play important roles in drought

and salt tolerance in other species. These findings provide important

clues for understanding the molecular regulatory mechanisms of S.

bicolor growth and development and potential gene targets for genetic

improvement andmolecular breeding of S. bicolor. Future studies can

explore these genes’ specific mechanisms during S. bicolor growth and

development through gene function validation experiments. This will

provide stronger theoretical support for improving S. bicolor varieties

and agricultural production.
4.4 Limitations and prospects of the study

In this study, a more comprehensive bioinformatics

analysis of the CBL gene family of S. bicolor was conducted.

However, certain limitations still exist. First, regarding gene

function validation, this study only analyzed gene structure,

evolution, and expression patterns using bioinformatics

methods. Thus, experimental validation of gene functions has

not yet been carried out. Although potential gene functions were

hypothesized based on gene structure and expression patterns,

these hypotheses must be verified using techniques such as gene

editing and transgenesis. Second, due to limitations in

experimental conditions and technical capabilities, this study

only used transcriptomic data for gene expression analysis,

lacking protein-level validation. It is important to note that gene

expression ultimately reflects protein expression; however,

transcriptome data only reflects changes in the transcription

level of genes, which does not accurately reflect protein

expression. Future research can be carried out in the following

directions: 1. To verify gene function, use CRISPR-Cas9 and

other gene-editing technologies to construct S. bicolor CBL gene

family knockout mutants and overexpression plants. Through

phenotyping and analyzing physiological and biochemical

indexes, study the specific functions and mechanisms of the

genes in S. bicolor growth, development, and response to

adverse stress. 2. Combine proteome data with transcriptome

data to study protein expression. Using proteomics technology,

we will analyze protein expression in different S. bicolor tissues

and developmental stages. This will allow us to verify the

relationship between gene and protein expression and further

clarify gene function.3. We will study the interactions between

members of the CBL gene family and other genes. Then, we will

construct a gene regulatory network to help us understand the
Frontiers in Plant Science 12
molecular regulatory mechanisms of S. bicolor growth,

development, and response to adversity.
5 Conclusions

A total of ten CBL genes were identified in the genomes of

BTx623 and E048 S. bicolor. Phylogenetic analysis revealed that

CBLs can be classified into three subfamilies: Group I, Group II, and

Group III. Gene duplication events indicate that WGD was the

primary driver of the expansion of the CBL gene family. The tissue-

specific expression patterns of SbCBL genes suggest varying

expression levels across different organs and tissues in S. bicolor,

with SbCBL1, SbCBL5, and SbCBL9 showing significantly higher

expression levels in roots. Furthermore, treatments with PEG and

NaCl markedly affected the expression levels of SbCBL genes;

specifically, SbCBL4 expression increased following PEG

treatment, while SbCBL9 expression decreased after NaCl

treatment. Overall, this study provides valuable insights into the

role of the CBL gene family in S. bicolor.
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