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Multi-omic analyses reveal the
waterlogging induced responses
In Magnolia sinostellata
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and Yaling Wang™**

tXi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi‘an, China,
2College of Tropical Agriculture and Forestry, Hainan University, Haikou, China

Waterlogging stress poses a significant constraint on the cultivation and landscape
utilization of Magnolia species. Currently, the molecular mechanisms underlying
their adaptation remain largely unexplored. Magnolia sinostellata, a riparian species
with exceptional waterlogging tolerance, provides an ideal model to decipher
these mechanisms. Here, we integrated transcriptomic and metabolomic analyses
to investigate the dynamic responses of different tissues (roots, stems, leaves) in
M. sinostellata to waterlogging stress at O h, 6 h, and 72 h. Roots showed the
strongest response, with 12,538 DEGs and 178 DEMs. Additionally, the
morphological adaptations included hypertrophic lenticel, aerenchyma
formation and adventitious root development. The combined analysis of
transcriptome and metabolome indicates that the plant signal transduction
pathway plays an important role in responding to waterlogging stress. Our
findings demonstrate that multiple phytohormone signaling pathways, including
IAA, JA, CTK, GA, and ET, collectively regulate the tolerance of M. Sinostellata to
waterlogging stress. Notably, we identified jasmonic acid (JA) as a negative
regulator of this adaptive response, contrasting with its positive role in other
species, and pinpointed key candidate genes (CKX and JARI). Taken together, this
study advances our theoretical understanding of woody plant adaptation to
waterlogging stress and delivers practical genetic tools for developing
waterlogging-resistant ornamental cultivars.

KEYWORDS

waterlogging stress, Magnolia sinostellata, transcriptomic, metabolomic, plant signal
transduction pathway

1 Introduction

Waterlogging has emerged as a critical environmental constraint that severely impairs
plant growth, distribution, and productivity across natural ecosystems by disrupting water
balance, altering morphology, and suppressing metabolic activity (Xu et al., 2024; Bidalia
et al,, 2018). Climate change results in the increasing incidence of waterlogging events (Li
et al,, 2022). Therefore, researchers are conducting extensive studies to unravel the
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mechanisms behind plant hypoxia response, aiming to develop
waterlogging-resistant varieties (Liu et al., 2023; Shi et al., 2024).
Waterlogging triggers hypoxia-induced physiological and
biochemical alterations, characterized by increased redox
potential and reactive oxygen species (ROS) accumulation,
ultimately resulting in oxidative damage and membrane lipid
peroxidation (Xu et al., 2022; Arbona et al, 2017; Gang et al,
2020). To mitigate these effects, plants employ integrated adaptive
strategies spanning multiple organizational levels: morphological
adaptations (adventitious root formation and aerenchyma
development) (Bailey-Serres and Voesenek, 2008; Dawood et al.,
2016), metabolic reprogramming (anaerobic respiration and stress-
induced metabolic shifts) (Voesenek and Bailey-Serres, 2015), and
dynamic transcriptional regulation of stress-responsive genes
(Zhang et al, 2016). With advancements in high-throughput
RNA sequencing (RNA-seq) technology, numerous studies have
employed transcriptomic approaches to dissect the molecular
response mechanisms in crops, forestry species, and fruit trees
(Wang et al., 2024; Zhang et al., 2023, 2024, 2025). These studies
have provided valuable insights into the molecular basis of
waterlogging tolerance. However, woody ornamentals lack
equivalent mechanistic studies, particularly regarding
phytohormone networks that integrate stress signaling with
developmental plasticity.

Plant hormones serve as critical chemical messengers that
coordinate both developmental programs and adaptive responses
to waterlogging stress across all growth stages (Fukao et al., 2019;
Huang et al., 2022). These signaling molecules, including ethylene
(ET), auxin (IAA), abscisic acid (ABA), gibberellin (GA), and

Abbreviations: ABA, abscisic acid; ANOVA, analysis of variance; CK, control;
CKX, cytokinin oxidase; CTK, cytokinin; DEGs, differentially expressed genes;
DEMs, differentially expressed metabolites; EIN, ethylene insensitive; ERFI,
ethylene response factor 1; ET, ethylene; ETR, ethylene receptor; FAA,
formalin-acetic acid-alcohol; FC, fold change; GA, gibberellin; GC, guanine-
cytosine content; GID1, gibberellin insensitive dwarf 1; GO, gene ontology; H2JA,
hydroxylated jasmonic acid; IAA, auxin; Acid; IAA-Ala, indole-3-acetyl-alanine;
ICAld, indole-3-Ccarboxaldehyde; IPT, Isopentenyltransferase; JA, jasmonic
acid; JA-Ile, jasmonoyl-l-isoleucine; JAR1, jasmonate resistant 1; KEGG, kyoto
encyclopedia of genes and genomes; LC-QTOF-MS, liquid chromatography-
quadrupole time-of-flight mass spectrometry; LCK_Oh, waterlogging stress Oh in
leaves; LWL_6h, waterlogging stress 6h in leaves; LWL_72h, waterlogging stress
72h in leaves; MEIAA, methyl indole-3-acetic acid; LOG, Lonely Guy; OPDA, 12-
oxophytodienoic acid; OPLS-DA, orthogonal partial least squares-discriminant
analysis; PAR, photosynthetically active radiation; PCA, principal component
analysis; padj, adjusted p-value; Q20, quality score 20; qRT-PCR, quantitative
real-time polymerase chain reaction; RNA-seq, RNA sequencing; ROS, reactive
oxygen species; RCK_0h, waterlogging stress Oh in root; RWL_6h, waterlogging
stress 6h in root; RWL_72h, waterlogging stress 72h in root; SA, salicylic acid; SD,
standard deviation; SCK_0Oh, waterlogging stress Oh in stem; SWL_6h,
waterlogging stress 6h in stem; SWL_72h, waterlogging stress 72h in stem;
TRA, tryptamine; TRP, tryptophan; tZOG, trans-Zeatin O-Glucosyltransferase;
UPLC, ultra-performance liquid chromatography; VIP, variable importance in

projection; WGCNA, weighted gene co-expression network analysis.
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jasmonate acid (JA), form an intricate network that modulates
physiological and morphological adaptations to oxygen deprivation
(Voesenek and Bailey-Serres, 2015). Under waterlogging stress, they
undergo dramatic reprogramming to initiate survival strategies,
making them central to plant resilience in waterlogging-prone
environments (Sasidharan et al., 2018). The rapid accumulation
of ET serves as the primary hypoxia signal, triggering a cascade of
downstream responses (Hartman et al., 2019). Adventitious root
development progresses are differentially regulated through
complex interactions between ET, GA, and ABA signaling
cascades (Steffens et al, 2006). TAA regulates the formation of
adventitious roots mainly through its transport and signal
transduction pathways (Pamfil and Bellini, 2011; Adem et al,
2024). Recent studies have revealed that JA plays a dual role, both
during the hypoxia phase and the critical reoxygenation period
following waterlogging. Meanwhile, the regulation of waterlogging
stress by JA shows differences among different species (Yuan et al.,
2017; Pan et al,, 2025). These hormonal interactions are further
fine-tuned by ROS signaling, creating a complex but highly
coordinated defense network (Bailey-Serres and Voesenek, 2008).
As climate change increases the frequency of extreme rainfall
events, elucidating the precise roles of phytohormones in
waterlogging responses becomes increasingly crucial for the
application of horticultural ornamental plants (Sasidharan et al,
2018). Understanding these hormonal mechanisms has significant
implications for developing waterlogging-resistant varieties through
both conventional breeding and biotechnological approaches
(Septiningsih and Mackill, 2018). The identification of key
regulatory genes in hormone pathways offers promising targets
for genetic improvement of waterlogging tolerance (Loreti
et al,, 2016).

Magnolia species possess both ornamental, medicinal, timber,
ecological and research values, and are important plant materials
for building low-carbon ecological gardens. However, due to their
mostly fleshy roots and their aversion to low humidity, when the
planting area is flooded, the roots are prone to rot. This
characteristic greatly limits their application in garden green
spaces, especially in regions similar to East China and South
China where there is frequent rainfall and seasonal soil
waterlogging (Wang et al, 2022). In contrast to most magnolias,
M. sinostellata thrives in riparian habitats, a trait rarely observed in
the genus (Zhang, 2013; Yu et al., 2019; Wang et al., 2022). This rare
intraspecific variation makes it an ideal model for analyzing the
waterlogging adaptation mechanism of woody plants. We
hypothesized that M. sinostellata employs unique physiological
and molecular adaptations, distinct from other Magnolia species,
to cope with waterlogging stress. Recent advances in waterlogging-
tolerant woody plants (e.g., Malus domestica and Prunus persica)
highlight the role of hormone signal transduction (Zhang et al,
2023; Ateeq et al, 2025), but whether M. sinostellata employs
similar or distinct strategies remains unexplored. To address this
knowledge gap, our investigation employed M. sinostellata as a
model system to systematically decode its hydraulic adaptation
mechanisms through an integrated transcriptomic-metabolomic
framework. This study has enhanced our understanding of the
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response of M. sinostellata to waterlogging stress, revealing the
potential regulatory pathways and candidate genes involved in this
process. It provides theoretical support for molecular breeding of
the purple flower magnolia for waterlogging tolerance. Meanwhile,
it explores the molecular mechanism of waterlogging tolerance in
the purple flower magnolia, providing molecular markers for the
selection of new varieties of water-tolerant magnolia, which is
helpful in addressing the breeding bottlenecks in current
urban greening.

2 Materials and methods

2.1 Plant materials and waterlogging stress
treatment

The one-year-old cutting seedlings of M. sinostellata were obtained
from Xi’an Botanical Garden, Shaanxi Province, China. Uniform plants
were acclimatized for 7 days in a greenhouse (25 + 1 °C, 60% relative
humidity, 14 h light/10 h dark cycle, 300 umol m™> s
photosynthetically active radiation (PAR)) prior to experiments.
Waterlogging stress was imposed by placing potted plants in a water
tank (80 cm x 57 cm x 30 cm) filled with dechlorinated tap water (pH
6.5 + 0.2, dissolved oxygen: 2.8 + 0.3 mg L ™" at 25 °C) to 10 cm above
the soil surface. The leaves, stems and roots of M. sinostellata were
collected at 0 h, 6 h, and 72 h post waterlogging stress, with 3 biological
replicates conducted at each time point. The morphological changes
were observed.

2.2 Measurement of morphological and
anatomical observations

The roots of M. sinostellata were washed with deionized water,
and root morphology was photographed by Epson Perfection V700
Photo (Epson Co., Ltd., China). Root tips were cut by a knife blade,
fixed in formalin-acetic acid-alcohol (FAA), and then conducted by
using a Saffron-O and Fast Green Stain Kit (Solarbio, Beijing,
China) based on the instructions of manufacturers. The cell
morphology of root tip was viewed with an optical microscope
(BX43, Olympus, Tokyo, Japan).

2.3 Transcriptome sequencing and data
analysis

The total RNA of M. sinostellata was extracted using Trizol
reagent (Invitrogen) and quality was verified by agarose gel
electrophoresis, NanoPhotometer spectrophotometry (Implen),
and Bioanalyzer 2100 (Agilent Technologies). Qualified RNA
samples were sequenced on the Illumina HiSeq-2000 platform
(Wuhan Maiwei Metabolic Biotechnology Co.). Raw reads were
processed using Trimmomatic v0.33 to remove adapter sequences
and low-quality reads (>10% N or >50% bases with Q < 20). Clean
reads were aligned to the Magnolia biondii reference genome
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(https://doi.org/10.5061/dryad.s4mw6m947) using HISAT?2,
achieving >80% mapping efficiency. Gene expression
quantification was performed with HTSeq, and differential
expression analysis was conducted using DESeq2 (adjusted p-
value (padj) < 0.05, |log2 fold change(FC) |>1). To study the
accumulation of specific metabolites, principal component
analysis (PCA) and orthogonal partial least squares discriminant
analysis (OPLS-DA) were performed using R (www.r-project.org/
2). The gene ontology (GO function) analysis of differentially
expressed genes was performed by GOseq, including GO function
enrichment and GO function clustering of differentially expressed
genes. The database used was the gene ontology database (http://
www.geneontology.org/). The kyoto encyclopedia of genes and
genomes (KEGG) enrichment analysis of differentially expressed
genes and differential metabolites was performed using the
KOBAS software and KEGG database (http://www.kegg.jp/
kegg/pathway.html).

2.4 Metabolomic analysis

Samples for metabolomic analysis were collected from the same
biological replicates used for transcriptomics, which were snap-
frozen in liquid nitrogen and analyzed in triplicate. Untargeted
metabolomic profiling was performed using an ultra-performance
liquid chromatography (UPLC) system (Shim-pack UFLC
SHIMADZU CBM30A, Japan) coupled with a tandem mass
spectrometer (QTRAP® 4500, Applied Biosystems, USA).
Analytical procedures and data processing followed established
methods (Chen et al., 2013). PCA and OPLS-DA were performed
using R software to examine metabolic profiles. The relative
importance of each metabolite to the OPLS-DA model was
evaluated using the variable importance in projection (VIP)
scores. Student’s t test was used to test the significance of the
expression of each metabolite in each comparison group, and a fold
change >2 or <0.5 and P-value<0.05 were used as the standards for
screening for differentially expressed metabolites (DEMs).
Identified metabolites were annotated and mapped to KEGG
pathway database (http://www.kegg.jp/kegg/pathway.html). The
content of phytohormones at different waterlogging stress times
of three tissues were determined by MetWare (http://

www.metware.cn/).

2.5 Integrated transcriptomics and
metabolomics analyses

Differentially expressed genes among root developmental stages
were used to construct a gene co-expression network with the
weighted gene co-expression network analysis (WGCNA) package,
which is a representative algorithm used for developing co-
expression networks. The soft-thresholding power (B = 18) was
selected based on scale-free topology criterion (R* > 0.85) to ensure
a biologically meaningful network. A relatively large minimum
module size (30) and a medium sensitivity (deepSplit = 2) to
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cluster splitting were also selected. In the co-expression network,
genes were represented by nodes, and the correlation value (weight)
between two genes was calculated as the Pearson’s correlation
coefficient. Genes in the same module were first visualized with
the Cytoscape program. The final networks were designed with the
igraph and ggplot2 packages.

2.6 qRT-PCR analysis

Five candidate hormone-related genes (cytokinin dehydrogenase
MBI06_g28671_MAGBIO and MBI13_g26146_MAGBIO, and
jasmonic acid-amino synthetase MBI07_g47338_MAGBIO,
MBI07_g46827_MAGBIO, and MBI06_g08192_MAGBIO) were
selected based on their significant differential expression in
transcriptome analysis and their involvement in hormone signaling
pathways linked to waterlogging tolerance. These genes were
validated using quantitative real-time polymerase chain reaction
(QRT-PCR). Gene-specific primers (Supplementary Table S1) were
designed for amplification, and reactions were carried out following
established protocols (Shu et al., 2018). The housekeeping gene Actin
was employed as normalization, and the relative gene expression was

calculated using the 27" method (Livak and Schmittgen, 2001).

2.7 Statistical analysis

All quantitative data are presented as mean + standard deviation
(SD). Statistical significance was assessed using one-way analysis of
variance (ANOVA) implemented in SPSS software (version 22.0;
IBM Corp., Armonk, NY, USA). Data visualization was performed
using multiple analytical tools: OriginPro 2022 (OriginLab
Corporation, Northampton, MA, USA) for comprehensive
graphical representations, Cytoscape (version 3.9.1) for network
analyses, and the MetWare Cloud Platform (https://
cloud.metware.cn) for specialized bioinformatics visualizations.

3 Results

3.1 Physiological changes under
waterlogging

At 72 h of waterlogging compared with the control, M.
sinostellata displayed green leaves and no signs of damage
(Figures 1A, D). In the control group, the fibrous roots were
numerous and white (Figure 1B). After waterlogging stress, some
fibrous roots fell off, and the remaining fibrous roots became brown
(Figure 1E). Meanwhile, the formation of hypertrophic lenticel
(Figure 1E, red box) and few adventitious roots (Figure 1E, green
box) on stems and roots were observed at 72 h of waterlogging stress
in M. sinostellata. In addition, the changes in the internal structure
of magnolia roots were further observed through anatomical means.
When the root cortex begins to differentiate, the cortical cells in the
root of the control group were tightly packed with minimal cell gaps

Frontiers in Plant Science

10.3389/fpls.2025.1653464

(Figure 1C). In contrast, some places in the root cortex of
waterlogging groups begin to show cell gaps about half the size of
the cell volume, namely aerenchyma (Figure 1F, red stars).

3.2 Transcriptome analysis

3.2.1 RNA-seq analysis

To elucidate the molecular mechanisms underlying waterlogging
tolerance in M. sinostellata, we conducted comprehensive RNA-
sequencing analysis of leaf, stem, and root tissues collected at 0 h, 6
h, and 72 h of waterlogging treatments. The sequencing generated
131.25 Gb of raw data, with each sample yielding >5.91 Gb of high-
quality clean data after filtering (Supplementary Table S2). The
quality score 20 (Q20) values of each cDNA library were greater
than 96.43%, and the average guanine-cytosine content (GC) content
was 47.09% (Supplementary Table S2). The rate of clean reads
mapped to the reference genome of Magnolia biondii was higher
than 74%. Quality assessment demonstrated excellent experimental
reproducibility through strong clustering of biological replicates
(intra-group correlation >0.8) (Figure 2A), clear separation of
control (CK_0h) and waterlogged samples (WL_6h, WL_72h)
along PC1, and distinct tissue-specific clustering patterns (roots vs
stems vs leaves) along PC2 in PCA analysis (Figure 2B). These results
demonstrate robust transcriptome profiles suitable for downstream
differential expression analysis.

3.2.2 Identification of differentially expressed
genes

Using stringent criteria (Padj < 0.05 and |log2(fold change)| >
1), we identified differentially expressed genes (DEGs) across root,
stem, and leaf tissues at 0 h (control), 6 h, and 72 h of waterlogging
treatment (Figure 2C). The analysis revealed substantial tissue-
specific responses, with roots exhibiting the most pronounced
transcriptional changes (12,538 DEGs), followed by stems (3,445
DEGs) and leaves (3,406 DEGs) (Figure 2D). Differential expression
analysis demonstrated waterlogging-induced transcriptional
changes across tissues (roots > stems > leaves), with roots
comparison yielding 7,890 (RCK_Oh vs RWL_6h), 8,891
(RCK_0h vs RWL_72h), and 5,178 (RWL_6h vs RWL_72h)
DEGs; stems showing 1,613, 1,555, and 1,471 DEGs; and leaves
exhibiting 636, 2,540, and 1,348 DEGs in corresponding
comparisons. Notably, 1048, 26 and 37 common DEGs were
identified in the three tissues under all times of waterlogging
stress (Figures 2E-G), manifesting that M. sinostellata activated
the expression levels of these genes to cope with varying times of
waterlogging stress. The markedly stronger response in roots
underscores their pivotal role in stress perception and initial
response. These findings demonstrate that M. sinostellata mounts
both tissue-specific and shared molecular defenses against
waterlogging stress.

3.2.3 Functional enrichment analysis of DEGs

Gene Ontology (GO) enrichment analysis revealed significant
organizational differences in biological functions affected by
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FIGURE 1

Phenotypic analysis and anatomical analysis of M. sinostellata. (A, D) Phenotypic analysis of M. sinostellata. (B, E) Morphological characteristics of
roots in M. sinostellata at different times (0 h and 72 h) by the waterlogging stress. (C, F) Images of stained cross-section of M. sinostellata roots
under normal and waterlogging conditions for 72 h, bar=50 um. Boxs indicate hypertrophic lenticels (red) and adventitious roots (green), red stars

indicate aerenchymas

waterlogging stress (Figure 3A, Supplementary Tables S3-55). As a
result, these DEGs were found to be associated with multiple biological
processes, and demonstrated tissue-specific patterns. However, there
are also some DEGs that are enriched for the same terms. In the
biological process category, the DEGs were predominantly enriched in
response to oxidative stress. Likewise, in the cellular component
category, these genes exhibited enrichment in plant-type cell wall,
intrinsic component of plasma membrane. In the molecular function
category, the DEGs were primarily associated with UDP-
glycosyltransferase activity, molecular transducer activity, signaling
receptor activity, secondary active transmembrane transporter activity,
secondary active transmembrane transporter activity. (Figure 3A)
Notably, the consistent enrichment of oxidative stress response and
signal transduction pathways across tissues suggests their central role in
the adaptation mechanism of M. sinostellata to waterlogging stress.
The KEGG pathway enrichment analysis confirmed the impact
of waterlogging stress on specific biological pathways. Various
pathways were induced in different tissues of M. sinostellata by
waterlogging stress. According to the KEGG analysis results
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(Supplementary Tables S6-58), the pathways of differential gene
enrichment in roots, stems and leaves were also similar. Pathways
with more gene mappings are metabolic pathways, biosynthesis of
secondary metabolites, starch and sucrose biosynthesis, and plant
hormone signal transduction (Figure 3B). The coordinated
induction of these pathways demonstrates the integrated defense
strategy of M. sinostellata, combining metabolic adjustment,
antioxidant production, and hormonal regulation to mitigate
waterlogging damage.

3.3 Metabolome analysis

3.3.1 Quality control of metabolomic data

Liquid chromatography-quadrupole time-of-flight mass
spectrometry (LC-QTOF-MS)-based metabolomic analysis identified
11 major classes of stress-responsive metabolites in M. sinostellata
(Figure 4A, Supplementary Table S9). The metabolites were mainly
concentrated in Flavonoids (144, 17.4%), Phenolic acids (143, 17.3%),
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FIGURE 2

Gene expression analysis of M. sinostellata under waterlogging stress. (A) Pearson correlation chart shows that the overall sample has a high
repeatability. (B) PCA diagram. Different colors represent different sample groups. The distance between points on the PCA plot represents how
similar all samples are in terms of gene composition and expression. (C) Violin plot for differentially expressed genes. (DEGs) expression, different
colors represent samples that have undergone waterlogging stress treatment at different times. (D) Up-regulation and down-regulation of DEGs. The
red boxes represent up-regulation and the blue boxes represent down-regulation. (E-G) Co-regulation of DEGs in all comparison groups. ****: P <

0.0001.

Lignans and Coumarins (127, 15.3%), Lipids (83, 10%), Alkaloids (74,
8.9%), Terpenoids (54, 6.5%), Amino acids and derivatives (42, 5.1%),
Organic acids (41, 5.0%), Nucleotides and derivatives (35, 4.2%),
Tannins (3, 0.4%) (Figure 4A). Multivariate analysis demonstrated
significant metabolic reorganization under stress conditions
(Figures 4B, C). PCA revealed clear separation between control and
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stressed samples along principal components explaining 64.2%
cumulative variance, with tight clustering of biological replicates
(R* > 0.85) confirming data reliability (Figure 4D). The distinct
metabolic signatures observed in different organs (roots > stems >
leaves) and time points reflect tissue-specific adaptation strategies
to hypoxia.
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FIGURE 3

GO and KEGG enrichment analysis of DEGs (A—C) GO aggregation and distribution maps shared by the three groups of differential expression genes.
The vertical coordinate is the enriched GO term, and the horizontal coordinate is the number and significance of differentially expressed genes in
this term. Different colors are used to distinguish biological processes, cellular components, and molecular functions. The colors of the points
correspond to different p-value ranges, and different shapes represent different groupings. (D—F) KEGG pathway rich distribution map shared by the
three groups of differential expression genes. The picture on the left represents the secondary and tertiary pathways of KEGG. In the figure on the
right, the vertical axis represents the pathway name, the horizontal axis represents Rich factor, the size of the dots represents the number of
differentially expressed genes in this pathway, and the colors of the dots correspond to different p-value ranges, and different shapes represent

different groups.

3.3.2 Differentially expressed metabolites in
different parts of M. sinostellata

The DEMs were identified according to VIP > 1.0, FC > 2, or
FC < 0.5 and P-value < 0.05. By comparing root (R), stem (S) and
leaves (L) samples of M. sinostellata under different conditions
(CK and WL), 121 (77 up-regulated, 44 down-regulated), 178 (147
up-regulated, 31 down-regulated), 190 (146 up-regulated, 44
down-regulated), 105 (58 up-regulated, 47 down-regulated), 158
(125 up-regulated, 33 down-regulated), 147 (124 up-regulated, 23
down-regulated), 141 (22 up-regulated, 119 down-regulated), 113
(67 up-regulated, 46 down-regulated), and 163 (143 up-regulated,
20 down-regulated) DEMs were obtained from RCK_Oh vs
RWL_6h, RCK_0h vs RWL_72h, RWL_6h vs RWL_72h,
SCK_0h vs SWL_6h, SCK_0h vs SWL_72h, SWL_6h vs
SWL_72h, LCK_0h vs LWL_6h, LCK_0h vs LWL_72h and
LWL_6h vs LWL_72h, respectively (Figure 4E). Notably, more
DEMs were up-regulated in the roots and stems after waterlogging
stress, and with the extension of time, the DEMs in the roots and
stems were gradually increased. More metabolites were down-
regulated in leaves at 6h, and the number of DEM:s first decreased
and then increased with the time of waterlogging stress. Since the
transcriptome results show that the root was more obviously
responded to waterlogging stress, here we mainly focus on the
metabolites in the root. The Venn diagram analysis showed that
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24 DEMs were found to be affected by different time of
waterlogging stress treatment (Figure 4F), which can serve as
potential candidate markers for the response of M. sinostellata to
waterlogging stress. Meanwhile, to explore the role of plant
hormones in responding to waterlogging stress, we determined
the contents of phytohormones at different waterlogging stress
times of root in M. sinostellata. A total of 22 phytohormone
metabolites were detected in annual shoots, including 6 IAAs, 5
JAs, 3 CTKs, 3 SAs, 2 GAs, 2ABAs, 1 ET (Figure 5, Supplementary
Table S10).

3.4 WGCNA and validation of hub genes by
qRT-PCR

Building upon our finding that roots serve as the primary response
organ to waterlogging stress in M. sinostellata, we employed WGCNA
to elucidate the relationship between root hormone dynamics and
transcriptional regulation. Using the WGCNA package (v1.72, R Core
Team) with an optimal soft threshold power of 18, we identified 10
distinct gene modules (Figures 6A, B), each representing unique co-
expression patterns. (Figures 6A, B). These gene modules are color-
coded and represented in the form of cluster maps and network heat
maps (Figures 6C, D). According to p<0.05&|R|>0.85,
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FIGURE 4

Quality control of metabolomics data and an overview of DEMs identified from M. sinostellata. (A) Metabolite classification pie chart, color
represents the primary classification of metabolites. (B) In the heat map, the horizontal coordinate represents the sample, the vertical coordinate
represents the gene, the red is the high expression gene, and the green is the low expression gene. The horizontal comment bar represents the
grouping, and the vertical comment bar represents the metabolite classification. (C, D) PCA diagram. Different colors represent different groups. The
distance between points on the PCA plot represents how similar all samples are in terms of gene composition and expression. (E) Differential up-
regulated and down-regulated metabolites in different tissues of M. sinostellata. (F) Venn diagram showing differential metabolites in roots.

MEantiquewhite2 module was strongly correlated with phenotype IP respectively) (p<0.05). MEhoneydew module 12-oxophytodienoic
(N6-isopentenadenine belongs to cytotinin), JA_ILE and JA (jasmonic  acid (OPDA) (Jasmonic acid) had a strong negative correlation of
acid), which were 0.89, -0.97 and -0.97, respectively (p<0.05). There ~ 0.96 (p<0.05). In order to further search for candidate hub genes with
was a significant and strong correlation between MElavenderblush ~ important contributions in the gene network, we extracted annotation
module and phenotype IP, JA_ILE and JA (-0.91, 0.98, 0.97, information of all these genes from the Magnolia gene annotation
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FIGURE 5

DEGs and DEMs related to plant hormone signaling transduction pathways of M. sinostellata in response to waterlogging stress. The samples are

displayed below each column. The expressions of the DEGs and DEMs a
low expression.

database. By comparison and integration of DEGs and annotation
information, 71 genes related to plant hormone signal transduction
pathway in 3 modules were selected as key candidate genes.
Antiquewhite2 contained 61 hubgenes, honeydewl contained 61
hubgenes, and Lavenderblusblushl contained 9 hubgenes
(Supplementary Table S11). The co-expression network of genes
related to plant hormone signaling pathways in the three modules is
shown in Figure 7. These hub genes were likely to be the key genes
regulating the waterlogging tolerance of M. sinostellata.

Based on expression profiling of hormone-related genes, we
identified five candidate hub genes and analyzed their
transcriptional dynamics under waterlogging stress in M.
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re displayed in different colors. Red means high expression and blue means

sinostellata using qRT-PCR. The selected genes included:
cytokinin dehydrogenase (MBIO6_g28671_MAGBIO,
MBI13_g26146_MAGBIO) and jasmonic acid-amino synthetase
(MBI07_g47338_MAGBIO, MBI07_g46827_MAGBIO,
MBI06_g08192_MAGBIO). Consistent with our Illumina HiSeq
sequencing data, qRT-PCR analysis (Figure 7) revealed
significantly changes of all five genes in M. sinostellata during
waterlogging stress. These results suggest these hormone-related
genes may play crucial regulatory roles in M. sinostellata
waterlogging tolerance. The strong correlation between qRT-
PCR and RNA-seq data further confirms the reliability of our
transcriptome analysis.
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3.5 The plant hormone signaling
transduction of M. sinostellata in response
to waterlogging stress

By combining transcriptomic and metabolomic results, we
identified plant hormone signaling transduction as the important
pathway of M. sinostellata in response to waterlogging stress. We
analyzed the relationship between the selected key genes and
metabolites by Spearman correlation analysis, and the results
showed that all genes associated were changed (Figure 5). The
pathway of plant hormone signal transduction was found to yield
102 DEGs and 22 DEMs, including genes related to IAA, CTK, GA,
ET, ABA. The specific information is in the Supplementary
Materials (Supplementary Tables S§10, S12). All genes and
metabolites in the JA signaling pathway were suppressed by
waterlogging stress. Most genes were down-regulated in TAA
signaling pathway, while almost all metabolites were accumulated
in tryptophan metabolism. The GA signaling pathway related genes
and metabolites were down-regulated in diterpenoid biosynthesis.
In addition, ET signaling genes also changed (28 down-regulated
and 14 up-regulated). Moreover, the metabolite ET was significantly
accumulated after waterlogging stress. In addition, we selected all
DEMs and DEGs for correlation analysis to determine the
correlation between differential metabolites and differential
expression genes in the plant hormone signaling transduction
pathway (Figure 8). The results showed that many genes in this
pathway were highly correlated with metabolites. In conclusion,
waterlogging stress notably influenced the gene expression and
levels of hormones such as IAA, CTK, GA, JA and ET in the
roots of M. sinostellata.

4 Discussion

In recent years, accelerating climate change has led to increased
frequency and intensity of waterlogging events worldwide (Li et al.,
2022). Consequently, waterlogging stress has emerged as a major
constraint limiting the cultivation and landscape application of
ornamental plants (Voesenek and Bailey-Serres, 2015). The
widespread horticultural use of Magnolia species, renowned for
their exceptional ornamental value, is significantly constrained by
their susceptibility to waterlogging damage (Wang et al., 2022).
Therefore, identifying novel genes and metabolites to enhance their
tolerance mechanisms is critical. In this study, we employed the
waterlogging-tolerant species M. sinostellata as a model to
characterize transcriptomic and metabolomic responses during
waterlogging stress.

4.1 Morphological and anatomical changes
under waterlogging stress

Waterlogging triggers a coordinated escape response comprising

four synergistic adaptations: lenticel hypertrophy (improving O,
uptake), adventitious roots formation (compensating for root
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hypoxia), aerenchyma production (creating internal air channels),
and internode elongation regulation (facilitating aerial emergence)
(Pedersen et al,, 2021). The formation of adventitious roots during
waterlogging stress facilitates gas exchange and nutrition absorption
(Steffens and Rasmussen, 2016). To a greater extent, these root tissues
usually replace primary roots that die as a result of hypoxic stress,
allowing normal growth and development to progress (Eysholdt-
Derzso and Sauter, 2017; Li et al, 2022). The development of
aerenchyma, which facilitates oxygen diffusion to the root tips, is a
well-documented response to hypoxia caused by waterlogging
(Shiono et al, 2014; Yamauchi et al., 2018). The presence of
hypertrophic lenticels is thought to facilitate gas exchange (Herzog
et al, 2016). Under waterlogging stress, M. sinostellata exhibited
significant morphological and anatomical adaptations, including
hypertrophic lenticels, adventitious roots, and aerenchyma
formation (Figures 1B, C). These morphological and anatomical
changes are consistent with findings in other waterlogging-tolerant
species, such as Populus deltoides and Cucumis sativus. These findings
align with the broader understanding that waterlogging-tolerant
plants often exhibit morphological adaptations to improve oxygen
availability in submerged tissues (Colmer and Voesenek, 2009).

4.2 Integrated transcriptomic and
metabolomic analysis

The integration of transcriptomic and metabolomic data
revealed a strong correlation between the expression of genes
the accumulation of
5). This finding is
vulgare and Triticum

involved in plant hormone signaling and
corresponding metabolites (Figures 6,
consistent with recent studies in Hordeum
aestivum, where the coordination of gene expression and metabolite
accumulation is crucial for waterlogging tolerance (Wang et al.,
2024). For the screening of key candidate genes, this study used the
WGCNA method, which has been reported in many studies (Tian
et al, 2024; Niu et al, 2024). In our study, the co-expression
network analysis identified several key hub genes involved in
plant hormone signaling (Figure 6). These genes were highly
correlated with the accumulation of specific metabolites, such as
jasmonic acid and CTK, suggesting that they play a crucial role in
the response of M. sinostellata to waterlogging stress. The
identification of these hub genes provides potential targets for
future breeding and genetic engineering efforts aimed at
improving waterlogging tolerance in ornamental plants.

4.3 Extensive alteration of genes involved
in plant hormone signaling transduction
pathway under waterlogging stress

Plant hormones function as master endogenous regulators that
orchestrate multifaceted signaling networks by integrating
interconnected hormonal cascades during waterlogging stress
(Habibi et al., 2023; Rajesh et al., 2022). Our study identified
significant changes in hormone-related genes and metabolites,
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FIGURE 8

A heat map of the correlation between hormone-related DEGs and DEMs. In the heat map, the horizontal axis represents metabolites and the
vertical axis represents genes. Red indicates a high positive correlation, while blue indicates a negative correlation. The darker the color, the stronger
the correlation. The asterisk represents the degree of significance, ***(p < 0.0001), **(p < 0.01), and *(p < 0.05).

revealing a complex interplay of hormonal responses that facilitate
the adaptation of M. sinostellata to waterlogged conditions.

CTKs serve as pivotal regulators that help plants resist
waterlogging stress. Islam et al. suggested that CTKs could be used
for managing waterlogging-induced damage to mungbean (Islam
etal, 2021). Cytokinin Oxidase (CKX) is a key enzyme that catalyzes
the irreversible degradation of active CTK, thereby negatively
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regulating endogenous CTK levels (Jameson and Song, 2016;
Kieber and Schaller, 2018). CTK homeostasis is tightly regulated by
a suite of metabolic enzymes, including those involved in biosynthesis
(Isopentenyltransferase, IPT), activation (Lonely Guy, LOG),
degradation (CKX), reversible inactivation (zeatin O-
glucosyltransferases, ZOGs), reactivation (B-glucosidases, GLUs),
and irreversible N-glycosylation (UDP glycosyltransferases, UGTs).
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The cytokinin oxidase isoforms IP and IPR catalyze the oxidation
of CTKs into inactive forms. Following their synthesis in plants,
these enzymes modulate CTK activity, thereby regulating plant
growth and developmental processes (Werner and Schmiilling,
2009). In our study, the of CKX genes were down-regulated, while
the CTK metabolites up-regulated (such as trans-Zeatin O-
Glucosyltransferase, (tZOG)) (Figure 5), suggest that the plant
reduces CTK degradation and increases active CTK levels to
promote cell division and adventitious roots development, thereby
enhancing adaptation to hypoxia.

JA plays a pivotal role in mediating plant responses to
waterlogging stress (Yuan et al, 2017). Increasing the JA level
through mutations or exogenous JA application has been shown
to lead to inhibition of root growth in Arabidopsis thaliana, rice and
cucumber (Sanders et al., 2000; Liu et al., 2015; Xu et al., 2016; Pan
etal., 2025), which is tempting to speculate that JA is an inhibitor of
adventitious rooting. The jasmonate-amido synthetase jasmonate
resistant 1 (JAR1) plays a critical role in JA signaling by catalyzing
the biosynthesis of jasmonyl-L-isoleucine (JA-Ile), the bioactive JA
conjugate, from jasmonic acid (Staswick, 2008). Our research
reveals the jasmonic acid (JA) signaling pathway is significantly
suppressed after waterlogging stress, as evidenced by the down-
regulation of JARI, JA and its precursor 12-oxophytodienoic acid
(OPDA), as well as the reduction in JA-Ile levels. Concurrently, the
increase in hydroxylated JA (H2JA) further reduces JA activity
(Figure 5). Our results are consistent with the studies on the
response of cucumber and A. thaliana to waterlogging stress,
suggesting that jasmonic acid plays a negative regulatory role in
the formation of adventitious roots. Since this is inconsistent with
the regulation of JA to waterlogging stress by other plant species
(Arbona and Gomez-Cadenas, 2008; Xu et al., 2016; Ateeq et al.,
2025), the specific mechanism remains to be further studied.

Our results also showed that the expression of genes encoding
signaling components of other major plant hormones were changed
under waterlogging stress, such as IAA, GA and ET. Emerging evidence
reveals that both TAA transport and signal transduction pathways are
integral to waterlogging stress adaptation, orchestrating physiological
and morphological adjustments in oxygen-deprived environments
(Kazan, 2013; Sharif et al, 2022). TAA can induce root apical
meristematic tissue, which is an important factor regulating the
formation of adventitious roots under waterlogging stress (Agullo-
Anton et al, 2014). In our study, key genes in the IAA signaling
pathway, such as AUXI, IAA, GH3, ARF, and SAUR, are down-
regulated, which probably suppresses primary root elongation and
redirects TAA flux to stem tissues, promoting the formation of
adventitious roots. The up-regulation of IAA precursors, including
methyl indole-3-acetic acid (MEIAA), tryptophan (TRP), tryptamine
(TRA), and indole-3-acetyl-alanine (IAA-Ala), coupled with the down-
regulation of the TAA catabolite ICAld, indicates that the plant
accumulates TAA precursors and suppresses degradation to maintain
TAA homeostasis, enabling rapid responses to environmental changes.
GA plays a pivotal role in mitigating abiotic stresses induced-
perturbations in plants by modulating various physio-biochemical
and molecular processes. Under waterlogging stress, wheat exhibited
up-regulated expression of GA metabolic genes (GA30x2 and GA20x8)
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to promote the formation of adventitious roots (Nguyen et al.,, 2018);
GA levels were significantly elevated in tolerant variety HX of peach
(Ateeq et al,, 2025). Besides, waterlogging experiments revealed that
GID1 mutation in rice, which encodes a soluble GA receptor,
suppressed chlorophyll breakdown and accelerated carbohydrate
metabolic turnover. This demonstrates that GIDI-dependent GA
signaling plays a pivotal role in plant waterlogging tolerance by fine-
tuning carbohydrate utilization under hypoxic stress (Sun, 2010).
However, in our research, GA20ox and GIDI were down-regulated,
which may inhibit energy-intensive growth, thereby enhancing hypoxia
tolerance. ET serves as a pivotal regulator orchestrating both
physiological and morphological adaptations in plants under
waterlogging stress (Kuroha et al., 2018; Shen et al., 2022). Consistent
with other studies, the ET signaling pathway in M. sinostellata is also
activated, with the up-regulation of ethylene receptor (ETR), ethylene
insensitive (EIN), and ethylene response factor 1 (ERFI) genes
promoting the formation of aerenchyma and adventitious roots,
which presumably improve oxygen transport and root functionality
under hypoxic conditions (Chen et al., 2024; Li, 2021).

In summary, the above research results indicate that suggesting
that TAA, CTK, JA, GA, ET signaling are positively involved in
regulating the tolerance of M. sinostellata to waterlogging stress,
although the precise molecular mechanisms require further elucidation.

5 Conclusion

In conclusion, this study provides the first comprehensive
molecular characterization of waterlogging tolerance in M.
sinostellata through integrated multi-omics analyses, revealing JA
as a negative regulator, contrasting with its positive role in other
species. Furthermore, we also indentified some potential candidate
genes (CKX and JARI) and metabolic markers (OPDA, JA-Ile,
tZOG) that orchestrate coordinated morphological, physiological
and molecular adaptations. The identified hub genes and metabolic
markers offer valuable resources for molecular breeding of
waterlogging-resistant ornamental trees, addressing a critical need
in urban landscaping under climate change scenarios. To advance
breeding efforts, subsequent work should focus on experimentally
validating critical genes and hormonal pathways, mapping their
regulatory crosstalk, and identifying trait-specific adaptations that
improve the resilience to waterlogging stress in Magnolia.
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