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Introduction: As a globally important cash crop, Gossypium barbadense has the

high-quality fiber for textile industry. However, it experiences substantial growth

inhibition and yield decline under salt stress, rendering the elucidation of its salt

tolerance mechanisms imperative for breeding initiatives.

Methods: We performed population structure analysis on 240 global G.

barbadense accessions, phenotyping under salt stress at seedling-stage,

genome-wide association study (GWAS), virus-induced gene silencing (VIGS)

of Gbar_D02G014670 (GbXTH27), and its functional verification.

Results: Population structure analysis on 240 globally distributed G. barbadense

accessions resolved four distinct subpopulations. Seedling-stage salt stress

screening identified 23 highly salt-tolerant genotypes exhibiting divergent

phenotypic responses. GWAS identified multiple significant single nucleotide

polymorphism (SNP) loci associated with salt tolerance, with the most prominent

signal localized to chromosome D02. VIGS of GbXTH27 exacerbated salt-

induced wilting phenotypes and significantly decreased antioxidant

enzyme activities.

Discussion: This research provides valuable molecular markers and theoretical

foundations for genetic improvement and breeding of salt-tolerant G.

barbadense cultivars, while also offering insights into salt stress response

mechanisms applicable to other crops.
KEYWORDS

Gossypium barbadense, seedling stage, salt tolerance index, salt tolerance,

genomewide association analysis
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1 Introduction

Cotton (Gossypium spp.) is a globally significant cash crop,

particularly in the case of G. barbadense, has garnered substantial

attention from the textile industry and breeders due to its superior

fiber quality and disease resistance. As the exclusive cotton

cultivation region in the China, Xinjiang benefits from unique

geographical and climatic conditions (Zhao et al., 2024).

However, it faces severe challenges from soil salinization, which

critically impairs cotton growth, yield, and fiber quality (Sharif et al.,

2019; Su et al., 2020; Zhu et al., 2020). To enhance or stabilize yield

and fiber quality, breeding salt-tolerant G. barbadense cultivars has

emerged as a pivotal objective in cotton improvement programs.

Salt tolerance, a polygenic trait essential for plant adaptation to

saline environments, involves coordinated regulation of multiple

quantitative characteristics including plant height (Wang et al.,

2012; Long et al., 2013), root length (Li et al., 2021; Lin et al., 2004),

biomass (Seemann and Critchley, 1985), organic osmolyte

accumulation (Duan et al., 2023), and ion homeostasis (Lin et al.,

2004). To systematically evaluate these traits, the membership

function value (MFV) methodology has been established as a

quantitative framework integrating growth parameters, leaf injury

indices, and ion concentrations under salt stress. For instance,

MFV-based screening of 549 Brassica napus inbred lines during

germination stages identified salt-tolerant genotypes using

germination rate, root/shoot length, and fresh weight (Wu et al.,

2019). Similarly, 300 sweet sorghums (Sorghum bicolor (L.)

Moench.) accessions were classified for salt tolerance at

germination using MFV indices derived from five traits including

germination energy, germination rate, germination index,

germination vigour index and root fresh weight (Ding et al.,

2018). In sunflower (Helianthus annuus L.), MFV combined with

principal component analysis (PCA) generated a Composite Stress

Assessment Index (CSAI) to evaluate multi-stress responses (Ma

et al., 2016).

Genome-wide association studies (GWAS) have emerged as a

powerful tool for dissecting the genetic architecture of agronomic

traits in crops, facilitating the identification of key loci governing

yield and quality. GWAS has been effectively applied in major

crops, including Oryza sativa (Zhao et al., 2011; Huang et al., 2012),

Glycine max (Zhang et al., 2015; Zhao et al., 2019), Brassica napus

(Schiessl et al., 2015; Lu et al., 2017), G. hirsutum (Fang et al., 2017;

Huang et al., 2017). Based on these successes, GWAS has been

increasingly applied to unravel the complex mechanisms

underlying salt stress tolerance, with significant progress achieved

in major crops. In Oryza sativa (Li et al., 2020; Wei et al., 2024),

Triticum aestivum (Hu et al., 2021; Quamruzzaman et al., 2022b),

Zea mays (Li et al., 2021, 2022), Glycine max (Do et al., 2019; Jin

et al., 2021), and Brassica napus (Zhang et al., 2022, 2023),

numerous salt-stress QTLs and candidate genes have been

identified through GWAS analyses. The recent advancements in

high-throughput sequencing technologies and the availability of

refined genome assemblies for Gossypium species (Hu et al., 2019;

Wang et al., 2019) have further expanded the application of GWAS

in cotton, particularly for elucidating the genetic basis of salt
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tolerance mechanisms. A total of 42 salt-tolerance-associated

SNPs were detected in 149 G. hirsutum accessions using the

Illumina Cotton SNP70K array, and genes involved in

intracellular transport, sucrose synthesis, and auxin response were

revealed (Zheng et al., 2021). Eight significant SNPs linked to three

salt-stress traits were identified through Cotton SNP80K chip

analysis of 288 G. hirsutum accessions (Cai et al., 2017).

Genotyping-by-sequencing (GBS) based GWAS of 217 G.

hirsutum varieties identified GH_A13G0171 as a negative

regulator of salt response (Xu et al., 2021). Resequencing of 215

G. arboreum accessions revealed nine SNP-rich regions and 40

candidate genes (Dilnur et al., 2019). Integrating RNA-seq and

GWAS of 214 Chinese G. arboreum accessions, Transcriptome-

wide association study (TWAS) in G. hirsutum seedlings pinpointed

19 salt-responsive genes (Han et al., 2022).

Despite these advancements, research on salt tolerance

mechanisms in G. barbadense remains limited compared to G.

hirsutum (Xu et al., 2023; Zhang et al., 2024). To address this gap,

we constructed a high-density genetic variation map using 240

globally collected G. barbadense accessions. Through two-year

seedling-stage salt stress trials and phenotypic characterization,

combined with GWAS, we identified key loci associated with salt

tolerance and functionally validated candidate genes. This work

provides molecular markers and target genes for genetic

enhancement of salt tolerance in G. barbadense, while providing

methodological references for dissecting mechanism of stress

tolerance in other crops.
2 Materials and methods

2.1 Experimental materials

A total of 240 G. barbadense accessions from diverse countries

and regions were collected for seedling-stage salt tolerance

evaluation. These included 220 mainstream cultivars from

Xinjiang, China, three wild G. barbadense accessions collected

from Yunnan and Hainan, China, six Pima cotton germplasm

lines from the United States, six cultivated materials from Egypt,

and five G. barbadense varieties from Central Asia.
2.2 Phenotypic evaluation and analysis

Sulfuric acid-delinted seeds were sown in 10 × 5 seedling trays.

After 3 days of germination, seedlings were transferred to a

hydroponic system containing 1/2-strength Murashige and Skoog

(MS) nutrient solution (pH 5.8). The nutrient solution was replaced

every 3 days, and continuous aeration was maintained using an air

pump. Plants were grown under controlled environmental

conditions in the greenhouse at Zhejiang University Agricultural

Experiment Station. NaCl treatment (200 mmol/L) was initiated at

the two true leaves and one apical bud stage, while control groups

remained untreated, both the control groups and the salt-stress

groups were cultured synchronously in the hydroponic system.
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After 7 days of salt stress, senesced cotyledons were removed. Plant

height (cotyledonary node to apical meristem) and shoot fresh

weight were measured. Roots and shoots were then oven-dried at

105 °C for 60 min followed by 80 °C to constant weight for dry

weight determination. Three biological replicates per treatment

were maintained to ensure experimental reliability. All measured

parameters were converted to the Salt Tolerance Index (STI), which

was calculated using Equation 1:

STI = Measurement   under   salt   stress=
Measurement   under   control   conditions  

(1)

The traits included relative plant height (RPH), relative shoot

fresh weight (RSFW), relative shoot dry weight (RSDW), and

relative root dry weight (RRDW). To minimize environmental

variance across years and emphasize genetic effects, best linear

unbiased estimates (BLUEs) for four traits (2022–2023 data) were

calculated using the lme4 R package:

BLUE = lmer(STI

∼ Sample + (1 Rep) + (1j jYear :Rep) + (1 Year))j (2)

In Equation 2, STI serves as the dependent variable, with

Sample (genotype) designated as the fixed-effect independent

variable. The term 1|Rep denotes experimental replicates modeled

as random effects, 1|Year represents year-specific random effects,

and 1|Year: Rep specifies the nested random effects of replicates

within years.

BLUE values were analyzed for descriptive statistics and

ANOVA using SPSS v26. Phenotypic frequency distributions and

correlations were visualized with the Hmisc R package. Graphs were

generated using GraphPad Prism.
2.3 Salt tolerance assessment

A membersh ip func t ion method was app l i ed to

comprehensively evaluate seedling-stage salt tolerance across traits.

Fi =o4
j=1½Eij � STIj� (3)

m(Fi) = (Fi − Fimin)=(Fimax − Fimin)   (4)

Wi = Pi=on
i=1Pi (5)

D =on
i=1½m(Fi)�Wi� (6)

In Equation 3, Fi denotes the comprehensive index factor score

of genotype i. Eij represents the eigenvector corresponding to the j-

th individual indicator in the i-th principal component. STIj
indicates the salt tolerance index of the j-th individual indicator

for genotype i. In Equation 4, m(Fi) refers to the membership value

of the comprehensive index for genotype i, where Fimax and Fimin

represent the maximum and minimum values of the comprehensive

index, respectively. Equation 5 defines Wi as the weight (relative

importance) of the i-th comprehensive index among all indices,
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calculated from its contribution rate (Pi). In Equation 6, D

quantifies the integrated salt tolerance coefficient.

Correlation analysis was performed using SPSS. Hierarchical

clustering analysis was conducted in R with the hclust function,

employing Euclidean distance and Ward’s minimum variance

method for cluster aggregation.
2.4 Measurement of superoxide dismutase
activities, malondialdehyde and proline
content

Oxidative stress markers, including superoxide dismutase

(SOD) activities, malondialdehyde (MDA) and proline (Pro)

content were measurement using established protocols outlined

(Qian et al., 2024). All assays utilized a 0.1 g fresh sample of leaves.
2.5 Variant calling and population genetics
analysis

Resequencing data PRJNA728217 (Yu et al., 2021) for 240 G.

barbadense accessions was downloaded from the NCBI SRA database

using SRA Toolkit. Raw Illumina paired-end reads were quality-filtered

using Fastp (Chen et al., 2018), with parameters “-c -n 15 -u 50 -q 15”

to retain high quality sequences (Shao et al., 2022). Clean reads were

aligned to the G. barbadense (AD2) ‘3-79’ reference genome HAU

(Wang et al., 2019) using BWA (Li and Durbin, 2009), following index

construction with the same tool. Alignment files were converted to

binary BAM format using SAMtools (Li et al., 2009), sorted with

sambamba (Tarasov et al., 2015), and PCR duplicates were removed.

SNPs and InDels were identified using the HaplotypeCaller

module in GATK (Mckenna et al., 2010). GVCF files were merged

with CombineGVCFs and converted to VCF format. Variants were

filtered using VariantFiltration module in GATK (Mckenna et al.,

2010), followed by additional filtering (maf > 0.05, max-missing >

0.8) to obtain GWAS-compatible SNPs (Yu et al., 2021). Functional

annotation was performed using ANNOVAR. SNP/InDel densities

were calculated with VCFtools (Danecek et al., 2011), and

chromosomal distributions were visualized using RColorBrewer

and stringr R packages.

A genetic distance matrix generated by VCF2Dis was used to

construct a Neighbor-Joining (NJ) phylogenetic tree via the FastME

online platform (http://www.atgc-montpellier.fr/fastme).

Population structure was inferred using Admixture (Alexander

et al., 2009), and PCA was conducted with GCTA (Yang et al.,

2011) to resolve substructure and mitigate false positives in

association studies. Genome-wide linkage disequilibrium (LD)

decay was assessed with PopLDdecay (Zhang et al., 2019a).

To quantify genetic divergence and variation among

subpopulations, pairwise population differentiation index (FST)

and nucleotide diversity (p) were calculated genome-wide using

VCFtools (Danecek et al., 2011) with 100-kb sliding windows and

20-kb steps.
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2.6 Genome-wide association study

Three types of salt stress phenotypic data for the seedling stage

of G. barbadense were generated based on the calculated BLUE

values and the phenotypes observed in 2022 and 2023. The genome-

wide efficient mixed-model association (GEMMA) software (Zhou

and Stephens, 2012), was used to correct for population

stratification by incorporating both PCA and kinship matrices.

Manhattan plots were generated using the R package CMplot to

represent the distribution of SNPs and their corresponding P-

values, while quantile-quantile (QQ) plots were constructed to

evaluate the model’s performance. SNP filtering was performed

using Plink software based on linkage disequilibrium criteria

(window size = 50, step size = 50, r² ≥ 0.2), resulting in a total of

213,990 effective SNPs. A stringent threshold of p < 4.67 × 10-6 was

set to identify significant association loci (Yu et al., 2021). However,

due to the risk of overly stringent thresholds excluding true trait-

associated genetic loci with p-values that do not meet the strict

cutoff, SNPs with p < 1.0 × 10-5 identified in at least two

environments or phenotypes were also retained to capture more

candidate genes (Zhao et al., 2022).
2.7 RNA-seq analysis

RNA-seq data were downloaded from NCBI under project

numbers PRJNA490626 (Hu et al., 2019) (salt stress treatments at 1

h, 3 h, 6 h, 12 h, and 24 h) and PRJNA601953 (salt stress treatment at

14 days) (Dong et al., 2022). Additionally, the G. barbadense genome

(version 379_HAU) was obtained from COTTONGENE (https://

www.cottongen.org/species/Gossypium_barbadense/nbi-

AD2_genome_v1.0) and the genome index was built using HISAT2

(Kim et al., 2019). Quality control and filtering were performed

using Fastp (Chen et al., 2018) with the following criteria (Song

et al., 2023): paired reads were removed if any read met the

following criteria: ambiguous “N” bases exceeded 10% of the read

length; >50% of bases had low quality (Q ≤ 5); or adapter sequences

were detected. Reads were aligned to the reference genome using

SAMtools (Li et al., 2009), and gene expression levels were

quantified as FPKM values using StringTie (Pertea et al., 2015).
2.8 Gene expression analysis

Two contrasting materials, the highly salt-tolerant line H160

and the salt-sensitive line H20, were subjected to salt stress (200

mmol/L NaCl) at 0 h, 24 h, and 48 h, with three biological replicates

per time point. Total RNA was extracted from leaf samples using an

RNA extraction kit (TIANGEN), reverse-transcribed into cDNA

using a reverse transcription kit (TOROIVD), and subjected to

qRT-PCR analysis using enzymes from TOROGreen® qPCR

Master Mix (TOROVID). The qPCR reactions were performed in

a 20 mL reaction system containing 2 mL of cDNA, 10 mL of qPCR
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master mix, 4 mL of forward primer, and 4 mL of reverse primer,

with each primer at a final concentration of 1–2 micromolars. The

housekeeping gene UBQ7 (Ubiquitin extension protein 7) was

employed as an internal control gene (Wang et al., 2013). Each

template was analyzed in triplicate technical replicates. The qPCR

protocol was conducted using the LightCycler 96 real-time PCR

system (Roche) with the following cycling conditions: initial

denaturation at 96°C for 3 minutes, followed by 40 cycles of

denaturation at 95°C for 10 seconds and annealing/extension at

60°C for 30 seconds. Primers used for quantitative analysis are listed

in Supplementary Table S1.
2.9 VIGS experiment

Virus-induced gene silencing (VIGS) was performed using the

tobacco rattle virus (TRV)-based pTRV1/2 vector system. Target

gene fragments were amplified fromG. barbadense cDNA and cloned

into the pTRV2 vector via homologous recombination using EcoRI

and KpnI restriction sites. The constructed vectors were transformed

into Escherichia coli DH5a cells and validated by plasmid

sequencing. Verified vectors were introduced into Agrobacterium

tumefaciens strain GV3101 via heat-shock transformation.

Agrobacterial cultures harboring the vectors were grown in liquid

medium supplemented with rifampicin (50 mg/mL) and kanamycin

(50 mg/mL) at 28°C with 200 rpm agitation for 12 h. Bacterial cells

were harvested, resuspended in infiltration buffer (10 mMMgCl2, 10

mM MES, 200 mM acetosyringone), and adjusted to OD600 = 1.0.

After 2–3 h of dark incubation at 28°C, Agrobacterium suspensions

carrying pTRV1 and pTRV2 (negative control), pTRV1 and pTRV2:

CLA1 (positive control), or pTRV1 and pTRV2: GbXTH27 were

mixed at 1:1 ratio. The mixtures were infiltrated into cotyledons of 7-

day old G. barbadense 3–79 seedlings using sterile syringes. Post-

infiltration, plants were maintained in darkness for 24 h, then

transferred to a growth chamber at 25°C under 16 h light/8 h dark

cycles. The empty pTRV2 vector served as a negative control, while

pTRV2: CLA1 (essential for chloroplast development) was used as a

positive control, inducing characteristic leaf whitening within two

weeks due to chloroplast defects (Mandel et al., 1996). Leaves from

pTRV2 and pTRV2:GbXTH27 infiltrated plants were collected at two

weeks post-infiltration for RNA extraction and qPCR validation of

GbXTH27 silencing efficiency. All primers used for VIGS vector

construction are listed in Supplementary Table S1.
2.10 DAB staining

The DAB solution was formulated by dissolving DAB powder

in distilled water to reach a concentration of 1 mg/mL, with its pH

adjusted to 3.8. For the staining procedure, leaves were immersed in

the prepared DAB solution and incubated at 28°C in the dark for 12

hours. Following this, the leaves underwent a 10-minute boiling

treatment in 95% ethanol to remove chlorophyll.
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2.11 Determination of elements

Sodium (Na) and potassium (K) contents were measured via

inductively coupled plasma atomic emission spectroscopy (ICP-

AES) (Zhang et al., 2019b). Roots, stems, and leaves of cotton

seedlings were collected, dried, and ground to pass through a 40-

mesh sieve. The homogenized samples were thoroughly mixed prior

to analysis to ensure representativeness.
3 Results

3.1 Construction of the G. barbadense
variation map

This study employed a population of 240 G. barbadense

accessions to investigate genetic variation and construct a high-

density variation map. A total of 2,983,855 high-quality SNPs were

identified, which were unevenly distributed across chromosomes

(Supplementary Figure S1, Supplementary Table S2). The At and Dt

subgenomes contained 1,947,267 and 1,036,588 SNPs, respectively,

with the At subgenome harboring approximately 1.88 times more

SNPs than the Dt subgenome, which was consistent with the At

subgenome being roughly twice the size of the Dt subgenome (Hu

et al., 2019). The average SNP density across the genome was 1.40

SNPs/kb, with densities of 1.45 SNPs/kb and 1.32 SNPs/kb in the At

and Dt subgenomes, respectively. Chromosome A07 showed the

highest SNP density (4.35 SNPs/kb), followed by D10 (3.48 SNPs/

kb). Conversely, A03 exhibited the lowest density (0.62 SNPs/kb),

with D12 marginally higher (0.64 SNPs/kb). Annotation of SNPs

using ANNOVAR revealed 29,495 non-synonymous SNPs, 16,606

synonymous SNPs, 136,073 upstream/downstream SNPs, 741 stop-

gain SNPs, 112 stop-loss SNPs, and 356 splicing SNPs

(Supplementary Table S3). Linkage disequilibrium (LD) decay

was estimated using the r² coefficient between SNPs. LD decay

distances at which r² dropped to half-maximum (0.5) were

approximately 3,000 kb for the whole genome, with 5,200 kb for

the At subgenome and 1,300 kb for the Dt subgenome

(Supplementary Figure S2). The slower LD decay in the At

subgenome compared to the Dt subgenome may reflect

differential selection pressures during domestication.
3.2 Population structure analysis of
G. barbadense population

To investigate the origin, genetic diversity, and differentiation

among subpopulations in the G. barbadense population, phylogenetic

tree construction, population structure analysis, and PCA were

performed. Population structure is a major factor influencing GWAS

results and can lead to false positives (Price et al., 2006). Therefore,

PCA and kinship (Supplementary Figure S3) matrices were

incorporated to correct for population stratification and reduce

spurious associations. A neighbor-joining (NJ) phylogenetic tree

divided the population into four subgroups, including G1 (20
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accessions), G2 (73 accessions), G3 (36 accessions), and G4 (111

accessions) (Figure 1A, Supplementary Table S4). All G1 accessions

originated from regions outside Xinjiang, China. Cross-validation (CV)

results showed the lowest error at K = 8, with CV errors stabilizing

from K = 4 onward (Supplementary Figure S4). PCA results were

consistent with the phylogenetic tree, dividing the 240 accessions into

four groups (Figure 1B). Admixture analysis at K = 4 confirmed these

findings, showing that accessions from regions outside Xinjiang

clustered together. Notably, G4 was distinct even at K = 2, with no

admixture from other groups. This indicates low genetic diversity and

limited hybridization, likely due to independent artificial selection

during breeding (Figure 1C). The FST and p ratios were calculated

for each subgroup using SNP data to assess the differences among

groups. The FST value between G1 and G2 was the highest (0.39), while

the FST value between G2 and G3 was the lowest (0.08), suggesting

frequent genetic exchange between G2 and G3 during breeding

process. G2 exhibited the highest nucleotide diversity (p = 4.7×10-4),

indicating greater genetic resources, whereas G4 had the lowest p
(1.6×10-4) (Figure 1D). These results highlight significant differences

among the four subgroups, with G4 showing the lowest genetic

diversity and experiencing the strongest selection pressure, which

provides valuable insights into the breeding history of G. barbadense.
3.3 Salt tolerance evaluation of
G. barbadense population

Data of four traits were collected from 239 G. barbadense

accessions under 200 mmol/L NaCl salt stress in both 2022 and

2023. The traits included relative plant height (RPH), relative shoot

fresh weight (RSFW), relative shoot dry weight (RSDW), and

relative root dry weight (RRDW). To minimize the influence of

environmental and batch effects, the best linear unbiased estimates

(BLUEs) for each trait were calculated (Table 1). BLUE-adjusted

trait values showed differential sensitivity to salinity: RPH (0.49-

0.79, mean ± SD = 0.62 ± 0.05), RSFW (0.27-0.79, 0.49 ± 0.09),

RSDW (0.35-0.88, 0.58 ± 0.10), RRDW (0.35-0.85, 0.59 ± 0.08). All

four metrics were less than 1, indicating that the 200 mmol/L NaCl

treatment reduced plant height, shoot fresh weight, shoot dry

weight, and root dry weight during the seedling stage of G.

barbadense. Among the traits, the coefficient of variation (CV) of

RPH was the smallest (7.99%) and RSFW was the largest (18.42%).

All four traits exhibited a normal distribution across replicates

under salt stress, indicating their suitability for GWAS analysis.

These traits showed significant positive correlations between each

other (Figure 2A). Among them, the strongest correlation was

observed between RSFW and RSDW (r = 0.80), while the weakest

correlation was found between RPH and RRDW (r = 0.16). In terms

of RRDW, G3 showed significantly higher values than G2, and G1

performed significantly better than G2 (Figure 2B). For the other

three traits, no significant differences were observed among the

subgroups (Figures 2C-E). Therefore, under salt stress, the materials

in subgroup G3 demonstrated better salt tolerance.

PCA was conducted on the four relative salt-tolerance indices of

the 239 G. barbadense accessions. The eigenvalues and contribution
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rates of each principal component are shown in Table 2. Variance

partitioning showed PC1 accounted for 66.98% (l = 2.68), PC2

21.96% (l = 0.88), PC3 6.53% (l = 0.26), and PC4 4.53% (l=0.18)
of total variance. The cumulative contribution rate of the first two

principal components reached 88.94%, which exceeds the threshold
Frontiers in Plant Science 06
of 85% for selecting principal components. Therefore, the first two

principal components can adequately represent the information

from the original four traits. PC1 (66.98% variance) showed

strongest positive loading for RSDW (loading = 0.35), followed by

RSFW (0.34) and RPH (0.31). PC2 (21.96% variance) was

predominantly loaded by RRDW (loading = 0.94) with negative

correlation to RPH (-0.47) and RSFW (-0.17).

Based on the contribution rates of the PC1 and PC2, the

comprehensive salt tolerance index (D value) for the 239 G.

barbadense accessions was calculated using membership function

analysis. Hierarchical clustering was then performed to classify the

accessions into five distinct groups (Figure 3, Supplementary Table S4):

23 highly salt-tolerant, 42 moderately salt-tolerant, 110 intermediate,

39 moderately salt-sensitive, and 25 highly salt-sensitive accessions,
FIGURE 1

Population genetic structure of 240 G. barbadense. (A) Neighbor-joining phylogenetic tree of 240 G. barbadense accessions clustered into four
subgroups (G1-G4). Branch colors correspond to genetic subgroups. (B) PCA of 240 accessions visualized in three dimensions. Points are colored by
genetic subgroup (G1-G4). (C) Admixture ancestry proportions for K = 2-4. Vertical bars represent individual accessions, partitioned into genetic
subgroups (G1-G4) at optimal K = 4. (D) FST and p across subgroups G1-G4.
TABLE 1 Salt-stressed phenotypic data for 239 G. barbadense accessions.

Trait Max Min Mean SD CV(%)

Relative plant height 0.79 0.49 0.62 0.05 7.99

Relative shoot fresh weight 0.79 0.27 0.49 0.09 18.42

Relative shoot dry weight 0.88 0.35 0.58 0.10 16.90

Relative root dry weight 0.85 0.35 0.59 0.08 13.66
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FIGURE 2

Four salt stress traits in G. barbadense. (A) Phenotypic correlation matrix (upper triangle) with diagonal histograms showing trait frequency
distributions for 239 G. barbadense accessions. Correlation coefficients represent Pearson’s r values. Histograms display trait variance with normality
distribution curves. * and *** indicated P value at the 0.05 and 0.001 levels, respectively. (B-E) Comparative analysis of normalized growth
parameters across genetic subgroups (G1-G4): (B) RRDW, (C) RPH, (D) RSFW, (E) RSDW. n values: number of accessions within each subgroup. One-
way analysis of variance (ANOVA) was performed to assess differences between subpopulations, significantly different (P < 0.05) groups are denoted
by distinct lowercase letters.
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labeled as Groups I to V, respectively. The corresponding D value

ranges for the five groups: I (0.63–0.91), II (0.52–0.61), III (0.38–0.51),

IV (0.28-0.37), V (0.09-0.28). Group III (intermediate tolerance)

comprised 46.0% of the panel (110/239), whereas Group I (high

tolerance) represented only 9.6% (23/239), reflecting the polygenic

nature of salt tolerance. This classification method facilitates the
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screening and identification of salt-tolerant G. barbadense accessions

(Group I), providing a foundation for developing salt-tolerant G.

barbadense cultivars.
3.4 Genome-wide association study of salt
tolerance in G. barbadense population

Association analysis of four traits under two environments and

breeding values was performed using the Mixed Linear Model

(MLM). Based on the significance thresholds of p < 4.67×10-6 [1/

n, where n = 213,990 effective SNPs calculated using PLINK

software (Yu et al., 2021)] for SNPs detected in a single

environment and p < 1×10–5 for repeatedly identifing SNPs, a

total of 1,577 SNP loci were identified (Supplementary Table S5,

Supplementary Figure S5). Among these, 34 SNPs were uniquely

detected in single environments, while 1,543 SNPs were repeatedly

identified across two or more environments or traits. Trait-specific

associations showed varying genetic architectures: RPH (1,453

SNPs), RSFW (1,407), RSDW (41), RRDW (50). SNP distribution

showed significant subgenome bias, with 90.8% (1,433/1,577)

localized to the At subgenome versus 9.2% (144/1,577) in Dt.
TABLE 2 Eigenvalues, variance contributions, and loading matrices of
four PCA.

Factor
Principal component

1 2 3 4

Eigenvalue 2.68 0.88 0.26 0.18

Contribution rate/% 66.98 21.96 6.53 4.53

Accumulative
Contribution rate/%

66.98 88.94 95.47 100.00

Relative plant height 0.31 -0.47 1.45 -0.07

Relative shoot fresh weight 0.34 -0.17 -0.89 1.58

Relative root dry weight 0.20 0.94 0.60 0.34

Relative shoot dry weight 0.35 0.05 -0.76 -1.70
FIGURE 3

Clustering diagram for salt tolerance of 239 G. barbadense accessions.
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This disparity may be attributed to the higher linkage

disequilibrium (LD) decay rate and larger LD blocks observed in

the At subgenome (Supplementary Figure S2). LD decay intervals

were employed to refine candidate gene selection. By defining 100-

kb genomic regions upstream and downstream of significant SNPs

as LD blocks (with overlapping regions merged), we identified 132

salt stress-related QTLs (Supplementary Table S6) spanning

approximately 47.78 Mb collectively. The At subgenome

containing 81.2% (38.80/47.78 Mb) of QTL regions versus 20.9%

(9.98 Mb) in Dt. These QTL regions, representing ~2.3% of the total

genome length, encompassed 811 annotated genes (Supplementary

Table S7).
3.5 Identification of candidate genes

GWAS of 2022-RPH and BLUE-RPH identified a significant

SNP cluster on chromosome D02 (Figure 4), delineating the QTL-
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SALT98 locus (Gbar_D02: 45.56-46.52 Mb; 958 kb interval)

s p a n n i n g a p p r o x im a t e l y 9 5 8 k b . T h e l e a d SNP

(Gbar_D02_45674375) marked the association peak. Within

QTL-SALT98, 1 ,596 SNPs were subjected to l inkage

disequilibrium (LD) analysis using LDBlockShow, which

demonstrated strong linkage disequilibrium across this genomic

region (Figure 5A). Haplotype analysis partitioned accessions into

two major haplotypes (Hap1 and Hap2) (Figure 5B). Notably, Hap1

exhibited significantly higher RPH values compared to Hap2

(Figure 5C), and Hap1 also showed significantly higher RSFW,

RSDW, and D value than Hap2 (Supplementary Figure S6),

indicating a robust association between haplotype variation and

salt tolerance capacity.

The QTL-SALT98 interval harbors 17 candidate genes. Analysis

of published RNA-seq data from salt-stressed G. barbadense

revealed dynamic expression patterns of these genes across 6 time

points [1 h, 3 h, 6 h, 12 h, 24 h, and 14 days post-treatment (Hu

et al., 2019; Dong et al., 2022)]. Notably, only five genes:
FIGURE 4

Manhattan and QQ plots for RPH in a GWAS of G. barbadense. (A-C) RPH: 2022 (A), 2023 (B), BLUE (C).
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Gbar_D02G014580, Gbar_D02G014590, Gbar_D02G014610,

Gbar_D02G014670, and Gbar_D02G014700 exhibited significant

differential expression under salt stress (Figure 5D).

To validate candidate gene expression in extreme phenotypic

materials, we selected the salt-tolerant genotype H160 and salt-

sensitive genotype H20. Physiological characterization revealed

contrasts in their salt tolerance. Under 7-day salt stress, H160

exhibited less structural alterations with mostly upright stems and

partially turgid leaves, showing only slight wilting compared to
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controls, whereas H20 displayed severe wilting and pronounced

stem bending (Supplementary Figures S7A, B). Growth parameters,

including plant height, shoot biomass, and root dry weight,

experienced moderate decreases in H160, in contrast to the

significant declines observed in H20 under salinity (Supplementary

Figures S7C-F). Ion profiling showed H160 roots retained 40% higher

K+ content with a lower Na+/K+ ratio than H20, while its leaves

maintained 40% lower Na+ accumulation and 45% reduced Na+/K+

ratio (Supplementary Figures S7 G-I), demonstrating coordinated
FIGURE 5

RPH-related loci were identified on D02. (A) Manhattan plot and LD block analysis. (B) Haplotype analysis within the CHR: D02: 45.56Mb-46.52Mb interval.
(C) Box plots for RPH among different haplotypes. In the box plots, the center line denotes the median, box limits are the upper and lower quartiles, and
whiskers mark the range of the data. Significance levels for inter-group differences: *P<0.05, ***P<0.001 (two-tailed Student’s t-test). (D) Heatmap of FPKM
expression for genes within QTL-SALT98 under salt treatment at 1 h, 3 h, 6 h, 12 h, 24 h, and 14 day. n values, number of accessions in each haplotype.
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regulation of Na+ exclusion in leaves and K+ retention in roots. These

ion balance results indicate that H160 achieves salt tolerance by

coordinating Na+ exclusion in leaves and K+ retention in roots,

maintaining cellular ionic homeostasis critical for osmotic balance

and enzyme function under salinity. In contrast, H20 failures to

restrict Na+ accumulation in leaves and preserves root K+ levels,

which leads to disrupted ion homeostasis and results in severe growth

inhibition and wilted phenotype.

Given these physiological disparities, we performed qRT-PCR

validation at 0 h, 24 h, and 48 h post-treatment. Results

demonstrated that Gbar_D02G014580 and Gbar_D02G014610

showed higher expression in H20 at 48 h, while Gbar_D02G014590

exhibited elevated expression in H20 at 24 h (Figures 6A-C).

Conversely, Gbar_D02G014670 expression in H160 significantly

surpassed that in H20 at both 24 h and 48 h, with the most

pronounced difference observed at 48 h (Figure 6D). In addition,

there was no significant difference in Gbar_D02G014700 at each time

(Figure 6E). These findings implicate Gbar_D02G014590,

Gbar_D02G014610, Gbar_D02G014670, and Gbar_D02G014700 as

salt-responsive candidate genes. Functional annotation of

Arabidopsis homologs revealed that Gbar_D02G014670 (AT2G01850,

GbXTH27) encodes a xyloglucan endotransglucosylase/hydrolase

(XTH), which was critical for cell wall remodeling, while

Gbar_D02G014590 (AT1G16020, GbCCZ1A) encodes a vacuolar

fusion protein, as a component of the MON1–CCZ1 complex,

CCZ1A regulates post-Golgi vesicle transport to ensure targeted
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transport of storage proteins to protein storage vacuoles. CCZ1A

dysfunction leads to seed development defects (Pan et al., 2021).

Gbar_D02G014610 (AT1G24706, GbTHO2) is a core component of

the THO/TREX complex, which was essential for miRNA biogenesis.

Gbar_D02G014700 (AT1G14710) encodes a hydroxyproline-rich

glycoprotein family protein. Gbar_D02G014580 (AT1G68020,

GbTPS6) encodes a trehalose-6-phosphatase catalyzing trehalose-6-

phosphate (T6P) biosynthesis. T6P regulates sucrose biosynthesis,

source-sink allocation, and developmental signaling in plants

(Fichtner and Lunn, 2021).
3.6 Functional validation of GbXTH27 in
salt tolerance

VIGS of GbXTH27 in the G. barbadense standard line 3–79

under salt stress (200 mM NaCl) were performed to verify its gene

function. VIGS resulted in white-leaf phenotype (Supplementary

Figure S8A) and significant transcript reduction (Supplementary

Figure S8B). After 7 days of salt stress treatment, silenced plants

(pTRV2: GbXTH27) displayed exacerbated wilting in cotyledons

and true leaves compared to controls (TRV:00) (Figures 7A, B).

Under salt stress conditions, TRV: GbXTH27 showed significantly

lower values in plant height, shoot fresh weight, shoot dry weight,

and root dry weight than TRV:00 controls (Supplementary Figures

S9A-D). Additionally, Na+ content in the roots, shoots, and leaves
FIGURE 6

qRT-PCR analysis of five genes in the salt-tolerant material H160 and the salt-sensitive material H20 at 0 h, 24 h and 48 h under 200 mmol/L NaCl
treatment. (A) Gbar_D02G014580. (B) Gbar_D02G014590. (C) Gbar_D02G014610. (D) Gbar_D02G014670. (E) Gbar_D02G014700. Expression levels
were normalized to the housekeeping gene UBQ7. Significance levels for inter-group differences: *P<0.05 (two-tailed Student’s t-test).
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of TRV: GbXTH27 was significantly higher than that in TRV:00

(Supplementary Figure S9E), while K+ content in the shoots and

leaves of TRV: GbXTH27 was significantly lower than in TRV:00

(Supplementary Figure S9F). Consequently, the Na+/K+ ratio in the

roots, shoots, and leaves of TRV: GbXTH27 was significantly higher

than in TRV:00 (Supplementary Figure S9G), indicating that TRV:

GbXTH27 experienced more severe salt stress. After 7 days of NaCl
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treatment, the leaf DAB staining area of TRV: GbXTH27 plants was

significantly larger than that of TRV:00 controls, with deeper

staining intensity in TRV: GbXTH27(Figure 7C). This indicates

that silencing GbXTH27 leads to a significant increase in reactive

oxygen species (ROS) accumulation in leaves, significantly reducing

the salt stress resistance of cotton seedlings. Physiological assays

revealed diminished SOD activity and Pro content, alongside
FIGURE 7

Gene silencing of GbXTH27 in G. barbadense. Phenotypes under salt treatment, (A) TRV:00 control, (B) GbXTH27 silenced. (C) DAB staining of
TRV:00 and TRV: GbXTH27 leaves with CK and salt stress. The green leaves are the images taken before the DAB staining. (D) SOD activity. (E) MDA
content. (F) Pro content. Significance levels for inter-group differences: *P<0.05, **P<0.01 (two-tailed Student’s t-test). Bar = 2 cm.
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elevated MDA levels in silenced plants (Figures 7D-F), indicating

compromised antioxidant capacity, membrane integrity, and

osmotic adjustment. These results confirm GbXTH27 as a key

regulator of salt tolerance. The peak SNP (Gbar_D02_45674375)

within QTL-SALT98 serves as a molecular marker for breeding salt-

tolerant cotton cultivars.
4 Discussion

In this study, we performed a genetic structure analysis on 240

G. barbadense accessions, revealing the genetic diversity within the

population and its complex geographic background. High-density

molecular marker-based population structure analysis classified the

population into four distinct subpopulations. Consistent with

previous studies (Yu et al., 2021; Jin et al., 2023), Xinjiang G.

barbadense accessions formed a separate cluster in the phylogenetic

tree, exhibiting significant divergence from accessions of other

regions. Notably, subpopulations G1 and G4 displayed marked

differences in genetic diversity (Figure 1D). The higher genetic

diversity of G1 may stem from its broader geographic distribution

and limited artificial selection, whereas the reduced diversity in G4

likely reflects the restricted number of founder parents during the

introduction of Xinjiang cultivars. Historical records indicate that

Xinjiang G. barbadense varieties primarily originated from five

Central Asian founder parents: 2И3, C6022, 8763И, 5230Ф, and

9122И (Zhao et al., 2022).

Salt stress significantly impairs growth-related traits, including

reduced plant height, diminished leaf area, and suppressed root

development, collectively leading to decreased biomass (Munns and

Tester, 2008). Given the variability in salt tolerance mechanisms

among accessions, relying on single or limited indicators may

inadequately reflect the true salt-tolerance capacity (Zhang et al.,

2011). To address this, we employed a multi-indicator approach

for comprehensive evaluation. PCA of four stress tolerance indices

(STIs) across 239 G. barbadense accessions enabled the calculation

of a composite salt tolerance index (D-value) using membership

functions. Higher D-values correlate with enhanced salt tolerance,

providing a robust framework for comparative analysis. Clustering

based on multiple agronomic traits offers superior discriminatory

power over traditional methods in evaluating salt tolerance (Zeng

et al., 2002). For instance, prior studies classified 549 Brassica napus

accessions into five categories (highly tolerant, tolerant,

intermediate, sensitive, and highly sensitive) using physiological

traits (Wu et al., 2019), while eight wheat cultivars were grouped

into salt-tolerant, moderately tolerant, and salt-sensitive categories

(Quamruzzaman et al., 2022a). Adopting similar methodology, we

classified 239 G. barbadense accessions into five groups, including

highly tolerant, tolerant, intermediate, sensitive, and highly

sensitive-based on D-values (Figure 3). The 23 highly tolerant

accessions identified here represent valuable parental resources

for salt-tolerant breeding.

GWAS have become crucial in dissecting salt tolerance in

cotton. Current SNP identification strategies fall into two

categories: (1) chip-based sequencing, for example, the detection
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of eight salt-associated SNPs in 288 G. hirsutum accessions by using

an 80K chip (Cai et al., 2017), 23 SNPs linked to seedling traits in

713 G. hirsutum accessions via a 63K chip (Sun et al., 2018), and 42

SNPs identified in 149 G. hirsutum accessions using a 70K chip

(Zheng et al., 2021); (2) whole-genome resequencing, which

captures broader genetic variation. For example, resequencing of

419 G. hirsutum accessions uncovered 17,264 salt stress-associated

SNPs, with key loci prioritized via linkage disequilibrium (LD)

analysis (Yasir et al., 2019). Similarly, a MAGIC population

comprising 550 recombinant inbred lines (RILs) enabled the

identification of 23 salt tolerance-related QTLs across ~470,000

loci (Abdelraheem et al., 2021). While GWAS in cotton has

predominantly focused on G. hirsutum, studies on G. barbadense

remain limited. Here, resequencing of G. barbadense identified 2.98

million SNPs, constructing a high-density variation map. A total of

1,577 significant SNPs were detected, fewer than previous reports

(Yasir et al., 2019; Xu et al., 2021), which may be due to stringent

thresholds (p < 4.67 × 10-6 or p < 1.0 × 10-5 across two

environments/traits) for minimizing the false positives.

GWAS analysis revealed multiple SNPs strongly associated with

salt tolerance (Supplementary Table S5). Notably, no overlap was

observed between the QTL intervals identified here and those

reported in a prior GWAS of fiber phenotypes under salt stress in

249 G. barbadense accessions (Su et al., 2020). This divergence suggests

distinct salt tolerance mechanisms between seedling and full-growth

stages, as cotton is particularly vulnerable during germination,

emergence, and early seedling development (Sharif et al., 2019). On

chromosome D13, SNP Gbar_D13_54698281, associated with traits

2022-RPH and 2022-RSDW, which resides ~42 kb upstream of

Gbar_D13G020420, an ortholog of Arabidopsis AtCIPK6. GhCIPK6

regulates sugar homeostasis by interacting with GhCBL2 and GhTST2,

and its overexpression enhances salt tolerance in transgenic

Arabidopsis (He et al., 2013; Deng et al., 2020). These findings

highlight how our GWAS results can identify genes governing

seedling-stage salt tolerance in G. barbadense.

The cell wall serves as the primary barrier against environmental

stress, and its structural compromise can lead to membrane damage

and ion homeostasis disruption (Zhu, 2016). To investigate the

molecular basis of cell wall-mediated salt tolerance, this study

identified GbXTH27, encoding a xyloglucan endotransglucosylase/

hydrolase (XTH) with dual xyloglucan endotransglucosylase (XET)

and xyloglucan endohydrolase (XEH) activities. XTHs mediate

xyloglucan crosslinking, facilitating cell wall remodeling, which is a

critical process for bridging primary and secondary cell walls. XTHs

play conserved yet diverse roles in plant stress adaptation.

Overexpression of CaXTH3 from pepper (Capsicum annuum) in

Arabidopsis and tomato enhances drought and salt tolerance by

promoting stomatal closure via enhanced guard cell wall remodeling,

thereby reducing transpirational water loss (Choi et al., 2011; Colin

et al., 2023). Similarly, heterologous expression of PeXTH from

Populus euphratica in tobacco increased palisade parenchyma cell

density, reduced intercellular spaces, and enhanced leaf succulence,

collectively lowering Na+ and Cl- accumulation under salt stress (Han

et al., 2013). These functional studies are supported by the

characterization of XTH homologs in soybean (Song et al., 2018),
frontiersin.org

https://doi.org/10.3389/fpls.2025.1654742
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2025.1654742
wheat (Han et al., 2023), rapeseed (Chen et al., 2024), and maize (Fu

et al., 2024). Similarly, heterologous expression of PeXTH from

Populus euphratica in tobacco increased palisade parenchyma cell

density, reduced intercellular spaces, and enhanced leaf succulence,

collectively lowered Na+ and Cl- accumulation under salt stress (Han

et al., 2013). In this study, silencing GbXTH27 resulted in severe

wilting of cotton seedlings under salt stress (Figures 7a, b), further

supported by the observation that the leaf DAB staining area of TRV:

GbXTH27 plants was significantly larger than that of TRV:00

controls, with deeper staining intensity in TRV: GbXTH27

(Figure 7C). These phenotypic results collectively demonstrate that

the loss of XTH function impairs salt tolerance. Furthermore, qRT-

PCR analysis showed that under salt stress, the expression of

GbXTH27 in the salt-tolerant genotype H160 was significantly

higher than that in the salt-sensitive genotype H20 (Figure 6D).

This implies that GbXTH27 may play a role in maintaining

antioxidant enzyme activity and osmotic potential, facilitating

cellular adaptation to salinity, possibly through mechanisms related

to cell wall structural changes.

Physiological characterization revealed that GbXTH27-silenced

plants displayed significantly reduced superoxide dismutase (SOD)

activity (p < 0.05), indicative of impaired redox homeostasis,

concurrent with elevated MDA accumulation (p < 0.01)

characteristic of membrane lipid peroxidation (Figures 7D, E).

Furthermore, Pro content was markedly reduced (p < 0.05),

consistent with compromised osmotic adjustment capacity under

salt stress. We propose two potential mechanisms underlying these

observations: ROS accumulation via antioxidant suppression.

Silencing GbXTH27 likely suppress the activity of antioxidant

enzymes such as superoxide dismutase (SOD) (p < 0.01; Figure 7F)

(Figure 7F), leading to ROS accumulation and oxidative damage. On

the other hand, osmotic adjustment was limited. Under salt stress,

plants accumulate osmolytes like Pro to maintain turgor pressure

(Szabados and Savoure, 2010). The significantly lower Pro content in

GbXTH27-silenced lines (p < 0.01; Figure 7F) suggests that turgor-

driven osmotic adjustment is restricted, thereby inhibiting Pro

biosynthesis. These collective results demonstrate that GbXTH27

critically mediates salt adaptation through regulation of redox

homeostasis, reactive oxygen species (ROS) scavenging, and

osmotic adjustment.

Through integrated analyses of population genetic structure, salt

tolerance phenotyping, and GWAS in G. barbadense populations, we

identified GbXTH27 as a xyloglucan endotransglucosylase/hydrolase

family gene whose expression positively correlates with salt tolerance

levels. This study provides novel insights into the molecular

mechanisms of salt stress adaptation in G. barbadense and

highlights potential genetic targets for improving salt tolerance

through molecular breeding.
5 Conclusion

This study integrates population genetic analysis, salt-

tolerance phenotyping, and GWAS to elucidate the genetic
Frontiers in Plant Science 14
diversity and salt adaptation mechanisms in G. barbadense.

Additionally, 23 highly salt-tolerant accessions were identified

through MFV. GbXTH27 was identified, encoding an XTH

enzyme, as a pivotal gene positively correlated with salt

tolerance. Functional validation via VIGS confirmed its crucial

role in enhancing seedling tolerance. These findings deepen our

understanding of salt stress adaptation and offer genetic resources

for cotton improvement of salt tolerant.
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SUPPLEMENTARY FIGURE 1

The distribution of 2,983,855 SNPs and 369,812 InDels on the 26
chromosomes of the G. barbadense associated population.

SUPPLEMENTARY FIGURE 2

Decay of linkage disequilibrium with physical distance in the G. barbadense

population. At sub-genome (black), complete accession set (red), and Dt sub-
genome (blue).
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SUPPLEMENTARY FIGURE 3

Heat map of kinship matrix of 240 G. barbadense accessions.

SUPPLEMENTARY FIGURE 4

CV error value among different K values.

SUPPLEMENTARY FIGURE 5

Manhattan and QQ plots for phenotypic traits in a GWAS of G. barbadense.

(A-C) Relative shoot fresh weight (RSFW): 2022 (A), 2023 (B), BLUE (C). (D-F)
Relative shoot dry weight (RSDW): 2022 (D), 2023 (E), BLUE (F). (G-I) Relative
root dry weight (RRDW): 2022 (G), 2023 (H), BLUE (I).

SUPPLEMENTARY FIGURE 6

Box plots for salt-relate traits among different haplotypes. (A) RSFW: relative
shoot fresh weight. (B) RSDW: relative shoot dry weight. (C) RRDW: relative

root dry weight. (D) D value. In the box plots, the center line denotes the
median, box limits are the upper and lower quartiles, and whiskers mark the

range of the data. Significance levels for inter-group differences: *P<0.05,
**P<0.01 (two-tailed Student’s t-test).

SUPPLEMENTARY FIGURE 7

Growth pattern differences in phenotypes, biomass, and ion contents

between salt-tolerant and salt-sensitive genotypes. (A, B) Phenotype of
salt-tolerant H160 and salt-sensitive H20 under CK (A) and salt stress (B)
for 7 days. (C) Plant height, (D) Shoot fresh weight, (E) Shoot dry weight, and
(F) Root dry weight of H160 and H20 under CK and salt stress. (G) Na+

content, (H) K+ content and (I) Na+/K+ ratio in root, shoot, and leaf of H160

and H20. Significance levels for inter-group differences: *P<0.05, **P<0.01
(two-tailed Student’s t-test). Bar = 2 cm.

SUPPLEMENTARY FIGURE 8

VIGS silencing efficiency. (A) VIGS resulted in white leaf phenotype. (B)
Relative expression of silenced GbXTH27. Significance levels for inter-group

differences: *P<0.05 (two-tailed Student’s t-test).

SUPPLEMENTARY FIGURE 9

Phenotypes of TRV:00 and TRV: GbXTH27 under control and salt stress
treatment. (A) Plant height. (B) Shoot fresh weight. (C) Shoot dry weight. (D)
Root dry weight. One-way analysis of variance (ANOVA) was performed to
assess differences between subpopulations, significantly different (P < 0.05)

groups are denoted by distinct lowercase letters. (E) Na+ content. (F)
K+content. (G) Na+/K+ ratio. Significance levels for inter-group differences:

*P<0.05, **P<0.01 (two-tailed Student’s t-test).
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