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Introduction: Community assembly involves species forming communities

through interactions and environmental adaptation, with traits and phylogeny

playing key roles. Analyzing these factors is crucial for understanding community

assembly and improving ecological restoration and biodiversity conservation,

especially in karst ecosystems, where research is limited.

Methods: Here, we evaluated six metrics of taxonomic, phylogenetic and

functional diversity in a subtropical climax forest, and then derived the relative

contribution of environmental and spatial conditions on the diversity metrics.

Results: The results indicated that, except for the mean pairwise distance (MPD)

index, all other indices exhibited a higher spatial distribution pattern on slopes

compared to depressions. The MPD index, however, displayed a more

homogeneous pattern, with no significant differences observed across terrains.

Our findings suggest that topography has a stronger and more consistent

influence on species, functional, and phylogenetic diversity than soil factors.

Among these, phylogenetic diversity showed the most pronounced response to

topographic variation (especially elevation, slope, and terrain wetness index),

indicating that evolutionary lineage distribution is more sensitive to terrain

changes than functional or species diversity. In addition, species diversity was

most affected by dispersal limitation among the three types of diversity,

suggesting that significant spatial variation in community composition is largely

constrained by the dispersal ability of species. In contrast, phylogenetic diversity

was most affected by environmental filtering, highlighting the strong selective

effect of environmental conditions on community phylogeny. Functional

diversity, on the other hand, showed a smaller degree of response to both
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filtering and dispersal, with dispersal limitation having a higher impact than

environmental filtering.

Discussion: This study reveals the spatial pattern of karst plant diversity in

southwest China and its influencing factors, as well as the mechanism of

community construction, providing a theoretical foundation and scientific basis

for biodiversity conservation and vegetation restoration in karst areas.
KEYWORDS

multidimensional diversity, abiotic filtering, habitat heterogeneity, functional trait,
karst ecosystem
1 Introduction

Community ecologists assess various measurements of

biodiversity, including species diversity, trait-based diversity, and

functional diversity. Among these, species diversity is the most

straightforward indicator of plant diversity (Loreau et al., 2001). It

quantitatively characterizes the composition and structure of plant

communities, the progression of successional stages, the

development of ecosystems, and habitat variability (Tilman et al.,

1996). Studying species diversity provides scholars with valuable

insights into the composition, dynamics, and evolution of plant

communities (Zhang et al., 2000). Crucially, the functional traits of

species—which determine the habitat a species occupies, the nature

of its interspecific interactions, the intensity of competition it

experiences, and its efficiency as a predator or prey—are

fundamental to understanding community assembly and

ecosystem functioning (Mcgill et al., 2006; Cadotte et al., 2011).

Complementing this functional perspective, phylogenetic diversity

offers a framework for hypothesizing the influence of historical

evolutionary processes on contemporary communities (Webb et al.,

2002). It allows for the analysis of community composition from an

evolutionary perspective, and aids in examining the ecological

processes that influence species coexistence (Cavender-Bares

et al., 2009). The richness index, Shannon-Wiener index, Simpson

index, and Pielou index, which measure species a-diversity, assess
species distribution, dominance, and evenness within a community.

These indices reflect the balance of competitive interactions or

mutual survival among species, driven by the acquisition of survival

resources (Tan et al., 2013).

Biodiversity patterns refer to the geographical distribution of

biodiversity, which provides an intuitive representation of how

biological and environmental factors influence species distribution

(Gaston, 2000). Understanding biodiversity patterns and their

driving mechanisms is essential for biodiversity conservation

research (Naeem and Wright, 2003; Mcgill et al., 2006).

Community assembly mechanisms are generally classified into

two main categories: ecological niche processes, which focus on

differences in ecological strategies among species, and neutral

processes, which emphasize the similar fitness levels of species
02
(Niu et al., 2009). Ecological niche processes encompass

competition and facilitation, while neutral processes are

considered stochastic. Recent studies have shown that both

facilitation and competition can simultaneously influence species

coexistence within the same community, particularly under the

influence of abiotic environmental stresses (e.g., low temperature,

nutrient deficiencies in soil, drought, etc.) (Pichon et al., 2024). The

relative strength of these effects varies depending on the intensity of

the environmental stresses (Kraft et al., 2008; Mcintire and Fajardo,

2009; Long et al., 2015). Abiotic environments act as fundamental

environmental sieves, shaping plant morphological structures,

physiological functions, and phylogenetic relationships. This

filtering process fundamentally determines the pool of species

capable of coexisting within a community by defining the abiotic

dimensions of their ecological niches. Furthermore, by providing

varying quantities and qualities of resources, abiotic environments

play a crucial role in facilitating the actual coexistence among these

filtered species (He et al., 2009).

Environmental filtering, along with dispersal limitation, is

recognized as a critical process in community assembly

(Hillerislambers et al., 2012). Environmental filtering refers to the

process by which abiotic factors select species with specific traits for

incorporation into local communities, often described as the

“environmental sieve” (Keddy, 1992). The central concept of

habitat filtering is that species exhibit varying levels of suitability

across different environments, leading to differences in population

sizes. It is generally accepted that when environmental filtering

plays a prominent role in local communities, the mean values of

functional traits and the trade-offs between traits will vary along

abiotic environmental gradients. For instance, Liu et al. (2017)

demonstrated that soil fertility was significantly correlated with leaf

area, leaf area index, and wood density. In addition to

environmental filtering, dispersal limitation at the local scale is

another key process influencing forest biodiversity and community

assembly (Shen et al., 2009; Chen et al., 2019). Dispersal limitation

in plant communities refers to the insufficient number or variety of

propagules that prevent seeds from reaching suitable germination

sites (Dent and Estrada-Villegas, 2021). The significant role of

dispersal limitation has been widely confirmed in previous
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studies, which span various forest types (temperate, subtropical,

tropical), biodiversity dimensions (species diversity, phylogenetic

diversity, functional diversity), and taxonomic groups (Legendre

et al., 2009; Wang et al., 2018). For example, a study in the

subtropical forest of Gutian Mountain found that both dispersal

limitation and habitat filtering had comparable explanatory power

for patterns in species and phylogenetic diversity in plant

communities. Notably, the effect of dispersal limitation was more

pronounced at smaller spatial scales, while the influence of habitat

filtering increased with scale (Rao et al., 2013). Recent studies have

explored the interplay between environmental filtering and

dispersal limitation in shaping biodiversity, for example, Wang

et al. (2013) and Yin et al. (2021) demonstrated the importance of

these processes in temperate and tropical forests. While these

studies have provided valuable insights, our research aims to

explore their combined effects in the unique karst ecosystems of

southwest China, where steep topography and nutrient-poor soils

create distinctive community assembly patterns.

Ecological heterogeneity is a key characteristic of landscape

patterns and a significant factor influencing biodiversity (Stein

et al., 2014; Tamme et al., 2010). Ecological niche partitioning

driven by habitat heterogeneity is particularly important in the

context of abiotic factors such as light availability, nutrient

resources, soil moisture content, and topographic conditions. These

factors also influence the spatial and temporal distribution of

vegetation (Keppel et al., 2012; Bátori et al., 2019). Studies have

demonstrated that even relatively minor changes in environmental

variables can have substantial effects on the species composition and

diversity of plant communities (Deák et al., 2021). Topography, as a

major non-biotic factor, plays a pivotal role in influencing vegetation

cover through variations in slope, elevation, and aspect. These

topographic features, in turn, affect the spatial redistribution of

sunlight, soil moisture, and nutrients, resulting in local

environmental modifications and the creation of microclimates

(Cantón et al., 2004; Hara et al., 1996; Shen et al., 2000).

Topographic factors exert a strong influence on community,

ecosystem, and landscape patterns (Kamrani et al., 2011; Chen

et al., 2018), thereby impacting biodiversity (Gaston, 2000). Beyond

topography, soil nutrient availability is a critical determinant of plant

growth and development, influencing vegetation distribution. For

instance, soil nutrient levels are closely linked to spatial heterogeneity

in grasslands (Qi et al., 2010) and natural forests (Huang et al., 2015;

Toriyama et al., 2015). Moreover, research has shown that a broad

range of soil nutrients, including organic matter, nitrogen, and

phosphorus, significantly affects the species composition and

diversity of plant communities (Townsend et al., 2008; Becknell

and Powers, 2014).

Karst regions, characterized by distinct geomorphological

features, are home to rich ecological diversity and complex

geographical conditions (Huang, 2025). Plant communities in

these areas exhibit remarkable adaptability, enabling them to

thrive in nutrient-poor soils, extreme hydrological conditions, and

specialized karst landscapes (Wu and Wu, 2023). Many plants in

karst regions possess traits such as drought resistance and tolerance

to poor soils (Huang, 2025). These species often adapt by
Frontiers in Plant Science 03
developing deep root systems or thickened leaves to cope with

local climatic and soil conditions. Due to the thin and uneven soil

layers created by karst processes and the exposure of rock surfaces,

plants must acclimate to nutrient-deficient environments (Liu et al.,

2021). The karst landscape is characterized by complex

topographical features such as karst peaks, pillars, caves, and

stone forests. These formations provide diverse habitats for

plants, create varied hydrological conditions, and influence the

distribution of plant communities (Li et al., 2020). Regarding

community assembly, research on karst plant communities has

highlighted the complex dynamics shaped by species interactions—

such as competition and mutualism—occurring within the context

of, and often driven by, species’ adaptations to unique

environmental factors (e.g., drought, high calcium, soil

limitations) (Fu et al., 2023). Studies have shown that the plant

communities in karst areas are closely linked to soil types, climatic

conditions, and hydrological characteristics. Changes in these

environmental factors directly affect species distribution and

community structure (Liu et al., 2021). Furthermore, functional

diversity plays a crucial role in karst plant communities, as species

with varying functional traits coexist, contributing to the stability

and ecological functions of the community (Wang et al., 2022).

Despite extensive research on the basic characteristics and

ecological processes of karst plant communities, several gaps

remain in our understanding. Notably, the dynamic processes of

community assembly and succession are still not fully understood

(Fu et al., 2023).

In this study, we focus on subtropical karst evergreen-deciduous

broadleaf mixed forests, aiming to systematically investigate and

analyze species diversity, functional trait diversity, and phylogenetic

diversity. Our goal is to explore the patterns of these diversities and

their relationships with environmental factors. We hypothesize the

following: First, species diversity, functional trait diversity, and

phylogenetic diversity will exhibit distinct spatial patterns.

Second, in karst regions, topography may exert a stronger

influence on the distribution and diversity of plant communities

compared to soil chemical properties, playing a more significant

role in ecological regulation. Third, we propose that environmental

filtering may play a more dominant role than dispersal limitation in

the community assembly of karst plant species.
2 Materials and methods

2.1 Study site

The Mulun National Nature Reserve is located in the

northwestern part of Guangxi Huanjiang Maonan Autonomous

County (25°7’–25°12’N, 107°54’–108°5’E). The reserve is bordered

to the south by the Yunnan-Guizhou Plateau and to the north by

the Maonan National Nature Reserve in Guizhou, encompassing a

total area of 10,800 hectares. The elevation within the reserve ranges

from 400 to 1,000 meters. Situated within a karst landscape of peaks

and depressions, the reserve is characterized by unique landforms,

diverse topography, and a complex ecological environment, with
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evergreen-deciduous broadleaf mixed forests. The soil in this area is

primarily dark or brown limestone soil, derived from carbonate

rocks, exhibiting non-zonal characteristics. The soil layer is shallow,

with exposed rocks, and the pH value ranges between 7.06 and 7.68.

The climate is warm and humid, typical of a mid-subtropical

monsoon climate, with an average annual temperature of 19.4°C.

Annual rainfall ranges from 1,530 to 1,820 mm, with the majority of

precipitation occurring between April and September. The region

enjoys an average of 4,422 hours of sunshine annually and has a

frost-free period of 290 days (Lu et al., 2021a).

A fixed permanent monitoring plot of 25 hm² (500 m × 500 m)

was established in the reserve in 2014, following the CTFS (Centre

for Tropical Forest Science) standards. And the plot was first re-

inspected in 2019 and will be fully re-inspected every five years

thereafter. The plot is situated at an elevation ranging from 442.6 to

651.4 meters. The habitat across the entire sample site is highly

heterogeneous, with the typical “peaks and depressions” landscape,

including mountain tops, slopes, and depressions. Dominant

species within the plot include Cryptocarya macrocarpa, Itoa

orientalis, Platycarya longipes, and Lindera communis (Du

et al., 2017).

Prior to the investigation, the entire plot was divided into 625

sample squares (20 m × 20 m) using a total station and RTK (Real-

time Kinematic, Trimble R10, USA). The diameter at breast height

(DBH) and coordinates of all woody plants with a DBH ≥ 1 cm were

measured, and species names, along with other relevant

information, were recorded. The spatial distribution of all

individuals spanned various habitat types within the plot,

providing a comprehensive representation of the forest stand’s

diameter structure.
2.2 Functional traits

A total of 144 species, each with 25 or more individuals in the

plot, were selected for investigation. To ensure representative

sampling and avoid overrepresentation of any single species in

the dataset, 10 to 15 mature and well-developed individuals of each

tree species were randomly chosen from the sample site. The spatial

distribution of the selected individuals spanned various habitat

types within the plot, offering a comprehensive representation of

the forest stand’s diameter structure.

Following the guidelines from Pérez-Harguindeguy’s functional

trait collection manual (Pérez-Harguindeguy et al., 2016) and the

standards of the Center for Tropical Forest Science (CTFS), leaf

samples were collected from the south, north, east, and west sides of

the canopy, where there was minimal shading. A minimum of 20

leaves were collected from each selected plant. Leaf area (LA, mm²)

and leaf length-width ratio (LW) were measured using the

ZhongJing SM I800 Plus scanner and the Wanshen LA-S series

plant image analysis system. Leaf thickness (LT, mm) was measured

with a thickness gauge, ensuring that the veins were avoided during

measurement. The collected leaves were placed in envelopes and

dried in a laboratory oven at 60 °C until they reached a constant

weight, which typically took approximately 48 hours. The dry
Frontiers in Plant Science 04
weight of the leaves was recorded. For further analysis, the dried

leaf samples were ground to a 100-mesh powder using a ball mill.

Element content of the samples was determined using various

methods: leaf carbon (LC) and nitrogen (LN) concentrations were

analyzed with an elemental analyzer; phosphorus content was

measured using ammonium molybdate spectrophotometry; and

the concentrations of elements such as potassium (LK), calcium

(LCa), magnesium (LMg), aluminum (LAl), iron (LFe), zinc (LZn),

manganese (LMn), sodium (LNa), and sulfur (LS) were analyzed

using an ICP-OES 5110 instrument.
2.3 Phylogenetic tree

The plastid genomes of these species were sequenced from silica

gel-dried materials collected from one to two individuals of each

tree species at the sampling site (Pahlich and Gerlitz, 1980). In total,

209 new plastomes were generated, representing 209 species, 147

genera, and 61 families. Based on the coding regions of these 209

plastomes, a megaphylogeny was constructed using the maximum

likelihood (ML) approach in RAxML v8.2.12 (Stamatakis, 2006).

The phylogeny was then dated using the penalized likelihood

method in treePL (Smith and O’meara, 2012). The raw

sequencing data for all the plastid genomes generated in this

study have been submitted to the NCBI Sequence Read Archive

(SRA) under the accession numbers SRX22362678 to SRX22362939

(Jin et al., 2023).
2.4 Environmental variables

To establish a grid system, Real-time Kinematic (RTK) and total

station measurements were used to mark and fix 10 m × 10 m grid

points, resulting in a total of 2,601 points. The average elevation

(ELE) of each quadrat (20 m × 20 m) was calculated by averaging

the elevations of the four corner points. The slope (SLO) and slope

aspect (ASP) within each quadrat were measured using a compass.

Concavity (CON) was determined as the difference in elevation

between the average elevation of the target quadrat and the average

elevation of the surrounding eight quadrats. The rock outcrop rate

(ROC) was quantified in each quadrat using a standardized point-

intercept sampling method. At systematically distributed grid

points (n = 100 points per 10×10 m quadrat), substrate was

classified as either bedrock outcrop or soil-covered. The terrain

wetness index (TWI) was calculated using the System for

Automated Geoscientific Analyses (SAGA GIS) (Lu et al., 2021b;

Du et al., 2017).

For soil analysis, a total of 625 soil samples were collected from

the center of the 20 m sample plots and the center of four smaller

plots (five points in total). The samples were taken from the 0–10

cm surface soil layer. The collected soil samples were screened using

a 2 mm mesh, air-dried in a ventilation chamber, and then ground

in a ball mill for chemical analysis. Following the standard methods

outlined by Long et al. (2023), several measurements of soil

physicochemical properties were conducted, including soil pH,
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soil organic carbon (SOC), total nitrogen (TN), total phosphorus

(TP), total potassium (TK), available nitrogen (AN), available

phosphorus (AP), available potassium (AK), calcium, and

magnesium (Su et al., 2023a).
2.5 Statistical analysis

Pearson correlation analysis (PCA) was conducted to assess the

relationship between environmental factors and biodiversity

indices. Variables were selected based on previous studies and

ecological relevance (Yao et al., 2017; Qin et al., 2025).

Redundancy analysis (RDA) was performed to explore the

relationship between biodiversity metrics and environmental

variables. Selection of variables for inclusion in the RDA was

based on their significance in influencing community structure, as

determined by preliminary correlation analysis. The Moran’s

Eigenvector Maps (MEM) and Principal Coordinates of

Neighbour Matrices (PCNM) were used to account for spatial

s tructure in the data . Preprocess ing s teps included

standardization of environmental variables and distance matrices

for spatial autocorrelation before applying these analyses. Distance-

based Moran’s eigenvector maps (dbMEM) were used as spatial

variables. Variance Partitioning Analysis (VPA) was employed to

partition the environmental sources of variance driving the

observed differences in biodiversity indices, allowing for the

testing of the proportion of variation attributable to

environmental effects, interaction effects, and unexplained effects.

All analyses were conducted in R 4.2.2. The taxonomic diversity

index, including Shannon Wiener Diversity Index (Shannon) and

Pielou’s Evenness Index (Pielou), was calculated using the “vegan”

package. The phylogenetic diversity index, including Phylogenetic

Diversity (PD) and Mean Pairwise Distance (MPD), was

determined using the “picante” package. And the functional

diversity index, including Rao’s quadratic entropy index (RaoQ)

and Functional Divergence index (FDiv), was computed using the

“FD” package (Laliberté et al., 2014). The dbMEM were calculated

using the “adespatial” package (Dray et al., 2020). Redundancy

analysis (RDA) and variance partitioning analysis (VPA) were

performed using the “vegan” package (Oksanen et al., 2015),

while hierarchical partitioning analysis was conducted using the

“rdacca.hp” package (Lai et al., 2022).
3 Results

3.1 Spatial patterns of a diversity

The spatial distribution of each biodiversity index (Figure 1)

reveals that the values of PD, RaoQ, FDiv, Shannon, and Pielou are

higher on the slope and lower in the depression. In contrast, MPD

exhibited a more even distribution across the plot, with less

variation between different habitat types. In terms of taxonomic

diversity, the Pielou index was higher in the depression area.

Regarding functional diversity, the difference in the FDiv index
Frontiers in Plant Science 05
between the slope and depression was greater than that of the RaoQ

index. For phylogenetic diversity, the PD index was lower in the

depression area, with a greater difference between the depression

and slope, whereas the MPD index showed the opposite pattern.
3.2 The correlation between diversity and
environmental factors

The results of the Pearson correlation analysis indicated that the

correlation between topographic factors and biodiversity was

generally higher than that of soil factors (Figure 2). The correlation

pattern for the terrain axis 3 was opposite to that of the other

topographic factors. Additionally, the correlation of soil axis 3 with all

biodiversity indices was not significant. The correlation of MPD with

environmental factors followed a trend opposite to that of the other

biodiversity indices. All biodiversity indices were significantly

correlated with one another, except for the Pielou index.

Redundancy analysis (RDA) revealed that the first and second axes

explained 16.27% and 2.41% of the variation in the biodiversity

indices, respectively, with a cumulative explanation of 18.68%

(Figure 3). The first axis accounted for most of the total variance,

showing a positive correlation with MPD and a negative correlation

with PD. In contrast, the RaoQ index exhibited an opposite trend to

the Shannon index and contributed more to the second axis. Among

all environmental factors, the topographic PC3 axis had the highest

individual contribution (28.32%), while the topographic PC4 axis had

the lowest individual contribution (Figure 4).
3.3 Impact of environmental and spatial
factors on diversity

The results of the variance partitioning (VP) analysis for each

biodiversity index revealed that pure space contributed most to

Shannon and Pielou indices, while for PD, MPD, and RaoQ, shared

topography and space contributed the most (Figure 5). The

combined effect of the interaction between topographic and

spatial factors, along with pure spatial factors, accounted for the

majority of the observed variations in biodiversity indices, except

for FDiv. In contrast, residuals explained most of the variation in

FDiv. The contribution of soil factors to the biodiversity indices was

generally low, and even the interaction between topographic and

soil factors did not explain any of the observed variation across

all indices.
4 Discussion

The pattern of species diversity in montane plant communities

is primarily shaped by factors such as habitat heterogeneity,

vegetation type, and topography and geomorphology (Hjort et al.,

2015; Bailey et al., 2018). The distribution patterns of the Shannon

and Pielou indices in this study indicate a more even distribution of

species from depressions to slopes, coupled with an increase in
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community diversity (Figure 1). This pattern is attributed to the

complexity of karst mountain topography, variations in slope

position, and differences in the distribution of other

environmental resource factors (Stein et al., 2014; Hamm and

Drossel, 2017). For instance, in the low-elevation depressions and

the foothills of their edges, although the soil layer is deeper and

humidity conditions are more favorable, the duration of direct
Frontiers in Plant Science 06
sunlight is limited. These areas are generally dominated by shade-

loving and shade-tolerant species, leading to a less broadly adapted

environment. As a result, species diversity and composition in these

regions are less homogeneous than in adjacent higher-elevation

slopes, where light levels are more abundant. On these higher

slopes, diversity and species composition are greater (Chiu et al.,

2020). The study suggests that karst depression areas, with more
FIGURE 1

Spatial distribution of each diversity index. Green represents lowest content, followed by yellow, orange, pink, and the highest is white.
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favorable water-heat ratios than higher-elevation slopes, are more

likely to support communities with higher species richness, more

complementary ecological niches, and a more even distribution

across the community (Liang et al., 2004).

Compared to species diversity, functional diversity provides a

more direct explanation of the roles that plants play in ecosystems.

It has also been extensively tested in various ecological contexts,
Frontiers in Plant Science 07
such as changes along latitudinal gradients, mechanisms of

interspecific competition within communities, explanations of

productivity, transitions across different successional stages, and

global-scale modeling predictions (Dıáz et al., 2007). In this study,

the FDiv and RaoQ indices were higher on the slopes than in the

depressions, indicating that fewer ecological niche resources are

available to species in depressions compared to slopes. This results
FIGURE 3

RDA analysis on the relationship between environment factors and diversity. Red arrows represent environmental factors, black arrows represent
diversity.
FIGURE 2

Correlation coefficients between environment factors and biodiversity. Abbreviations: TPC1, 2, 3, 4, the four axis of topographic principal
component; SPC1, 2, 3, 4, the four axis of soil principal component. * P<0.05; **P<0.01; ***P<0.001.
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in lower functional trait differences and more intense competition

for resources among species in depression areas (Legras et al., 2020).

In the plot, the PD values were higher on the slope than in the

depression, with the hilltop primarily consisting of evergreen-

deciduous broadleaf (including coniferous) mixed forests. The

slope, serving as a transitional zone between the hilltop and

depression, was characterized by the interspersed coexistence of

multiple communities, which increased species richness (Su et al.,

2023b). In this study, the MPD index displayed a uniform

distribution pattern and was less influenced by habitat type,

indicating that the Mulun Karst area has experienced minimal

disturbance and remains relatively primitive in its historical

development. This suggests that community evolution across

different habitats in the area has been more synchronized (Zhang

et al., 2010). Similar spatial patterns were observed between plant

species diversity indices, functional diversity indices, and

phylogenetic diversity indices, suggesting that plant communities

in karst areas result from a combination of ecological niche

differentiation, species interactions (e.g., competition, symbiosis),

and environmental heterogeneity. Given that these diversity

patterns are closely linked to factors such as elevation gradients

and slope, it can be inferred that environmental factors, particularly

those influenced by elevation, play a more significant role in
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shaping species composition, functional redundancy, and the

development and maintenance of ecosystem functions in these

communities (Manish, 2021).

RDA analysis revealed that all four terrain factors and three soil

principal component axes significantly influenced biodiversity

indices. Correlation analysis further showed that the correlation

between terrain factors and biodiversity indices was stronger than

that of soil factors, suggesting that terrain factors are the primary

drivers of community assembly. This finding aligns with tropical

forest studies, where local-scale terrain factors were found to

explain more of the species diversity distribution than soil and

biological factors. In terms of topography, the main contributors to

the first and second axes were elevation (ELE), slope (SLO), and

topographic relief (STK) (Figure 3; Supplementary Table S1), all of

which were significantly positively correlated with most biodiversity

indices. Elevation, as a composite of environmental factors,

integrates changes in temperature, rainfall, light, and soil

gradients, all of which influence community species composition

and phylogenetic structure. It has been shown that tree and shrub

species richness decreases with elevation, likely due to

environmental changes such as lower temperatures (Cirimwami

et al., 2019). Furthermore, it has been suggested that as elevation

increases, plant dispersal modes shift, with wind- and insect-borne
FIGURE 4

The contribution of each environmental factor to the RDA results. UpSetView plots of variation-partitioning results to show the pure and shared
contributions of environment variables on diversity. The numbers in the graphs are the percentage of variance explained by the corresponding
environmental factors. The dot matrix and the corresponding bar above it show the values of shared and exclusive contributions. Residuals represent
the percentage unexplained by these variables. The corresponding bar on the left indicates the values contributed by each impact factor individually.
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dispersal becoming more prevalent at higher elevations, whereas

lower elevations primarily involve a single dispersal mode. This

shift contributes to the higher impact of elevation on biodiversity

(Cornwell and Ackerly, 2009). Additionally, plants at higher

altitudes tend to have larger fruits, and the slope plays a role in

their dispersal. Soil is fundamental to plant growth, and the

relationship between soil thickness and species richness is closely

linked (Jones et al., 2008). For example, Dornbush found that

increased soil thickness in tallgrass prairie promotes higher

species richness (Dornbush and Wilsey, 2010). Thicker soils

typically support more plant species, as they retain more water

and nutrients, providing a more favorable environment for growth.

The main contributor to the third axis was the terrain wetness index

(TWI), indicating that plants adapt to water stress by developing

diverse functional traits.

For soil, the main contributors to the first axis were soil organic

carbon (SOC), soil nitrogen, and calcium concentrations (Figure 3;

Supplementary Table S2), suggesting that species composition

within the community interacts with soil fertility. Different trait

strategies among species in varying soil environments arise from

plant trade-offs between growth and nutrient storage (Guilbeault-

Mayers et al., 2024; Delpiano et al., 2020). Environmental change

affects whether species undergo an environmental filtering process

within the community, where species with specific traits, suited to

each environmental filter, co-construct the community through
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environmental conditions and biological interactions (Viana and

Dalling, 2022). The spatial heterogeneity of calcium (Ca) and other

nutrient elements in soils is particularly pronounced in karst

regions (Lian et al., 2023; Du et al., 2014). Studies have shown

that the spatial distribution of calcium and other elements in soil is

closely linked to factors such as topography, elevation, and slope

(Lian et al., 2023). For example, in the study area, depressional

zones at the base of slopes tended to have higher soil calcium levels,

while hilltops exhibited lower levels. The spatial heterogeneity of

soil nutrients influences the adaptability of different plant

communities (Wang et al., 2017). Nutrient-rich areas, such as

downslopes and depressions, provide more favorable

environmental conditions for rapid growth and resource

accumulation, thereby promoting species diversity. In contrast,

hilltop areas with nutrient-poor soils favor species that can

tolerate poor conditions and possess special adaptations. Overall,

the spatial heterogeneity of nutrient elements and calcium in soils

plays a crucial role in influencing plant diversity. It not only

determines the growing conditions for plants but also shapes the

structure and diversity of plant communities in karst regions by

influencing the growth strategies, competitive abilities, and

ecological adaptations of species.

In this study, we found that the environmental factors most

strongly correlated with the biodiversity of woody plants in the

region were elevation (ELE), slope (SLO), and the terrain wetness
FIGURE 5

Variation partitioning results for diversity against the topographic, soil and spatial variable.
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index (TWI) (Figure 4; Supplementary Table S1). These

correlations may be attributed to the unique geomorphological

features of the karst region, which result in significant differences

in water and thermal conditions across various habitats. Water and

thermal conditions have a profound influence on plant distribution,

and the environmental filtering effect of large variations in these

conditions significantly impacts species community structure.

Additionally, we investigated the effects of individual

environmental factors on plant community diversity, yielding

similar conclusions to those of previous studies (Supplementary

Figure S1). ELE was positively correlated with the Shannon and

Pielou indices, suggesting that the soil and climatic conditions in

higher elevation regions may promote species diversity. Similarly,

changes in SLO significantly affected both the Shannon and Pielou

indices, highlighting the key role of slope in influencing species

diversity. Steep and gently sloped areas had differing effects on

diversity, suggesting that slope variations lead to differences in

growing conditions for plants, thereby affecting community

structure. The limited effect of aspect (ASP), particularly on the

Shannon and Pielou indices, suggests that while ASP may influence

moisture and light distribution, its impact was relatively weak in

this study. The TWI had a significant impact on both the Shannon

and FDiv indices, indicating that moisture plays a crucial role in

shaping species diversity in karst areas. Soil organic carbon (SOC)

and pH also had strong effects on the Shannon and Pielou indices,

underscoring the importance of soil chemical properties in

determining plant community diversity, with SOC being

particularly linked to species growth and distribution. Nutrient

elements such as nitrogen, phosphorus, and potassium had less

significant effects on the diversity indices, likely because variations

in their concentrations exert less influence on plant community

structure or are moderated by other environmental factors.

Several studies have found that environmental gradients

strongly influence species composition in subtropical and karst

regions (Chen et al., 2024; Du et al., 2017; Hu et al., 2023). While

similar results were observed in the present study, the variance

decomposition analysis revealed that some spatial processes

contributed more to biodiversity than environmental processes.

Thus, the influence of spatial processes should not be overlooked

(Figure 5). Both the species diversity index and the functional

diversity index were most strongly explained by purely spatial

factors. In the karst region, spatial factors such as topography,

elevation, and slope had a greater explanatory power for species

diversity and functional diversity indices, indicating that the spatial

distribution of species was significantly influenced by these factors.

The high topographic heterogeneity and habitat complexity in karst

regions resulted in a marked effect of spatial distance on species

distribution. Previous studies have shown that the natural spatial

gradient of habitats formed by the unique peak-and-depression

landscape in karst regions strongly influences species compositional

variability (Hu et al., 2024). This spatial heterogeneity may lead to

habitat isolation and dispersal limitation, thereby affecting species

distribution and diversity. In contrast, the phylogenetic diversity

index was more strongly explained by environmental factors.
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Phylogenetic diversity is closely related to the evolutionary history

and ecological adaptations of species, and environmental conditions

(e.g., soil type, moisture, and temperature) play a dominant role in

shaping phylogenetic diversity by influencing species’ ecological

adaptations and population distributions (Lv et al., 2024). Changes

in environmental conditions affect the phylogenetic diversity of

species by determining the growth patterns of certain species and

their ability to adapt to different habitats.

Functional traits, as objective phenotypes of plants, can directly

quantify ecological adaptations. In this study, it was found that

spatial factors had a greater explanatory power for the RaoQ index,

confirming that, due to the complexity of habitats in karst regions,

the functional traits of different species are influenced by spatial

effect gradients, leading to varying forms of adaptation (Zhang et al.,

2022; Long et al., 2023). Phylogenetic analysis, based on species

affinities, can estimate the ecological similarity among species. In

this study, the combined effects of topography and spatial factors

had the most significant impact on phylogenetic diversity. This is

due to the habitat gradient created by the crested depressions in the

karst region, which has pronounced spatial effects. Overall,

biodiversity in karst areas is strongly influenced by both spatial

and mixed factors. This finding is consistent with most studies, as

larger spatial distances often correspond to greater environmental

distances. The effect of dispersal limitation, primarily manifested

through the purely spatial component, also exerts a non-negligible

influence on biodiversity.
5 Conclusions

This study integrates taxonomy, functional traits, and

phylogeny to examine the spatial distribution of biodiversity in

karst regions. The observed differences in the distribution of various

diversity measures reflect plant adaptations to specific karst habitats

and the outcomes of long-term evolutionary processes. We found

that different types of diversity are driven by distinct environmental

factors, which lead to variations in the distribution of diversity

indices. Additionally, we analyzed the relative contributions of

environmental and spatial processes in subtropical karst forests.

The results indicate that terrain factors have a stronger correlation

with biodiversity than soil factors. Overall, elevation, slope, and the

topographic wetness index showed higher correlations with

biodiversity. Both environmental and spatial factors jointly

contribute to the spatial patterns of biodiversity. Dispersal

limitation has a greater impact on species and functional

diversity, while environmental filtering predominantly influences

phylogenetic diversity. Based on these findings, we propose that

environmental filtering and dispersal limitation together govern

community assembly in woody plants in karst regions. Our results

highlight the relationship between ecological niches and spatial

processes in shaping species diversity, emphasizing the critical role

of terrain factors in determining the community structure of karst

forests. These findings provide a scientific foundation for

understanding community assembly processes in karst regions.
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