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seed processing efficiency in
sainfoin (Onobrychis viciifolia)

Bo Meyering*, Spencer Barriball and Brandon Schlautman*

Perennial Legumes Program, The Land Institute, Salina, Kansas, KS, United States

Introduction: Sainfoin (Onobrychis spp.) is a perennial legume traditionally
cultivated as a forage crop and is now emerging as a promising candidate for
development as a perennial grain legume. Despite its potential, no research has
addressed the breeding of sainfoin varieties with superior grain
processing properties.

Methods: We conducted a multifactorial experiment to evaluate the depodding
and dehulling efficiency of five commercially available sainfoin varieties. Seeds
were processed using two different methods (belt thresher and impact dehuller)
across five sample sizes. A pre-trained Faster R-CNN (Region-based
Convolutional Neural Network) object detection model was fine-tuned to
identify intact pods, whole seeds, and split seeds from images of the processed
mixtures. These predictions were used to calculate processing efficiency (PE) for
each variety. A comprehensive power analysis was performed to determine the
minimum sample size of sainfoin pods required to detect differences in PE with
high statistical power.

Results: We observed strong varietal differences in PE, as well as clear effects of
the processing method. Belt threshing produced mixtures with more intact pods,
while the impact dehuller generated a higher proportion of split seeds. Increasing
sample size led to more intact pods across all varieties and methods, and notably
decreased seed proportion in belt-threshed samples. Statistical modeling
combined with object detection outputs revealed that a minimum of 2 g of
pods is required to reliably detect an absolute proportional difference of 0.25 in
PE between two breeding lines with 80% power.

Discussion: Our findings demonstrate that sainfoin varieties differ significantly in
processing efficiency and that processing outcomes depend strongly on both
method and sample size. Integrating deep learning—based phenotyping with
robust statistical design enables efficient evaluation of processing traits and
provides actionable guidelines for breeding programs. While deep learning
models offer powerful, cost-effective tools for plant phenotyping, their outputs
must be paired with rigorous statistical design to yield reliable and actionable
insights for crop improvement.

deep learning, perennial legume breeding, power analysis, seed imaging, small
object detection
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Introduction

Sainfoin (Onobrychis viciifolia) is a perennial forage legume
which originated in the near east, and has been under continuous
cultivation as a forage crop across Europe and the Middle East for
over 1000 years (Poudel et al., 2023). When grown as a forage crop,
sainfoin has many benefits, some of which include anthelminthic
and bloat reduction properties in ruminants (Sottie et al., 2014;
Desrues et al., 2016), benefits to pollinators (Sheppard et al., 2019;
Fratianni et al., 2024), and the potential to reduce greenhouse gas
emissions (Sakhraoui et al,, 2024). In addition, sainfoin has the
potential to become a perennial, temperate zoned pulse crop due to
its ease of cultivation and grain nutritional qualities comparable
with those of conventional, annual pulses (Craine et al, 2023;
Craine et al, 2024b). Recent studies have further highlighted
sainfoin’s potential as a dual-use, perennial grain by
demonstrating its favorable amino acid profile and absence of
detectable mycotoxins, supporting its viability as a safe and
nutritious pulse crop (Craine et al., 2024¢; Craine et al., 2024a).

Grains from most annual pulse crops must be depodded and
dehulled from the seed coat before they are used as a food product
or agricultural commodity due to the presence of bitter compounds
and high polyphenol content (Singh, 1995). Considering this,
developing lines with good processing and seed dehulling
properties are important goals for grain legume breeding
programs (Wang, 2008; Oomah et al., 2010). Dehulling can be a
labor-intensive process and varies widely between crops. Goyal,
Vishwakarma, and Wanjari (Goyal et al, 2008) found that a
tempering pigeon peas to 10.1% moisture and applying a
pretreatment of mustard oil greatly improved the dehulling
efficiency (DE, ease of removing the hull from whole seed to yield
split seeds). Other studies in pigeon peas and mung beans report
that combinations of steam treatment, drying, and tempering result
in high DE (Opoku et al., 2003). Sreerama, Sashikala, and Pratape
(Sreerama et al., 2009) pretreated gram species (Vigna mungo) with
protease and xylanase prior to dehulling, and found benefits in DE
when compared to oil-treated controls. Lentils are generally soaked,
dried, and then tempered back to a specific moisture content before
mechanical dehulling (Erskine et al., 1991a; Erskine et al., 1991b;
Wang, 2005).

However, to date no research papers have systematically
focused on specific methodologies related to depodding and
dehulling sainfoin, nor evaluated the DE of currently available
commercial cultivars. In part, this is because, as a novel perennial
grain legume, there is an open question as to whether the most
desirable end product is whole seed (WS, i.e. depodded whole seeds)

Abbreviations: IP, Intact Pods; WS, Whole Seeds; SS, Split Seeds; PE, Processing
Efficiency; PEys, Split seed penalized PE; PEgs, Whole seed penalized PE; DE,
Dehulling Efficiency; NOPGS, Number of seed Objects Per Gram fruit pod
Sample; NOPGM, Number of seed Objects Per Gram processed Mixture; RMSE,
Root Mean Square Error; MAE, Mean Absolute Error; mIOU, Mean Intersection
Over Union; MAP, Mean Average Precision; PCA, Principal Component
Analysis; TWGSS, Total Within Group Sum of Squares; GLM, Generalized
Linear Model.
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or split seed (SS, i.e. depodded and dehulled seeds). Tarasenko,
Butina, and Gerasimenko (Tarasenko et al., 2015) found that flour
made from WS had high protein and fiber content with lower fat
content, results that were later corroborated in nutritional studies of
WS by Craine et al (Craine et al., 2023). A comprehensive analysis
of heavy metals and toxins in WS revealed no analytes that pose any
threat to human consumption (Craine et al., 2024c). In addition,
animal feeding studies using both WS and SS found no difference
between in piglet weight gain and conversion ratios (Baldinger et al.,
2016), nor were there differences in protein digestibility between
sainfoin and other leguminous feedstuft (Kortelainen et al.,, 2014).
This suggests that either WS, SS, or both could potentially be target
end-products after processing.

To establish sainfoin as a viable grain crop, improving seed
processing traits such as free threshing (ease of seed separation from
pods) and dehulling efficiency (DE) is critical, as these
characteristics directly impact grain quality and food
functionality, as shown in other legumes (Ghavidel and Prakash,
2006; Oghbaei and Prakash, 2016). However, evaluating these traits
in sainfoin is challenging due to a lack of methodological
precedents. In most legumes, DE is influenced not only by genetic
and environmental factors (Wang, 2008), but also by the type of
processing machinery used, including abrasive (Reichert et al,
1984) and centrifugal impact methods (Hlavangwani et al., 2025).
Without established benchmarks or standardized methods, defining
and improving these traits demands innovative approaches.

Image-based phenotyping offers a promising solution by using
computer vision and machine learning to generate high-resolution,
reproducible data across breeding lines. While traditional image
analysis methods like Fourier elliptical descriptors (Iwata et al.,
20105 Schlautman et al, 2020) and morphological operations
(Tanabata et al.,, 2012; Zhang et al., 2018) have been used for trait
extraction in other crops, they often suffer from sensitivity to
lighting, background conditions, and object alignment (Williams
et al., 2013), which limits scalability. In contrast, modern deep
learning-based pipelines offer greater robustness and throughput
for phenotyping novel grain crops like sainfoin. These tools have
already demonstrated utility in legumes for tasks such as species
identification (Koklu and Ozkan, 2020; Taheri-Garavand et al,
2021; Rimi et al, 2022), seed detection (Ouf, 2023), and trait
extraction using semantic segmentation models (Morales et al.,
2024). Such pipelines can automate classification of seed
components—intact pods (IP), whole seeds (WS), and split seeds
(SS)—to estimate seed processing traits efficiently across genotypes
and processing conditions and can help uncover genetic and
environmental influences to support targeted breeding strategies.

Yet even with these advanced image-based methods, the
reliability and scientific value of phenotyping pipelines ultimately
depend on proper experimental design and statistical validation.
However, many researchers fail to address proper validation of
their image analysis techniques, as Lobet (2017) rightly points out.
Few perform proper power analyses before the experiment is
completed (Thomas, 1997), let alone after, leading to published
results across the sciences that are often misleading or outright
false (loannidis, 2005). Proper power analysis is essential to ensure
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experiments are statistically robust. In low-yielding crops or where
breeding line seed availability is limited, power analysis guides
optimal sample sizes to detect meaningful trait differences between
two single lines. This prevents misinterpretation due to under-
powered tests and ensures confidence in phenotypic estimates for
breeding applications.

The goal of the present study was to 1) train a Faster R-CNN
model on processed mixtures to detect and classify IP, WS, and SS,
2) derive a new generalized metric, designated as processing
efficiency (PE), from the model predictions, 3) evaluate the effects
of processing method, variety, and sample size on seed counts and
PE within a factorial experimental design, 4) perform a power
analysis to determine the minimum sample size required to reliably
estimate PE for future breeding applications, and 5) demonstrate
that image-based phenotyping combined with statistical rigor can
support the development of sainfoin as a viable perennial
grain crop.

Methods and materials
Seed material

Sainfoin seed pods, i.e. sainfoin fruit, (an individual seed inside
a pod) of five different commercially available varieties were
acquired in bulk from seed growers and seed companies: ‘AAC
Mountainview’ (Preferred Alfalfa Genetics, Story City, IA), ‘Rocky
Mountain Remont’ (Montana Seeds, Inc.; Conrad, MT), ‘Delaney’,
‘Eski’, and ‘Shoshone’ (Alaska Ranch, Twin Bridges, MT). We
processed seed pods as received - no additional sorting or quality
control was performed on individual pod samples used in
this study.

Experimental design and processing

We designed a full factorial, completely randomized
experimental design with the factors ‘variety’, ‘sample-size’, and
‘processing-method’. Each combination of ‘variety’ x ‘sample-size’ x
‘processing-method’ was replicated ten times resulting in a total of
500 individual samples. Seed pods of each variety were randomly
sampled in quantities from one to five grams in one-gram
increments and weighed on an analytical balance to the nearest
0.0001g to record the true weight of the sample
(‘legume_fruit_pod_mass_g’). These sample sizes were chosen to
reflect pod sample masses that could feasibly harvested from a
single plant breeding line. Samples were placed into coin envelopes,
assigned a random ID and a processing method, and stored in our
climate-controlled seed vault at 8-10°C and 40-50% relative
humidity until they were processed.

We evaluated two different processing methods. Seed pods were
processed either by a belt thresher (BT14 Single Plant Belt Thresher,
Almaco, TA) which removes seeds from the pod carpel while
minimizing damage to the seed, or by an impact type dehuller
(LT-15 Laboratory Thresher, Haldrup USA, Inc., IN) which uses
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rubber impactors in a concave drum to remove seeds from the seed
pods. Pod samples processed by the belt thresher were passed
through a total of three times. We found that a single pass with
our small-scale belt thresher did not adequately remove seeds from
the pod carpels; repeated passes ensured more thorough depodding
of the samples. We note that this requirement may be specific to our
instrument, and processing needs may differ for larger threshers or
those produced by other manufacturers. Samples processed by the
impact dehuller were passed through one time and processed for a
total of 35 sec at speed 9. Once processed, the resultant mixture of
IP, WS, and SS was weighed again on an analytical scale, sans empty
pods and other dehulling debris, and was recorded as
‘processed_mixture_mass_g’. All 500 seed pod samples were
processed in this fashion.

Seed imaging

The processed mixture of seeds was scattered onto a blue
chroma, photography platform illuminated by two LED lighting
panels from the sides (See Figure 1). The mixtures were imaged
using a DSLR camera (Sony model ILCE-7RM2, Sony Electronics
Inc., New York) with a fixed focal length 55mm lens mounted on a
fixed rig directly above the platform. All images were acquired in
TIFF format at ISO 100 and a 1/40s exposure time with a final
resolution of 7968x5320. The images were converted to JPEG
format before annotation.

Image labeling

The images were uploaded to Labelbox, an online data
annotation platform (Labelbox Inc., San Francisco, CA, USA).
Bounding boxes were drawn around each seed derived object in
every image and classified into one of three categories: IP (intact
pods), WS (whole seeds), and SS (split seeds). IP were categorized as
intact or partially intact sainfoin seed pods (IP) which still
contained a single seed. WS were defined as seeds with an intact
seed coat which were completely separated from the seed pod
carpels. Finally, SS were defined as seeds without a seed coat that
were either intact (both halves of the seed together), split in half, or
fractured into small pieces. Small pieces of threshed seed pods,
empty seed coats, or other pieces of seed derived material which
could not be identified were left unlabeled.

We hand labeled a random selection of 20% of the images,
developed a preliminary faster-RCNN model as described below,
and then ran inference on the remaining 400 images to predict any
seed objects, discarding any objects with a confidence score less
than 0.8. We then uploaded the predictions to Labelbox using the
Labelbox Python SDK to use as model assisted labels. All bounding
boxes and object classifications underwent manual quality control.
Adjustments, reclassifications, or removals were performed as
necessary to correct inaccuracies in the preliminary model
outputs and to address any errors in class assignment. Finally, all
the annotations were exported into the popular COCO JSON
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FIGURE 1

Sainfoin seed image acquisition setup with (A) Sony model ILCE-
7RM2 DSLR camera, (B) LED lighting panels on both side of the
imaging platform, (C) Camera preview monitor, (D) solid blue
photography background mat, and (E) barcode scanner and laptop
for running camera utilities.

TABLE 1 Total ground truth label counts for each class and the
percentage composition within the full dataset.

Object count sz Claee
count percentage

Intact Pod (IP) 36,599 48.58%

Whole Seed (WS) 25,488 33.83%

Split Seed (SS) 13,255 17.59%

Sum 75,342 100.00%

Values in bold are the sum total of object counts across classes and sum of individual class
percentages.

format for use in the modeling scenarios. In total, 75,342 objects
covering three classes were annotated with bounding boxes in all
500 images. The counts were based on the total number of
annotated objects within each class. IP accounted for almost
48.6% of the total number of objects across all methods and
varieties, while WS and SS percentages were much lower at 33.8%
and 17.6%, respectively (Table 1).
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TABLE 2 The total number of images in each training and validation
split for each proportion of the dataset used to train models.

Proportion Training Validation
Images images
0.05 20 s
0.10 " 0
020 30 %
0.50 200 "
1.00 400 100

Faster RCNN modeling

The Python package scikit-learn (Pedregosa et al., 2011) was
used to create training and validation image sets in an 80/20 split
that were stratified equally over the ‘variety’, ‘sample-size’, and
‘processing-method’. The final training and validation dataset sizes
were 400 and 100 images each, respectively. We further subsampled
the training and validation sets so we could determine a minimum
image set size to train an accurate model. Subsampling proportions
were set at 0.05, 0.10, 0.25, 0.50, and 1.0 of the entire dataset
splits (Table 2).

Object detection models were developed using a transfer
learning approach within Pytorch v2.0.1 (Paszke et al, 2019) in
Python 3.11.5 (Python Software Foundation, 2024). We used a
torchvision Faster RCNN model (Ren et al., 2017) with an
Imagenetlk v2 pretrained Resnet50 backbone (He et al,, 2015), a
model previously used to detect a wide variety of seed objects
(Wang et al., 2022; Ouf, 2023; Islam et al., 2024). We froze all but
the final 3 convolutional stages in the backbone allowing us to
finetune the feature extractor and ROT head on our dataset as shown
in Figure 2. In addition, we changed the default anchor sizes of the
region proposal network from [32, 64, 128, 256, 512] to [8, 16, 32,
64, 128] to detect smaller objects in the image. Since the original
image size (W 7968 x H 5320) was very large relative to the average
seed object bounding box size (40 x 40 pixels), we did not resize the
images before training as this would have significantly reduced the
seed object sizes (e.g. when resized to 1024 x 1024, bounding boxes
would be in the range of 5-7 pixels wide). All pixel values were
normalized between 0-1 prior to model training.

The models were optimized using standard stochastic gradient
descent (SGD) with a learning rate of 0.01 and an exponential
learning rate scheduler and trained for a total of 100 epochs. We
logged batch and epoch training and validation loss to Tensorboard.
The model configuration was changed to return a total of 500
detections to allow for each object in the larger sample sizes to be
detected. We filtered out predictions with confidence scores lower
than 0.1, and then applied non-maximum suppression to the
detections with an IOU threshold of 0.5 to discard overlapping
predictions. Using these predictions, we calculated the mean
intersection over union (mIOU), and “macro averaged” mean
average precision (mAP) metrics for the validation dataset on
both a global and per class basis. Preliminary experiments were
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FIGURE 2

Flow diagram of the Faster R-CNN model with a ResNet50 backbone. The initial convolutional stem (Layer 0) and the first ResNet stage (Layer 1)
were frozen to preserve low-level pretrained features, while Layers 2—4 were fine-tuned to adapt higher-level representations to the dataset. The
outputs from Layers 2—-4 were combined by a Feature Pyramid Network (FPN) to generate multi-scale feature maps, which were processed by the
Region Proposal Network (RPN) and ROl head to produce final object predictions.

‘,"‘ Exploratory

/Clustering and /
PCA | o
Full Dataset ! h
5 Computed Traits
Seed Object B , | Descriptive GLM
. Counts Pss, Pws. Pl |modeling of traits
IP | 34
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FIGURE 3

Flowchart of the analysis pipeline from images to final modeling results. The trained Faster R-CNN model produced seed object counts, which were
used to compute seed traits (Pss, Proportion of split seeds; Pys, Proportion of whole seeds; Pjp, Proportion of intact pods; PE, Processing efficiency;
PEws. Split seed penalized PE; PEss, Whole seed penalized PE; NOPGS, Number of seed objects per gram sample; NOPGM, Number of seed objects
per gram processed mixture; and Total Objects, Total number of predicted objects). These trait values informed exploratory analyses (clustering and
PCA), trait GLM modeling, and heritability estimation. Total seed object counts were modeled using a GLM and combined with the computed traits
for PE to conduct two-sample power analyses.

run in a Google Colab environment (Google Colaboratory, 2024)  Inference was conducted in the same environment used for
with an A100 GPU to rapidly test training parameters in a Jupyter  final training.

notebook setting. All final models were trained in an Ubuntu 22.04 To contextualize the flow of analyses described in the sections
Linux environment with an AMD Ryzen 7-7840 CPU, 64Gb of  below, Figure 3 provides an overview of how outputs from the
RAM, and an NVIDIA RTX 4060 GPU with single image batch size. =~ Faster R-CNN model were integrated with downstream methods,
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including trait computation, exploratory clustering, statistical
modeling, heritability analyses and power analyses.

Image inference and calculations

The final object detection model was used to run inference over
the entire dataset. We output images with bounding boxes of all
predicted objects, labeled by their predicted class and confidence
scores. The number of detected objects in each image classified as IP
or WS was recorded as-is, while the total number of objects
predicted in the SS was recorded as [%] under the operating
assumption that each SS object detected was one of two halves of
a single WS. The total number of objects of all classes was summed
(“total_objects”) and the proportions of each class in the image were
calculated. This was repeated for all 500 images in the dataset. We
calculated the number of objects detected per gram of fruit pod
sample (NOPGS) and the number of objects detected per gram of
processed mixture (NOPGM).

Dehulling efficiency (DE, Equation 1) can generally be defined
based on the mass or on total counts of WS and SS as

SS

DE = w55

1)

where SS and WS are either counts or weights of SS and WS,
respectively (Wang, 2008; Hlavangwani et al., 2025). Since the
preliminary processing methods we are testing result in
depodding as well as dehulling seeds, we defined PE in Equation

2 as
— _WS+SS
PE = IP+W+S+SS )
further simplified in Equation 3 as
PE:PWS+PSS (3)

where Pyys and Pgg represent the proportions of the WS and SS
in relation to the total object count in a sample. PE is a modification
of the count-based efficiency metric in Hlavangwani (2025) which
can generally express how easy it is to process legume pods. As
processing needs may be different based on the desired end product,
whether WS or SS, we also calculated PE with a penalty parameter A
€ [0, 1] for representing the amount of penalty to apply to the
proportion of either WS or SS. Equation 4 (PEys) shows the
calculations made to penalize the proportion of SS and reward
the proportion of WS in the mixture while Equation 5 (PEgs) shows
the penalty applied when SS are the desired outcome of the
processing method. For our experiments we chose a static value
of A = 0.6 for both PEys and PEgs, for a more balanced penalty, but
these could easily be tuned for more specific cases.

PEys = Pys + Pgs(1 - 1) 4)
PESS:PWS(l_/l)-'—PSS (5)
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Statistical analysis

Standard generalized linear regression models (GLMs) with the

structure total_objects; = By + [-variety; + Byprocessing_method; +
Bs(variety;xprocessing_method,) + Bysample_mass; + €; were used
to model the ‘total_objects’ (sum of IP, WS, and SS) and estimate
the fixed effects of ‘variety’, ‘processing-method’ and their
interaction ‘variety’ X ‘processing-method’, while controlling for
‘sample-mass’. While we expected a strong linear relationship
between sample mass and seed object counts, we fit two models
to the training data subset, one with a Gaussian (linear) link
function and another with a Poisson link function, commonly
used for count data. The root mean square error (RMSE) and
mean absolute error (MAE) were used to compare the two models
evaluated on the validation set. The model with the lowest
combined metrics was chosen and retrained on the entire dataset.
A two-way, type I ANOVA was used to determine
significant factors.

GLMs with logit link functions were fitted to the proportional
count data for IP, WS, and SS to determine the effect of ‘variety’,
‘sample-size’, and ‘processing-method’ on the outcomes and
stability of these proportional estimates. Likelihood ratio tests
(LRT) were used to test the models against the null fit. Model
goodness of fit (GOF) was determined using the Hosmer-Lemeshow
test (Hosmer et al., 2013), and Nagelkerke’s Pseudo-R2 was used to
determine how much deviance the model accounted for. The
estimated marginal means were used to conduct post-hoc analyses
for means separation using pairwise multiple comparisons with a
Tukey correction. PE estimates were also analyzed using logistic
regression models as described above. All models were checked for
the ANOVA assumptions before proceeding to post-hoc analyses.

Repeatability (R) was calculated for the PE estimates using
linear mixed models with the ‘variety’, environment’, and ‘variety’ X
‘environment’” as random effects where environment was set as a
concatenation of the ‘processing-method’ and ‘sample-size’. R was
calculated for a given trait as show in Equation 6.

%

RGxE = 2

o2 o o
2, %E  OGxE | Cresid.
OGt= "+ T

(6)

where of is the genetic variance component, o7, is the
environment variance component, 0g; is the GxE variance

component, ¢>

iq 1s the model residual variance, and r and e are

the total number of individual replications and unique
environments, respectively.

We performed a principal component analysis (PCA) as an
exploratory visualization of multivariate trait structure to
complement the formal statistical modeling of these variables.
The PCA matrix contained the relativized trait values for Pip,
Pws, Pss, PE, PEys PEss, NOPGS, NOPGM, and the total
number of seed objects for all observations. Variables were mean
centered and scaled to unit variance prior to analysis. The first two
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TABLE 3 Mean Intersection over Union (mIOU) values between the
predicted bounding boxes and ground truth for each class of seed
object in the dataset.

Percentage of dataset

Object class

10% 20% 50% 100%

Intact Pod (IP) ‘ 0.8915 | 0.8962  0.9004 = 0.9032 ‘ 0.9046
Whole Seed (WS) ‘ 0.8689 | 0.8751  0.8789 = 0.8829 ‘ 0.8852
Split Seed (SS) ‘ 0.8519 | 0.8610  0.8639 = 0.8695 ‘ 0.8732
Mean 0.8772  0.8831  0.8869  0.8905 ‘ 0.8926

Columns represent the percentage of the full training and validation dataset that were used to
train the model. Values in bold are the average mIOU values across classes.

principal components were extracted and plotted on the x and y
axes with the rotational loadings of the variables projected onto
them to form a biplot, and individual data points were colored
according to the ‘variety’ and ‘processing method’. We performed a
principal component analysis (PCA) to determine the main
structure of the data and how the variety and processing method
groups relate to the variable loadings. To assess how well the
principal component space distinguished processing methods, we
fit a support vector machine (SVM) model with a linear kernel to
the first two principal components. Model performance was
evaluated by the classification accuracy for separating data points
according to processing method.

Additionally, we used the total within group sum of squares
(TWGSS), commonly used as an objective function in K-means
clustering, as a metric to characterize varieties using NOPGS and
NOPGM, and calculated as shown in Equation 7

TWGSS = 35,50 e, 1% = i 117 )

where C is the total number of classes, C; is the set of datapoints
belonging to the i"™ class, x; is the j™ datapoint in the class out of N;,
and i, is the centroid for the i™ class.

Power analysis

We conducted a power analysis and developed intuitive
visualizations to evaluate our ability to detect differences in PE
across varieties and methods, with respect to fruit pod sample mass.
Our goal was to determine the minimum sample mass (in grams)
required to confidently detect an absolute difference of 0.25 in PE
between two samples, with a statistical power of at least 0.8. Briefly,
within each sample size group (1g - 5g, n=100 per group) we
calculated un-ordered absolute pairwise effect sizes resulting in a
total of (%) values per group. The absolute, two proportion effect
size h;; was calculated as shown in Equation §

hij = |9; - ¢ (®)

where ¢; = 2 arcsin (,/p;) as described in Cohen (1988), with the
constraints i # j, h;; = h;; for each sample pairwise calculation. The
non-centrality parameter is calculated as shown in Equation 9
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)

where n; and ; are the total number of objects counted in the it
and /™ samples, respectively. Statistical power for each comparison
was calculated using the ‘pwr.2p2n.test’ from the ‘pwr’ package as a
two-sided test using the formula shown below in Equation 10

P = D(0~2z1_gp) + P(= 6 ~21_¢)5) (10)

Where @ is the normal CDF, and z,_g/, is the critical z-value
for a two-tailed test.

We also simulated two-proportion theoretical power curves
based on equal sample sizes from 1 to 300 total objects and then
calculated the minimum proportional difference in PE that could be
detected with 80% power at each sample size. A given effect size
between two proportions near the extreme values of 0 and 1 is easier
to detect compared to proportions near 0.5 due to the structure of
proportional variance calculations (0, = @) leading to higher
statistical power at the extremes of the binomial distribution. We
calculated a best-case scenario when the proportional difference was
centered symmetrically on 0.85 (near the extreme) and a worst-case
scenario centered on 0.5, where statistical power is lowest. Finally,
we plotted out these values and related them to the minimum
sample size needed to detect a PE difference of 0.25 under
both scenarios.

Software packages

All deep learning models were trained in Python 3.11.5 with
Pytorch 2 (Paszke et al, 2019), using the packages ‘OpenCV’
(Bradski, 2000), ‘Torchmetrics’ (Detlefsen et al., 2022) and
‘Scikitlearn’ (Pedregosa et al, 2011). Data cleaning, generalized
linear modeling, PCA, power analyses, and graphing were
conducted using R 4.4 (R Core Team, 2025) in an RStudio
environment (Posit team, 2025) using a mixture of packages
‘caret’, Ime4’, ‘tidyverse’, and ‘pwr’ (Kuhn, 2008; Bates et al,
2015; Wickham et al., 2019; Champely et al., 2020). Schematics
and diagrams were created using ‘Draw io’ (JGraph, 2021).

Results
Object detection modeling and inference

The training and validation loss decreased sharply for the first
ten epochs, after which the loss values started to stabilize and were
fully stable around 50 training epochs. The lowest training and
validation losses observed were with the model trained on the entire
dataset. However, the relative difference between the loss from
models trained on smaller proportions of the image set, excluding
the smallest subset size, were negligible.

On average, inference took 100-105 ms per image in our
environment. The overall mIOU score as well as class based
mIOU metrics were calculated for each of the models after
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TABLE 4 Mean Average Precision (mAP) per class values at 50% and 75%
mlOU threshold.

Percentage of dataset

Object class

Intact Pod (IP) 0.6679 | 0.6742  0.6908 = 0.6994 0.6992
Whole Seed (WS) 0.6720 | 0.6995 = 0.7050 = 0.7167 0.7212
Split Seed (SS) 0.6462 | 0.6705 = 0.6831 = 0.7059 0.7136
Mean 0.6620  0.6814 0.6930 0.7073 | 0.7113

mAP 50 0.9104 | 0.9039 = 0.9641 = 0.9831 0.9656
mAP 75 0.8269 | 0.7936 = 0.8915 = 0.9257 0.9103

Columns represent the percentage of the full training and validation dataset that were used to
train the model. Values in bold are the overall mAP values ‘macro averaged' across all classes.

training. The results are shown in (Table 3). mIOU was generally in
the range of 0.8-0.9 and increased slightly with increasing dataset
size. The highest overall mIOU (0.8926) was achieved when the
model was trained on 100% of the total dataset but was not
drastically higher than the overall mIOU on 50% of the data
(0.8905). Class based mIOU was highest for IP (0.9046) and
lowest for the SS (0.8732), which mirrors the unbalanced
distribution of IP, WS, and SS annotations in the dataset. mAP
scores are presented for each class, the overall average, and across
objects with 50% and 75% IOU (Table 4). IP mAP peaked at 0.6994
at 50% of the dataset, while WS and SS had the highest mAP (0.7212
and 0.7136, respectively) at 100% of the dataset. The overall mAP
macro averaged across classes was lowest when trained on 5% of the
data (0.6620) and highest at 100% of the data at 0.7113. mAP50 and
mAP75 both peaked at 0.9831 and 0.9257, respectively, at 50% of
the data.

Both mIOU and mAP were highest in the models trained on
50% and 100% of the data. We selected the model trained on the full
training set as the final model to use for inference for all
downstream analyses. After processing all the images through the

spit_0.9969

spit_0.99%4t_0.9969

FIGURE 4

10.3389/fpls.2025.1655350

model, we used the resulting predictions to draw bounding boxes
over all images. Almost every seed object was detected properly and
with reasonable bounding boxes (Figure 4A). In a few cases the
model had a difficult time identifying SS, particularly when they
were touching or when there were tightly clustered groups of objects

as in Figure 4B.

Predicted seed object counts

The total object counts from the FasterRCNN model output (I
P+ WS+%) was modeled using generalized linear models with
factors ‘variety’, ‘processing-method’ and their interaction plus a
controlling term for ‘sample-mass’ with both linear and Poisson
link functions. While Poisson regression is standard for modeling
counts and our model fit had a high pseudo—R2 value (0.948), the
model predictions for the holdout set were not sufficiently accurate
(RMSE = 14.467, MAE = 13.085), and it failed to outperform the
standard linear model (R? = 0.986, RMSE = 6.874, MAE = 5.316).
Figure 5 shows the highly linear relationship between the total
object count and the GLM model predictions (p=0.9931) and the
Bland-Altman measurement correspondence between the ground
truth and GLM predictions. After refitting the linear GLM on the
entire dataset, an ANOVA revealed that the ‘variety’ was highly
significant (p < 2.2e-16), as was the ‘processing-method’ (p = 4.42e
—15), when controlling for ‘sample-mass’. There was no evidence of
their interaction (p = 0.238). The mean seed object counts for each
sample size, marginalized over method, and variety were 46, 92, 137,
183, and 230 for 1g - 5g, in order - on average an increase of 46.12
seed objects in the processed mixture. However, this varied
drastically across varieties. ‘Eski’ and ‘AAC Mountainview” had
the highest seed object counts per gram increase in fruit pod sample
mass (60 total detected objects) compared to varieties like ‘Delaney’
and ‘Rocky Mountain Remont’ (32 and 42 total detected objects)
when keeping other factors constant. Interestingly, processing the

Faster RCNN predictions on representative images from left to right with no crowding (A) and some crowding (B). In situations with crowding, the

minor class is sometimes misclassified or remains undetected.
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Rocky Mountain Remont Shoshone

Comparison of total object counts with GLM-predicted seed object counts. (A) Scatterplot showing the linear relationship between the ground-truth
total seed objects detected in each image (x-axis) and the seed object counts predicted by the GLM model (y-axis), which included ‘variety’,
‘processing method’, and 'sample mass’ as predictors. The solid black line represents the fitted regression line between the two variables, while the
dotted line indicates the 1:1 correspondence line (perfect agreement). (B) Bland—Altman plot assessing agreement between ground-truth and
predicted counts. The x-axis shows the mean of each ground-truth—prediction pair, and the y-axis shows the difference between prediction and
ground truth. The dotted lines indicate the limits of agreement, defined as +1.96 X SD of the differences.

same pod sample mass by different methods resulted in differing
amounts of product loss. Impact dehulling resulted in =~ 4 fewer
detected objects compared to belt threshing - a small effect size, but
highly significant (p = 4.42e-15).

Seed object analysis

We hypothesized that the proportional estimates of each class of
objects in the processed mixture would stabilize with increasing
sample size, i.e. a given estimated mean would converge to one
reliable value per ‘variety’ X ‘processing-method’ combination and
would have lower variance in the estimates across the 10 replicates.
We performed some descriptive statistical analysis of this
experiment to validate this. Three GLM models were fit to the
P1p, Pyws, Pgs data were - all well specified (LRT p-values « 0.0001,
Hosmer-Lemeshow p-values = 1, Nagelkerke pseudo-R* > 0.99).
However, in general, the value of seed object proportional estimates
did not stabilize as sample size was increased but tended to either
increase or decrease linearly with changes in sample mass as
described below.
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The proportion of IP in the resulting processed seed mixtures
increased across all varieties, regardless of the processing method as
sample mass increased (Figure 6A). The variety ‘AAC
Mountainview’ had the lowest proportion of IP in the mixture
after processing (0.308) while varieties ‘Rocky Mountain Remont’
and ‘Shoshone’ had the highest (0.607 and 0.621, respectively)
marginalized across processing method and sample mass. The
processing method also significantly impacted the IP proportions
- the belt thresher tended to leave more IP intact when compared to
the impact thresher (0.546 versus 0.459, p < 2.2e-16). Within each
variety, belt threshing always resulted in higher IP counts compared
to the impact dehuller, except in the case of ‘AAC Mountainview’,
where the estimates for each method were similar (see Figure 6A).
Table 5 shows the marginalized means across sample sizes.
Processing by belt thresher resulted in a wider range in the IP
proportions between varieties from 0.299 (‘AAC Mountainview’) to
0.662 (‘Shoshone’), whereas the impact dehulling proportion range
was more constrained from 0.316-0.577.

The overall trend in change for whole seed proportions
depended on the method. In belt threshed samples, whole seeds
decreased in number with increasing sample size across all varieties

frontiersin.org
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(A) Estimated marginal means (proportion) + 95% Cl of the proportions of processed mixture objects (grid rows), by sainfoin variety (grid columns),
processing method (blue=belt thresher, green=impact dehuller), and sample mass (g) on the x-axis. Means within a subplot that have letters in
common were not shown to be statistically significantly different from each other at a=0.05. (B) Standard error of the estimated marginal means of
the proportions of processed mixture objects compared across sample mass (g) and marginalized over varieties.

- 0.573, 0.480, 0.441, 0.374, and 0.353 for 1-5g, respectively,
marginalized across varieties. However, proportions stayed mostly
constant for impact threshed samples with values ranging from
0.296 to 0.334 for all varieties and sample sizes, and there were very
few significant differences across sample sizes within each variety
(Figure 6A). On average, belt threshing resulted in a larger
proportion of whole seeds (0.443) compared to impact dehulling
(0.321, p <2.2e-16). ‘Rocky Mountain Remont’ and ‘Shoshone’ had
the lowest proportions of whole seeds (0.322 and 0.330) compared
to ‘AAC Mountainview’ and ‘Delaney’ (means of 0.419 and 0.512).
However, there was a large difference between the average seed
proportion between belt threshing and impact dehulling for ‘AAC
Mountainview’ and ‘Delaney’ (proportional difference of 0.341 and
0.161) that was not present for other varieties (i = 0.037).

The proportion of SS in the processed mixtures was very low
overall (estimated marginal mean = 0.0399, Figure 6A). Within belt
threshed samples, SS were present in extremely low proportions
relative to other seed objects (0.00715), whereas impact dehulled
samples were much more likely to contain splits (0.194,
marginalized across variety and sample mass). Within impact
dehulled samples, varieties ‘AAC Mountainview’ and ‘Delaney’
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had SS proportions of 0.338 and 0.282, estimated over all sample
sizes, whereas ‘Shoshone’ contained very few SS (0.088, Table 5).
Within belt threshed samples, ‘ACC Mountainview’ and ‘Delaney’
had the highest SS proportions ranging from 0.012-0.015, and were
significantly different from the other varieties, which ranged from
0.004-0.006. Increasing the sample size had a negative impact on the
SS proportions when the samples were processed by impact
dehulling and decreased the average estimate from 0.301 (1g) to
0.125 (5g). Even though the proportional point estimates for each
object class were not stable as the sample size was increased, the
standard error of the model estimates was reduced as
expected (Figure 6B).

Processing efficiency calculations

Processing efficiency (PE) was calculated as the sum of the WS
and SS proportion. PE variations PEss and PEys penalize higher
proportions of WS and SS, respectively. Unpenalized PE had a
negative relationship with sample mass across the methods and
varieties (Figure 7). The marginal mean PE for 1g samples was 0.602
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TABLE 5 Estimated marginal means of seed object proportions marginalized over sample mass.

Variety Method Intact pod

AAC Mountainview Belt Thresher 0.299 + 0.013 d

Whole seed Split seed

0.682 + 0.013 a 0.015 + 0.003 a

Delaney Belt Thresher 0.484 + 0.015 ¢

Eski Belt Thresher 0.622 £ 0.013 b

0.501 + 0.015 b 0.012 + 0.003 a

0.373 £ 0.013 ¢ 0.005 + 0.002 b

Rocky Mountain Remont Belt Thresher 0.661 £ 0.013 a

Shoshone Belt Thresher 0.662 + 0.013 a

AAC Mountainview Impact Dehuller 0.316 £ 0.013 d

Delaney Impact Dehuller 0.371 £ 0.015 ¢

0.335 +0.013 d 0.004 + 0.002 b

0.331 £0.013d 0.006 * 0.002 b
0.341 £ 0.013 a 0.338 £ 0.012 a

0.340 £ 0.015 a 0.282 £ 0.013 b

Eski Impact Dehuller 0.491 + 0.014 b

0.287 £ 0.012 ¢ 0.215 + 0.011 ¢

Rocky Mountain Remont Impact Dehuller 0.550 + 0.014 a

Shoshone Impact Dehuller 0.577 £ 0.014 a

0.310 + 0.013 be 0.132 + 0.009 d

0.329 + 0.013 ab 0.088 + 0.008 e

Values presented are the marginal means + 95% CI of the estimate. Means within a processing method that share a common letter were shown not to be statistically significantly different from

each other at 0=0.05.
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FIGURE 7

Estimated marginal means (proportion) + 95% CI for processing efficiency metrics PE, PEys, and PWss, (grid rows), by sainfoin variety (grid columns),
processing method, and sample mass (g) on the x-axis. Means within a subplot that have letters in common were not shown to be statistically

significantly different from each other at a.= 0.05.

and dropped to 0.413 for 5g samples across varieties and methods.
‘AAC Mountainview’ had the highest overall PE at 0.692, ‘Rocky
Mountain Remont’ and ‘Shoshone’ had far lower PE on average
(0.393 and 0.379). Processing method had a small but significant
effect on PE (p < 2.2e-16) - impact dehulled samples had a PE of
0.541 on average compared to 0.454 for belt threshed samples.

Frontiers in Plant Science 11

PEys was slightly lower on average than unpenalized PE (0.427
versus 0.498). ‘AAC Mountainview’ still had the highest PEys
(0.588) while ‘Shoshone” was the lowest (0.350). PEyys was had a
negative correlation with sample size for belt threshed samples
however, but the relationship was not as pronounced with impact
dehulled samples (Figure 7). Marginal estimates for PEyyg across
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Rocky Mountain Remont Shoshone

Scatterplot relating the number of objects per gram sample (NOPGS, x-axis) and the number of objects per gram of processed mixture (NOPGM, y-
axis) for (A) belt thresher processed samples and (B) impact dehuller processed samples. The total number of objects is the sum of all sainfoin seed
pod derived material which includes IP, WS, and SS. TWGSS is the total within variety group sum of squares used as a measure of group

compactness.

varieties and sample sizes were significantly higher (p = 2.5e-05) for
belt threshed samples (0.447) compared to impact dehulling
(0.408), though the effect size was small.

The overall marginal mean of PEss was lower than any other PE
computations at 0.25. There were strong varietal differences, again
with ‘AAC Mountainview” having the highest estimate at 0.378 and
‘Shoshone’ the lowest at 0.176 (p < 2.2e—16). Belt threshed samples
had significantly lower PEgs compared to impact dehulled samples
(0.179 compared to 0.337, p < 2.2e—16) when marginalized across
‘variety’ and ‘sample-mass’. All PEgs estimates decreased with
increasing sample size across varieties and methods (0.326 for 1g,
0.197 for 5g). Repeatability (R) was calculated for all the PE traits.
Rp was close to 1 (0.9913), as was Rpg,, (0.9787). Repeatability for
PEys was still high, but slightly lower than the other two
repeatability estimates (0.8702).

Clustering and PCA

Figure 8 illustrates the relationship between the number of
objects per gram sample (NOPGS) and per gram processed mixture
(NOPGM) in both methods. We observed overall mean counts of
45.7 for NOPGS while NOPGM was slightly higher at 57.2. Samples
processed with the impact dehuller had a lower average NOPGS
(44.5), but higher average NOPGM (59.3) compared to those
processed with the belt thresher (46.8 and 55.1, respectively, p <
2.2e-16). Varietal differences were consistent across processing
methods. ‘Delaney’ exhibited the lowest counts for both NOPGS
and NOPGM (39.9 and 52.4, respectively), while ‘Eski’ and ‘AAC
Mountainview’ were the highest for both measurements (NOPGS =
49.5 and 50.2, and NOPGM = 60.5 and 66.0). We calculated the
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total within group sum of squares (TWGSS) for each processing
method as a measurement of dispersion. TWGSS was substantially
lower for belt-threshed samples (2139.7) than for impact-dehulled
samples (4682).

The first two PCA components capture approximately 75% of
the variation in the data, and when the varieties are projected onto
the components, they cluster together along the first component
axis for most data points (Figure 9A). As revealed by logistic
regression modeling, the PE traits contributions are strongly
associated with the majority of the ‘AAC Mountainview’,
‘Delaney’, and ‘Eski’ datapoints, the three varieties with the
highest PE. Most of the Pip contribution to the data lies along
PC1 and associated with varieties ‘Rocky Mountain Remont’ and
‘Shoshone’, both of which had the lowest overall PE. However, what
is most interesting is the stark contrast in clustering of processing
methods shown in Figure 9B. A simple linear kernel SVM trained
on the first two principal components of the training set achieved
99% accuracy on the validation holdout. Pyp was strongly associated
with most of the belt threshing datapoints and varieties with low PE.
Whereas Pys and PE,g were much more associated with belt
threshed samples of ‘AAC Mountainview’ and ‘Delaney’. As
expected, the main contributions of PEgsg and Pgg lie along impact
dehulled samples and away from belt threshed samples.

Power analysis

Figure 10 shows the effect of increasing fruit pod sample size (g) on
the ability to reliably detect small differences between two sample
proportions of each sample’s PE. The greyed-out region on the lower
half of the graph represents all the pairwise power tests conducted
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Impact Dehuller

Principal component analysis (PCA) biplots of the first two components from the relative processing traits conditioned on (A) sainfoin variety

(B) processing method. Arrows with labels represent the PCA loadings of each of the variables to the principal directions with longer arrows
contributing more to the first two components than shorter arrows. The first two components captured almost 75% of the variance in the data Pss,
Proportion of split seeds; Pys, Proportion of whole seeds; P, Proportion of intact pods; PE, Processing efficiency; PEys, Split seed penalized PE;
PEss, Whole seed penalized PE; NOPGS, Number of seed objects per gram sample; NOPGM, Number of seed objects per gram processed mixture;

Num. Obj., Total number of seed objects.

which had a power of less than 0.8. The target region, outlined in green,
indicates comparisons with at least 80% statistical power and a PE
difference no greater than 0.25. Over all sample sizes, 41.7% of
comparisons made had at least 80% power, but only 17.7% of
comparisons within the 1g sample size group had the same power.
When only 1 gram of fruit pods was sampled and processed, only
medium to larger differences in PE (> 0.28), on average, could be
detected reliably at or above P;; = 0.8 between any two processed
samples 7 and j. Out of the 4950 (4 ) comparisons made in the 1-gram
sample group, only 17 lay in the target zone. However, as the sample
size was increased to 2g, the lower limit of detection measured was a
mean PE difference of 0.203 with 511 comparisons in the target zone,
followed by 0.165 for 3g samples, 0.135 for 4g, and 0.125 for 5g. The
lower detection limit gains made by increasing the sample size show a
non-linear trend, with the greatest gain made when the sample size
increased from 1 to 2 grams.

We also simulated the power between two samples containing
an equal number of detected objects, from 1 to 300, and then
calculated the minimum PE spread detectable under two scenarios:
a best-case scenario centered symmetrically at 0.85, and a worst-
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case scenario centered at 0.5 where proportional variance is highest
and power is lowest. Figure 11 shows the results and how they relate
to sample mass. The greatest gain in detection power between two
samples comes within the first gram of fruit pods sampled. While
one gram of sample contains approximately 46 total objects when
processed, proportional differences lower than 0.25 are only reliably
detected with enough power when sample proportions are centered
at the extremes (i.e. at 1 gram |PE; — PE,| = 0.206), a relatively large
effect size (h;; = 0.617). When the difference is centered on 0.5, the
lower detection limit is considerably higher (at 1 gram |PE, — PE,| =
0.289 > 0.25) even though this corresponds to a slightly smaller
absolute effect size (h;; = 0.586). However, sample sizes of at least two
grams are sampled (average of 92 seed objects in the processed
mixture), both the worst case and best-case scenarios are firmly below
the 0.25 target difference - |PE, — PE,| = 0.147 when centered at 0.85,
and |PE, — PE,| = 0.206 for two samples centered at 0.5. Taken
together, these two curves form the range of a reasonable lower limit
of detection at 80% power that can be used to find the minimum
sample size needed to detect a given absolute difference in PE between
two samples.
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FIGURE 10

Effects of sainfoin fruit pod sample mass (g) on statistical power to
detect absolute differences in PE between two samples, |PE; - PE;|.
Pairwise power tests were performed within each sample mass
group. The horizontal dashed line indicates a power threshold of
0.8. The solid vertical line marks our target absolute proportional
difference of 0.25 in samples’ PE. The target detection region (light
green background) indicates the area where }PEf - PEJ\ < 0.25, and
P;; > 0.8. Colors denote different sample masses. X-axis is truncated
to 0.45 for clarity, at the expense of removing comparisons with
large effect sizes and power nearing 1.0.

Discussion

In this study, we combined deep learning-based object
detection with classical statistical modeling to develop a
framework for quantifying sainfoin seed pod PE. Our approach
demonstrated that accurate seed object detection can be achieved
with relatively few training images when imaging conditions are
controlled, and that model-assisted labeling substantially reduces
annotation burden. Through factorial experiments, we revealed that
PE is strongly influenced by both processing method and variety,
highlighting physical constraints in pod dehulling and threshing. By
introducing a generalized PE metric, we quantified varietal
differences with high repeatability and established minimum
sample sizes required for robust comparisons between breeding
lines. Collectively, these findings illustrate how integrating
computer vision with power-based statistical principles can
provide plant breeders with reliable, reproducible, and high-
throughput methods for evaluating seed processing traits.

Dataset creation

Scientific imagery has advantages over images collected “in the
wild”, one being that images can be collected in as precise a format
as time and budget constraints allows. Image sets collected with the
same camera, software and ambient conditions allow one to train an
accurate model with very few images - 80 in the present case. We
recognize that images collected over a wide range of scenes,
backgrounds, scales, and ambient conditions aid in training more
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FIGURE 11

Two-proportion power curves generated for two proportional PE
values with equal number of observations. Each curve's values
represent the minimum proportional difference in PE that can be
detected with 80% power at the given number of observations (total
number of objects in the processed mixture). Y-axis is truncated to
0.5 to only show PE differences in the intended range. Vertical
dotted lines indicate the average number of total objects in the
processed mixture for each sample size, marginalized across
varieties.

generalizable models. But for most research settings, this may not be
strictly necessary if the data acquisition pipeline is not prone to
change and/or there is no evidence of model overfitting. That
notwithstanding, a robust set of image augmentations as
employed in the current work may be used to help regularize the
model - see Kaur, Khehra, and Mavi (Kaur et al., 2021) for a review
of appropriate methods. Additionally, researchers may take
advantage of semi-supervised learning methods when unlabeled
data far outweighs the labeled images (Sohn et al., 2020; Zhang et al.,
2021). We have published our full dataset on Zenodo for further
research along these lines (Meyering et al., 2023).

Deep learning modeling

Deep learning object detection models can remove most of the
dataset specific parameter tuning by learning the general features of
a class of objects regardless of inconsistencies in background and
other ambient conditions. However, this results in large amounts of
frontloaded work for researchers due to time associated with image
labeling, which could be a heavy lift for small breeding programs.
Hand-labeling one image took approximately 8-9 minutes to
annotate on average across sample sizes, with images from the
smaller sample sizes taking considerably less time and larger sample
images taking upwards of 15 minutes. To overcome this, we labeled
approximately 100 images and then trained a foundation model to
use for model assisted labeling. This model, while not perfect, did a
fair job of pre-labeling the rest of the images. We estimated that this
reduced labeling time to =~ 1 minute per image.
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Our model training experiment on 5 and 10% of the dataset
resulted in models with decent performance regarding mIOU
(0.877-0.883), mAP50 (0.904-0.91) and mAP75 (0.7936-0.827)
(Tables 3, 4). When trained on 20-100% of the dataset, the model
performance improved, particularly in terms of SS detections,
though models trained on the entire training set were not
significantly more accurate than models trained on 50% of the
training set. Since our dataset includes images taken of three
standard classes against a consistent background with consistent
lighting, the intra-dataset variability of the images is low, which
explains the low number of images required. The training dataset
size requirements would be different for images captured under
more variable conditions (e.g. multiple backgrounds and image
scales). Additionally, alternative classification loss functions
designed to mitigate class imbalance such as recall loss or focal
loss could help improve detections of the minority class, SS (Lin et
al., 2017; Tian et al., 2022).

While Faster R-CNN remains a highly accurate detector, it is
generally less computationally efficient than newer single-stage
architectures such as EfficientDet or models in the YOLO (You
Only Look Once) family (Tan et al, 2020; Jiang et al., 2022).
Building on the results presented here, our dataset offers a strong
basis for a systematic comparison of these architectures for small
object detection in controlled imaging environments. Future work
could use the current dataset to quantify performance differences in
terms of accuracy, inference time, and computational requirements,
clarifying the trade-offs between speed and precision. Such analyses
would be particularly valuable for guiding deployment in real-time
seed counting applications, including integration with seed sorters
or conveyor-based sampling systems, but lay outside the scope of
the present work.

Seed object modeling

We developed a multiple regression model to predict the
number of total seed objects of a given variety and sample mass
so that we could use the predictions to generate power curves. Due
to the linear response with sample mass, the linear model
outperformed the Poisson count model, which was not surprising
(Figure 5). The GLMs fit to the proportional data, however, were
surprising. Our initial hypothesis was that at lower sample masses
(1-2g) the variance of the proportional measurements over the 10
random replicates would be high but would decrease as the sample
mass increased to 4-5g while the proportional estimates stayed
constant. However, contrary to our hypothesis, the proportional
estimates were not stable across sample sizes, though the standard
error of the marginal means of the measurements did decrease as
sample size increased as expected (Figure 6). This indicates that
there are processing method-based effects on the seed proportions
that are dependent on the number of pods physically fed into the
instrument at one time. The clear indications of this are the
increased rate of intact pods left in the dehulled mixture as the
sample mass was increased. This was true across both methods and
varieties. There was a strong interaction between the sample mass
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and method for the resulting proportion of seeds - increasing
sample amount resulted in far fewer whole seeds for impact
dehulling but had relatively little impact on the seed proportion
estimates of all varieties for belt thresher processed samples. This is
contrasted with sharp decline of split seeds for impact dehulled
samples with increasing sample mass, while split seeds in the belt
threshed samples were consistently low across all varieties and
sample masses.

We can draw several conclusions from this. First, there are
physical limitations to how well sainfoin pod samples are processed
depending on the sample mass and variety. Across the board, higher
proportions of IP were left in the mixture as sample mass increased
suggesting either that the machines were both overloaded with
sample and could not process them effectively, or that the samples
were not processed for a long enough period relative to the sample
mass. We set the physical parameters of the belt thresher and
impact dehuller ahead of time based on running test samples of 1-2g
through the instruments, as well as experience from processing 1g
samples. It is highly possible that the resultant PE estimates would
have been higher had we processed samples for a longer period.
Several other studies have focused on optimizing small sample
processing methods for small grains (Doehlert and McMullen,
2001; Doehlert and Wiessenborn, 2007; Oomah et al., 2010; de
Figueiredo et al, 2013). However, most have focused on tuning
machine parameters (timing, grain parameters, etc.) for a fixed
sample size. It is reasonable to assume that sample mass specific
settings would allow us to optimize our methods further.
Unfortunately, we did not have the resources to investigate
different machine parameters any further at the time of this project.

Second, the increase in pod proportion is offset by a decrease in
the number WS for belt threshed samples and a decrease in SS for
impact dehulled samples. SS were almost nonexistent in belt
threshed samples, while they were much more prevalent in
impact dehulled samples (Table 5). The WS proportion was
constant and less than 0.4 in impact threshed samples. This
highlights the importance of choosing the correct instrument for
processing depending on the desired end product, whether WS
or SS.

Measuring processing efficiency

In contrast with other processing studies, we did not measure
DE, but instead a new, general metric, PE, which includes both W$
and SS in the calculation. We found that PE was highly dependent
on the sainfoin variety and sample size (Figure 7). Others have
observed differences in legume grain DE based on variety and grain
quality parameters using techniques such as response surface
methodology (Wang, 2005; Goyal et al., 2008; Wang, 2008;
Ndukwu et al., 2019). While we did not test the grain moisture
content as this was not a factor for our experimental design, all
seeds were stored under the same environmental conditions for a
considerable time before processing, making any measurable
differences in grain moisture between varieties an unlikely cause
of the observed contrasts in PE. Our repeatability estimates for the
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PE traits were very high (» 0.85) and indicate that while our varietal
PE themselves were not as high as most DE estimates in the
literature, there is a great deal of genetic variance represented in
the commercial varieties tested that could be exploited in a breeding
program focused on sainfoin lines with good seed processing traits.

We calculated the number of objects per gram fruit pods sample
(NOPGS) as well as the number of seed objects per gram of
processed mixture (NOPGM) and compared them using
clustering metrics. For both methods, the relationship between
them was linear, as expected, and the varieties tended to cluster
together. However, the within group cluster sum of squares for the
belt thresher was less than half of that for impact dehulled varieties,
indicating more compact and uniform varietal processing responses
under belt threshing compared to impact dehulling (Figure 8). This
could suggest that impact dehulling creates more fractured SS (i.e.
more than 2 SS per WS) and may also result in many of these SS
being removed with the processing debris such as empty seed pods
and seed hulls. Impact dehulling, which uses centrifugal force and
impact paddles is, in general, the more forceful processing method
(Singh et al., 2024; Singh and Rao, 2025) compared to belt
threshing, which is focused on gently removing the outer
pericarps or husks while minimizing damage to the seed
(Mesquita and Hanna, 1993; Adanu et al., 2025).

We chose to use fixed equipment settings and processing times
for the belt thresher and the impact dehuller based on our previous
experiences processing sainfoin pods. Increasing the number of
sample passes through the belt thresher could feasibly result in
fewer IP and more WS with little risk of creating more SS. However,
it is reasonable to expect that processing samples with increased
time and/or speed in the impact dehuller would result in more SS
(and more broken SS) than what we reported. As this is, to our
knowledge, the first publication regarding sainfoin seed pod
processing, a factorial experiment with different equipment
settings was beyond the scope of this study. We reported PE
metrics for each processing method which includes all three seed
object classes IP, WS, and SS, but the results of the current study
suggest that DE could be calculated by a two-stage processing
method by first depodding with the belt thresher and then
dehulling the resulting WS sample with the impact dehuller.
There is a great need for additional follow-up studies regarding
the appropriate processing machinery and machinery settings, and
establishing the relationship between seed pod traits such as size
and moisture content, and processing traits like PE and DE.

Choosing the correct sample size

While the processing experiment shed some light on the nature
of seed pod processing with many replications, the main goal was to
determine the minimum detection limits between the difference of
two single samples’ PE at any sample mass. Since it is much more
convenient to evaluate many breeding lines on a single plant, single
sample basis, we need an accurate estimate of the power of any
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comparison between two plants. In our analysis, we modeled two
scenarios to determine the lower bounds of the detection limit
between two samples with at least 80% power. We found that while
sub-1g seed samples are far under-powered regarding the ability to
discriminate between two samples’ PE centered on 0.5, it is possible
to detect differences of around 0.20 with samples that are on the
extremes of the distribution (say 0.95 and 0.75) at 1g (Figure 10).
Our also results indicate that if we want to reliably detect a 0.25
absolute difference in PE between two sainfoin samples no matter
where the two proportions lie on the binomial distribution, sample
sizes should be at least 2g (Figure 11). If the PE values are closer to 0
or 1, smaller absolute differences down to 0.147 are reliably
detected. Larger 4-5g samples afford reliable discrimination of
smaller differences in PE with 80% power, but among the PE
values we tested in our study, the lowest difference in PE was
only 0.094 between two 5g samples. Detecting differences lower
than this with sufficient power would require sample masses far
greater than what we used for this study.

Historic sainfoin pod yields in our single plant field trials range
from 2-75 grams per plant (data not shown). A 2g sample is a
reasonable sample mass for greenhouse grown plants, and at that
sample size, we can readily screen out lines with high vs low PE. Our
pairwise analysis of the measured power for difference in PE
between any two 2g samples reveals that 1,752 out of 4,950
comparisons had a statistical power above 0.8. Of these
comparisons, the average effect size was 0.63 which indicates only
medium-large PE spreads can be reliably discriminated at 2g.

Additionally, there are other constraints based on convenience
to consider. We imaged processed samples using a large format
platform and camera to capture the entirety of 5g samples.
However, it may be convenient to image samples in a weigh boat
or on a smaller platform in the processing pipeline where a 4-5g
sample may be too crowded to allow accurate seed object detection.
When making decisions such as these, researchers should consider
the power cost associated with smaller sample sizes.

While we presented a theoretical power analysis based on the
absolute difference in our PE proportions, it is also possible to
conduct similar power analyses on penalized PE. Since PEgs and
PEy deviate from a binomial/multinomial distribution as they are
linear combinations of random variables, one would need to
estimate the variance using the delta method (Oehlert, 1992) or a
simulation analysis and adjust the power calculation in Equation 10
accordingly. Such analysis is beyond the scope of the
present investigation.

In breeding programs targeting new or underutilized crops,
such as sainfoin, it is critical to ensure that phenotyping methods
are not only innovative but also demonstrably capable of capturing
the traits necessary to achieve defined breeding objectives. Unlike
well-established crops with mature breeding pipelines, novel species
often require the parallel development of reliable, scalable
phenotyping tools that can meaningfully inform selection indices
and advancement decisions. The findings presented here
underscore the importance of method validation—unproven or
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noisy trait estimates can compromise selection accuracy, limit
genetic gain, and obscure promising germplasm. By establishing
the reliability and discriminative potential of phenotyping
approaches early in the breeding process, programs can better
align trait measurement with long-term goals for crop
improvement. This is especially important in the context of exotic
germplasm development, where broader trait exploration is
common and breeding targets may span agronomic performance,
nutritional value, and environmental adaptation. Ultimately, such
rigor in trait measurement enhances the efficiency and impact of
breeding strategies, supporting broader goals in food security,
ecosystem resilience, and the development of climate-
adapted crops.

Conclusion

The present study developed and applied an image-based
phenotyping pipeline for processing efficiency in sainfoin. First,
we trained a Faster R-CNN model that successfully detected and
classified intact pods (IP), whole seeds (WS), and split seeds (SS)
with mAP75 of 0.9257. Second, we introduced a generalized metric,
processing efficiency (PE), which effectively summarized the
proportion of depodded and dehulled seeds after processing
sainfoin pods. Third, our factorial analysis showed that processing
method had the largest influence on PE, while the variety
contributed additional but smaller effects [insert significant p-
values or effect sizes if possible]. Fourth, power analysis indicated
that sample sizes below 2g lacked sufficient power to reliably detect
our target proportional difference in PE of 0.25 between two
samples with 80% statistical power, underscoring the risks of
under-sampling in breeding programs. Finally, by integrating
deep learning-based object detection with classical statistical
modeling, we demonstrated a scalable, accurate, and reproducible
framework for high-throughput phenotyping of seed processing
traits. Our findings establish minimum sample sizes for robust
estimation of seed processing traits in sainfoin and highlight the
potential of this approach to advance breeding selection indices and
accelerate the improvement of existing sainfoin germplasm to
establish it as a perennial legume grain crop.
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