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Timely and accurate monitoring of weed infestation is essential for optimizing
herbicide application in rice cultivation, particularly within site-specific weed
management (SSWM) strategies. Conventional blanket spraying remains widely
adopted by farmers, resulting in excessive herbicide usage and increased costs.
This study presents a deep learning-based change detection approach to
evaluate the temporal dynamics of broadleaved weed infestation in paddy
fields. Multispectral imagery was collected using unmanned aerial vehicles
(UAVs) over PadiU Putra rice fields, and a Deep Feedforward Neural Network
(DFNN) was developed to classify three land cover types: paddy, soil, and
broadleaved weeds during the vegetative stage. Post-classification comparison
was applied to assess weed infestation rates across multiple Days After Sowing
(DAS). The analysis revealed a consistent increase in weed coverage within
untreated plots, with infestation rates rising from 40.95% at 34 DAS to 47.43%
at 48 DAS, while treated plots remained largely controlled. The change detection
maps further enabled estimation of potential herbicide savings through targeted
application, indicating a possible reduction of up to 40.95% at 34 DAS. However,
continued weed growth reduced this to 37.06%, with an R? of 0.9487, indicating a
strong negative correlation between weed coverage and herbicide-saving
potential. These findings demonstrate the potential of integrating UAV-based
multispectral imaging with deep learning for temporal weed monitoring and
precision agriculture applications.
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1 Introduction

Rice is a major staple crop that feeds billions of people
worldwide (Dorairaj and Govender, 2023). However, its
productivity is frequently threatened by weed infestation, which
competes with rice for essential resources such as nutrients, water,
light, and space (Yu et al, 2022). Among various weed types,
broadleaved weeds are particularly damaging, especially during
both the main and off-seasons. Their rapid growth and
adaptability can significantly reduce yields if not effectively
controlled (Hazrati et al., 2023).

Previous studies report that uncontrolled weeds can reduce rice
yields by up to 80%, depending on infestation severity and
management practices (Dudchenko et al, 2021; Rosle et al,
2021). For example, yield losses in Bangladesh range from 20-
50% during the winter season and 15-68% during the monsoon
(Islam et al., 2021). In California, weed pressure has led to yield
losses of up to 69% along with reductions in grain quality and
biomass (Karn et al., 2020). The conventional method of blanket
herbicide application remains widely practiced but presents several
critical limitations. This approach applies to herbicide uniformly,
regardless of weed distribution, resulting in excessive chemical
usage, environmental pollution, the development of herbicide-
resistant weed species, and health risks for farmers (Liu et al,
2021; Ofosu et al., 2023; Ghazi et al., 2023).

In recent years, unmanned aerial vehicles (UAVs) have gained
increasing attention in precision agriculture due to their ability to
capture high-resolution imagery rapidly and cost-effectively. UAV-
based data acquisition facilitates weed mapping, enabling the
detection and spatial localization of weed patches. When
combined with deep learning (DL) techniques, UAV imagery can
be automatically analyzed for efficient and accurate weed detection
(Elakya et al., 2022; Aparna et al., 2023; Guo et al., 2024). DL models
such as Segmentation Network (SegNet), Pyramid Scene Parsing
Network (PSPNet), UNet, and Fully Convolutional Network (FCN)
have demonstrated high performance in weed classification tasks,
achieving classification accuracy exceeding 90% in paddy field
studies (Kamath et al., 2022; Huang et al., 2020). However, most
of these studies focus on weed mapping at a single time point.
Temporal analysis of weed infestation remains underexplored,
particularly when utilizing deep learning in combination with
multispectral UAV data (Wang et al., 2022).

Therefore, the integration of remote sensing (RS) techniques
with UAVs has enabled high-resolution monitoring of crop and
weed dynamics over time. This study adopted multispectral
imagery, despite the finer spectral resolution and discrimination
capabilities offered by hyperspectral systems. Hyperspectral
imagery remains less commonly used due to its higher cost and
data complexity (Sulaiman et al., 2022). In contrast, multispectral
systems offer a cost-effective alternative with reduced data volume
and faster processing times (Celikkan et al., 2025). These sensors
capture reflectance across multiple spectral bands, allowing for
effective differentiation between crops and weeds based on their
unique spectral signatures (Zhang et al., 2025).
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According to Seiche et al. (2024), multispectral systems including
low-cost configurations can achieve F1-scores ranging from 76% to
82% for weed classification, while high-end systems can reach up to
90% precision. Although comparative studies between multispectral
and hyperspectral imaging in weed monitoring remain limited in
recent literature (2022-2024), emerging works have begun to address
this gap. Busari and Abdulrahman, (2025) demonstrated that
integrating hyperspectral data with Vision Transformers
significantly enhances weed classification accuracy under field
variability. Similarly, Che’Ya et al. (2021) showed that while
hyperspectral reflectance offers superior spectral discrimination,
optimized multispectral bands can achieve comparable detection
accuracy with higher spatial resolution. Thus, integrating RS with
deep learning (DL) models, such as Deep Feedforward Neural
Networks (DFNNSs), presents a promising pathway for automating
weed detection and classification at high spatial and spectral
resolutions (Touvron et al.,, 2022; Xia et al., 2022).

Beyond spatial weed mapping, understanding temporal changes
in weed distribution is crucial for timely intervention and more
efficient management. Change detection (CD) techniques identify
land cover changes by comparing imagery acquired at different time
points (Khelifi and Mignotte, 2020). In agricultural applications,
CD can track weed spread, support herbicide decision-making, and
enhance site-specific interventions. While several CD studies have
applied classical and hybrid DL-based approaches for land use and
vegetation monitoring (Sudha and Vaideghy, 2022; Saha et al,
2020b), their application for temporal weed monitoring remains
limited. This is partly due to challenges such as:

* Limited availability of high-frequency UAV temporal data.

* High computational demands are associated with
processing multispectral imagery.

e The interdisciplinary expertise required across agronomy,
machine learning, and remote sensing.

Therefore, this study addresses these gaps by developing a
differencing-based change detection framework that utilizes
multispectral UAV imagery in combination with a Deep
Feedforward Neural Network (DFNN). The framework classifies
weed presence across multiple growth stages, analyzes temporal
changes in infestation, and estimates potential herbicide reduction
through targeted application. The findings contribute to the
advancement of site-specific weed management, supporting more
sustainable rice production through precision agriculture. In
addition, this study makes three key contributions: (i) it introduces
a deep learning-based change detection framework that integrates
UAV-acquired multispectral imagery with a Deep Feedforward
Neural Network (DFNN) to monitor broadleaved weed infestation
in rice fields; (ii) it extends beyond static weed mapping by analyzing
temporal infestation dynamics across multiple growth stages,
providing actionable insights for site-specific herbicide application;
and (iii) it demonstrates the practical potential of combining UAV-
based remote sensing and deep learning for sustainable precision
agriculture, highlighting possible reductions in herbicide use through
targeted interventions.
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2 Materials and methods
2.1 Experimental settings

2.1.1 Study area

The study was conducted in Tunjang, Jitra, Kedah, Malaysia (60
16 05.8” N, 100° 21’ 10.3” E), covering an area of 0.504 hectares
(ha). The location of the study site is illustrated and presented in
Figure 1. The site was selected in collaboration with the Lembaga
Muda Agricultural Development Authority (MADA). The rice
variety cultivated in this study was Padi-U Putra, which has a
maturation period of 120 days after sowing (DAS) (Berahim et al.,
2021). The experiment was conducted during the main cropping

A\ = With treatment (T0)
A = Without treatment (T1)

FIGURE 1

10.3389/fpls.2025.1655391

season under natural field conditions. Broadleaved weeds were
allowed to grow naturally, and their infestation was monitored
during the vegetative stage of the Padi-U Putra variety.

2.1.2 Treatment and experimental design

Two treatments are conducted: with treatment (T0) and without
treatment (T1) plots with four replications, which makes the total
number of plots in the study plot eight. For treatment plots (T0),
fertilizer and herbicide were used. Meanwhile, for without treatment
plots (T1), only fertilizer was applied without herbicide application.
For this study, farmers used herbicide named 2,4-D amine to control
broadleaved weed and fertilizer for paddy as guided in the rice
checkbook (DoA, 2022). There are eight plots used in this study,

Location of the study at MADA, Tunjang, Jitra, Kedah, Malaysia. The aerial background image of paddy fields (inset) was sourced from Pexels.com

(free stock photo, used under Pexels license).
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the plot size was approximately 630 m* and the barrier in between the
plots is about 30 cm. The plots were arranged in a randomized
complete block design (RCBD) as shown in Figure 2.

2.1.3 Datasets

Datasets used in this study were captured by a Micasense
RedEdge-MX multispectral camera (MicaSense, Seattle,
Washington, USA) and attached to a multirotor DJI Inspire 2
UAV (Da-Jiang Innovation Science and Technology Co., Ltd, DJI,
China). In this study, DroneDeploy (DroneDeploy, Inc., United
States) was used to plan the flying area and pre-set waypoint for
autonomous flight mission (Mohd Zaidi and Tahar, 2021).The
flying height used in this study was 20m above ground level with
a spatial resolution of 0.913 cm. Scene overlap was set to 80% front
and 75% side, ensuring sufficient coverage and image alignment,
and it was flown with fight speed of 3ms™'. All missions were flown
between 9.00 am to 11.30 am under clear sky conditions to ensure
consistent illumination (Mohidem et al., 2022). This multispectral
camera can be captured in five bands: red (R), green (G), blue (B),
red-edge (RE), and near infrared (NIR). To ensure radiometric
consistency across flight sessions and compensate for varying
illumination conditions, radiometric calibration was performed
before and after each UAV flight using a calibrated reflectance
panel (white reference panel). These reference images were used
during processing to correct the raw digital numbers and
standardize reflectance values across different dates. The flying
season was executed during the Main seasons, and the image

Plot 8

Plot 3

FIGURE 2
Plot arrangements in the study area.

Frontiers in Plant Science

10.3389/fpls.2025.1655391

acquisition was taken within seven-day intervals. However, due to
the COVID-19 outbreak and the implementation of Malaysia’s
Movement Control Order (MCO), the data collection process was
constrained. As a result, imagery was only acquired at three time
points: 30 June 2020 (34 DAS), 7 July 2020 (41 DAS), and 13 July
2020 (47 DAS). While this limits the density of the temporal series,
these intervals correspond to critical stages of vegetative growth and
weed competition, thereby still providing meaningful insights into
infestation dynamics (Safdar et al.,, 2025).

Pix4D software was used to mosaic the images captured, and
their digital numbers were subsequently converted into reflectance
values. Following this, geometric registration was applied to ensure
pixel-to-pixel correspondence, a crucial step for multi-imagery
analysis integration. Given the large size of the original images,
approximately 8127 x 6892px, there is a risk of exhausting GPU
memory during processing. To mitigate this issue and expedite
processing time, as suggested by Huang et al. (2018), each image
captured on different dates was subset into eight plots,
approximately 2262 x 2091px for each plot. Also, training data
normalization is performed to standardize the input features.

2.1.4 Training data collection and preparation
Training samples are essential for classification processing as
they require representative samples for each class (Li et al., 2024).
Sample data were selected from UAV imagery based on in situ
observations, focusing on three main classes: paddy, soil and weed.
Given the study’s incorporation of two treatments; with treatment

TO = With Treatment

T1 = Without Treatment
Treatment (N) = 2
Replication = 4

Number of plots =2x4 =38
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(T0) and without treatment (T1), training datasets were collected
for each treatment, resulting in two datasets. To ensure temporal
representation, training samples were collected from imagery
acquired from 34 DAS and 41 DAS. The samples were gathered
using random sampling strategies. The input fed into the DFNN
model was converted into structured, non-spatial data extracted
from each pixel’s reflectance across the Red, Green, Blue, Red Edge,
and Near-Infrared (NIR) bands. This format was chosen for its
computational efficiency (Li et al., 2024), and it is well-suited for
DENN, which has a simpler architecture, requires fewer
computational resources, and is faster to train compared to
Convolutional Neural Networks (CNNs). It also suits situations
where spatial information is limited or unnecessary (Aydin and
Sefercik, 2025).

In addition, training samples were randomly shuffled to remove
sequence bias before model training. This pixel-wise, non-spatial
format aligned well with the model, which are optimized for
structured, tabular data rather than spatial image features.
Therefore, following empirical testing and cross-validation to

TABLE 1 The total number of training samples used to train the model.

Data Collection With Treatment (TO)

10.3389/fpls.2025.1655391

balance model complexity and generalization performance,
Table 1 summarized the total used to train the model.

2.2 Change detection analysis

A differencing-based post-classification change detection (CD)
framework was employed in this study to evaluate the temporal
dynamics of broadleaved weed infestation in rice fields. The
approach involved two main stages: multi-temporal image
classification using a Deep Feedforward Neural Network (DENN),
followed by temporal differencing of classified images. Therefore,
Figure 3 summarizes the workflow involved in this analysis.

2.2.1 Deep feedforward neural network
architecture

The model was built sequentially using the Keras library in R,
with a stack of dense layers forming the core of the architecture.
Each dense layer contains a specific number of neurons, determined

Multispectral Image Pixel

Without Treatment (T1)

Paddy Soil Paddy Soil
34 DAS 6480 6471 4751 4756 4755
41 DAS 6474 6485 ‘ 4769 4766 4760
Total sample for each class 12954 12956 ‘ 9520 9522 9515
Total training sample used 54467
Samples were collected from UAV imagery acquired from 34 and 41 DAS under two treatments: with herbicide (T0) and without herbicide (T1).
*DAS, day after sowing.
Bold values highlight total number of training sample used to train the model.
Stage 1 Stage 2
e 7 N ) Ve ~
Multispectral Images A Train the deep learning model { Tempor:l lzlft:erencmg 3 Weed Infestation Analysis
) nalysis
Hliddenayenl I o change in weed
[] weedto soil
Input layer [ ] Weedto paddy
[ sciltoweed
Bandie I No change in soil
- Soil to paddy
LA == I Paddy to weed
[ Paddy to soil

(20 neurons, Relu)

N / AN J/

- No change in paddy

Weed Infestation Rate

\ Change Detectin Map

FIGURE 3

An overview of differencing-based post-classification change detection (CD) framework.
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by the problem’s complexity and dimensionality. For this study, one
input layer, two hidden layers, and one output layer were set up in
the model. Spectral bands from multispectral imagery, band 1 to
band 5 were used as input layers. A DFNN model was trained on
annotated samples to classify each pixel into one of three categories:
paddy, weed, and soil. Each image was independently classified to
produce discrete thematic maps representing the spatial
distribution of these classes at each time point. The hidden layer
configuration of 20 and 15 neurons was determined through
empirical testing and cross-validation to balance model
complexity and generalization performance. Table 2 shown the
DENN architecture and layer configuration that used in this study.
All layers are sequentially fully connected (dense) without residual/
skip connections: input to Dense(20) to Dropout(0.2) to Dense(15)
to Dropout(0.2) to Dense(3, softmax). Larger networks were found
to overfit the relatively small training dataset, while smaller
configurations underperformed in distinguishing between
spectrally similar classes, such as weed, paddy, and soil. Figure 4
illustrates the model architecture used in this study.

Due to the labeled dataset, this model can effectively tackle
classification problems. Inputs are fully connected to multiple
hidden layers, which then predict the outcome. While
convolutional neural networks (CNNs) are typically the
architecture of choice for image-based classification tasks due to
their spatial feature extraction capabilities, this study opted for a
DENN owing to the use of pixel-level spectral inputs from
multispectral imagery rather than spatial context. Since the
classification task was conducted on a per-pixel basis using
reflectance values from the five spectral bands (R, G, B, RE, NIR),
the DENN proved sufficient to capture nonlinear relationships
between spectral inputs and land cover classes.

The rectified linear activation function (ReLU) activation
function, defined as f(x) = max(0,x) was chosen due to its
computational efficiency and ability to mitigate vanishing gradient
issues often encountered with sigmoid or tanh functions. ReLU
introduces non-linearity while maintaining sparsity in the network,
making it well-suited for the high-dimensional input space
derived from multispectral imagery. This function is a simple
mathematical computation where neurons are activated based on
their input; if the output value is less than zero, the neurons are cut
off from the network. According to Schmidt-Hieber (2020), one
benefit is that it enhances computational efficiency for every
parameter modification. The activation function is as shown in
Equation 1:

TABLE 2 DFNN architecture and layer configuration.

10.3389/fpls.2025.1655391

0 othewise

x if x positive
f(x):{ sxr W

However, when dealing with a fully supervised method, an issue
related to overfitted always occurs whenever the supply of training
samples is limited (Huang et al., 2018). Therefore, to mitigate this
problem, the dropout regularization and L2 regularization
technique was applied after each dense layer. Dropout effectively
introduces noise during training by randomly setting a portion of
input units to zero, preventing the model from depending too much
on any feature, which will increase its performance on unseen data
(Salehin and Kang, 2023). A dropout rate of 0.2 was applied after
each hidden layer, selected based on validation performance. This
rate introduces mild stochastic regularization, balancing between
reducing co-adaptation of neurons and preserving the learning
capacity. Meanwhile, L2 regularization will achieve a balance
between generalization and model complexity, incorporating a
penalty element into the loss function (Venkatesh et al., 2023). In
this study, L2 was applied to the kernel weight of the dense layer,
effectively penalizing large weights during training and thus
reducing overfitting. The value of 1 was tuned to ensure that the
network remained expressive without becoming overly sensitive to
noise in the training data. Weights were initialized using the He
normal initializer for hidden layers to match ReLU activations. The
output layer used Glorot uniform initialization. The model
optimization was conducted using the Adam optimizer, which
combines the benefits of both AdaGrad and RMSProp. Adam
adapts learning rates for each parameter and accelerates
convergence, particularly in sparse gradients scenarios. The
optimizer was configured with a learning rate of 0.005 and default
beta parameters (B, =0.9, B, =0.999). Therefore, the L2
regularization function can be described as shown in Equation 2
below:

n
Cost = Loss + /'szi2 (2)

-1
Where:

Loss = original loss
W; = model weight
A = strength of regularization

We performed limited empirical tuning on the validation set
with early stopping to reduce the search burden. Candidate values

Layer index Layer type Units/shape Activation Kernel initializer ~ Kernel regularizer (L2) Dropout
0 Input 5 (R,G,B,RE,NIR) NA NA ‘ NA ‘ NA
1 Dense 20 ReLU He normal ‘ L2 (A = le-6) ‘ 0.2
2 Dense 15 ReLU He normal ‘ L2 (A = le-6) ‘ 0.2
3 Dense (output) 3 Softmax Glorot uniform ‘ NA ‘ NA
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Hidden layer 1
Hidden layer 2
Input layer
Output layer:

Class propabilty for

Band I —— paddy, soil and weed
)
Band 2 ——» ' Paddy =
)
. =
Band 3 ———» Soil "z
)
) Weed )
Band 4 ——— o et g
)
wo  Softmax 3

Band 5 ——-
(15 neurons, Relu)
(20 neurons, Relu)
FIGURE 4

Model architecture of DFNN.

tested included neurons per hidden layer {10, 20, 50}, learning rates
{1e-6,1e-4, le-3, 5e-3, le-2}, batch sizes {16, 32, 64}, L2 A {le-5, le-
4, 1e-3}, and dropout rates {0.1, 0.2, 0.4}. Models were trained for up
to 200 epochs with early stopping (patience = 10) monitoring
validation loss and restoring the best weights. Selection was based
on lowest validation categorical cross-entropy (tie-broken by
validation F1 for the weed class). The selected hyperparameters:
the number of neurons, learning rate, number of epochs, and batch
size are summarized in Table 3.

The classification problem addressed in this study is
fundamentally a pixel-wise spectral discrimination task: each
observation is a five-band vector [R, G, B, RE, NIR] measured at
a single date, and the objective is to assign a class label to that vector.
Under these conditions, a fully connected feedforward network
(DENN) is an appropriate and efficient choice. DFNNs directly
model relationships between the spectral bands for each pixel
without introducing additional spatial or temporal structure; they
therefore require fewer parameters than patch-based convolutional
models and are typically more sample-efficient when training labels

TABLE 3 Model hyperparameters and tested values of the DNN model.

Hyperparameters Tested value

Number of neurons 20 and 15
Learning rate 0.005
Number of epochs 100
Batch size 32

Frontiers in Plant Science

are associated with individual pixels rather than image patches.
These characteristics reduce the risk of overfitting for datasets with
limited labelled samples and simplify deployment across large
orthomosaics because inference operates on independent per-
pixel vectors.

By contrast, convolutional neural networks (CNNs) are
designed to exploit local spatial structure and texture. A CNN
requires patch-based inputs (for example, 5\times5 or 11\times11
pixel windows) so that spatial filters can learn patterns in the
neighbourhood of each pixel. This is advantageous when spatial
context, for example canopy texture, row structure, or object
morphology, carries discriminative information that is not
present in single-pixel spectra. Recurrent models (RNN,
temporal 1D-CNNs, or temporal transformers) are appropriate
when the sequence of observations for a pixel across time is the
model input and when temporal dynamics must be modeled
directly (for example, phenological trajectories or multi-date time
series where each pixel has a labelled temporal profile). Our
workflow, however, treats each date independently and relies on
post-classification differencing to identify temporal change. Thus,
temporal sequence models were not required for the present study.

Given these differences, the DFNN is the simplest model
consistent with our data representation and study objectives: it
matches the per-pixel input format, keeps the parameter count low
relative to patch-based CNNs, and is computationally efficient for
whole-orchomosaic inference. We acknowledge that if (a) spatial
context were required to disambiguate spectrally similar classes, or
(b) labelled temporal sequences per pixel were available and
temporal dynamics were to be modeled end-to-end, then patch-
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based CNNs or temporal models (1D-CNN/RNN/transformer)
would be better suited. In those scenarios we recommend either a
patch-based CNN or a hybrid architecture that combines
convolutional feature extraction with fully connected classification
layers, or a temporal model that ingests per-pixel sequences
across dates.

2.2.2 Applying DFNN to time-series images

The workflow for applying the trained dense feedforward neural
network (DFNN) to time-series orthomosaics follows a strict
sequence of preprocessing, inference and post-processing steps
designed to preserve temporal consistency and to make the
procedure reproducible. Below we describe this procedure in a
manner appropriate for the Methods section so that other
researchers can re-run the classification and change-detection
pipeline using the same inputs, scaler and model weights.

All imagery are first brought to a common radiometric and
geometric reference. Radiometric calibration converts recorded
digital numbers to surface reflectance using instrument
calibration factors and, where available, reflectance-panel
measurements captured at each flight. Any vignetting,
illumination or simple atmospheric corrections applied during
training must be applied here as well so that spectral values are
comparable across dates. Geometric registration is then performed
to co-register all orthomosaics to a single coordinate reference
system and grid (same resolution and CRS), using ground control
points or robust image-based tie-point matching; the objective is
that a single pixel location corresponds to the same ground point for
every date.

Before model inference, quality control masks are applied to all
orthomosaics to exclude non-crop areas, image borders, cloud and
shadow regions, and any nodata pixels. The policy for masked pixels
(e.g., skip prediction or assign nodata) should be documented. For
every valid pixel location (i, j) the spectral input vector is assembled
in the same band order used for training: R,G,B,RE,NIR, R, G, B,
RE, NIR, R,G,B,RE,NIR. To preserve the input distribution expected
by the DENN, each band is standardized by the training-set. It is
essential that the same scaler. The same training means, and
standard deviations will be used for all dates, ensuring the model
receives input on a consistent scale.

Inference is performed by loading the trained DENN weights
and performing predictions in memory-efficient batches over the
orthomosaic. For each input vector the network returns class
probabilities; the per-pixel label is assigned as the class with
maximum probability (argmax). Optionally, the maximum
probability can be saved as a per-pixel confidence map to support
later uncertainty analyses. Predictions should be exported as raster
layers (probability and class rasters) for each date to allow
reproducible downstream processing.

Post-processing is applied to reduce speckle and remove
spurious small objects: typical operations include connected-
component filtering (removing objects below a documented
minimum area), median or majority filtering with specified kernel
sizes, and conservative morphological smoothing. All parameters
used for these operations must be reported. After producing
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discrete thematic maps for each date, pairwise post-classification
differencing is applied (for example, 34 vs 41 DAS and 34 vs 47
DAS) to construct a transition matrix of change categories (no-
change, emergence, disappearance, and class-to-class transitions).
Class codes must be consistent across dates to ensure the
differencing operation is meaningful.

Final area estimates and herbicide requirement computations
are obtained by converting pixel counts to ground area (pixel_count
x pixel_area) and then applying the domain-specific formulas given
in Equations 10-15. The treatment of masked or nodata pixels
when summing totals (excluded, interpolated, or proportionally
scaled) must be explicitly stated in results and tables. In our
procedure the same trained model weights were applied to all
dates without per-date retraining; where flight radiometry varies
markedly between dates, the reflectance-panel normalization
described above should be applied prior to standardization.

2.2.3 Training and validation approach

To ensure the model was trained effectively, performance-
optimized, and stable before deployment, the training samples
collected will be randomly split into three datasets: training,
validation, and test datasets. The model will use the training
sample to fit the model. Meanwhile, the validation sample will be
used to evaluate the model’s performance and to tune the
hyperparameters. Lastly, the test sample dataset will be used to
evaluate the model’s overall performance and identify overfitting or
underfitting issues. Therefore, for this study, the training samples
will be randomly split into 60% (training), 20% (validation), and
20% (testing) (Bonafilia et al.,, 2020).

The model’s performance will be assessed using eight common
metrics: overall accuracy (Equation 3), Kappa Coefficient (Equation
4), categorical cross-entropy loss function (CCE) (Equation 5),
Mean Squared Error (MSE) (Equation 6), confusion matrix,
precision (Equation 7), recall (Equation 8) and Fl-scores
(Equation 9). They can be defined as follows:

U
"o
Overall accuracy = % x 100 % (3)
where:

Q = total number of pixels.

U = total number of classes.

S G - S

- 37,

Kappa coefficient, K =

x 100%  (4)

where:
C, = TOW sums.

N C
Cross — entropy loss (CCE) = —NLEE%}' log(py)  (5)

i=1j=1

where

N = number of samples
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C = number of classes
yij = true label
pij = the predicted probability of the true class

1 N
Mean square error (MSE) =n—2(y,- —)7,-)2 (6)
st
where

y; = actual (true) value

9, = the predicted value

In addition, to assess classification performance, we computed
standard metrics derived from the confusion matrix: precision
(Equation 7), recall (Equation 8) and Fl-scores (Equation 9).
These were calculated for each class using the following formulas:

Let TP, FP, and FN denote true positives, false positives and
false negatives, respectively, for a given class I’

Precision; = _h (7)
TP, + FP,
TP;
Recall; = ———— 8
€= TP RN, ®

TABLE 4 Overall accuracy and class-specific accuracy.

10.3389/fpls.2025.1655391

Precision; X Recall;
F1,=2 x — )
Precision; + Recall;

These metrics were computed for each class using a one—vs—all
approach, providing a more granular evaluation than overall
accuracy alone. The resulting per class metrics are summarized in
Table 4, and the confusion matrices used to derive these values are
presented in Table 5.

2.2.4 Temporal differencing of classified maps

Following classification, the output maps were analyzed using a
class-based differencing technique. This is the best combination
since DL-based supervised change detection already produces an
accurate result. Meanwhile, pixel differentiation is the most
straightforward approach, which highlights the areas of change
and calculates the differences between classes that are already
classified. In this case, by deep learning models (Asokan and
Anitha, 2019; Shafique et al., 2022).

The process involved pixel-wise comparison across sequential
DAS: 34-41 DAS (7 days) and 34-47 DAS (14 days), identifying
temporal transitions between classes. This study will leverage the
differencing techniques commonly used in remote sensing (Singh,
1989; Coppin and Bauer, 1996). The mathematical expressions
(Equation 10) are used to represent the logical operations

Treatment plot Training Validation Testing
34 and 41 Accuracy 0.99 0.9893 0.9906

Loss 0.0287 0.0264 0.0224

‘With Treatment (T0)
MSE 0.0074 0.0077 0.0066
Kappa 0.9812
Accuracy 0.9729 0.98 0.9793
Loss 0.0791 0.067 0.0597

Without Treatment (T1)

MSE 0.0135 0.0104 0.0108
Kappa 0.9789

TABLE 5 Confusion matrix for classification under; (a) with-treatment (T0) and (b) without-treatment (T1) conditions.

Reference
Prediction 0 1

Reference
Prediction | 0 1

0 1322 | 17

0 8451 O

1 30 | 1222

SN

1 0 | 815

(2)

2 2 0 |823

(b)
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executed in R. This expression reflects class transitions between
paddy, soil, and weed over two temporal datasets and will be
presented using a change matrix table. Therefore, given paddy =
0, soil = 1, and weed = 2, the transition of each class can be
calculated using the equation below:

Increase/Decrease

=S (P =0 AP =2)+ (P =1AP =2))  (10)

where

Péf‘}; = Pixel classification at Time 1
PéfZJ; = Pixel classification at Time 2

A = Logical AND operator, ensuring both conditions are
met simultaneously

Pf’;‘) =0 A PE;Z) =2 = Paddy turned into weed
Pf;‘) =1 A PE;?) =2 = Soil turned into weed

2 i,j (Summation) = Total increase/decrease for paddy, soil,

and weed across the image

The method used in this study eliminates reliance on empirical
thresholds, often required in traditional vegetation index-based change
detection, and instead leverages discrete class transitions to produce
actionable insights for site-specific weed management. The complete set
of transitions was summarized in a change matrix, providing quantitative
measurements of weed expansion, paddy loss, and soil exposure.

Subsequently, the percentage change for each class can be
calculated by dividing the number of pixels that have changed by
the total number of valid pixels. Mathematically can be calculated
using the Equation 11 below:

Number of change pixels

Class changes (%) = Total valid pixels

x 100 (11)

This calculation enables the precise quantification of class-
specific changes over time, providing a clear understanding of the
temporal dynamics of weed infestation and crop competition. The
resulting change percentages serve as key indicators to assess the
rate of weed expansion, the corresponding reduction in paddy
coverage, and the potential adjustments required for herbicide
management interventions.

2.2.5 Herbicide consumption calculation

Calculating the density of weed in the study plots from the weed
classification map is important for predicting herbicide consumption
and optimizing its usage (Zou et al., 2021). To determine weed density,
the number of pixels classified into the designated classes; weed,
paddy, and soil will be evaluated. Then, weed density will be calculated
as a percentage using Equation 11 below.

Weed density (%)

_ Number of pixels of weed

100 %
Total number of all pixels 8 ’

(12)
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The values of weed density calculated by using Equation 12
above will be used to calculate the area that is being covered by each
class in the study area using the Equation 13 below.

Coverage area

_ Density of each class x Total area of the study area
- 100

(13)

Additionally, field investigations and interviews with farmers
were conducted to gather information on their herbicide usage for
controlling broadleaved weeds in the study plot. Therefore, by using
the information provided by the farmers and the percentage of weed
density calculated from Equation 12, the estimated amount of
herbicide needed can be calculated as shown in Equation 14 below.

Estimated Hebicide (ml)

Weed density (%) x total herbicide used by farmers
100

(14)

Therefore, the expected reduction in herbicide consumption by
farmers’ practices based on the zoning map can be calculated using
the following Equation 15.

Expected reduction (%)

(Farmers practices — Estimated herbicide)
Total herbicide used by farmers

x 100 %

(15)

3 Results

From observation, the study area was dominated by
Monochoria vaginalis (Burm. f) C. Presl, known as pickerel weed
or, in Malay, keladi agas. Results showed that in T1 treatment plots,
Plot 3, Plot 6, and Plot 8 were highly infested with M. vaginalis
compared to Plot 1. The investigation reveals that Plot 1 exhibits
lower weed distribution compared to the other plots, attributable to
its water level of 1 cm. On the other hand, the remaining plots,
which are Plot 3, Plot 6, and Plot 8, recorded water levels of 5 cm, 3
cm, and more than 15 cm, respectively. This investigation suggests
that there is a possibility that the infestation of M. vaginalis in the
study plot was highly dependent on the presence of water.
Therefore, Figure 5 shows a picture of M. vaginalis, which
dominated the study area.

3.1 DFNN classification accuracy

Experiments were conducted to assess the model’s performance
under two treatments: with treatment (T0) and without treatment
(T1). In the TO plots, the absence of weeds simplified the
classification task, while the untreated plots required the model to
classify three distinct classes. The model was trained using training
samples collected from 34 DAS and 41 DAS datasets. Therefore,
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FIGURE 5
Monochoria vaginalis (Burm.f.) C. Presl.

Table 4 summarizes the accuracy, loss, mean square error (MSE),
and kappa coefficient at training, testing, and validation of the
DFNN model.

With the treatment of herbicide applied (T0), the DENN model
showed high performance across all metrics. Given the model’s
need to classify paddy and soil only, the accuracy was incredibly
high, with training, validation, and testing accuracies of 0.99,
0.9906, and 0.9803, respectively. The low loss values, which are
less than 0.1 (0.0287 for training, 0.0264 for validation, and 0.0224
for testing), show that the model effectively distinguishes between
these two classes. Furthermore, the mean squared error (MSE) was
also reported as low, ratifying the model’s precision in a less
complex environment. The Kappa coefficient reported in Table 2
was 0.9812, representing almost perfect agreement between actual
classifications and model predictions, which aligns with the
expected outcome given the reduced classification complexity.

However, the complexity of the classification task in without
treatment plots (T1) increased due to the infestation of weeds. Still,
Table 2 shows the training accuracy remained high at 0.9729, with
validation and testing accuracies of 0.98 and 0.9793, respectively.
Meanwhile, the loss values for training (0.0791), validation (0.067),
and testing (0.0597) are also lower than 0.1. In addition, the Kappa
coefficient’s value also shows an almost perfect agreement between
actual classifications and model predictions, with a value of 0.9789.
This implied that the model managed to overcome the challenges
caused by the complexity and accurately classified the additional
weed class.
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In addition to overall accuracy and kappa coefficients, the
confusion matrices for both treatment conditions are presented in
Table 5. These matrices provide the basis for the per-class precision,
recall, and Fl-score calculations shown in Table 6. The model
demonstrates strong class separation, with minimal misclassification
across all categories.

Under TO plots, both paddy and soil classes achieved high
precision with values of 0.978 and 0.986, respectively. Meanwhile
for recall, the values of 0.987 (paddy) and 0.976 (soil) were
recorded, resulting in balanced Fl-scores above 0.98. This
indicates that the DFNN model was able to accurately distinguish
paddy from soil given that the herbicide treatment reduced
weed presence.

Under T1 plots, classification performance was near—perfect
across all classes, with precision, recall, and Fl-scores > 0.998.
Notably, weed’s class achieved a precision of 0.998 and a recall of
1.000, reflecting the model’s ability to detect weed patches with
minimal false positives or false negatives in untreated fields where
infestation was more pronounced.

3.2 Transition dynamic matrices

3.2.1 Seven-day interval

The change matrix shows the transition of land cover classes,
paddy, and soil from 34 DAS to 41 DAS (7 days) in pixel counts.
Therefore, Table 7 shows the average transition of the land cover
classes for with treatment (T0) plots and Table 8 for without
treatment (T1) plots. Each transition will be color coded for easy
visualization, blue for remaining unchanged or no transition, and
pink for transition from class paddy to soil and vice versa.
Generally, there is a noticeable change from 34 DAS to 41 DAS
in TO and T1 plots.

The transition of paddy’s class in TO plots shows that the total
number of 835,734 pixels has remained as paddy, and 147,253 pixels
of paddy have changed to soil. Meanwhile, for soil’s class, the total
number of 325,579 pixels has transformed to paddy and 314,488
pixels have remained as soil. Therefore, the soil’s class has the highest
transition compared with the paddy classes throughout the TO plots.

Meanwhile, in T1 plots, the transition of paddy’s class shows
that the total number of 840,424 pixels has remained as paddy,
62,139 pixels of paddy have changed to soil, and 106,782 pixels have
changed to weed. Meanwhile, for soil class, the total number of
132,212 pixels has changed to paddy, 175,475 pixels have remained
as soil, and 38,636 pixels have been transformed into weeds.
However, for weed, within seven days, 73,212 pixels have changed
to paddy, 2,024 pixels have changed to soil, and 236,840 pixels
remain as weed. Therefore, the soil class has the highest transition,
followed by the paddy and weed classes, respectively, throughout
the T1 plots.

3.2.2 14-day interval

The change matrix shows the transition of land cover classes,
paddy, and soil from 34 DAS to 47 DAS (14 days) in pixel counts.
Therefore, Table 9 shows the average of transitions of the land cover
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TABLE 6 Per-class precision, recall and F1-scores for the classification
of paddy, soil and weed under with treatment (T0) and without
treatment (T1) conditions.

Treatment

plot Class Precision = Recall Fl1-score
TO Paddy 0.978 0.987 0.983
Soil 0.986 0.976 0.981
Tl Paddy 1.000 0.998 0.999
Soil 1.000 1.000 1.000
Weed 0.998 1.000 0.999

TO = with herbicide treatment; T1 = without herbicide treatment.
**Precision, recall, and F1-scores are calculated per class from the confusion matrices.

classes for with treatment (T0) plots and Table 10 for without
treatment (T1) plots. Each transition will be color coded for easy
visualization, blue for remaining unchanged or no transition, and
pink for transition from class paddy to soil and vice versa.
Generally, there is a noticeable change from 34 DAS to 47 DAS
in TO and T1 plots.

The transition of paddy’s class in TO plots shows that the total
number of 929,424 pixels has remained as paddy, and 71,840 pixels
of paddy have changed to soil. Meanwhile, for soil’s class, the total
number of 366,852 pixels has transformed to paddy, and 193,432
pixels have remained as soil. Therefore, within 14 days, the soil’s
class has the highest transition compared with the paddy classes
throughout the TO plots.

Meanwhile, in T1 plots, the transition of paddy’s class shows
that the total number of 838,324 pixels has remained as paddy,
10,552 pixels of paddy have changed to soil, and 160,637 pixels have
changed to weed. Meanwhile, for soil’s class, the total number of
163,361 pixels have changed to paddy, 85,253 pixels have remained
as soil and 65,366 pixels have transformed to weed. However, for
weed, within 14 days, 56,268 pixels have changed to paddy, only 725
pixels have changed to soil, and 255,076 pixels remain as weed.
Therefore, soil class has the highest transition, followed by the
paddy and weed classes, respectively throughout T1 plots.

3.3 Dynamic changes in vegetation and soil
coverage

Seven legends have been created in order to represent the
changes. They are No change in paddy, Paddy to soil, Paddy to
weed, Soil to paddy, No change in soil, Soil to weed, Weed to paddy,
Weed to soil, and No change in weed.

TABLE 7 Change matrix for TO plots (seven-day intervals).

10.3389/fpls.2025.1655391

TABLE 8 Change matrix for T1 (seven-day intervals).

Paddy 840424 62139 106782
Soil 132212 175475 38636
Weed 73212 2024 236840

3.3.1 With treatment (TO) plots

Table 11 shows the transition of paddy and soil classes from 34
DAS to 41 DAS to 47 DAS visually and statistically. In general, there
are significant changes in paddy and soil’s classes in the with
treatment (TO0) plots over time. The percentage of increase and
decrease for paddy and soil classes is also presented in Table 11. In
general, there are significant changes in paddy growth for all plots in
TO treatment.

Table 11 illustrates the spatial changes in paddy and soil
coverage over time. Within seven days, Plot 5 has the highest
transition for Paddy’s classes (28.47%), and after 14 days, Plot 7 has
the highest transition in Paddy’s classes with a 43.09% increase.
However, the least changes occur in Plot 2. Within seven days,
Paddy’s classes increased by 2.06%, and after 14 days, the increase
rate only reached 2.37%. However, this substantial increase in
paddy coverage shows that the treatment applied did promote
paddy’s growth.

Therefore, Figure 6 and Figure 7 will complement these findings
by quantifying the land changes into stacked bar charts. The graphs
illustrate that the treatment (T0) has led to more stable and
predictable changes in vegetation and soil coverage due to less
competition with weeds.

3.3.2 Without treatment (T1) plots

Table 12 shows the transition of paddy, soil, and weed classes
from 34 DAS to 41 DAS to 47 DAS, visually and statistically. In
general, there are significant changes in paddy, soil, and weed
classes in the without treatment (T1) plots over time. The
percentage of increase and decrease for paddy, soil, and weed
classes is also presented in Table 12.

Table 12 illustrates the spatial changes in paddy, soil, and weed
coverage over time. Within seven days, Plot 8 demonstrated the
highest changes for paddy and weed classes, where paddy had
decreased to 17.04% meanwhile, weed increased by 16.52%.
However, in Plot 1, and Plot 6, the increase in weed class is
significantly lower, 1.01% and 1.58%, respectively whereas paddy
increases up to 14.08% and 17.02%, respectively.

TABLE 9 Change matrix for TO (14-day intervals).

Paddy

835734 147253

Soil 325579 314488
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Paddy 929424 71840

Soil 366852 193432
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TABLE 10 Change matrix for T1 (14-day intervals). After 14 days, weed changes in Plot 8 had increased to 23. 71%
and paddy had decreased to 23.03%. Meanwhile, in Plot 3, weed had
increased from 8.25% to 14.3% and reduced paddy by about 13.17%.
However, similar to 41 DAS, at 47 DAS, Plot 1 and Plot 6 recorded

. . . N o
Paddy 838324 ‘ 10552 160637 the leaft increments in weed‘ with values of 1.13% and 2.27%,

respectively whereas paddy increased to 15.13% and 31.38%,
Soil 163361 85253 65366 respectively. This pattern implies a possible change from exposed
Weed 56268 ‘ 725 255076 soil to paddy growth over the study period and these two plots are

not providing a sustainable environment for weeds to grow.

TABLE 11 The transition dynamics from 34 DAS to 41 DAS to 47 DAS for with treatment (TO) plots.

41 DAS 47 DAS

Classes Increase Decrease Classes Increase Decrease
(%) (%) (%) (%)
Plot 2 Paddy 2.06 Paddy 237
Soil 2.06 Soil 237
41 DAS 47 DAS

Classes Increase Decrease Classes Increase Decrease
(%) (%) (%) (%)
Paddy 17.96 Paddy 26.48
Plot 4 Soil 17.96 Soil 26.48
41 DAS 47 DAS

34 DAS

Classes Increase Decrease Classes Increase Decrease
Plot 5 (%) (%) (%) (%)
Paddy 28.47 Paddy 36.47
Soil 28.47 Soil 36.47

41 DAS 47 DAS

Classes Increase Decrease Classes Increase Decrease
(%) (%) (%) (%)
Plot 7 Paddy 17.48 Paddy 43.09
Soil 17.48 Soil 43.09

F No change in weed | Weed to soil Weed to paddy| | Soi to weed [Ill No change in soil [l Soi to paccy [l Paddy to weed| | Paddy to soil [l No change in pada
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The Dynamic Changes of With Treatment Plots (TO)
Decrease Soil - |G ——
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FIGURE 6
The dynamics changes in area coverage (m?) for with treatment (TO) Plot from Week 1 to Week 2 (seven-day intervals).

Therefore, Figures 7, 8 will complement these findings by
quantifying the land changes into stacked bar charts.

In the seven-day interval chart (Figure 8), the most noticeable
changes are seen in the increase of weed coverage across most plots.
Plot 8 shows a significant increase in weed coverage, about 149.37m?,
while paddy and soil areas had decreased to 145.09m? and 42.08m?,
respectively. This change indicates a rapid growth rate of weeds in the
Without Treatment (T1) plots, which influences the overall paddy
growth by raising competition for nutrients and space. In contrast,
Plots 1 and 6 displayed a small area of weed coverage and most of the
area in these two plots is transited to soil and paddy. This trend
indicates possible variations in variability due to water content.

The Dynamic Changes of With Treatment Plots (TO)

Decrease Soil - [ NN
Increase Soil - |

Decrease Paddy -

Increase Paddy |

0 100 200 300

EPlot2 ®mPlot4 ®mPlot5 mPlot7

FIGURE 7

The dynamics changes in area coverage (m?) for with treatment (TO) Plot from Week 1 to Week 3 (14-day intervals).
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Area (m?)

When the observation was extended to 14 days, the dynamic
changes in weed infestation became more noticeable. In this stacked
bar chart (as shown in Figure 9), Plots 3 and 8 experienced
significant increases in weed coverage, with values of 90.09m? and
149.37m>, respectively compared to the seven-day interval with
values of 53.68m” and 104.8m?, respectively. These changes indicate
that the severity of weed infestation increases with time when left
untreated. Meanwhile, for paddy, its coverage exhibited both
increases and decreases. These trends reflect the varying growth
rates and competitive pressures exerted by weeds. However, a
decrease in soil coverage is expected. Active growth by paddy and
weed takes all open space in the study plots.

400 500 600 700 800
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TABLE 12 The transition dynamics from 34 DAS to 41 DAS to 47 DAS for without treatment (T1) plots.

34 DAS 41 DAS 47 DAS
Classes | Increase (%) | Decrease (%) Classes Increase Decrease
Paddy 14.08 9.19 (%) (%)
Soil 8.52 10.89 Paddy 15.13 1.96
Weed 1.01 3.54 Soil 1.19 11.97
Plot 1 Weed B 351
Week 1 Week 2 Week 3
Classes Increase Decrease Classes Increase Decrease
(%) (%) (%) (%)
Paddy 12.07 8.52 Paddy 12.41 13.17
Soil 1.34 7.51 Soil 0.35 10.55
Plot 3 Weed 8.25 445 Weed 14.3 3.34
Week 1 Week 2 Week 3
Classes Increase Decrease Classes Increase Decrease
(%) (%) (%) (%)
Plot 6 Paddy 17.02 6.38 Paddy 31.38 3.63
Soil 5.04 10.8 Soil 1.15 26.3
Weed 1.58 6.46 Weed 2.27 5.37
Week 1 Week 2 Week 3
Classes Increase Decrease Classes Increase Decrease
(%) (%) (%) (%)
Plot 8 Paddy 6.93 17.04 Paddy 7.55 23.03
Soil 1.04 4.68 Soil 0.08 6..68
Weed 16.52 2.77 Weed 23.71 1.63
- No change inweed| | Weed tosoil || Weed to paddy[ | Soil to weed [Jllll No change in soil [l Soil to paccy Il Paddy to weed| | Paddy to soil [l No change in padd

3.4 Change detection maps

Chang detection maps were divided into nine legends which are
No change in paddy, Paddy to soil, Paddy to weed, Soil to paddy, No
change in soil, Soil to weed, Weed to paddy, Weed to soil, and No
change in weed. Therefore, Figure 10 shows the change detection
map for 34 DAS to 41 DAS (seven-day intervals).

This map highlights the early-stage dynamics observed within
the seven-day intervals, from 34 DAS to 41 DAS. This change shows
the initial response of the weed infestation in the untreated plot in

Frontiers in Plant Science

15

various conditions and how this species suppresses the paddy
growth and takes the soil’s open space. The spatial distribution of
changes in both treated and untreated plots is visible, supporting the
detailed analysis presented earlier. To further investigate the
severity of weed infestation, the observation was prolonged at 14-
day intervals. Thus, Figure 11 shows the change detection map for
34 DAS to 41 DAS (14-day intervals).

This map offers a wider perspective of changes over two weeks,
demonstrating the persistent progression or stabilization of
vegetation classes especially the transition of paddy to weed in
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The Dynamic Changes of Without Treatment Plots (T1)
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FIGURE 8

The dynamics changes in area coverage for Treatment (T1) Plot from 34 DAS to 41 DAS (seven days intervals).

Plot 3 and Plot 8. The patterns observed here confirm the
trends discussed in the previous subsections, particularly the
severity of weed infestation increases over time when left
untreated. Therefore, Table 13 shows the changes in the area of
coverage of each class, paddy, soil, and weed that represent the
whole study area at 31 DAS, 41 DAS, and 47 DAS. Since this
distribution represents the whole study area, the area of coverage
was measured in hectares (ha).

Table 13 shows that as increasing in number of Days After
Sowing (DAS), the area of weeds that infestated the study area also
increased. This has caused the estimated of herbicides needed to
control weeds to increase (as shown in Figure 12).

At 34 DAS, the estimated herbicide needed to control weed is
165.33ml. However, when weed was left untreated, within seven
days, the amount increased to 169. 803ml, and after 14 days, it
increases to 176.23ml. This makes the estimated herbicide
reduction decrease. At 34 DAS, farmers were expected to reduce
herbicide usage by up to 40.95%. But, as the area of weed coverage
increased, at 41 DAS and 47 DAS, the reduction in herbicide usage
decreased to 39.36% and 37.06% respectively. Thus, Figure 13
establishes the relationship between weed infestation over time
with the estimated herbicide reductions.

Figure 13 illustrates the inverse relationship between weed
coverage increase and estimated herbicide reduction. The

The Dynamic Changes of Without Treatment Plots (T1)

Decrease Weed | HEDE
Increase Weed
Decrease Soil
Increase Soil
Decrease Paddy
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(=]

50 100

mPlot] mPlot3 ®mPlot6 mPlot8

FIGURE 9

The dynamics changes in area coverage (m?) for without treatment (T1) Plot from 34 DAS to 47 DAS (14 days intervals).
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The change detection map for 34 DAS to 41 DAS (seven-day intervals).
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The change detection map for Week 1 to Week 3 (14-day intervals).
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TABLE 13 The changes in area of coverage (ha) of each class, paddy,
soil, and weed on different Days After Sowing (DAS).

Class/DAS 34 DAS 41 DAS 47 DAS
Paddy 031 033 0.38
Weed 0.05 0.054 0.07
Soil 0.15 0.12 0.06

regression graph forms a near-perfect straight line, with an R* value
of 0.9487, indicating a strong relationship between these two
parameters. This strongly suggests that as weed coverage increases
over time when left untreated, the potential reduction in herbicide
usage decreases significantly.

4 Discussion

This study successfully utilized multispectral UAV imagery
with a spatial resolution of 0.913 cm to monitor weekly changes
in weed infestation within a paddy field. A deep feedforward neural
network (DFNN) was employed to classify paddy, weed, and soil in
both with (T0) and without treatment (T1) plots. The differencing
approach revealed significant changes in weed and paddy cover over
time. In just seven days, weed cover increased up to 16.52%, while

Estimated Herbicide Consumption

178
176
174
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170
168
166
164
162
160
158

Herbicide Consumption (ml)

34 DAS

FIGURE 12
Estimated herbicide consumption over time.

41 DAS
Day After Sowing (DAS)

10.3389/fpls.2025.1655391

paddy cover decreased by 17.04%. After 14 days, weed cover
increased to 23.71%, suppressing paddy to 23.03%. These changes
indicate a growing weed infestation negatively impacts crop health
and yield when left untreated.

The differencing technique for change detection successfully
identified transitions between paddy, weed, and soil classes at seven
and 14-day intervals. This approach works by calculating the
difference in pixel values between two dates, which highlights
areas of significant change, as demonstrated in Section 3.2. This
outcome is consistent with Ke et al. (2018), who also found that the
differencing method successfully distinguished the changed and
unchanged pixels in two different images. As Maimaitijiang et al.
(2020) suggested, high-resolution UAV imagery provides more
precise monitoring than satellite imagery, which is critical for
detecting minor changes in weed growth and crop health. In this
study, the UAV’s spatial resolution of 0.913 cm at a flying height of
20m allowed for the identification of even small-scale changes in
the field.

As shown in Table 11, a high growth rate was expected for
paddy in the treatment (T0) plots, where there was no competition
for space and nutrients with weeds. Research by Pereira et al. (2022)
shows that the application of herbicides such as 2,4-D, Lactofen,
and Imazetapyr is necessary to improve and increase crop
productivity. Therefore, monitoring weed infestation trends is
essential to enable targeted weed control measures. However, the

47 DAS
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observed transitions, such as soil being reclassified as paddy, are
most likely attributable to canopy closure during rice tillering, when
emerging leaves cover previously exposed soil. Nevertheless, a
degree of classification uncertainty cannot be ruled out, and such
transitions should be interpreted with caution.

Table 12 shows that, within the first seven days (34 DAS to 41
DAS), the infestation rate varied significantly across the plots, with
the highest rate in Plot 8 (17.04%), moderate infestation in Plot 3
(8.52%), and minimal increases in Plot 1 (1.01%) and Plot 6
(1.56%). By the 14th day (47 DAS), the infestation rates nearly
doubled in Plot 3 and Plot 8, reaching 14.3% and 23.71%,
respectively. Meanwhile, Plots 1 and 6 saw only slight increases.
These trends align with the water levels observed as recorded in the
result section. This suggests that water management directly
impacts weed growth dynamics. Proper water management plays
a critical role in controlling weed growth, with higher water levels
providing favorable conditions for broadleaved weeds, especially for
M. vaginalis species (Setiawan and Sintadevi, 2021).

In addition, in untreated plots, change detection analysis shows
that, when weed infestation increases over time, the estimated
herbicide demand also increased (Figure 12). Hence, farmers were
expected to reduce herbicide usage by 40.95%, but as weed coverage
spread out, this reduction decreased to 39.36% at 41 DAS and
further to 37.06% at 47 DAS. Therefore, Figure 13 demonstrated a
strong inverse relationship between weed infestation over time with
the estimated herbicide reductions with R* values of 0.9487. The
unchecked growth of weeds not only increased the need for
herbicides but also decreased the potential values of early
reduction strategies (Peerzada et al., 2019).

To mitigate the negative impacts of weed infestation, it is
recommended to implement weed control measures at or before
42 DAS. At this stage, weeds can effectively compete with paddy for
essential resources like nutrients and sunlight, leading to yield losses

Frontiers in Plant Science

19

ranging from 10% to 83% (Kaur et al., 2022). However, according to
Lakra et al. (2022), crop growth and yield productivity can be
improved by applying the herbicide at 35 DAS which aligns with
our analysis, 34 DAS is the optimal time for weed intervention
before the rapid development of weed growth observed between 34
and 47 DAS.

This finding is also consistent with what’s been practiced by
farmers in Malaysia. As recorded in the Rice Check Padi (DoA,
2022), for rice varieties that mature at 100 DAS, herbicide
application should be completed before 40 DAS. Meanwhile, for
rice varieties that mature at 125 DAS, herbicide should be applied
before 60 DAS. In this study, the PadiU Putra variety, which
matures at 120 DAS (Berahim et al., 2021), was used. The
agreement between our analysis and these guidelines indicates
that the optimal intervention period identified in this study is
adaptable to be applied across both early- and late-maturing rice
varieties. This demonstrates the broader application of our findings,
suggesting that timely weed control interventions before or at 34
DAS can benefit rice cultivation regardless of the variety.

Recent studies have demonstrated the effectiveness of UAV-
based deep learning models for weed detection across various
cropping systems. For example, Castellano et al. (2023) employed
lightweight Vision Transformers on multispectral imagery, achieving
high segmentation accuracy (OA: 94.6%, Kappa: 0.91, Fl-score:
92.8%) using the WeedMap dataset. Similarly, Liu et al. (2024)
applied deep spectral analysis to multispectral UAV data in wheat
fields, reporting precision scores above 91% and quantifying
significant yield losses due to weed infestation. Seiche et al. (2024)
compared high-end and low-cost multispectral sensors using a U-Net
architecture, with F1-scores ranging from 76% to 82%, underscoring
the influence of sensor quality on detection performance.

In contrast, the present study introduces a Deep Feedforward
Neural Network (DFNN) specifically tailored for structured, non-
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spatial, pixel-wise multispectral data in Malaysian rice fields. The DFNN
achieved strong classification performance, with an overall testing
accuracy of 99.06%, Kappa coefficients of 0.9812 (T0) and 0.9789
(T1), and class-specific Fl-scores reaching 0.999 for weed detection
under untreated conditions. These results underscore the model’s
robustness and precision in site-specific weed monitoring. Compared
to transformer-based and convolutional architectures, DFNN offers
computational simplicity and scalability, making it a promising
candidate for near real-time agricultural applications.Beyond the local
context, the findings of this study have broader implications for global
weed management practices and sustainable agriculture. By showing
how high-resolution UAV imagery integrated with DL can effectively
monitor weed infestation trends, this research contributes to the
advancement of scalable, data-driven approaches for site-specific weed
control. More importantly, early detection and timely intervention can
aid in optimizing herbicide usage, decreasing environmental
contamination, and upholding long-term soil health providing to
climate-resilient agriculture (Sarma et al, 2024). These outcomes
directly support global food security efforts and align with key
Sustainable Development Goals (SDGs), particularly SDG 2: Zero
Hunger, SDG 12: Responsible Consumption and Production, and
SDG 13: Climate Action (Schroder et al., 2019; Hughes, 2020; Filho
etal,, 2023). With further clarification and integration into national-level
precision agriculture (PA) initiatives, this approach has the potential to
aid both sustainability and productivity in rice farming
organizations globally.

4.1 Limitations and future
recommendations

It should be noted that the study area was dominated by M.
vaginalis. The dominance of this weed in flooded plots aligns with
its well-documented aquatic ecology (Hazrati et al., 2023). Its broad
leaf surface area and enhanced photosynthetic efficiency allow it to
establish early and aggressively compete with rice plants during the
critical vegetative stage (Gao et al., 2023). As the primary objective
of this study was to monitor broadleaved weed infestation, the
DFNN was designed and validated within this scope. While the
model demonstrated strong classification performance for M.
vaginalis, further validation across fields infested with other weed
functional groups, such as grasses and sedges, is needed to evaluate
its generalizability and transferability. In addition, future studies
should investigate whether classification transitions such as “weed
to paddy” or “soil to paddy” reflect true ecological processes such as,
crop canopy expansion, weed suppression or potential
misclassification due to spectral ambiguity. This will require
integrating field-level observations and temporal consistency
checks to improve interpretability and model reliability.

In addition, we also observed a potential correlation between
water level variation and weed distribution. This may explain why M.
vaginalis thrives under waterlogged conditions, such as in paddy fields,
making it especially difficult to manage. Since water depth was not
explicitly controlled in the experimental design, these observations
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remain correlative rather than causal. Therefore, future studies should
incorporate water management as an experimental variable. This
could provide stronger evidence of its role in weed infestation
dynamics. Moreover, water depth may influence spectral reflectance
and contribute to classification transitions that are difficult to interpret
without supporting ecological data (Singh et al., 2023). Incorporating
water level monitoring could help distinguish between genuine
vegetation changes and classification artifacts, especially in
flooded environments.

In this study, herbicide saving potential was estimated under the
simplifying assumption of a linear relationship between weed
coverage and herbicide requirement. However, in practice, factors
such as weed density, species composition and growth stage may
influence herbicide efficacy. Therefore, this estimation should be
regarded as a first-order approximation. Future research should
refine this relationship through dose-response trials and agronomic
validation in order to improve its practical applicability.
Additionally, understanding how classification transitions such as
weed to soil or weed to paddy can be related to actual weed
suppression. This could enhance the ecological relevance of
herbicide planning. Linking spectral transitions to field-level weed
dynamics will be essential for developing more precise intervention
strategies. Finally, future studies should aim to increase the
temporal resolution of UAV data acquisition to better capture the
dynamics of weed infestation and crop development stages. While
this study was limited to three key time points due to COVID-19
restrictions, denser temporal sampling would enable a finer analysis
of vegetation transitions and enhance the robustness of temporal
change detection models. This study used a DFNN trained from
scratch. Therefore, future work could explore the use of transfer
learning or pre-trained CNN backbones fine-tuned on multispectral
or hyperspectral data to potentially boost classification accuracy
and training efficiency, especially in limited-label scenarios.

5 Conclusion

This study successfully demonstrated the effectiveness of
multispectral UAV imagery combined with deep feedforward
neural networks to track the growth rate of weed infestation in
paddy fields using change detection analysis. Within 7 days (34
DAS to 41 DAS), the growth rate of weed is 16.52%. However, over
14 days, the weed growth rate increased significantly, reaching
23.71%, while paddy cover decreased by 23.03% in untreated plots.
On 34 DAS, farmers expected a 40.95% herbicide reduction.
However, within 14 days, the reduction decreases to 37.06%,
amounting to a total reduction of 3.89% over 14 days. A strong
inverse relationship between weed infestation over time and
estimated herbicide reductions was established, with a high R®
value, 0.9487. This relationship highlighted that early detection
and control are crucial, as unchecked weed growth led to a higher
demand for herbicides and reduced the potential for early herbicide
reduction strategies. Timely intervention, especially before 34 DAS,
is essential to mitigate weed competition and preserve crop yields.
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