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Timely and accurate monitoring of weed infestation is essential for optimizing

herbicide application in rice cultivation, particularly within site-specific weed

management (SSWM) strategies. Conventional blanket spraying remains widely

adopted by farmers, resulting in excessive herbicide usage and increased costs.

This study presents a deep learning-based change detection approach to

evaluate the temporal dynamics of broadleaved weed infestation in paddy

fields. Multispectral imagery was collected using unmanned aerial vehicles

(UAVs) over PadiU Putra rice fields, and a Deep Feedforward Neural Network

(DFNN) was developed to classify three land cover types: paddy, soil, and

broadleaved weeds during the vegetative stage. Post-classification comparison

was applied to assess weed infestation rates across multiple Days After Sowing

(DAS). The analysis revealed a consistent increase in weed coverage within

untreated plots, with infestation rates rising from 40.95% at 34 DAS to 47.43%

at 48 DAS, while treated plots remained largely controlled. The change detection

maps further enabled estimation of potential herbicide savings through targeted

application, indicating a possible reduction of up to 40.95% at 34 DAS. However,

continued weed growth reduced this to 37.06%, with an R² of 0.9487, indicating a

strong negative correlation between weed coverage and herbicide-saving

potential. These findings demonstrate the potential of integrating UAV-based

multispectral imaging with deep learning for temporal weed monitoring and

precision agriculture applications.
KEYWORDS

deep learning, change detection, phenotyping technologies, weed infestation, UAV
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1 Introduction

Rice is a major staple crop that feeds billions of people

worldwide (Dorairaj and Govender, 2023). However, its

productivity is frequently threatened by weed infestation, which

competes with rice for essential resources such as nutrients, water,

light, and space (Yu et al., 2022). Among various weed types,

broadleaved weeds are particularly damaging, especially during

both the main and off-seasons. Their rapid growth and

adaptability can significantly reduce yields if not effectively

controlled (Hazrati et al., 2023).

Previous studies report that uncontrolled weeds can reduce rice

yields by up to 80%, depending on infestation severity and

management practices (Dudchenko et al., 2021; Rosle et al.,

2021). For example, yield losses in Bangladesh range from 20–

50% during the winter season and 15–68% during the monsoon

(Islam et al., 2021). In California, weed pressure has led to yield

losses of up to 69% along with reductions in grain quality and

biomass (Karn et al., 2020). The conventional method of blanket

herbicide application remains widely practiced but presents several

critical limitations. This approach applies to herbicide uniformly,

regardless of weed distribution, resulting in excessive chemical

usage, environmental pollution, the development of herbicide-

resistant weed species, and health risks for farmers (Liu et al.,

2021; Ofosu et al., 2023; Ghazi et al., 2023).

In recent years, unmanned aerial vehicles (UAVs) have gained

increasing attention in precision agriculture due to their ability to

capture high-resolution imagery rapidly and cost-effectively. UAV-

based data acquisition facilitates weed mapping, enabling the

detection and spatial localization of weed patches. When

combined with deep learning (DL) techniques, UAV imagery can

be automatically analyzed for efficient and accurate weed detection

(Elakya et al., 2022; Aparna et al., 2023; Guo et al., 2024). DL models

such as Segmentation Network (SegNet), Pyramid Scene Parsing

Network (PSPNet), UNet, and Fully Convolutional Network (FCN)

have demonstrated high performance in weed classification tasks,

achieving classification accuracy exceeding 90% in paddy field

studies (Kamath et al., 2022; Huang et al., 2020). However, most

of these studies focus on weed mapping at a single time point.

Temporal analysis of weed infestation remains underexplored,

particularly when utilizing deep learning in combination with

multispectral UAV data (Wang et al., 2022).

Therefore, the integration of remote sensing (RS) techniques

with UAVs has enabled high-resolution monitoring of crop and

weed dynamics over time. This study adopted multispectral

imagery, despite the finer spectral resolution and discrimination

capabilities offered by hyperspectral systems. Hyperspectral

imagery remains less commonly used due to its higher cost and

data complexity (Sulaiman et al., 2022). In contrast, multispectral

systems offer a cost-effective alternative with reduced data volume

and faster processing times (Celikkan et al., 2025). These sensors

capture reflectance across multiple spectral bands, allowing for

effective differentiation between crops and weeds based on their

unique spectral signatures (Zhang et al., 2025).
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According to Seiche et al. (2024), multispectral systems including

low-cost configurations can achieve F1-scores ranging from 76% to

82% for weed classification, while high-end systems can reach up to

90% precision. Although comparative studies between multispectral

and hyperspectral imaging in weed monitoring remain limited in

recent literature (2022–2024), emerging works have begun to address

this gap. Busari and Abdulrahman, (2025) demonstrated that

integrating hyperspectral data with Vision Transformers

significantly enhances weed classification accuracy under field

variability. Similarly, Che’Ya et al. (2021) showed that while

hyperspectral reflectance offers superior spectral discrimination,

optimized multispectral bands can achieve comparable detection

accuracy with higher spatial resolution. Thus, integrating RS with

deep learning (DL) models, such as Deep Feedforward Neural

Networks (DFNNs), presents a promising pathway for automating

weed detection and classification at high spatial and spectral

resolutions (Touvron et al., 2022; Xia et al., 2022).

Beyond spatial weed mapping, understanding temporal changes

in weed distribution is crucial for timely intervention and more

efficient management. Change detection (CD) techniques identify

land cover changes by comparing imagery acquired at different time

points (Khelifi and Mignotte, 2020). In agricultural applications,

CD can track weed spread, support herbicide decision-making, and

enhance site-specific interventions. While several CD studies have

applied classical and hybrid DL-based approaches for land use and

vegetation monitoring (Sudha and Vaideghy, 2022; Saha et al.,

2020b), their application for temporal weed monitoring remains

limited. This is partly due to challenges such as:
• Limited availability of high-frequency UAV temporal data.

• High computational demands are associated with

processing multispectral imagery.

• The interdisciplinary expertise required across agronomy,

machine learning, and remote sensing.
Therefore, this study addresses these gaps by developing a

differencing-based change detection framework that utilizes

multispectral UAV imagery in combination with a Deep

Feedforward Neural Network (DFNN). The framework classifies

weed presence across multiple growth stages, analyzes temporal

changes in infestation, and estimates potential herbicide reduction

through targeted application. The findings contribute to the

advancement of site-specific weed management, supporting more

sustainable rice production through precision agriculture. In

addition, this study makes three key contributions: (i) it introduces

a deep learning-based change detection framework that integrates

UAV-acquired multispectral imagery with a Deep Feedforward

Neural Network (DFNN) to monitor broadleaved weed infestation

in rice fields; (ii) it extends beyond static weed mapping by analyzing

temporal infestation dynamics across multiple growth stages,

providing actionable insights for site-specific herbicide application;

and (iii) it demonstrates the practical potential of combining UAV-

based remote sensing and deep learning for sustainable precision

agriculture, highlighting possible reductions in herbicide use through

targeted interventions.
frontiersin.org
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2 Materials and methods

2.1 Experimental settings

2.1.1 Study area
The study was conducted in Tunjang, Jitra, Kedah, Malaysia (60

16’ 05.8” N, 1000 21’ 10.3” E), covering an area of 0.504 hectares

(ha). The location of the study site is illustrated and presented in

Figure 1. The site was selected in collaboration with the Lembaga

Muda Agricultural Development Authority (MADA). The rice

variety cultivated in this study was Padi-U Putra, which has a

maturation period of 120 days after sowing (DAS) (Berahim et al.,

2021). The experiment was conducted during the main cropping
Frontiers in Plant Science 03
season under natural field conditions. Broadleaved weeds were

allowed to grow naturally, and their infestation was monitored

during the vegetative stage of the Padi-U Putra variety.

2.1.2 Treatment and experimental design
Two treatments are conducted: with treatment (T0) and without

treatment (T1) plots with four replications, which makes the total

number of plots in the study plot eight. For treatment plots (T0),

fertilizer and herbicide were used. Meanwhile, for without treatment

plots (T1), only fertilizer was applied without herbicide application.

For this study, farmers used herbicide named 2,4-D amine to control

broadleaved weed and fertilizer for paddy as guided in the rice

checkbook (DoA, 2022). There are eight plots used in this study,
FIGURE 1

Location of the study at MADA, Tunjang, Jitra, Kedah, Malaysia. The aerial background image of paddy fields (inset) was sourced from Pexels.com
(free stock photo, used under Pexels license).
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the plot size was approximately 630 m2 and the barrier in between the

plots is about 30 cm. The plots were arranged in a randomized

complete block design (RCBD) as shown in Figure 2.

2.1.3 Datasets
Datasets used in this study were captured by a Micasense

RedEdge-MX multispectral camera (MicaSense, Seattle,

Washington, USA) and attached to a multirotor DJI Inspire 2

UAV (Da-Jiang Innovation Science and Technology Co., Ltd, DJI,

China). In this study, DroneDeploy (DroneDeploy, Inc., United

States) was used to plan the flying area and pre-set waypoint for

autonomous flight mission (Mohd Zaidi and Tahar, 2021).The

flying height used in this study was 20m above ground level with

a spatial resolution of 0.913 cm. Scene overlap was set to 80% front

and 75% side, ensuring sufficient coverage and image alignment,

and it was flown with fight speed of 3ms-1. All missions were flown

between 9.00 am to 11.30 am under clear sky conditions to ensure

consistent illumination (Mohidem et al., 2022). This multispectral

camera can be captured in five bands: red (R), green (G), blue (B),

red-edge (RE), and near infrared (NIR). To ensure radiometric

consistency across flight sessions and compensate for varying

illumination conditions, radiometric calibration was performed

before and after each UAV flight using a calibrated reflectance

panel (white reference panel). These reference images were used

during processing to correct the raw digital numbers and

standardize reflectance values across different dates. The flying

season was executed during the Main seasons, and the image
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acquisition was taken within seven-day intervals. However, due to

the COVID-19 outbreak and the implementation of Malaysia’s

Movement Control Order (MCO), the data collection process was

constrained. As a result, imagery was only acquired at three time

points: 30 June 2020 (34 DAS), 7 July 2020 (41 DAS), and 13 July

2020 (47 DAS). While this limits the density of the temporal series,

these intervals correspond to critical stages of vegetative growth and

weed competition, thereby still providing meaningful insights into

infestation dynamics (Safdar et al., 2025).

Pix4D software was used to mosaic the images captured, and

their digital numbers were subsequently converted into reflectance

values. Following this, geometric registration was applied to ensure

pixel-to-pixel correspondence, a crucial step for multi-imagery

analysis integration. Given the large size of the original images,

approximately 8127 x 6892px, there is a risk of exhausting GPU

memory during processing. To mitigate this issue and expedite

processing time, as suggested by Huang et al. (2018), each image

captured on different dates was subset into eight plots,

approximately 2262 x 2091px for each plot. Also, training data

normalization is performed to standardize the input features.

2.1.4 Training data collection and preparation
Training samples are essential for classification processing as

they require representative samples for each class (Li et al., 2024).

Sample data were selected from UAV imagery based on in situ

observations, focusing on three main classes: paddy, soil and weed.

Given the study’s incorporation of two treatments; with treatment
FIGURE 2

Plot arrangements in the study area.
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(T0) and without treatment (T1), training datasets were collected

for each treatment, resulting in two datasets. To ensure temporal

representation, training samples were collected from imagery

acquired from 34 DAS and 41 DAS. The samples were gathered

using random sampling strategies. The input fed into the DFNN

model was converted into structured, non-spatial data extracted

from each pixel’s reflectance across the Red, Green, Blue, Red Edge,

and Near-Infrared (NIR) bands. This format was chosen for its

computational efficiency (Li et al., 2024), and it is well-suited for

DFNN, which has a simpler architecture, requires fewer

computational resources, and is faster to train compared to

Convolutional Neural Networks (CNNs). It also suits situations

where spatial information is limited or unnecessary (Aydin and

Sefercik, 2025).

In addition, training samples were randomly shuffled to remove

sequence bias before model training. This pixel-wise, non-spatial

format aligned well with the model, which are optimized for

structured, tabular data rather than spatial image features.

Therefore, following empirical testing and cross-validation to
Frontiers in Plant Science 05
balance model complexity and generalization performance,

Table 1 summarized the total used to train the model.
2.2 Change detection analysis

A differencing-based post-classification change detection (CD)

framework was employed in this study to evaluate the temporal

dynamics of broadleaved weed infestation in rice fields. The

approach involved two main stages: multi-temporal image

classification using a Deep Feedforward Neural Network (DFNN),

followed by temporal differencing of classified images. Therefore,

Figure 3 summarizes the workflow involved in this analysis.

2.2.1 Deep feedforward neural network
architecture

The model was built sequentially using the Keras library in R,

with a stack of dense layers forming the core of the architecture.

Each dense layer contains a specific number of neurons, determined
TABLE 1 The total number of training samples used to train the model.

Data Collection

Multispectral Image Pixel

With Treatment (T0) Without Treatment (T1)

Paddy Soil Paddy Soil Weed

34 DAS 6480 6471 4751 4756 4755

41 DAS 6474 6485 4769 4766 4760

Total sample for each class 12954 12956 9520 9522 9515

Total training sample used 54467
Samples were collected from UAV imagery acquired from 34 and 41 DAS under two treatments: with herbicide (T0) and without herbicide (T1).
*DAS, day after sowing.
Bold values highlight total number of training sample used to train the model.
FIGURE 3

An overview of differencing-based post-classification change detection (CD) framework.
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by the problem’s complexity and dimensionality. For this study, one

input layer, two hidden layers, and one output layer were set up in

the model. Spectral bands from multispectral imagery, band 1 to

band 5 were used as input layers. A DFNN model was trained on

annotated samples to classify each pixel into one of three categories:

paddy, weed, and soil. Each image was independently classified to

produce discrete thematic maps representing the spatial

distribution of these classes at each time point. The hidden layer

configuration of 20 and 15 neurons was determined through

empirical testing and cross-validation to balance model

complexity and generalization performance. Table 2 shown the

DFNN architecture and layer configuration that used in this study.

All layers are sequentially fully connected (dense) without residual/

skip connections: input to Dense(20) to Dropout(0.2) to Dense(15)

to Dropout(0.2) to Dense(3, softmax). Larger networks were found

to overfit the relatively small training dataset, while smaller

configurations underperformed in distinguishing between

spectrally similar classes, such as weed, paddy, and soil. Figure 4

illustrates the model architecture used in this study.

Due to the labeled dataset, this model can effectively tackle

classification problems. Inputs are fully connected to multiple

hidden layers, which then predict the outcome. While

convolutional neural networks (CNNs) are typically the

architecture of choice for image-based classification tasks due to

their spatial feature extraction capabilities, this study opted for a

DFNN owing to the use of pixel-level spectral inputs from

multispectral imagery rather than spatial context. Since the

classification task was conducted on a per-pixel basis using

reflectance values from the five spectral bands (R, G, B, RE, NIR),

the DFNN proved sufficient to capture nonlinear relationships

between spectral inputs and land cover classes.

The rectified linear activation function (ReLU) activation

function, defined as f (x) = max(0, x) was chosen due to its

computational efficiency and ability to mitigate vanishing gradient

issues often encountered with sigmoid or tanh functions. ReLU

introduces non-linearity while maintaining sparsity in the network,

making it well-suited for the high-dimensional input space

derived from multispectral imagery. This function is a simple

mathematical computation where neurons are activated based on

their input; if the output value is less than zero, the neurons are cut

off from the network. According to Schmidt-Hieber (2020), one

benefit is that it enhances computational efficiency for every

parameter modification. The activation function is as shown in

Equation 1:
Frontiers in Plant Science 06
f (x) =
x   if   x   positive

0   othewise

(
(1)

However, when dealing with a fully supervised method, an issue

related to overfitted always occurs whenever the supply of training

samples is limited (Huang et al., 2018). Therefore, to mitigate this

problem, the dropout regularization and L2 regularization

technique was applied after each dense layer. Dropout effectively

introduces noise during training by randomly setting a portion of

input units to zero, preventing the model from depending too much

on any feature, which will increase its performance on unseen data

(Salehin and Kang, 2023). A dropout rate of 0.2 was applied after

each hidden layer, selected based on validation performance. This

rate introduces mild stochastic regularization, balancing between

reducing co-adaptation of neurons and preserving the learning

capacity. Meanwhile, L2 regularization will achieve a balance

between generalization and model complexity, incorporating a

penalty element into the loss function (Venkatesh et al., 2023). In

this study, L2 was applied to the kernel weight of the dense layer,

effectively penalizing large weights during training and thus

reducing overfitting. The value of l was tuned to ensure that the

network remained expressive without becoming overly sensitive to

noise in the training data. Weights were initialized using the He

normal initializer for hidden layers to match ReLU activations. The

output layer used Glorot uniform initialization. The model

optimization was conducted using the Adam optimizer, which

combines the benefits of both AdaGrad and RMSProp. Adam

adapts learning rates for each parameter and accelerates

convergence, particularly in sparse gradients scenarios. The

optimizer was configured with a learning rate of 0.005 and default

beta parameters (b1 = 0:9,   b2 = 0:999). Therefore, the L2

regularization function can be described as shown in Equation 2

below:

Cost = Loss +   lo
n

i=1
w2
i (2)

Where:
Loss = original loss

Wi = model weight

l = strength of regularization
We performed limited empirical tuning on the validation set

with early stopping to reduce the search burden. Candidate values
TABLE 2 DFNN architecture and layer configuration.

Layer index Layer type Units/shape Activation Kernel initializer Kernel regularizer (L2) Dropout

0 Input 5 (R,G,B,RE,NIR) NA NA NA NA

1 Dense 20 ReLU He normal L2 (l = 1e-6) 0.2

2 Dense 15 ReLU He normal L2 (l = 1e-6) 0.2

3 Dense (output) 3 Softmax Glorot uniform NA NA
fr
ontiersin.org

https://doi.org/10.3389/fpls.2025.1655391
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Rosle et al. 10.3389/fpls.2025.1655391
tested included neurons per hidden layer {10, 20, 50}, learning rates

{1e-6,1e-4, 1e-3, 5e-3, 1e-2}, batch sizes {16, 32, 64}, L2 l {1e-5, 1e-

4, 1e-3}, and dropout rates {0.1, 0.2, 0.4}. Models were trained for up

to 200 epochs with early stopping (patience = 10) monitoring

validation loss and restoring the best weights. Selection was based

on lowest validation categorical cross-entropy (tie-broken by

validation F1 for the weed class). The selected hyperparameters:

the number of neurons, learning rate, number of epochs, and batch

size are summarized in Table 3.

The classification problem addressed in this study is

fundamentally a pixel-wise spectral discrimination task: each

observation is a five-band vector [R, G, B, RE, NIR] measured at

a single date, and the objective is to assign a class label to that vector.

Under these conditions, a fully connected feedforward network

(DFNN) is an appropriate and efficient choice. DFNNs directly

model relationships between the spectral bands for each pixel

without introducing additional spatial or temporal structure; they

therefore require fewer parameters than patch-based convolutional

models and are typically more sample-efficient when training labels
Frontiers in Plant Science 07
are associated with individual pixels rather than image patches.

These characteristics reduce the risk of overfitting for datasets with

limited labelled samples and simplify deployment across large

orthomosaics because inference operates on independent per-

pixel vectors.

By contrast, convolutional neural networks (CNNs) are

designed to exploit local spatial structure and texture. A CNN

requires patch-based inputs (for example, 5\times5 or 11\times11

pixel windows) so that spatial filters can learn patterns in the

neighbourhood of each pixel. This is advantageous when spatial

context, for example canopy texture, row structure, or object

morphology, carries discriminative information that is not

present in single-pixel spectra. Recurrent models (RNNs,

temporal 1D-CNNs, or temporal transformers) are appropriate

when the sequence of observations for a pixel across time is the

model input and when temporal dynamics must be modeled

directly (for example, phenological trajectories or multi-date time

series where each pixel has a labelled temporal profile). Our

workflow, however, treats each date independently and relies on

post-classification differencing to identify temporal change. Thus,

temporal sequence models were not required for the present study.

Given these differences, the DFNN is the simplest model

consistent with our data representation and study objectives: it

matches the per-pixel input format, keeps the parameter count low

relative to patch-based CNNs, and is computationally efficient for

whole-orchomosaic inference. We acknowledge that if (a) spatial

context were required to disambiguate spectrally similar classes, or

(b) labelled temporal sequences per pixel were available and

temporal dynamics were to be modeled end-to-end, then patch-
TABLE 3 Model hyperparameters and tested values of the DNN model.

Hyperparameters Tested value

Number of neurons 20 and 15

Learning rate 0.005

Number of epochs 100

Batch size 32
FIGURE 4

Model architecture of DFNN.
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based CNNs or temporal models (1D-CNN/RNN/transformer)

would be better suited. In those scenarios we recommend either a

patch-based CNN or a hybrid architecture that combines

convolutional feature extraction with fully connected classification

layers, or a temporal model that ingests per-pixel sequences

across dates.

2.2.2 Applying DFNN to time-series images
The workflow for applying the trained dense feedforward neural

network (DFNN) to time-series orthomosaics follows a strict

sequence of preprocessing, inference and post-processing steps

designed to preserve temporal consistency and to make the

procedure reproducible. Below we describe this procedure in a

manner appropriate for the Methods section so that other

researchers can re-run the classification and change-detection

pipeline using the same inputs, scaler and model weights.

All imagery are first brought to a common radiometric and

geometric reference. Radiometric calibration converts recorded

digital numbers to surface reflectance using instrument

calibration factors and, where available, reflectance-panel

measurements captured at each flight. Any vignetting,

illumination or simple atmospheric corrections applied during

training must be applied here as well so that spectral values are

comparable across dates. Geometric registration is then performed

to co-register all orthomosaics to a single coordinate reference

system and grid (same resolution and CRS), using ground control

points or robust image-based tie-point matching; the objective is

that a single pixel location corresponds to the same ground point for

every date.

Before model inference, quality control masks are applied to all

orthomosaics to exclude non-crop areas, image borders, cloud and

shadow regions, and any nodata pixels. The policy for masked pixels

(e.g., skip prediction or assign nodata) should be documented. For

every valid pixel location (i, j) the spectral input vector is assembled

in the same band order used for training: R,G,B,RE,NIR, R, G, B,

RE, NIR, R,G,B,RE,NIR. To preserve the input distribution expected

by the DFNN, each band is standardized by the training-set. It is

essential that the same scaler. The same training means, and

standard deviations will be used for all dates, ensuring the model

receives input on a consistent scale.

Inference is performed by loading the trained DFNN weights

and performing predictions in memory-efficient batches over the

orthomosaic. For each input vector the network returns class

probabilities; the per-pixel label is assigned as the class with

maximum probability (argmax). Optionally, the maximum

probability can be saved as a per-pixel confidence map to support

later uncertainty analyses. Predictions should be exported as raster

layers (probability and class rasters) for each date to allow

reproducible downstream processing.

Post-processing is applied to reduce speckle and remove

spurious small objects: typical operations include connected-

component filtering (removing objects below a documented

minimum area), median or majority filtering with specified kernel

sizes, and conservative morphological smoothing. All parameters

used for these operations must be reported. After producing
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discrete thematic maps for each date, pairwise post-classification

differencing is applied (for example, 34 vs 41 DAS and 34 vs 47

DAS) to construct a transition matrix of change categories (no-

change, emergence, disappearance, and class-to-class transitions).

Class codes must be consistent across dates to ensure the

differencing operation is meaningful.

Final area estimates and herbicide requirement computations

are obtained by converting pixel counts to ground area (pixel_count

× pixel_area) and then applying the domain-specific formulas given

in Equations 10–15. The treatment of masked or nodata pixels

when summing totals (excluded, interpolated, or proportionally

scaled) must be explicitly stated in results and tables. In our

procedure the same trained model weights were applied to all

dates without per-date retraining; where flight radiometry varies

markedly between dates, the reflectance-panel normalization

described above should be applied prior to standardization.

2.2.3 Training and validation approach
To ensure the model was trained effectively, performance-

optimized, and stable before deployment, the training samples

collected will be randomly split into three datasets: training,

validation, and test datasets. The model will use the training

sample to fit the model. Meanwhile, the validation sample will be

used to evaluate the model’s performance and to tune the

hyperparameters. Lastly, the test sample dataset will be used to

evaluate the model’s overall performance and identify overfitting or

underfitting issues. Therefore, for this study, the training samples

will be randomly split into 60% (training), 20% (validation), and

20% (testing) (Bonafilia et al., 2020).

The model’s performance will be assessed using eight common

metrics: overall accuracy (Equation 3), Kappa Coefficient (Equation

4), categorical cross-entropy loss function (CCE) (Equation 5),

Mean Squared Error (MSE) (Equation 6), confusion matrix,

precision (Equation 7), recall (Equation 8) and F1-scores

(Equation 9). They can be defined as follows:

Overall accuracy = o
U
a=1caa
Q

� 100% (3)

where:
Q = total number of pixels.

U = total number of classes.
Kappa coefficient,  K = o
U
a=1

caa
Q −oU

a=1
ca : ca
Q2

1 −oU
a=1

ca : ca
Q2

� 100% (4)

where:
ca = row sums.
Cross − entropy   loss   (CCE) = −
1
N  o

N

i=1
o
C

j=1
yij  log(pij) (5)

where
N = number of samples
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Fron
C = number of classes

yij = true label

pij = the predicted probability of the true class
Mean   square   error   (MSE) =
1
n  o

N

i=1
(yi − ŷ i)

2 (6)

where
yi = actual (true) value

ŷ i = the predicted value
In addition, to assess classification performance, we computed

standard metrics derived from the confusion matrix: precision

(Equation 7), recall (Equation 8) and F1-scores (Equation 9).

These were calculated for each class using the following formulas:

Let TP, FP, and FN denote true positives, false positives and

false negatives, respectively, for a given class I’

Precisioni =
TPi

TPi + FPi
(7)

Recalli =
TPi

TPi + FNi
(8)
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F1i = 2  �  
Precisioni  �  Recalli
Precisioni + Recalli

(9)

These metrics were computed for each class using a one−vs−all

approach, providing a more granular evaluation than overall

accuracy alone. The resulting per class metrics are summarized in

Table 4, and the confusion matrices used to derive these values are

presented in Table 5.

2.2.4 Temporal differencing of classified maps
Following classification, the output maps were analyzed using a

class-based differencing technique. This is the best combination

since DL-based supervised change detection already produces an

accurate result. Meanwhile, pixel differentiation is the most

straightforward approach, which highlights the areas of change

and calculates the differences between classes that are already

classified. In this case, by deep learning models (Asokan and

Anitha, 2019; Shafique et al., 2022).

The process involved pixel-wise comparison across sequential

DAS: 34–41 DAS (7 days) and 34–47 DAS (14 days), identifying

temporal transitions between classes. This study will leverage the

differencing techniques commonly used in remote sensing (Singh,

1989; Coppin and Bauer, 1996). The mathematical expressions

(Equation 10) are used to represent the logical operations
TABLE 4 Overall accuracy and class-specific accuracy.

DAS Treatment plot Metric Training Validation Testing

34 and 41

With Treatment (T0)

Accuracy 0.99 0.9893 0.9906

Loss 0.0287 0.0264 0.0224

MSE 0.0074 0.0077 0.0066

Kappa 0.9812

Without Treatment (T1)

Accuracy 0.9729 0.98 0.9793

Loss 0.0791 0.067 0.0597

MSE 0.0135 0.0104 0.0108

Kappa 0.9789
TABLE 5 Confusion matrix for classification under; (a) with-treatment (T0) and (b) without-treatment (T1) conditions.
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executed in R. This expression reflects class transitions between

paddy, soil, and weed over two temporal datasets and will be

presented using a change matrix table. Therefore, given paddy =

0, soil = 1, and weed = 2, the transition of each class can be

calculated using the equation below:

Increase=Decrease

=oi,j((P
(t1)
i,j = 0  ∧ P(t2)

i,j = 2) + (P(t1)
i,j = 1∧ P(t2)

i,j = 2)) (10)

where
Fron
P(t1)
(i,j) = Pixel classification at Time 1

P(t2)
(i,j) = Pixel classification at Time 2

∧ = Logical AND operator, ensuring both conditions are

met simultaneously

P(t1)
i,j = 0  ∧   P(t2)

i,j = 2 = Paddy turned into weed

P(t1)
i,j = 1  ∧   P(t2)

i,j = 2 = Soil turned into weed

o​i, j (Summation) = Total increase/decrease for paddy, soil,

and weed across the image
The method used in this study eliminates reliance on empirical

thresholds, often required in traditional vegetation index-based change

detection, and instead leverages discrete class transitions to produce

actionable insights for site-specific weed management. The complete set

of transitions was summarized in a changematrix, providing quantitative

measurements of weed expansion, paddy loss, and soil exposure.

Subsequently, the percentage change for each class can be

calculated by dividing the number of pixels that have changed by

the total number of valid pixels. Mathematically can be calculated

using the Equation 11 below:

Class   changes   ( % ) =  
Number   of   change   pixels

Total   valid   pixels
 �   100 (11)

This calculation enables the precise quantification of class-

specific changes over time, providing a clear understanding of the

temporal dynamics of weed infestation and crop competition. The

resulting change percentages serve as key indicators to assess the

rate of weed expansion, the corresponding reduction in paddy

coverage, and the potential adjustments required for herbicide

management interventions.

2.2.5 Herbicide consumption calculation
Calculating the density of weed in the study plots from the weed

classification map is important for predicting herbicide consumption

and optimizing its usage (Zou et al., 2021). To determine weed density,

the number of pixels classified into the designated classes; weed,

paddy, and soil will be evaluated. Then, weed density will be calculated

as a percentage using Equation 11 below.

Weed   density   ( % )

=  
Number   of   pixels   of  weed
Total   number   of   all   pixels

 �   100% (12)
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The values of weed density calculated by using Equation 12

above will be used to calculate the area that is being covered by each

class in the study area using the Equation 13 below.

Coverage   area

=  
Density   of   each   class  �  Total   area   of   the   study   area

100
(13)

Additionally, field investigations and interviews with farmers

were conducted to gather information on their herbicide usage for

controlling broadleaved weeds in the study plot. Therefore, by using

the information provided by the farmers and the percentage of weed

density calculated from Equation 12, the estimated amount of

herbicide needed can be calculated as shown in Equation 14 below.

Estimated  Hebicide   (ml)

=  
 Weed   density   ( % )  �   total   herbicide   used   by   farmers  

100
(14)

Therefore, the expected reduction in herbicide consumption by

farmers’ practices based on the zoning map can be calculated using

the following Equation 15.

Expected   reduction   ( % )

=  
(Farmers   practices − Estimated   herbicide)

Total   herbicide   used   by   farmers
 �   100%   (15)
3 Results

From observation, the study area was dominated by

Monochoria vaginalis (Burm. f) C. Presl, known as pickerel weed

or, in Malay, keladi agas. Results showed that in T1 treatment plots,

Plot 3, Plot 6, and Plot 8 were highly infested with M. vaginalis

compared to Plot 1. The investigation reveals that Plot 1 exhibits

lower weed distribution compared to the other plots, attributable to

its water level of 1 cm. On the other hand, the remaining plots,

which are Plot 3, Plot 6, and Plot 8, recorded water levels of 5 cm, 3

cm, and more than 15 cm, respectively. This investigation suggests

that there is a possibility that the infestation of M. vaginalis in the

study plot was highly dependent on the presence of water.

Therefore, Figure 5 shows a picture of M. vaginalis, which

dominated the study area.
3.1 DFNN classification accuracy

Experiments were conducted to assess the model’s performance

under two treatments: with treatment (T0) and without treatment

(T1). In the T0 plots, the absence of weeds simplified the

classification task, while the untreated plots required the model to

classify three distinct classes. The model was trained using training

samples collected from 34 DAS and 41 DAS datasets. Therefore,
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Table 4 summarizes the accuracy, loss, mean square error (MSE),

and kappa coefficient at training, testing, and validation of the

DFNN model.

With the treatment of herbicide applied (T0), the DFNN model

showed high performance across all metrics. Given the model’s

need to classify paddy and soil only, the accuracy was incredibly

high, with training, validation, and testing accuracies of 0.99,

0.9906, and 0.9803, respectively. The low loss values, which are

less than 0.1 (0.0287 for training, 0.0264 for validation, and 0.0224

for testing), show that the model effectively distinguishes between

these two classes. Furthermore, the mean squared error (MSE) was

also reported as low, ratifying the model’s precision in a less

complex environment. The Kappa coefficient reported in Table 2

was 0.9812, representing almost perfect agreement between actual

classifications and model predictions, which aligns with the

expected outcome given the reduced classification complexity.

However, the complexity of the classification task in without

treatment plots (T1) increased due to the infestation of weeds. Still,

Table 2 shows the training accuracy remained high at 0.9729, with

validation and testing accuracies of 0.98 and 0.9793, respectively.

Meanwhile, the loss values for training (0.0791), validation (0.067),

and testing (0.0597) are also lower than 0.1. In addition, the Kappa

coefficient’s value also shows an almost perfect agreement between

actual classifications and model predictions, with a value of 0.9789.

This implied that the model managed to overcome the challenges

caused by the complexity and accurately classified the additional

weed class.
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In addition to overall accuracy and kappa coefficients, the

confusion matrices for both treatment conditions are presented in

Table 5. These matrices provide the basis for the per-class precision,

recall, and F1-score calculations shown in Table 6. The model

demonstrates strong class separation, with minimal misclassification

across all categories.

Under T0 plots, both paddy and soil classes achieved high

precision with values of 0.978 and 0.986, respectively. Meanwhile

for recall, the values of 0.987 (paddy) and 0.976 (soil) were

recorded, resulting in balanced F1−scores above 0.98. This

indicates that the DFNN model was able to accurately distinguish

paddy from soil given that the herbicide treatment reduced

weed presence.

Under T1 plots, classification performance was near−perfect

across all classes, with precision, recall, and F1−scores ≥ 0.998.

Notably, weed’s class achieved a precision of 0.998 and a recall of

1.000, reflecting the model’s ability to detect weed patches with

minimal false positives or false negatives in untreated fields where

infestation was more pronounced.
3.2 Transition dynamic matrices

3.2.1 Seven-day interval
The change matrix shows the transition of land cover classes,

paddy, and soil from 34 DAS to 41 DAS (7 days) in pixel counts.

Therefore, Table 7 shows the average transition of the land cover

classes for with treatment (T0) plots and Table 8 for without

treatment (T1) plots. Each transition will be color coded for easy

visualization, blue for remaining unchanged or no transition, and

pink for transition from class paddy to soil and vice versa.

Generally, there is a noticeable change from 34 DAS to 41 DAS

in T0 and T1 plots.

The transition of paddy’s class in T0 plots shows that the total

number of 835,734 pixels has remained as paddy, and 147,253 pixels

of paddy have changed to soil. Meanwhile, for soil’s class, the total

number of 325,579 pixels has transformed to paddy and 314,488

pixels have remained as soil. Therefore, the soil’s class has the highest

transition compared with the paddy classes throughout the T0 plots.

Meanwhile, in T1 plots, the transition of paddy’s class shows

that the total number of 840,424 pixels has remained as paddy,

62,139 pixels of paddy have changed to soil, and 106,782 pixels have

changed to weed. Meanwhile, for soil class, the total number of

132,212 pixels has changed to paddy, 175,475 pixels have remained

as soil, and 38,636 pixels have been transformed into weeds.

However, for weed, within seven days, 73,212 pixels have changed

to paddy, 2,024 pixels have changed to soil, and 236,840 pixels

remain as weed. Therefore, the soil class has the highest transition,

followed by the paddy and weed classes, respectively, throughout

the T1 plots.

3.2.2 14-day interval
The change matrix shows the transition of land cover classes,

paddy, and soil from 34 DAS to 47 DAS (14 days) in pixel counts.

Therefore, Table 9 shows the average of transitions of the land cover
FIGURE 5

Monochoria vaginalis (Burm.f.) C. Presl.
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classes for with treatment (T0) plots and Table 10 for without

treatment (T1) plots. Each transition will be color coded for easy

visualization, blue for remaining unchanged or no transition, and

pink for transition from class paddy to soil and vice versa.

Generally, there is a noticeable change from 34 DAS to 47 DAS

in T0 and T1 plots.

The transition of paddy’s class in T0 plots shows that the total

number of 929,424 pixels has remained as paddy, and 71,840 pixels

of paddy have changed to soil. Meanwhile, for soil’s class, the total

number of 366,852 pixels has transformed to paddy, and 193,432

pixels have remained as soil. Therefore, within 14 days, the soil’s

class has the highest transition compared with the paddy classes

throughout the T0 plots.

Meanwhile, in T1 plots, the transition of paddy’s class shows

that the total number of 838,324 pixels has remained as paddy,

10,552 pixels of paddy have changed to soil, and 160,637 pixels have

changed to weed. Meanwhile, for soil’s class, the total number of

163,361 pixels have changed to paddy, 85,253 pixels have remained

as soil and 65,366 pixels have transformed to weed. However, for

weed, within 14 days, 56,268 pixels have changed to paddy, only 725

pixels have changed to soil, and 255,076 pixels remain as weed.

Therefore, soil class has the highest transition, followed by the

paddy and weed classes, respectively throughout T1 plots.
3.3 Dynamic changes in vegetation and soil
coverage

Seven legends have been created in order to represent the

changes. They are No change in paddy, Paddy to soil, Paddy to

weed, Soil to paddy, No change in soil, Soil to weed, Weed to paddy,

Weed to soil, and No change in weed.
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3.3.1 With treatment (T0) plots
Table 11 shows the transition of paddy and soil classes from 34

DAS to 41 DAS to 47 DAS visually and statistically. In general, there

are significant changes in paddy and soil’s classes in the with

treatment (T0) plots over time. The percentage of increase and

decrease for paddy and soil classes is also presented in Table 11. In

general, there are significant changes in paddy growth for all plots in

T0 treatment.

Table 11 illustrates the spatial changes in paddy and soil

coverage over time. Within seven days, Plot 5 has the highest

transition for Paddy’s classes (28.47%), and after 14 days, Plot 7 has

the highest transition in Paddy’s classes with a 43.09% increase.

However, the least changes occur in Plot 2. Within seven days,

Paddy’s classes increased by 2.06%, and after 14 days, the increase

rate only reached 2.37%. However, this substantial increase in

paddy coverage shows that the treatment applied did promote

paddy’s growth.

Therefore, Figure 6 and Figure 7 will complement these findings

by quantifying the land changes into stacked bar charts. The graphs

illustrate that the treatment (T0) has led to more stable and

predictable changes in vegetation and soil coverage due to less

competition with weeds.

3.3.2 Without treatment (T1) plots
Table 12 shows the transition of paddy, soil, and weed classes

from 34 DAS to 41 DAS to 47 DAS, visually and statistically. In

general, there are significant changes in paddy, soil, and weed

classes in the without treatment (T1) plots over time. The

percentage of increase and decrease for paddy, soil, and weed

classes is also presented in Table 12.

Table 12 illustrates the spatial changes in paddy, soil, and weed

coverage over time. Within seven days, Plot 8 demonstrated the

highest changes for paddy and weed classes, where paddy had

decreased to 17.04% meanwhile, weed increased by 16.52%.

However, in Plot 1, and Plot 6, the increase in weed class is

significantly lower, 1.01% and 1.58%, respectively whereas paddy

increases up to 14.08% and 17.02%, respectively.
TABLE 6 Per-class precision, recall and F1-scores for the classification
of paddy, soil and weed under with treatment (T0) and without
treatment (T1) conditions.

Treatment
plot

Class Precision Recall F1-score

T0 Paddy 0.978 0.987 0.983

Soil 0.986 0.976 0.981

T1 Paddy 1.000 0.998 0.999

Soil 1.000 1.000 1.000

Weed 0.998 1.000 0.999
T0 = with herbicide treatment; T1 = without herbicide treatment.
**Precision, recall, and F1−scores are calculated per class from the confusion matrices.
TABLE 7 Change matrix for T0 plots (seven-day intervals).

34 DAS
41 DAS

Paddy Soil

Paddy 835734 147253

Soil 325579 314488
TABLE 8 Change matrix for T1 (seven-day intervals).

34 DAS
47 DAS

Paddy Soil Weed

Paddy 840424 62139 106782

Soil 132212 175475 38636

Weed 73212 2024 236840
TABLE 9 Change matrix for T0 (14-day intervals).

34 DAS
47 DAS

Paddy Soil

Paddy 929424 71840

Soil 366852 193432
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After 14 days, weed changes in Plot 8 had increased to 23. 71%

and paddy had decreased to 23.03%. Meanwhile, in Plot 3, weed had

increased from 8.25% to 14.3% and reduced paddy by about 13.17%.

However, similar to 41 DAS, at 47 DAS, Plot 1 and Plot 6 recorded

the least increments in weed with values of 1.13% and 2.27%,

respectively whereas paddy increased to 15.13% and 31.38%,

respectively. This pattern implies a possible change from exposed

soil to paddy growth over the study period and these two plots are

not providing a sustainable environment for weeds to grow.
TABLE 10 Change matrix for T1 (14-day intervals).

34 DAS
47 DAS

Paddy Soil Weed

Paddy 838324 10552 160637

Soil 163361 85253 65366

Weed 56268 725 255076
TABLE 11 The transition dynamics from 34 DAS to 41 DAS to 47 DAS for with treatment (T0) plots.
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Therefore, Figures 7, 8 will complement these findings by

quantifying the land changes into stacked bar charts.

In the seven-day interval chart (Figure 8), the most noticeable

changes are seen in the increase of weed coverage across most plots.

Plot 8 shows a significant increase in weed coverage, about 149.37m2,

while paddy and soil areas had decreased to 145.09m2 and 42.08m2,

respectively. This change indicates a rapid growth rate of weeds in the

Without Treatment (T1) plots, which influences the overall paddy

growth by raising competition for nutrients and space. In contrast,

Plots 1 and 6 displayed a small area of weed coverage and most of the

area in these two plots is transited to soil and paddy. This trend

indicates possible variations in variability due to water content.
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When the observation was extended to 14 days, the dynamic

changes in weed infestation became more noticeable. In this stacked

bar chart (as shown in Figure 9), Plots 3 and 8 experienced

significant increases in weed coverage, with values of 90.09m2 and

149.37m2, respectively compared to the seven-day interval with

values of 53.68m2 and 104.8m2, respectively. These changes indicate

that the severity of weed infestation increases with time when left

untreated. Meanwhile, for paddy, its coverage exhibited both

increases and decreases. These trends reflect the varying growth

rates and competitive pressures exerted by weeds. However, a

decrease in soil coverage is expected. Active growth by paddy and

weed takes all open space in the study plots.
FIGURE 6

The dynamics changes in area coverage (m2) for with treatment (T0) Plot from Week 1 to Week 2 (seven-day intervals).
FIGURE 7

The dynamics changes in area coverage (m2) for with treatment (T0) Plot from Week 1 to Week 3 (14-day intervals).
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3.4 Change detection maps

Chang detection maps were divided into nine legends which are

No change in paddy, Paddy to soil, Paddy to weed, Soil to paddy, No

change in soil, Soil to weed, Weed to paddy, Weed to soil, and No

change in weed. Therefore, Figure 10 shows the change detection

map for 34 DAS to 41 DAS (seven-day intervals).

This map highlights the early-stage dynamics observed within

the seven-day intervals, from 34 DAS to 41 DAS. This change shows

the initial response of the weed infestation in the untreated plot in
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various conditions and how this species suppresses the paddy

growth and takes the soil’s open space. The spatial distribution of

changes in both treated and untreated plots is visible, supporting the

detailed analysis presented earlier. To further investigate the

severity of weed infestation, the observation was prolonged at 14-

day intervals. Thus, Figure 11 shows the change detection map for

34 DAS to 41 DAS (14-day intervals).

This map offers a wider perspective of changes over two weeks,

demonstrating the persistent progression or stabilization of

vegetation classes especially the transition of paddy to weed in
TABLE 12 The transition dynamics from 34 DAS to 41 DAS to 47 DAS for without treatment (T1) plots.
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Plot 3 and Plot 8. The patterns observed here confirm the

trends discussed in the previous subsections, particularly the

severity of weed infestation increases over time when left

untreated. Therefore, Table 13 shows the changes in the area of

coverage of each class, paddy, soil, and weed that represent the

whole study area at 31 DAS, 41 DAS, and 47 DAS. Since this

distribution represents the whole study area, the area of coverage

was measured in hectares (ha).

Table 13 shows that as increasing in number of Days After

Sowing (DAS), the area of weeds that infestated the study area also

increased. This has caused the estimated of herbicides needed to

control weeds to increase (as shown in Figure 12).
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At 34 DAS, the estimated herbicide needed to control weed is

165.33ml. However, when weed was left untreated, within seven

days, the amount increased to 169. 803ml, and after 14 days, it

increases to 176.23ml. This makes the estimated herbicide

reduction decrease. At 34 DAS, farmers were expected to reduce

herbicide usage by up to 40.95%. But, as the area of weed coverage

increased, at 41 DAS and 47 DAS, the reduction in herbicide usage

decreased to 39.36% and 37.06% respectively. Thus, Figure 13

establishes the relationship between weed infestation over time

with the estimated herbicide reductions.

Figure 13 illustrates the inverse relationship between weed

coverage increase and estimated herbicide reduction. The
FIGURE 8

The dynamics changes in area coverage for Treatment (T1) Plot from 34 DAS to 41 DAS (seven days intervals).
FIGURE 9

The dynamics changes in area coverage (m2) for without treatment (T1) Plot from 34 DAS to 47 DAS (14 days intervals).
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FIGURE 10

The change detection map for 34 DAS to 41 DAS (seven-day intervals).
FIGURE 11

The change detection map for Week 1 to Week 3 (14-day intervals).
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regression graph forms a near-perfect straight line, with an R² value

of 0.9487, indicating a strong relationship between these two

parameters. This strongly suggests that as weed coverage increases

over time when left untreated, the potential reduction in herbicide

usage decreases significantly.
4 Discussion

This study successfully utilized multispectral UAV imagery

with a spatial resolution of 0.913 cm to monitor weekly changes

in weed infestation within a paddy field. A deep feedforward neural

network (DFNN) was employed to classify paddy, weed, and soil in

both with (T0) and without treatment (T1) plots. The differencing

approach revealed significant changes in weed and paddy cover over

time. In just seven days, weed cover increased up to 16.52%, while
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paddy cover decreased by 17.04%. After 14 days, weed cover

increased to 23.71%, suppressing paddy to 23.03%. These changes

indicate a growing weed infestation negatively impacts crop health

and yield when left untreated.

The differencing technique for change detection successfully

identified transitions between paddy, weed, and soil classes at seven

and 14-day intervals. This approach works by calculating the

difference in pixel values between two dates, which highlights

areas of significant change, as demonstrated in Section 3.2. This

outcome is consistent with Ke et al. (2018), who also found that the

differencing method successfully distinguished the changed and

unchanged pixels in two different images. As Maimaitijiang et al.

(2020) suggested, high-resolution UAV imagery provides more

precise monitoring than satellite imagery, which is critical for

detecting minor changes in weed growth and crop health. In this

study, the UAV’s spatial resolution of 0.913 cm at a flying height of

20m allowed for the identification of even small-scale changes in

the field.

As shown in Table 11, a high growth rate was expected for

paddy in the treatment (T0) plots, where there was no competition

for space and nutrients with weeds. Research by Pereira et al. (2022)

shows that the application of herbicides such as 2,4-D, Lactofen,

and Imazetapyr is necessary to improve and increase crop

productivity. Therefore, monitoring weed infestation trends is

essential to enable targeted weed control measures. However, the
TABLE 13 The changes in area of coverage (ha) of each class, paddy,
soil, and weed on different Days After Sowing (DAS).

Class/DAS 34 DAS 41 DAS 47 DAS

Paddy 0.31 0.33 0.38

Weed 0.05 0.054 0.07

Soil 0.15 0.12 0.06
FIGURE 12

Estimated herbicide consumption over time.
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observed transitions, such as soil being reclassified as paddy, are

most likely attributable to canopy closure during rice tillering, when

emerging leaves cover previously exposed soil. Nevertheless, a

degree of classification uncertainty cannot be ruled out, and such

transitions should be interpreted with caution.

Table 12 shows that, within the first seven days (34 DAS to 41

DAS), the infestation rate varied significantly across the plots, with

the highest rate in Plot 8 (17.04%), moderate infestation in Plot 3

(8.52%), and minimal increases in Plot 1 (1.01%) and Plot 6

(1.56%). By the 14th day (47 DAS), the infestation rates nearly

doubled in Plot 3 and Plot 8, reaching 14.3% and 23.71%,

respectively. Meanwhile, Plots 1 and 6 saw only slight increases.

These trends align with the water levels observed as recorded in the

result section. This suggests that water management directly

impacts weed growth dynamics. Proper water management plays

a critical role in controlling weed growth, with higher water levels

providing favorable conditions for broadleaved weeds, especially for

M. vaginalis species (Setiawan and Sintadevi, 2021).

In addition, in untreated plots, change detection analysis shows

that, when weed infestation increases over time, the estimated

herbicide demand also increased (Figure 12). Hence, farmers were

expected to reduce herbicide usage by 40.95%, but as weed coverage

spread out, this reduction decreased to 39.36% at 41 DAS and

further to 37.06% at 47 DAS. Therefore, Figure 13 demonstrated a

strong inverse relationship between weed infestation over time with

the estimated herbicide reductions with R2 values of 0.9487. The

unchecked growth of weeds not only increased the need for

herbicides but also decreased the potential values of early

reduction strategies (Peerzada et al., 2019).

To mitigate the negative impacts of weed infestation, it is

recommended to implement weed control measures at or before

42 DAS. At this stage, weeds can effectively compete with paddy for

essential resources like nutrients and sunlight, leading to yield losses
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ranging from 10% to 83% (Kaur et al., 2022). However, according to

Lakra et al. (2022), crop growth and yield productivity can be

improved by applying the herbicide at 35 DAS which aligns with

our analysis, 34 DAS is the optimal time for weed intervention

before the rapid development of weed growth observed between 34

and 47 DAS.

This finding is also consistent with what’s been practiced by

farmers in Malaysia. As recorded in the Rice Check Padi (DoA,

2022), for rice varieties that mature at 100 DAS, herbicide

application should be completed before 40 DAS. Meanwhile, for

rice varieties that mature at 125 DAS, herbicide should be applied

before 60 DAS. In this study, the PadiU Putra variety, which

matures at 120 DAS (Berahim et al., 2021), was used. The

agreement between our analysis and these guidelines indicates

that the optimal intervention period identified in this study is

adaptable to be applied across both early- and late-maturing rice

varieties. This demonstrates the broader application of our findings,

suggesting that timely weed control interventions before or at 34

DAS can benefit rice cultivation regardless of the variety.

Recent studies have demonstrated the effectiveness of UAV-

based deep learning models for weed detection across various

cropping systems. For example, Castellano et al. (2023) employed

lightweight Vision Transformers on multispectral imagery, achieving

high segmentation accuracy (OA: 94.6%, Kappa: 0.91, F1-score:

92.8%) using the WeedMap dataset. Similarly, Liu et al. (2024)

applied deep spectral analysis to multispectral UAV data in wheat

fields, reporting precision scores above 91% and quantifying

significant yield losses due to weed infestation. Seiche et al. (2024)

compared high-end and low-cost multispectral sensors using a U-Net

architecture, with F1-scores ranging from 76% to 82%, underscoring

the influence of sensor quality on detection performance.

In contrast, the present study introduces a Deep Feedforward

Neural Network (DFNN) specifically tailored for structured, non-
FIGURE 13

Relationship between the increases in weed coverage with the estimated herbicide reduction.
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spatial, pixel-wise multispectral data inMalaysian rice fields. TheDFNN

achieved strong classification performance, with an overall testing

accuracy of 99.06%, Kappa coefficients of 0.9812 (T0) and 0.9789

(T1), and class-specific F1-scores reaching 0.999 for weed detection

under untreated conditions. These results underscore the model’s

robustness and precision in site-specific weed monitoring. Compared

to transformer-based and convolutional architectures, DFNN offers

computational simplicity and scalability, making it a promising

candidate for near real-time agricultural applications.Beyond the local

context, the findings of this study have broader implications for global

weed management practices and sustainable agriculture. By showing

how high-resolution UAV imagery integrated with DL can effectively

monitor weed infestation trends, this research contributes to the

advancement of scalable, data-driven approaches for site-specific weed

control. More importantly, early detection and timely intervention can

aid in optimizing herbicide usage, decreasing environmental

contamination, and upholding long-term soil health providing to

climate-resilient agriculture (Sarma et al., 2024). These outcomes

directly support global food security efforts and align with key

Sustainable Development Goals (SDGs), particularly SDG 2: Zero

Hunger, SDG 12: Responsible Consumption and Production, and

SDG 13: Climate Action (Schröder et al., 2019; Hughes, 2020; Filho

et al., 2023).With further clarification and integration into national-level

precision agriculture (PA) initiatives, this approach has the potential to

aid both sustainability and productivity in rice farming

organizations globally.
4.1 Limitations and future
recommendations

It should be noted that the study area was dominated by M.

vaginalis. The dominance of this weed in flooded plots aligns with

its well-documented aquatic ecology (Hazrati et al., 2023). Its broad

leaf surface area and enhanced photosynthetic efficiency allow it to

establish early and aggressively compete with rice plants during the

critical vegetative stage (Gao et al., 2023). As the primary objective

of this study was to monitor broadleaved weed infestation, the

DFNN was designed and validated within this scope. While the

model demonstrated strong classification performance for M.

vaginalis, further validation across fields infested with other weed

functional groups, such as grasses and sedges, is needed to evaluate

its generalizability and transferability. In addition, future studies

should investigate whether classification transitions such as “weed

to paddy” or “soil to paddy” reflect true ecological processes such as,

crop canopy expansion, weed suppression or potential

misclassification due to spectral ambiguity. This will require

integrating field-level observations and temporal consistency

checks to improve interpretability and model reliability.

In addition, we also observed a potential correlation between

water level variation and weed distribution. This may explain whyM.

vaginalis thrives under waterlogged conditions, such as in paddy fields,

making it especially difficult to manage. Since water depth was not

explicitly controlled in the experimental design, these observations
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remain correlative rather than causal. Therefore, future studies should

incorporate water management as an experimental variable. This

could provide stronger evidence of its role in weed infestation

dynamics. Moreover, water depth may influence spectral reflectance

and contribute to classification transitions that are difficult to interpret

without supporting ecological data (Singh et al., 2023). Incorporating

water level monitoring could help distinguish between genuine

vegetation changes and classification artifacts, especially in

flooded environments.

In this study, herbicide saving potential was estimated under the

simplifying assumption of a linear relationship between weed

coverage and herbicide requirement. However, in practice, factors

such as weed density, species composition and growth stage may

influence herbicide efficacy. Therefore, this estimation should be

regarded as a first-order approximation. Future research should

refine this relationship through dose–response trials and agronomic

validation in order to improve its practical applicability.

Additionally, understanding how classification transitions such as

weed to soil or weed to paddy can be related to actual weed

suppression. This could enhance the ecological relevance of

herbicide planning. Linking spectral transitions to field-level weed

dynamics will be essential for developing more precise intervention

strategies. Finally, future studies should aim to increase the

temporal resolution of UAV data acquisition to better capture the

dynamics of weed infestation and crop development stages. While

this study was limited to three key time points due to COVID-19

restrictions, denser temporal sampling would enable a finer analysis

of vegetation transitions and enhance the robustness of temporal

change detection models. This study used a DFNN trained from

scratch. Therefore, future work could explore the use of transfer

learning or pre-trained CNN backbones fine-tuned on multispectral

or hyperspectral data to potentially boost classification accuracy

and training efficiency, especially in limited-label scenarios.
5 Conclusion

This study successfully demonstrated the effectiveness of

multispectral UAV imagery combined with deep feedforward

neural networks to track the growth rate of weed infestation in

paddy fields using change detection analysis. Within 7 days (34

DAS to 41 DAS), the growth rate of weed is 16.52%. However, over

14 days, the weed growth rate increased significantly, reaching

23.71%, while paddy cover decreased by 23.03% in untreated plots.

On 34 DAS, farmers expected a 40.95% herbicide reduction.

However, within 14 days, the reduction decreases to 37.06%,

amounting to a total reduction of 3.89% over 14 days. A strong

inverse relationship between weed infestation over time and

estimated herbicide reductions was established, with a high R²

value, 0.9487. This relationship highlighted that early detection

and control are crucial, as unchecked weed growth led to a higher

demand for herbicides and reduced the potential for early herbicide

reduction strategies. Timely intervention, especially before 34 DAS,

is essential to mitigate weed competition and preserve crop yields.
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