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Soybean is one of the world's major oil-bearing crops and occupies an important
role in the daily diet of human beings. However, the frequent occurrence of
soybean leaf diseases caused serious threats to its yield and quality during
soybean cultivation. Rapid identification of soybean leaf diseases could provide
a better solution for efficient control and subsequent precision application. In this
study, a lightweight deep convolutional neural network (CNN) based on
multiscale feature extraction fusion (MFEF) and combined with a dense
connectivity (DC) network (MFEF-DCNet) was proposed for soybean leaf
disease identification. In MFEF-DCNet, a multiscale feature extraction fusion
(MFEF) module for soybean leaves was constructed by utilizing a convolutional
attention module and depth-separable convolution to improve the model
feature extraction capability. Multiscale features are fused by using dense
connections (DC) in the backbone network to improve the model
generalization capability. Experiments were implemented on eight distinct
disease and deficiency classes of soybean images (including bacterial blight,
cercospora leaf blight, downy mildew, frogeye leaf spot, healthy, potassium
deficiency, soybean rust, and target spot) using the proposed network. The
results showed that the MFEF-DCNet had an accuracy of 0.9470, an average
precision of 0.9510, an average recall of 0.9480, and an F1-score of 0.9490 for
soybean leaf disease identification. And MFEF-DCNet had certain performance
advantages in terms of classification accuracy, convergence speed and other
effects compared with VGG16, ResNet50, DenseNet201, EfficientNetBO,
Xception and MobileNetV3_small models. In addition, the accuracy of the
MFEF-DCNet model in recognizing soybean diseases in local data was 0.9024,
which indicated that the MFEF-DCNet model had favorable application in
practical applications. The proposed model and experience in this study could
provide useful inspiration for automated disease identification in soybean and
other crops.

KEYWORDS

soybean leaf diseases, disease diagnosis, multiscale feature extraction fusion, dense
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1 Introduction

Soybeans are one of the important crops with high protein, high
oil, and high nutrition characteristics, widely used in food, feed,
industry and other fields (Sun et al., 2018) (Zhu et al., 2019), (Huang
et al., 2019). Soybeans are usually processed into protein rich foods
or edible oils, which is rich in proteins. In addition, soybean protein
isolate hydrogel extracted from soybean contains nearly 20 kinds of
essential amino acids for human body (Wang et al,, 2023; Ding
et al, 2021; Han et al, 2016). Soybean oil can be used as bio-
petroleum after chemical conversion, which generates more energy
than fossil energy sources (Pradhan et al., 2010). However, in the
process of soybean cultivation, the frequent occurrence of soybean
leaf diseases has caused huge economic losses, as well as posing a
great threat to human health and food security. Soybean yield losses
due to disease account for about 8-25% of total soybean production
average annual (Savary et al, 2019). In addition to these direct
losses, problems caused by the extensive use of pesticides for
diseases, such as environmental pollution, soil fertility
degradation and increased resistance, have become important
obstacles to the sustainable cultivation of soybeans. During the
soybean growing process, the types of soybean diseases could be
accurately recognized in time and agricultural chemicals could be
applied accordingly. Then soybean cultivation will develop in a
sustainable direction to better meet the world’s demand for
soybeans. The kinds of soybean diseases can be manifested on the
leaves, such as discoloration, spots, holes, etc. These diseases can be
identified by experienced farmers or experts based on disease
characteristics. However, in general, it is difficult to achieve rapid
and accurate diagnosis of soybean diseases due to the lack of
relevant professional experience and disease identification
knowledge among soybean farmers, which has become a
bottleneck restricting the development of the soybean industry.

With the advancements in computer vision and deep learning
techniques, automated recognition of images has made significant
progress in terms of accuracy, recognition efficiency and economic
utility. In recent years, various methods had been attempted to be
applied to automated crop disease diagnosis, including K-nearest
neighbor classifier (Chen et al., 2025), color transformation and
histogram methods (Rachmad et al., 2023), support vector machine
(SVM) (Chen et al, 2024; Sun et al., 2016; Wang et al., 2022),
convolutional neural network (CNN) (Mahmood ur Rehman et al.,
2024; Qiu et al, 2024; Sun et al, 2018). In terms of disease
recognition performance, CNN was currently the most effective.

CNN (Zhang and Dai, 2025) is a special class of artificial neural
networks with the main characteristics of convolutional operation
compared with other neural network models (Zhiming et al. 2024;
Weidong et al. 2022). CNN combines the advantages of
convolutional kernel local feature extraction and BP neural
network back propagation. Through local feature extraction and
backward weight sharing operation, CNN achieves the reduction of
the number of parameters and the improvement of network
generalization ability (Shengyi et al. 2021). Currently, convolutional
neural networks have great potential in agriculture, especially in
agricultural image processing (Archana and Jeevaraj, 2024; El Sakka
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et al, 2025; Jichong et al. 2023). In response to the difficulty of
effectively extracting soybean diseased leaves from complex
backgrounds, Aditya et al. proposed a SoyNet model based on
computer vision and convolutional neural network, which realized
the effective separation of soybean diseased leaves from complex
backgrounds, with a model classification accuracy of 98.14%
(Karlekar and Seal, 2020). Wu et al. developed an enhanced deep
learning network model for predictive classification of soybean leaf
diseases with an average recognition accuracy of 85.42% through
feature extraction, attention computation and classification (Wu
et al, 2023). Sandeep et al. developed a novel deep learning model
based on convolutional neural networks for classification of soybean
leaf pests and diseases, which is also capable of disease level prediction
(Goshika et al., 2023). Vivek et al. designed the SoyaTrans model by
combining the CNN architecture with a swin-transformer, which
improves the classification performance and reduces the complexity
of the model by introducing a new random shift mechanism (Sharma
et al., 2025).

However, most of the existing soybean leaf disease identification
methods suffer from complex models, time-consuming, and
computational resource-consuming problems, which made these
methods difficult to satisfy the production demands for rapid
disease detection, especially when deployed and implemented on
mobile devices. Therefore, the focus of this study was to improve the
convergence speed and model lightweight of convolutional neural
networks while ensuring the recognition accuracy. The goal of this
study was to develop a lightweight automatic classifier for digital
images of soybean diseases based on CNN. By using multi-scale
feature extraction and fusion modules, the classifier can better
extract feature information from images. And data expansion
method was used to balance the data samples between each
category to prevent model overfitting. An image enhancement
algorithm was also used to enhance the input soybean disease
images to improve the applicability of the classifier. The soybean
disease identification network designed in the study can accurately
identify common soybean leaf disease categories for efficient and
accurate classification and decision making.

2 Materials and methods

2.1 Database set

The dataset used for the study was the Auburn Soybean Disease
Image Dataset (ASDID), which is publicly available and has been
extensively studied and validated (Bevers et al., 2022). The dataset
contains 9648 soybean leaf images, of which 4,181 were taken in
2020 and 5,467 in 2021. The dataset contains eight main categories:
bacterial blight (Figure 1A), cercospora leaf blight (Figure 1B),
downey mildew (Figure 1C), frogeye leaf spot (Figure 1D), healthy
(Figure 1E), potassium deficiency (Figure 1F), soybean rust
(Figure 1G), target spot (Figure 1H). The ASDID dataset were
used to construct soybean disease identification model.

The original 9648 images were randomly divided in the ratio of
9:1, of which 8686 were used for model training and validation, and
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FIGURE 1

Example images of eight soybean leaf diseases: (A) Example image of soybean leaf with bacterial blight; (B) Example image of soybean leaf with
cercospora leaf blight; (C) Example image of soybean leaf with downey mildew; (D) Example image of soybean leaf with frogeye leaf spot; (E)
Example image of soybean healthy leaf; (F) Example image of soybean leaf with potassium deficiency; (G) Example image of soybean leaf with rust;

(H) Example image of soybean leaf with target spot.

962 were used for model testing. Table 1 showed the division of the
data according to the 9:1 ratio. Figure 1 showed examples of
soybean leaves photographed for all eight disease categories.

In addition, in order to verify the adaptability and local
application effect of the constructed model, 164 images of four
categories of soybean leaves were collected at Dayuzhuang, Lanqing
Township, Zhengyang County, Zhumadian City, Henan Province
(32027’ 37”N, 11420’ 11”E). There were 48 images of bacterial
blight, 52 images of frogeye leaf spot disease, 35 images of healthy

TABLE 1 Division of original data.

Number of Number of Number
Category original training and of test
images validation images images
Bacteri
acterial 484 436 48
blight
Cercospora 1598 1439 159
leaf blight
Downey
i 652 587 65
mildew
F leaf
rogeye fed 1540 1386 154
spot
Healthy 1632 1469 163
Potassi
otassium 1034 931 103
deficiency
Soybean rust 1627 1465 162
Target spot 1081 973 108
Total 9648 8686 962

Frontiers in Plant Science

leaves and 29 images of soybean rust. Soybean leaf images were
collected on August 22, 2020. After completing the construction
and training of the MFEF-DCNet model, the collected images of
soybean leaves were input into the trained MFEF-DCNet model to
test the application effect of the model in practice.

2.2 Data balance

As shown in Table 1, the number of healthy samples used for
training and validation was 1469, while the number of bacterial
blight was 436. The ratio of the number of healthy samples to the
number of bacterial blight samples was greater than 3:1, indicating
that the distribution of samples shown a serious imbalance. In
CNN, imbalance in sample distribution may lead to overfitting
problems in network models. In addition, sample data with
differences between different categories could severely affect the
accuracy of network training and limit network performance (Buda
et al,, 2018). Therefore, a data balancing algorithm was introduced
before using the data for training (Gao et al., 2021).

The above sampling method was used to balance the sample
data, which enhanced the generalization ability of the network. The
method was as follows:

(1) Index building: Firstly, the expression of the datasets was
defined as D = {[My, My, My, - M;)[Np, N}, Ny, -+ N;]" }, in which
M; represented the type of soybean leaf disease, and N; was the
number of samples which corresponded to M;. Then the maximum
number N; of samples in the datasets and its corresponding M; were
counted. Finally, the maximum value N; was expressed by N,
while M;{i € [0,7]} marked the type which corresponded to N,
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in which i expressed the label serial number (Label 0 indicated
bacterial blight, Label 1 indicated cercospora leaf blight, Label 2
indicated downey mildew, Label 3 indicated frogeye leaf spot, Label
4 indicated healthy, Label 5 indicated potassium deficient, Label 6
indicated soybean rust, Label 7 indicated target spot).

(2) Calculation of the proportionality constant C: N,,,, was
chosen as the numerator and N; was selected as the denominator.
The constant C was calculated according to Equation 1.

C =

Nﬂ(i € [0,7], Floor)
N;

(3) Up-sampling: the proportionality factor C = {Cy, C; --- C;}
was obtained from Equation 1. Smaller numbers of samples were
up-sampled using different methods based on the proportionality
constant. Data balancing was achieved by complex up-sampling,
which is implemented by taking different up-sampling measures
according to the size of the proportionality factor C;, as shown in

3</C;<4,Rotation, Contrast
45 /C;<5,Sharpness, Rotation, Contrast

Equation 2:

0=/C;=/1,Dataset uchanged
1<C;<3,Rotation

(4) Exportation: D' = {[MO,MI,MZ,-.--M,-][N(;,N;,N;,. -..N;,]T}
was the balanced output, where N; was calculated from Equation 3.

N;=N; x Ci(i € [0,7])

In the calculated datasets, D={[M, indicated bacterial spot, M;
indicated caecilian leaf blight, M, indicated downy mildew, M;
indicated frogeye leaf spot, M, indicated healthy, M; indicated
potassium deficiency, Mg indicated rust, M, indicated target spot]
[N, =436, N; = 1439, N, = 587, N; = 1386, N, = 1469, N5 = 931, N, =
1465, N, = 973]T}, the sample number of bacterial blight was the
lowest while healthy sample number leaf sample was the highest.

Since Ny, was 1469, C was equal to 3 according to Equation 1,
2. That means 3 was calculated by dividing 1469 by 436 using the
floor principle. The bacterial blight dataset was balanced by an
increase of 200% in the number of bacterial blight samples through
rotation and contrast adjustments.

TABLE 2 Number of categories before and after data balance.

10.3389/fpls.2025.1655564

According to the above method, the proportionality constants
for each disease type sample were calculated based on the data in
Table 2. On the basis of Equation 3, N}, Ni, Né, N;, N‘}l, Ng, Né, N;
were obtained as follows:

Ny = Ny-Cp = 436 x 3 = 1308
N, =N,-C; = 1439 x 1 = 1439
N, =N,-C, =587 x 2 = 1174
Ny = N;-C; = 1386 x 1 = 1386
Ny = N4-Cy = 1469 x 1 = 1469
N5 = N5-Cs = 931 x 1 = 931

Ny = Ng-Cq = 1465 x 1 = 1465

N, =N,-C, =973 x 1 =973

Table 2 displayed the sample distribution of each dataset type
after data balancing. As shown in Table 2, the maximum number of
healthy leaves after data balancing was 1469 and the minimum
number of potassium deficient leaves after data balancing was 931.
The ratio of the two sample datasets was approximately 1:1.57,
which indicated a more balanced distribution of sample data.

When the number of images in each category was roughly the
equal, the model could better learn the features of each category and
avoid overfitting or underfitting of some categories.

2.3 Data enhancement

Image enhancement was a conventional data preprocessing
method used to improve inter-class parity and increase the size of
training samples. This method was accomplished by employing
various transformations such as rotating, scaling, reflecting,

Category Number of original images Constant Ci Balance the quantity Total number after balance
Bacterial blight 436 3 872 1380
Cercospora leaf blight 1439 1 0 1439
Downey mildew 587 2 587 1174
Frogeye leaf spot 1386 1 0 1386
Healthy 1469 1 0 1469
Potassium deficiency 931 1 0 931
Soybean rust 1465 1 0 1465
Target spot 973 1 0 973
Total 8686 10145
Frontiers in Plant Science 04 frontiersin.org
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adjusting brightness, and adding noise to the original image.
ImageDataGenerator in Keras was able to enhance the data in a
fast way (Abadi et al.,, 2016). Therefore, in the study,
ImageDataGenerator was used to perform shift, brightness
change, flip, rotate, and normalization operations on the data in
the training set and normalization operations on the data in the
validation set. Figure 2 showed the effect comparison before and
after image enhancement of soybean leaves. Figure 2A showed the
original image of soybean leaf with bacterial blight; Figure 2B
showed the original image of soybean leaf with cercospora leaf
blight; Figure 2C showed the original image of soybean leaf with
downey mildew; Figure 2D showed the original image of soybean
healthy leaf; Figure 2E showed the image obtained after flip for
original image of soybean leaf with bacterial blight; Figure 2F
showed the image obtained after rotation for original image of
soybean leaf with cercospora leaf blight; Figure 2G showed the
image obtained after moving vertically for original image of soybean
leaf with downey mildew; Figure 2H showed the image obtained
after moving horizontally for original image of soybean healthy leaf.

2.4 Model design

2.4.1 Block construction

The attention mechanism was a technology inspired by the
human visual and cognitive system, which allowed CNN to focus on
processing the relevant parts of the input data. By using the
attention mechanism, CNN could automatically learn and focus
on the important information in the input, thus improving the

A B
E F
FIGURE 2

10.3389/fpls.2025.1655564

generalization ability of the model. Convolutional Block Attention
Module (CBAM) was a simple and effective lightweight attention
module for feed-forward CNN, which consisted of a channel
attention module (CAM) and a spatial attention module (SAM)
(Woo et al, 2018).

CAM was used to learn the channel weights using a shared fully
connected layer and activation functions. SAM was used to
compute the spatial weights of the feature maps using the
maximum pool and the average pool. Thus, the CBAM module
was able extract the feature information in the feature map more
efficiently when training the neural network. CBAM could be used
in various CNN architectures, and has been widely applied with
remarkable performance to tasks such as image classification (Guo
etal,, 2025), target detection (Pei, 2022), instance segmentation (Ma
et al., 2024).

The multiscale feature extraction and fusion for soybean leaves
(MFEF-SL) module was constructed in this research. On the one
hand, the input feature layer was extracted by two depthwise
separable convolutions and batch normalization, and then the
feature layer was reduced by maximum pooling. On the other
hand, the feature filtering and size adjustment of the feature map
were realized by convolution attention module, ordinary
convolution and batch normalization. In the network structure,
the module original input feature layer was spliced in the channel
direction after maximum pooling and batch normalization. The
merging of the above two aspects was realized through the
summation of the corresponding elements, and the output was
finally obtained. The specific network structure connection was

shown in Figure 3.

Comparison before and after image enhancement: (A) Origional image of soybean leaf with bacterial blight; (B) Origional image of soybean leaf with
cercospora leaf blight; (C) Origional image of soybean leaf with downey mildew; (D) Origional image of soybean healthy leaf; (E) Image obtained
after flip for original image of soybean leaf with bacterial blight; (F) Image obtained after rotation for original image of soybean leaf with cercospora
leaf blight; (G) Image obtained after moving vertically for original image of soybean leaf with downey mildew; (H) Image obtained after moving

horizontally for original image of soybean healthy leaf.
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FIGURE 3

Multiscale feature extraction and fusion for soybean leaves.

2.4.2 MFEF-DCNet

DenseNet was a densely connected neural network architecture
(Huang et al, 2017). This network architecture was realized by
establishing direct connections between the outputs of each layer
and the inputs of all subsequent layers, whereby the outputs of each
layer were directly connected to all previous layers. The dense
connection allowed the output of each layer to be used directly by
the subsequent layers. This approach improved the efficiency of
feature transfer, which in turn enhanced the convergence speed and
accuracy of the model (Zhang et al., 2024). DenseNet has achieved
outstanding performance in various image classification and target
detection tasks (Zhang et al., 2025). Meanwhile, the idea of dense
connection was also used in the architecture of model design (Xu
et al,, 2024). It exhibited strong feature extraction and usage
capabilities while maintaining computational efficiency.

The multiscale feature extraction fusion dense connected
network (MFEF-DCNet) for soybean leaves proposed in this

study was mainly constructed by the modules of convolutional
layer, MFEF-SL, global average pooling and fully connected layer.
The network structure was shown in Figure 4.

Firstly, the input image was subjected to initial feature
extraction by two convolutions. Secondly, higher latitude
feature extraction was performed by four MFEF-SL module
operations. For high-latitude feature extraction, dense
connection was used between MFEF-SL Blocks. Namely, the
input of each block was the splicing result after pooling the
output of the previous block. In addition, due to the fact that the
size of the feature map was halved after the operation of the
MFEF-SL modules, the same image size was ensured by a
maximum pooling operation before performing a dense join,
as shown by the dotted line join in Figure 4. Thirdly, a global
average pooling and a fully connected layer of eight neurons
were performed. Finally, the probabilities of the eight categories
are output after passing the Softmax activation function.

MFEF-SL

-

-

112x112x32 112x112x64
Input Image

FIGURE 4
MFEF-DCNet.
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2.4.3 Training

During model training, a stochastic gradient descent optimizer
was used to reduce the loss values. The learning rate set was le-4,
momentum was 0.9, loss function was categorical cross entropy,
batch size was 32, and the initial training epoch was 100. All the
models were trained from the scratch.

2.4.4 Evaluation

The performance of a model was usually evaluated using test set
data. Therefore 962 images from the original dataset were used to
exam the performance of the model. Model evaluation indexes, such
as accuracy, precision, Recall, F1-Score, and the corresponding
macro average and weighted average, were used for model
evaluation. Accuracy is usually considered as the overall
performance of the model and is used to calculate the correctly
recognized labels.

TP + TN
TP + TN + FP + FN

Accuracy =

Precision (P) is used to assess the accuracy of the recognitions
by comparing the number of correctly recognized images for a
disease category to the total number of images recognized by the
model for that category.

TP

P .. -
recision TP + FP

Recall (R) is used to measure the ability of the model to cover
positive class samples, and is defined as the number of correctly
recognized positive samples divided by the total number of positive
samples.

TP

Recall = ——
= TP Y EN

F1-Score (F) is the weighted harmonic mean of precision and
recall. When the F1-Score is closer to 100% it indicates that the
recognition performance of the model is better.

2 X Precision x Recall

F1 - Score = x 100 %

Precision + Recall

TABLE 3 Number of categories before and after data balance.

10.3389/fpls.2025.1655564

In the above equation, TP represents True Positive, FP
represents False Positive, TN represents True Negative, and FN
represents False Negative.

Macro average is calculated by averaging the precision, recall
and F1 score for each category. Thus, macro precision, macro recall
and macro F1 score are calculated. However, when there is a serious
category imbalance in the dataset, it is not appropriate to use macro
average as an evaluation index, instead weighted average is used as
the evaluation index. Weighted average assigns different weights to
each class based on the ratio of the sample size of each class to the
total sample size. The corresponding weighted precision, weighted
recall, and weighted F1-Score are then calculated based on
the weights.

3 Results
3.1 Model performance comparison

Table 3 displayed the training results and model parameter
information based on the MFEF-DCNet, MobileNetV3_small,
EfficientNetB0, VGG16, DenseNet201, Xception, and ResNet50
models. The training of all these models was trained from the
scratch. In the table, the total parameters were the sum of trainable
and non-trainable parameters, which was a reference indicator of
the model capacity. The non-trainable parameters were usually set
when the model was built and remained constant throughout the
training process. During the training process, the trainable
parameters were adjusted according to the training data to enable
the model to fit the data better. It could be seen from the table that
MobileNetV3_small had the lowest single epoch training time
among all models. However, the final performance of
MobileNetV3_small was poor with an accuracy of 0.9013.
Therefore, MobileNetV3_small was not able to meet the practical
requirements. Although MFEF-DCNet was longer than
MobileNetV3_small in terms of training time for a single epoch,
the model achieves a test precision of 0.947 due to the well-designed
and optimized structure of MFEF-DCNet. In addition, although the
MFEF-DCNet model was the most lightweight with a minimum

Model Name. Jreie] UEERS trg:g:t;le Accuracy Precision Recall F1 FNEIESE VIETIY
Params Params Latency (secs/epoch)
params
MFEE-DCNet 1,200,104 1,188,776 11328 0.9551 0.9608 09572 | 0.9581 156.88
EfficientNetBO 4222315 4,180,292 42,023 0.9453 0.9505 09452 | 0.9463 160.97
ResNet50 23,858,760 23,805,640 53,120 0.9307 09322 09349 | 09331 165.34
VGG16 14,789,128 14,789,128 0 0.9253 0.9261 09304 | 0.9268 162.67
Xception 21,132,528 21,078,000 54,528 0.9298 0.9416 09341 | 09351 172.83
MobileNetV3_small | 1,526,056 1,513,944 12,112 0.9013 0.9096 09037 | 0.9054 32.16
DenseNet201 18,576,648 18,347,592 229,056 0.8738 0.9016 0.8761 | 0.8819 183.74
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FIGURE 5

Accuracy curves of different models.

total parameter of 1,200,104, the values of precision, recall and F1
score in MFEF-DCNet were exceed 0.95. Therefore, the
comprehensive performance of MFEF-DCNet was the best among
the all mentioned models.

The accuracy curves comparison for the training process of all
models were depicted in Figure 5. By analyzing the accuracy curve
of MobileNetV3_small, it can be found that the training accuracy
was increasing at the beginning. After 30 epochs, the training
accuracy tended to stabilize. However, the final accuracy of
MobileNetV3_small was low, which cannot satisfy the
requirements of real production environment. In addition, it can

be observed that MFEF-DCNet shown the fastest convergence rate
in the first 10 epochs from Figure 5. Meanwhile, the MFEF-DCNet
model also achieved excellent results in the later stages of training
with the accuracy around 0.9551. The loss value curves for different
models were shown in Figure 6. The loss values shown in the
vertical coordinates in Figure 6 indicated the difference between the
model recognized outputs and the actual labels. A smaller loss value
means a better performance of the model, while a larger loss value
means a larger difference between the model recognized results and
the real results. As can be seen from the training loss curve, MFEF-
DCNet decreased the fastest in the first 5 epochs, and the loss value

—

VGG16

<+~ DenseNet201
EfficientNetBO
—<+— MobilenetV3_smal |
ResNet50

—<— Xception
MFEF-DCNet

——

——

——

FIGURE 6
Loss value curves of different models.
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TABLE 4 Classification training results of different network models.

MFEF-DCNet EfficientBO ResNet50 Xception MobileNetV3Small DenseNet201
P R F R R R P R F P R F
Bacterial blight 0.8824 09375 09091 09388 09583 09485 0.7667 & 09583 0.8519 & 0.7581 = 09792 0.8545 & 0.8537 07292  0.7865 = 0.8250 0.6875 07500 | 0.8571 08750 0.8660
Cercospora leaf blight 09542 | 09182 09359 09172 09057 | 09114 08802 09245 09018 09221  0.8931 09073 | 0.9706 0.8302 | 0.8949 09286 0.8994 09137 | 0.8000 0.7547 | 0.7767
Downey mildew 10000 09385 | 09683 0.8025 10000 0.8904 09483  0.8462 0.8943 09365 09077 09219 09403 09692 09545  0.8871 = 0.8462 08661 0.8000 09231 08571
Frogeye leaf spot 09720 | 09026 09360 = 09433 0.8636 | 09017 09272 09091 09180 09085  0.8377 08716 | 0.7023 09805  0.8184 0.8411 08247 0.8328 | 0.6027 0.8766 07143
Healthy 0.8710 | 09939 09284  0.8333 09509 | 0.8883 09150 0.8589 0.8861 0.8466 = 09141 0.8791 | 09325 09325 09325 0.8041 09571 0.8739 | 0.8790 0.8466  0.8625
Potassium deficiency 10000 0.9903 | 09951 ~ 1.0000 = 1.0000 = 1.0000 09902 09806 09854 0.8879 1.0000 09406 09808 09903 09855 09619 09806 09712 10000 0.9806 = 0.9902
Soybean rust 09437 | 09321 09379 09675 09198 | 09430 09281 0.8765 09016 09632  0.8086 08792 | 0.9926 0.8272 | 09024 09130 09074 09102 | 09474 0.7778 | 0.8542
Target spot 09906 | 09722 09813  1.0000 0.8426 09146 08814 09630 09204 09558 = 1.0000 09774 | 0.9901 0.9259 | 09569 09474 0.8333 0.8867 | 09863 0.6667  0.7956
Accuracy 0.9470 0.9210 0.9096 0.9023 0.9033 0.8857 0.8254
Macro Average 09517 | 09482  0.9490 = 09253 09301 | 09247 09046 09146 09074 08973 & 09175 09040 | 0.9204 0.8981 | 09040 0.8885  0.8700 = 0.8800 | 0.8591 0.8376 & 0.8396
Weighted Average 09497 | 09470 09473 09271 09210 | 09215 09125 09096 09097 09070 = 09023 09019 | 0.9203 09033 | 09056 0.8886 0.8900 = 0.8900 | 0.8518 0.8254  0.8292

P represented the precision, R represented the recall, and F represented the F1-score.
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reached its minimum in the final stage of model training. After 100
Epochs of training, MFEF-DCNet had an accuracy of 0.9551 on the
training set.

After 100 epochs of training from scratch, the best trained
weights were selected for all models and these weight coefficients
were tested on a total of 962 test images that the models had never
trained before. The test results of different models for different
soybean leaf disease categories were shown in Table 4. It was evident
from the table that the proposed MFEF-DCNet performs better
than other models in the vast majority of recognition results. And
the accuracy, macro accuracy, and weighted accuracy of the MFEF-
DCNet model all greater than 0.94. In terms of the recognition
results for the different soybean leaf disease categories, the MFEF-
DCNet model had relatively poor recognition precision for the
health category. In terms of recall, the MFEF-DCNet model had
relatively poor recognition accuracy for frogeye leaf spot, and the
model was able to correctly recognize 139 out of 154 disease images
with a recognition recall of 0.9026. While the MFEF-DCNet model
performed the best for downey mildew and potassium deficiency.
All images of the two categories for soybean leaf diseases were
correctly recognized with a recognition precision of 1.0000. In
addition, the MFEF-DCNet model showed a small difference in
recognition results between the different disease categories of
soybean leaves. This indicated that the model achieved good
performance for each category without overfitting or underfitting.
Among the 962 test images, the MFEF-DCNet model correctly
recognized a total of 911 images eight categories with an accuracy of
0.947. This result was the best among the all models used in this
study. Figure 7 showed the confusion matrix drawn by the MFEF-
DCNet model after testing on 962 images. The numbers on the

10.3389/fpls.2025.1655564

diagonal of the confusion matrix represented the counts that the
recognitions of the model matched the true labels. From the
confusion matrix, it was evident that the proposed MFEF-DCNet
model achieved satisfactory results in all categories of test images.

3.2 Ablation study and local data testing

The ablation experiments were conducted as shown in Table 5.
As can be seen from the table, the standard convolutional model
had 6.66 million parameters, with an accuracy rate of 91.79% and an
Fl-score of 91.97%. Using the standard convolutional model as a
baseline, when the CBAM module was introduced separately, the
number of model parameters increased by 0.09M, yet the accuracy
and Fl-score improved by 0.52% and 0.55%, respectively. When
replacing the standard convolution module with a separable
convolution module, the number of model parameters was
significantly reduced by 83.4%, with the parameters of 1.11
million. Meanwhile, model accuracy and Fl-score improved by
2.08% and 1.92%, respectively. When the separable convolution and
CBAM modules were introduced simultaneously, the model
parameters reduced by 82.0%, while the model performance was
the best, with an accuracy and Fl-score of 94.70% and 94.73%,
respectively. The accuracy and Fl-score were improved by 2.91%
and 2.76%, respectively. The above results indicated that separable
convolutions had a good effect on model parameter compression,
while the CBAM module can further enhance the model’s
recognition capabilities through feature enhancement. Therefore,
the MFEF module constructed by combining separable convolution
and CBAM could significantly improve the recognition
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FIGURE 7
Confusion matrix.
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TABLE 6 Evaluation results of MFEF-DCNet model on different

8 categories of local soybean images.
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FIGURE 9

Characteristic map of soybean downy mildew in different periods: (A) Feature map (Early stage); (B) Feature map (Mid stage); (C) Feature map (Last

stage).

visualizing the feature map, the model’s ability to interpret the input
data and extract features could be quantified and demonstrated,
which in turn contributed to optimizing the performance of the
model. Figures 8 and 9 illustrate the process of visualizing the
feature map of downy mildew using MFEF-DCNet. Figure 8
showed the image of downy mildew as input to the neural
network, and Figure 9A, Figure 9B and Figure 9C showed the
feature maps of downy mildew at different depths of the model
during the forward process [Early stage (Figure 9A), Mid stage
(Figure 9B), Last stage (Figure 9C)]. According to the feature maps
of different periods, it can be seen that the shallow information
extracted by the model is mostly edges and textures. With the depth
of the network, what MFEF-DCNet learns became more and more
abstract, and the extracted features became richer and richer.
However, the visual interpretability of these features was also
getting decreasing.

By mapping the visualized feature map to the original image,
the change of the network focus during the network training
process could be observed. Figures 10A-C were the heat maps of
different stages of the model by mapping the feature maps after
visualization to the original image [Early stage (Figure 10A), Mid
stage (Figure 10B), Last stage (Figure 10C)]. From the figures, we
can see that the attention of the network gradually approaches
towards the direction of the disease features during the learning
process of the neural network.

According to the heat maps of different periods, it can be seen
that the focus of the model was gradually approaching towards the
direction of downy mildew disease characteristics in the process of
neural network learning.

4 Discussion

The goal of this study was to develop an efficient, lightweight, and
highly accurate network model for soybean leaf diseases identification.
Based on the open-source dataset, operations such as rotating,
cropping, and flipping the original images of soybean diseases were
implemented by data balancing algorithms and image enhancement
technology. These operations improved the balance of sample data
while expanding the sample size. After that, the study constructed a
multiscale feature extraction module for soybean leaves using CBAM
and depthwise separable convolution, which was used to improve the
feature extraction capability of the model. Meanwhile, the fusion
among multi-scale feature layers was achieved by using dense
connections in the model backbone network to improve the
generalization ability. Existing soybean leaf pest and disease
identification methods cannot simultaneously meet requirements in
terms of identification accuracy (Kang et al, 2025) and model size
(Miao et al, 2023). In comparison, several aspects such as model
lightweighting, pest types, and accuracy were comprehensively
considered in this study. After training and optimization, the MFEF-
DCNet constructed in this study had the best results in terms of
accuracy, model convergence speed, and precision, with the highest
accuracy rate of 0.947, and is friendly for deployment on edge devices.
The results of tests on multiple data sets indicate that MFEF-DCNet
has good effectiveness and superiority in soybean leaf
disease identification.

A lot of attempts were made during the construction and testing
of the model. For example, several auxiliary classifiers were added to
the model during the training process in order for the model to

FIGURE 10

Heat map of soybean downy mildew in different periods: (A) Heat map (Early stage); (B) Heat map (Mid stage); (C) Heat map (Last stage).
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converge faster during the training process. However, the presence
of the auxiliary classifiers had not enhanced the accuracy of the
model from the training results obtained. Conversely, this operation
consumed more arithmetic power. Therefore, no auxiliary
classifiers were added to the final model construction. In addition,
the residual structure was not used in the module when using the
convolutional attention module. This is because the use of the
residual structure was verified to have no significant improvement
on the final model performance.

The MFEF-DCNet model proposed in this study achieved
effective identification of eight diseases of soybean and achieved
good results. However, the study in this paper still has some
shortcomings and needs to be further improved in the future.
The MFEF-DCNet model was able to classify each disease
category in soybean leaf disease identification, but it was unable
to realize the judgment of disease degree at the same time of disease
identification. The essence of neural network classification is to
assign pre-trained disease category probabilities to the image data of
each input network. The disease category with the highest
probability was ultimately selected as the disease category for the
input image. Therefore, the model was only able to identify one of
the diseases when multiple diseases are present in a leaf and is
unable to accurately identify the other disease categories at the same
time. Simultaneous identification of multiple diseases in a picture
and the degree of disease was a direction for further research.

5 Conclusions

In this study, MFEF-DCNet, a lightweight deep convolutional
neural network, was constructed for soybean leaf disease
identification based on the open-source soybean leaf disease
dataset. The training inference efficiency and identification
accuracy of the model were improved by employing the soybean
leaf multi-scale feature extraction fusion module, namely the dense
connectivity and CBAM module. In comparison with other
common identification models, MFEF-DCNet achieved a
maximum accuracy of 0.947 while being lightweight. And its
recognition accuracy for local soybean leaf diseases was 0.9024.
Meanwhile, the heat map analysis showed that the leaf disease
region features were correctly learned by MFEF-DCNet. Overall,
future research would continue to deepen the problem of soybean
disease recognition. More advanced deep learning techniques and
methods would be attempted to contribute to the development and
security of the soybean industry.

Data availability statement

The original contributions presented in the study are included
in the article/supplementary material. Further inquiries can be
directed to the corresponding authors.

Frontiers in Plant Science

10.3389/fpls.2025.1655564

Author contributions

YZ: Conceptualization, Data curation, Formal analysis,
Funding acquisition, Methodology, Project administration,
Resources, Validation, Writing — original draft, Writing — review
& editing. RB: Data curation, Formal analysis, Methodology,
Validation, Writing - review & editing. MG: Methodology,
Validation, Writing - review & editing. ZW: Data curation,
Formal analysis, Validation, Writing - review & editing. LW:
Investigation, Software, Writing - review & editing. XC:
Investigation, Project administration, Writing - review & editing,
Software. XN: Investigation, Supervision, Validation, Writing -
review & editing. YW: Data curation, Investigation, Software,
Writing - review & editing. SA: Writing - review & editing,
Resources. YFW: Conceptualization, Project administration,
Supervision, Writing — original draft.

Funding

The author(s) declare financial support was received for the
research and/or publication of this article. This research was
funded by the National Natural Science Foundation of China
(Grant No. 32501779), Henan Provincial Science and Technology
Research Project (N0.242102111185, No. 252102521059), 2024
Henan Science and Technology Commissioner Project,
Collaborative Education Project of Ministry of Education
(N0.220505078205656, N0.220503880205011), Young Backbone
Teachers Program of Henan University of Science and
Technology (No0.13450009), Postgraduate Education Reform and
Quality Improvement Project of Henan Province
(N0.YJS2025AL49, No.YJS2025SZ18)and the National Natural
Science Foundation of China (N0.32202096).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative Al was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible. If
you identify any issues, please contact us.

frontiersin.org


https://doi.org/10.3389/fpls.2025.1655564
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zhang et al.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E, Chen, Z, Citro, C, et al. (2016).
TensorFlow: Large-scale machine learning on heterogeneous distributed systems. CoRR,,
abs/1603.04467. Available at: http://arxiv.org/abs/1603.04467.

Archana, R, and Jeevaraj, P. S. E. (2024). Deep learning models for digital image
processing: a review. Artif. Intell. Rev. 57, 11. doi: 10.1007/s10462-023-10631-z

Bevers, N, Sikora, E. J., and Hardy, N. B. (2022). Pictures of diseased soybean leaves
by category captured in field and with controlled backgrounds: Auburn soybean disease
image dataset (ASDID). Dryad, Dataset. doi: 10.5061/dryad.41ns1rnj3

Buda, M., Maki, A., and Mazurowski, M. A. (2018). A systematic study of the class
imbalance problem in convolutional neural networks. Neural Networks 106, 249-259.
doi: 10.1016/j.neunet.2018.07.011

Chen, M., Chang, Z., and Jin, C. (2025). Classification and recognition of soybean
quality based on hyperspectral imaging and random forest methods. Sensors 25, 1539.
doi: 10.3390/s25051539

Chen, X., He, W., and Ye, Z. (2024). Soybean seed pest damage detection method
based on spatial frequency domain imaging combined with RL-SVM. Plant Methods
20, 130. doi: 10.1186/S13007-024-01257-5

Ding, Y., Ma, H,, Wang, K., Azam, S. R,, Wang, Y., Zhou, J., et al. (2021). Ultrasound
frequency effect on soybean protein: Acoustic field simulation, extraction rate and
structure. Lwt-Food Sci. Technol. 145, n/a. doi: 10.1016/j.1wt.2021.111320

El Sakka, M., Ivanovici, M., and Chaari, L. (2025). A review of CNN applications in
smart agriculture using multimodal data. Sensors 25, 472. doi: 10.3390/s25020472

Gao, J,, Ni, J., and Yang, H. (2021). Pistachio visual detection based on data balance and
deep learning. Trans. Chin. Soc Agric. 52, 367-372. doi: 10.6041/j.issn.1000-1298.2021.07.040

Goshika, S., Meksem, K., and Ahmed, K. R. (2023). Deep learning model for
classifying and evaluating soybean leaf disease damage. Int. J. Mol. Sci. 25, 106.
doi: 10.3390/ijms25010106

Guo, J., Zhang, K., and Adade, S. Y. S. S. (2025). Tea grading, blending, and matching
based on computer vision and deep learning. J. Sci. Food Agric. 105, 3239-3251.
doi: 10.1002/jsfa.14088

Han, J. H., Wu, Q. F., Xu, B,, Zhou, S. L., and Ding, F. (2016). Quality characteristics
of soybean germ oil obtained by innovative subcritical butane experimental equipment.
Qual. Assur. Saf. Crops Foods 8, 369-377. doi: 10.3920/QAS2015.0625

Huang, L., Ding, X, Li, Y., and Ma, H. (2019). The aggregation, structures and
emulsifying properties of soybean protein isolate induced by ultrasound and acid. Food
Chem. 279, 114-119. doi: 10.1016/j.foodchem.2018.11.147

Huang, G., Liu, Z., and van der Maaten, L. (2017). “Densely connected convolutional
networks,” in Proceedings of the IEEE conference on computer vision and pattern
recognition. (CVPR), Honolulu, HI, USA, 2261-2269. doi: 10.1109/CVPR.2017.243

Jiehong, C., Jun, S., and Kunshan, Y. (2023). Multi-task convolutional neural network
for simultaneous monitoring of lipid and protein oxidative damage in frozen-thawed
pork using hyperspectral imaging[J]. Meat Science, 201, 109196-109196.

Kang, J.,, Shin, T., and Ko, J. (2025). Optimized deep learning model for soybean leaf
classification in complex field environments. Korean J. Of Crop Sci. 70, 68-78. doi: 10.7740/
Kkjcs.2025.70.2.068

Karlekar, A., and Seal, A. (2020). SoyNet: Soybean leaf diseases classification.
Comput. Electron. Agric. 172, 105342. doi: 10.1016/j.compag.2020.105342

Ma, J., Zhao, Y., and Fan, W. (2024). An improved YOLOv8 model for lotus seedpod
instance segmentation in the lotus pond environment. Agronomy 14, 1325-1325.
doi: 10.3390/agronomy14061325

Mahmood ur Rehman, M, Liu, J., and Nijabat, A. (2024). Leveraging convolutional
neural networks for disease detection in vegetables: A comprehensive review.
Agronomy 14, 2231. doi: 10.3390/agronomy14102231

Miao, Y., Xiaodan, M., and Haiou, G. (2023). Recognition method of soybean leaf
diseases using residual neural network based on transfer learning. Ecol. Inf. 76, 102096.
doi: 10.1016/j.ecoinf.2023.102096

Pei, H. (2022). Weed detection in maize fields by UAV images based on crop row
preprocessing and improved YOLOv4. Agriculture 12, 975-975. doi: 10.3390/
agriculture12070975

Pradhan, A., Shrestha, D. S., and McAloon, A. (2010). Energy life-cycle assessment of
soybean biodiesel. In Biofuel Lifecycle Issues and Research 121. Nova Science
Publishers, Inc.

Frontiers in Plant Science

10.3389/fpls.2025.1655564

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Qiu, D, Guo, T, Yu, S, Liu, W., Li, L., Sun, Z, et al. (2024). Classification of apple
color and deformity using machine vision combined with CNN. Agriculture 14, 978.
doi: 10.3390/agriculture14070978

Rachmad, A., Ansori, N, Rifka, S., Rochman, E. M. S, and Setiawan, W. (2023).
Classification of Diseases on Corn Stalks using a Random Forest based on a
Combination of the Feature Extraction (Local Binary Pattern and Color Histogram).
Technium: Romanian J. Appl. Sci. Technol. 16, 303-309. doi: 10.47577/
technium.v16i.10002

Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N., and Nelson, A.
(2019). The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol.
3, 430-439. doi: 10.1038/541559-018-0793-y

Sharma, V., Tripathi, A. K., and Mittal, H. (2025). SoyaTrans: A novel transformer
model for fine-grained visual classification of soybean leaf disease diagnosis. Expert
Syst. Appl. 260, 125385-125385. doi: 10.1016/j.eswa.2024.125385

Shengyi, Z., Yun, P., and Jizhan, L. (2021). Tomato Leaf Disease Diagnosis Based on
Improved Convolution Neural Network by Attention Module[J]. Agriculture, 11 (7),
651-651.

Sun, J., He, X, Ge, X, Wu, X,, Shen, J., and Song, Y. (2018). Detection of key organs
in tomato based on deep migration learning in a complex background. Agriculture 8,
196. doi: 10.3390/agriculture8120196

Sun, ], Jiang, S., Mao, H., Wu, X,, and Li, Q. (2016). Classification of black beans
using visible and near infrared hyperspectral imaging. Int. J. Food Properties 19, 1687—
1695. doi: 10.1080/10942912.2015.1055760

Sun, W. X,, Zhang, R. J,, Fan, J., He, Y., and Mao, X. H. (2018). Comprehensive
transformative profiling of nutritional and functional constituents during germination
of soybean sprouts. J. Food Measurement Characterization 12, 1295-1302. doi: 10.1007/
§11694-018-9743-2

Wang, L., Dong, Y., Wang, L., Cui, M., Zhang, Y., Jiang, L., et al. (2023). Elucidating
the effect of the Hofmeister effect on formation and rheological properties of soy
protein\k-carrageenan hydrogels. Food Hydrocolloids 143, 108905. doi: 10.1016/
j.foodhyd.2023.108905

Wang, S, Sun, J., Fu, L., Xu, M., Tang, N., Cao, Y., et al. (2022). Identification of red
jujube varieties based on hyperspectral imaging technology combined with CARS-IRIV
and SSA-SVM. J. Food Process Eng. 45 (10), e14137. doi: 10.1111/jfpe.14137

Weidong, Z., Jun, S., and Simin, W. (2022). Identifying Field Crop Diseases
Using Transformer-Embedded Convolutional Neural Network[]]. Agriculture, 12 (8),
1083-1083.

Woo, S., Park, J., and Lee, J. Y. (2018). “CBAM: Convolutional block attention
module,” In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds) Computer
Vision - ECCV 2018. ECCV 2018. Lecture Notes in Computer Science(), 11211.
Springer, Cham. doi: 10.1007/978-3-030-01234-2_1

Wu, Q., Ma, X,, and Liu, H. (2023). A classification method for soybean leaf diseases
based on an improved ConvNeXt model. Sci. Rep. 13, 19141. doi: 10.1038/s41598-023-
46492-3

Xu, J., Liu, H., and Shen, Y. (2024). Individual nursery trees classification and
segmentation using a point cloud-based neural network with dense connection pattern.
Scientia Hortic. 328, 112945. doi: 10.1016/j.scienta.2024.112945

Zhang, F., Bao, R,, and Yan, B. (2024). LSANNet: A lightweight convolutional neural
network for maize leaf disease identification[J]. Biosystems Engineering, 248, 97-107.

Zhang, J., and Dai, L. (2025). Application of Hyperspectral Imaging and Deep
Convolutional Neural Network for Freezing Damage Identification on Embryo and
Endosperm Side of Single Corn Seed[]]. Foods 14 (4), 659-659.

Zhang, Z., Yang, M., and Pan, Q. (2025). Identification of tea plant cultivars based on
canopy images using deep learning methods. Scientia Hortic. 339, 113908-113908.
doi: 10.1016/j.scienta.2024.113908

Zhiming, G., and Chanjun, Y. Z. (2024). Nondestructive determination of edible
quality and watercore degree of apples by portable Vis/NIR transmittance system
combined with CARS-CNNIJ]. Journal of Food Measurement and Characterization.
18 (6), 4058-4073.

Zhu, H., Chen, J., He, Z., Hao, W., Liu, J., Kwek, E,, et al. (2019). Soybean germ oil
reduces blood cholesterol by inhibiting cholesterol absorption and enhancing bile acid
excretion. Food Funct. 10, 1836-1845. doi: 10.1039/C8FO02585A

frontiersin.org


http://arxiv.org/abs/1603.04467
https://doi.org/10.1007/s10462-023-10631-z
https://doi.org/10.5061/dryad.41ns1rnj3
https://doi.org/10.1016/j.neunet.2018.07.011
https://doi.org/10.3390/s25051539
https://doi.org/10.1186/S13007-024-01257-5
https://doi.org/10.1016/j.lwt.2021.111320
https://doi.org/10.3390/s25020472
https://doi.org/10.6041/j.issn.1000-1298.2021.07.040
https://doi.org/10.3390/ijms25010106
https://doi.org/10.1002/jsfa.14088
https://doi.org/10.3920/QAS2015.0625
https://doi.org/10.1016/j.foodchem.2018.11.147
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.7740/kjcs.2025.70.2.068
https://doi.org/10.7740/kjcs.2025.70.2.068
https://doi.org/10.1016/j.compag.2020.105342
https://doi.org/10.3390/agronomy14061325
https://doi.org/10.3390/agronomy14102231
https://doi.org/10.1016/j.ecoinf.2023.102096
https://doi.org/10.3390/agriculture12070975
https://doi.org/10.3390/agriculture12070975
https://doi.org/10.3390/agriculture14070978
https://doi.org/10.47577/technium.v16i.10002
https://doi.org/10.47577/technium.v16i.10002
https://doi.org/10.1038/s41559-018-0793-y
https://doi.org/10.1016/j.eswa.2024.125385
https://doi.org/10.3390/agriculture8120196
https://doi.org/10.1080/10942912.2015.1055760
https://doi.org/10.1007/s11694-018-9743-2
https://doi.org/10.1007/s11694-018-9743-2
https://doi.org/10.1016/j.foodhyd.2023.108905
https://doi.org/10.1016/j.foodhyd.2023.108905
https://doi.org/10.1111/jfpe.14137
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1038/s41598-023-46492-3
https://doi.org/10.1038/s41598-023-46492-3
https://doi.org/10.1016/j.scienta.2024.112945
https://doi.org/10.1016/j.scienta.2024.113908
https://doi.org/10.1039/C8FO02585A
https://doi.org/10.3389/fpls.2025.1655564
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	A lightweight deep convolutional neural network development for soybean leaf disease recognition
	1 Introduction
	2 Materials and methods
	2.1 Database set
	2.2 Data balance
	2.3 Data enhancement
	2.4 Model design
	2.4.1 Block construction
	2.4.2 MFEF-DCNet
	2.4.3 Training
	2.4.4 Evaluation


	3 Results
	3.1 Model performance comparison
	3.2 Ablation study and local data testing
	3.3 Visualization

	4 Discussion
	5 Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


