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Soybean is one of the world’s major oil-bearing crops and occupies an important

role in the daily diet of human beings. However, the frequent occurrence of

soybean leaf diseases caused serious threats to its yield and quality during

soybean cultivation. Rapid identification of soybean leaf diseases could provide

a better solution for efficient control and subsequent precision application. In this

study, a lightweight deep convolutional neural network (CNN) based on

multiscale feature extraction fusion (MFEF) and combined with a dense

connectivity (DC) network (MFEF-DCNet) was proposed for soybean leaf

disease identification. In MFEF-DCNet, a multiscale feature extraction fusion

(MFEF) module for soybean leaves was constructed by utilizing a convolutional

attention module and depth-separable convolution to improve the model

feature extraction capability. Multiscale features are fused by using dense

connections (DC) in the backbone network to improve the model

generalization capability. Experiments were implemented on eight distinct

disease and deficiency classes of soybean images (including bacterial blight,

cercospora leaf blight, downy mildew, frogeye leaf spot, healthy, potassium

deficiency, soybean rust, and target spot) using the proposed network. The

results showed that the MFEF-DCNet had an accuracy of 0.9470, an average

precision of 0.9510, an average recall of 0.9480, and an F1-score of 0.9490 for

soybean leaf disease identification. And MFEF-DCNet had certain performance

advantages in terms of classification accuracy, convergence speed and other

effects compared with VGG16, ResNet50, DenseNet201, EfficientNetB0,

Xception and MobileNetV3_small models. In addition, the accuracy of the

MFEF-DCNet model in recognizing soybean diseases in local data was 0.9024,

which indicated that the MFEF-DCNet model had favorable application in

practical applications. The proposed model and experience in this study could

provide useful inspiration for automated disease identification in soybean and

other crops.
KEYWORDS
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1 Introduction

Soybeans are one of the important crops with high protein, high

oil, and high nutrition characteristics, widely used in food, feed,

industry and other fields (Sun et al., 2018) (Zhu et al., 2019), (Huang

et al., 2019). Soybeans are usually processed into protein rich foods

or edible oils, which is rich in proteins. In addition, soybean protein

isolate hydrogel extracted from soybean contains nearly 20 kinds of

essential amino acids for human body (Wang et al., 2023; Ding

et al., 2021; Han et al., 2016). Soybean oil can be used as bio-

petroleum after chemical conversion, which generates more energy

than fossil energy sources (Pradhan et al., 2010). However, in the

process of soybean cultivation, the frequent occurrence of soybean

leaf diseases has caused huge economic losses, as well as posing a

great threat to human health and food security. Soybean yield losses

due to disease account for about 8-25% of total soybean production

average annual (Savary et al., 2019). In addition to these direct

losses, problems caused by the extensive use of pesticides for

diseases, such as environmental pollution, soil fertility

degradation and increased resistance, have become important

obstacles to the sustainable cultivation of soybeans. During the

soybean growing process, the types of soybean diseases could be

accurately recognized in time and agricultural chemicals could be

applied accordingly. Then soybean cultivation will develop in a

sustainable direction to better meet the world’s demand for

soybeans. The kinds of soybean diseases can be manifested on the

leaves, such as discoloration, spots, holes, etc. These diseases can be

identified by experienced farmers or experts based on disease

characteristics. However, in general, it is difficult to achieve rapid

and accurate diagnosis of soybean diseases due to the lack of

relevant professional experience and disease identification

knowledge among soybean farmers, which has become a

bottleneck restricting the development of the soybean industry.

With the advancements in computer vision and deep learning

techniques, automated recognition of images has made significant

progress in terms of accuracy, recognition efficiency and economic

utility. In recent years, various methods had been attempted to be

applied to automated crop disease diagnosis, including K-nearest

neighbor classifier (Chen et al., 2025), color transformation and

histogram methods (Rachmad et al., 2023), support vector machine

(SVM) (Chen et al., 2024; Sun et al., 2016; Wang et al., 2022),

convolutional neural network (CNN) (Mahmood ur Rehman et al.,

2024; Qiu et al., 2024; Sun et al., 2018). In terms of disease

recognition performance, CNN was currently the most effective.

CNN (Zhang and Dai, 2025) is a special class of artificial neural

networks with the main characteristics of convolutional operation

compared with other neural network models (Zhiming et al. 2024;

Weidong et al. 2022). CNN combines the advantages of

convolutional kernel local feature extraction and BP neural

network back propagation. Through local feature extraction and

backward weight sharing operation, CNN achieves the reduction of

the number of parameters and the improvement of network

generalization ability (Shengyi et al. 2021). Currently, convolutional

neural networks have great potential in agriculture, especially in

agricultural image processing (Archana and Jeevaraj, 2024; El Sakka
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et al., 2025; Jiehong et al. 2023). In response to the difficulty of

effectively extracting soybean diseased leaves from complex

backgrounds, Aditya et al. proposed a SoyNet model based on

computer vision and convolutional neural network, which realized

the effective separation of soybean diseased leaves from complex

backgrounds, with a model classification accuracy of 98.14%

(Karlekar and Seal, 2020). Wu et al. developed an enhanced deep

learning network model for predictive classification of soybean leaf

diseases with an average recognition accuracy of 85.42% through

feature extraction, attention computation and classification (Wu

et al., 2023). Sandeep et al. developed a novel deep learning model

based on convolutional neural networks for classification of soybean

leaf pests and diseases, which is also capable of disease level prediction

(Goshika et al., 2023). Vivek et al. designed the SoyaTrans model by

combining the CNN architecture with a swin-transformer, which

improves the classification performance and reduces the complexity

of the model by introducing a new random shift mechanism (Sharma

et al., 2025).

However, most of the existing soybean leaf disease identification

methods suffer from complex models, time-consuming, and

computational resource-consuming problems, which made these

methods difficult to satisfy the production demands for rapid

disease detection, especially when deployed and implemented on

mobile devices. Therefore, the focus of this study was to improve the

convergence speed and model lightweight of convolutional neural

networks while ensuring the recognition accuracy. The goal of this

study was to develop a lightweight automatic classifier for digital

images of soybean diseases based on CNN. By using multi-scale

feature extraction and fusion modules, the classifier can better

extract feature information from images. And data expansion

method was used to balance the data samples between each

category to prevent model overfitting. An image enhancement

algorithm was also used to enhance the input soybean disease

images to improve the applicability of the classifier. The soybean

disease identification network designed in the study can accurately

identify common soybean leaf disease categories for efficient and

accurate classification and decision making.
2 Materials and methods

2.1 Database set

The dataset used for the study was the Auburn Soybean Disease

Image Dataset (ASDID), which is publicly available and has been

extensively studied and validated (Bevers et al., 2022). The dataset

contains 9648 soybean leaf images, of which 4,181 were taken in

2020 and 5,467 in 2021. The dataset contains eight main categories:

bacterial blight (Figure 1A), cercospora leaf blight (Figure 1B),

downey mildew (Figure 1C), frogeye leaf spot (Figure 1D), healthy

(Figure 1E), potassium deficiency (Figure 1F), soybean rust

(Figure 1G), target spot (Figure 1H). The ASDID dataset were

used to construct soybean disease identification model.

The original 9648 images were randomly divided in the ratio of

9:1, of which 8686 were used for model training and validation, and
frontiersin.org

https://doi.org/10.3389/fpls.2025.1655564
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2025.1655564
962 were used for model testing. Table 1 showed the division of the

data according to the 9:1 ratio. Figure 1 showed examples of

soybean leaves photographed for all eight disease categories.

In addition, in order to verify the adaptability and local

application effect of the constructed model, 164 images of four

categories of soybean leaves were collected at Dayuzhuang, Lanqing

Township, Zhengyang County, Zhumadian City, Henan Province

(32027’ 37’’N, 11420’ 11’’E). There were 48 images of bacterial

blight, 52 images of frogeye leaf spot disease, 35 images of healthy
Frontiers in Plant Science 03
leaves and 29 images of soybean rust. Soybean leaf images were

collected on August 22, 2020. After completing the construction

and training of the MFEF-DCNet model, the collected images of

soybean leaves were input into the trained MFEF-DCNet model to

test the application effect of the model in practice.
2.2 Data balance

As shown in Table 1, the number of healthy samples used for

training and validation was 1469, while the number of bacterial

blight was 436. The ratio of the number of healthy samples to the

number of bacterial blight samples was greater than 3:1, indicating

that the distribution of samples shown a serious imbalance. In

CNN, imbalance in sample distribution may lead to overfitting

problems in network models. In addition, sample data with

differences between different categories could severely affect the

accuracy of network training and limit network performance (Buda

et al., 2018). Therefore, a data balancing algorithm was introduced

before using the data for training (Gao et al., 2021).

The above sampling method was used to balance the sample

data, which enhanced the generalization ability of the network. The

method was as follows:

(1) Index building: Firstly, the expression of the datasets was

defined as D = ½M0,Ml ,M2,⋯Mi�½N0,Nl ,N2,⋯Ni�T
� �

, in which

Mi represented the type of soybean leaf disease, and Ni was the

number of samples which corresponded toMi. Then the maximum

number Ni of samples in the datasets and its correspondingMi were

counted. Finally, the maximum value Ni was expressed by Nmax ,

while Mi i ∈ ½0, 7�f g marked the type which corresponded to Nmax ,
TABLE 1 Division of original data.

Category
Number of
original
images

Number of
training and

validation images

Number
of test
images

Bacterial
blight

484 436 48

Cercospora
leaf blight

1598 1439 159

Downey
mildew

652 587 65

Frogeye leaf
spot

1540 1386 154

Healthy 1632 1469 163

Potassium
deficiency

1034 931 103

Soybean rust 1627 1465 162

Target spot 1081 973 108

Total 9648 8686 962
FIGURE 1

Example images of eight soybean leaf diseases: (A) Example image of soybean leaf with bacterial blight; (B) Example image of soybean leaf with
cercospora leaf blight; (C) Example image of soybean leaf with downey mildew; (D) Example image of soybean leaf with frogeye leaf spot; (E)
Example image of soybean healthy leaf; (F) Example image of soybean leaf with potassium deficiency; (G) Example image of soybean leaf with rust;
(H) Example image of soybean leaf with target spot.
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in which i expressed the label serial number (Label 0 indicated

bacterial blight, Label 1 indicated cercospora leaf blight, Label 2

indicated downey mildew, Label 3 indicated frogeye leaf spot, Label

4 indicated healthy, Label 5 indicated potassium deficient, Label 6

indicated soybean rust, Label 7 indicated target spot).

(2) Calculation of the proportionality constant C: Nmax was

chosen as the numerator and Ni was selected as the denominator.

The constant C was calculated according to Equation 1.

Ci =
Nmax

Ni
(i ∈ ½0, 7�, Floor)

(3) Up-sampling: the proportionality factor C = C0,C1 ⋯Cif g
was obtained from Equation 1. Smaller numbers of samples were

up-sampled using different methods based on the proportionality

constant. Data balancing was achieved by complex up-sampling,

which is implemented by taking different up-sampling measures

according to the size of the proportionality factor Ci, as shown in

Equation 2:

0≦̸ Ci≦̸ 1,Dataset   uchanged
1<Ci<3,Rotation

n

3≦̸ Ci<4,Rotation, Contrast
4≦ ̸ Ci<5,Sharpness, Rotation, Contrast

n

(4) Exportation: D0 = ½M0,M1,M2, · · · · Mi�½N
0
0,N

0
1,N

0
2, · · · · N

0
i , �T

n o

was the balanced output, where  N
0
i was calculated from Equation 3.

N
0
i = Ni � Ci(i ∈ ½0, 7�)

In the calculated datasets, D={[M0 indicated bacterial spot, M1

indicated caecilian leaf blight, M2 indicated downy mildew, M3

indicated frogeye leaf spot, M4 indicated healthy, M5 indicated

potassium deficiency, M6 indicated rust, M7 indicated target spot]

[N0 = 436,Nl = 1439,N2 = 587, N3 = 1386, N4 = 1469, N5 = 931, N6 =

1465, N7 = 973]T}, the sample number of bacterial blight was the

lowest while healthy sample number leaf sample was the highest.

Since Nmax was 1469, C0 was equal to 3 according to Equation 1,

2. That means 3 was calculated by dividing 1469 by 436 using the

floor principle. The bacterial blight dataset was balanced by an

increase of 200% in the number of bacterial blight samples through

rotation and contrast adjustments.
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According to the above method, the proportionality constants

for each disease type sample were calculated based on the data in

Table 2. On the basis of Equation 3, N}
0, N

}
1, N

}
2, N

}
3, N

}
4, N

}
5, N

}
6, N

}
7

were obtained as follows:

N
0
0 = N0·C0 = 436� 3 = 1308

N
0
1 = N1·C1 = 1439� 1 = 1439

N
0
2 = N2·C2 = 587� 2 = 1174

N
0
3 = N3·C3 = 1386� 1 = 1386

N
0
4 = N4·C4 = 1469� 1 = 1469

N
0
5 = N5·C5 = 931� 1 = 931  

N
0
6 = N6·C6 = 1465� 1 = 1465

N
0
7 = N7·C7 = 973� 1 = 973

Table 2 displayed the sample distribution of each dataset type

after data balancing. As shown in Table 2, the maximum number of

healthy leaves after data balancing was 1469 and the minimum

number of potassium deficient leaves after data balancing was 931.

The ratio of the two sample datasets was approximately 1:1.57,

which indicated a more balanced distribution of sample data.

When the number of images in each category was roughly the

equal, the model could better learn the features of each category and

avoid overfitting or underfitting of some categories.
2.3 Data enhancement

Image enhancement was a conventional data preprocessing

method used to improve inter-class parity and increase the size of

training samples. This method was accomplished by employing

various transformations such as rotating, scaling, reflecting,
TABLE 2 Number of categories before and after data balance.

Category Number of original images Constant Ci Balance the quantity Total number after balance

Bacterial blight 436 3 872 1380

Cercospora leaf blight 1439 1 0 1439

Downey mildew 587 2 587 1174

Frogeye leaf spot 1386 1 0 1386

Healthy 1469 1 0 1469

Potassium deficiency 931 1 0 931

Soybean rust 1465 1 0 1465

Target spot 973 1 0 973

Total 8686 10145
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adjusting brightness, and adding noise to the original image.

ImageDataGenerator in Keras was able to enhance the data in a

fast way (Abadi et al., 2016). Therefore, in the study,

ImageDataGenerator was used to perform shift, brightness

change, flip, rotate, and normalization operations on the data in

the training set and normalization operations on the data in the

validation set. Figure 2 showed the effect comparison before and

after image enhancement of soybean leaves. Figure 2A showed the

original image of soybean leaf with bacterial blight; Figure 2B

showed the original image of soybean leaf with cercospora leaf

blight; Figure 2C showed the original image of soybean leaf with

downey mildew; Figure 2D showed the original image of soybean

healthy leaf; Figure 2E showed the image obtained after flip for

original image of soybean leaf with bacterial blight; Figure 2F

showed the image obtained after rotation for original image of

soybean leaf with cercospora leaf blight; Figure 2G showed the

image obtained after moving vertically for original image of soybean

leaf with downey mildew; Figure 2H showed the image obtained

after moving horizontally for original image of soybean healthy leaf.
2.4 Model design

2.4.1 Block construction
The attention mechanism was a technology inspired by the

human visual and cognitive system, which allowed CNN to focus on

processing the relevant parts of the input data. By using the

attention mechanism, CNN could automatically learn and focus

on the important information in the input, thus improving the
Frontiers in Plant Science 05
generalization ability of the model. Convolutional Block Attention

Module (CBAM) was a simple and effective lightweight attention

module for feed-forward CNN, which consisted of a channel

attention module (CAM) and a spatial attention module (SAM)

(Woo et al., 2018).

CAM was used to learn the channel weights using a shared fully

connected layer and activation functions. SAM was used to

compute the spatial weights of the feature maps using the

maximum pool and the average pool. Thus, the CBAM module

was able extract the feature information in the feature map more

efficiently when training the neural network. CBAM could be used

in various CNN architectures, and has been widely applied with

remarkable performance to tasks such as image classification (Guo

et al., 2025), target detection (Pei, 2022), instance segmentation (Ma

et al., 2024).

The multiscale feature extraction and fusion for soybean leaves

(MFEF-SL) module was constructed in this research. On the one

hand, the input feature layer was extracted by two depthwise

separable convolutions and batch normalization, and then the

feature layer was reduced by maximum pooling. On the other

hand, the feature filtering and size adjustment of the feature map

were realized by convolution attention module, ordinary

convolution and batch normalization. In the network structure,

the module original input feature layer was spliced in the channel

direction after maximum pooling and batch normalization. The

merging of the above two aspects was realized through the

summation of the corresponding elements, and the output was

finally obtained. The specific network structure connection was

shown in Figure 3.
FIGURE 2

Comparison before and after image enhancement: (A) Origional image of soybean leaf with bacterial blight; (B) Origional image of soybean leaf with
cercospora leaf blight; (C) Origional image of soybean leaf with downey mildew; (D) Origional image of soybean healthy leaf; (E) Image obtained
after flip for original image of soybean leaf with bacterial blight; (F) Image obtained after rotation for original image of soybean leaf with cercospora
leaf blight; (G) Image obtained after moving vertically for original image of soybean leaf with downey mildew; (H) Image obtained after moving
horizontally for original image of soybean healthy leaf.
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2.4.2 MFEF-DCNet
DenseNet was a densely connected neural network architecture

(Huang et al., 2017). This network architecture was realized by

establishing direct connections between the outputs of each layer

and the inputs of all subsequent layers, whereby the outputs of each

layer were directly connected to all previous layers. The dense

connection allowed the output of each layer to be used directly by

the subsequent layers. This approach improved the efficiency of

feature transfer, which in turn enhanced the convergence speed and

accuracy of the model (Zhang et al., 2024). DenseNet has achieved

outstanding performance in various image classification and target

detection tasks (Zhang et al., 2025). Meanwhile, the idea of dense

connection was also used in the architecture of model design (Xu

et al., 2024). It exhibited strong feature extraction and usage

capabilities while maintaining computational efficiency.

The multiscale feature extraction fusion dense connected

network (MFEF-DCNet) for soybean leaves proposed in this
Frontiers in Plant Science 06
study was mainly constructed by the modules of convolutional

layer, MFEF-SL, global average pooling and fully connected layer.

The network structure was shown in Figure 4.

Firstly, the input image was subjected to initial feature

extraction by two convolutions. Secondly, higher latitude

feature extraction was performed by four MFEF-SL module

operations. For high-latitude feature extraction, dense

connection was used between MFEF-SL Blocks. Namely, the

input of each block was the splicing result after pooling the

output of the previous block. In addition, due to the fact that the

size of the feature map was halved after the operation of the

MFEF-SL modules, the same image size was ensured by a

maximum pooling operation before performing a dense join,

as shown by the dotted line join in Figure 4. Thirdly, a global

average pooling and a fully connected layer of eight neurons

were performed. Finally, the probabilities of the eight categories

are output after passing the Softmax activation function.
FIGURE 4

MFEF-DCNet.
FIGURE 3

Multiscale feature extraction and fusion for soybean leaves.
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2.4.3 Training
During model training, a stochastic gradient descent optimizer

was used to reduce the loss values. The learning rate set was 1e-4,

momentum was 0.9, loss function was categorical cross entropy,

batch size was 32, and the initial training epoch was 100. All the

models were trained from the scratch.

2.4.4 Evaluation
The performance of a model was usually evaluated using test set

data. Therefore 962 images from the original dataset were used to

exam the performance of the model. Model evaluation indexes, such

as accuracy, precision, Recall, F1-Score, and the corresponding

macro average and weighted average, were used for model

evaluation. Accuracy is usually considered as the overall

performance of the model and is used to calculate the correctly

recognized labels.

Accuracy =
TP + TN

TP + TN + FP + FN

Precision (P) is used to assess the accuracy of the recognitions

by comparing the number of correctly recognized images for a

disease category to the total number of images recognized by the

model for that category.

Precision =
TP

TP + FP

Recall (R) is used to measure the ability of the model to cover

positive class samples, and is defined as the number of correctly

recognized positive samples divided by the total number of positive

samples.

Recall =
TP

TP + FN

F1-Score (F) is the weighted harmonic mean of precision and

recall. When the F1-Score is closer to 100% it indicates that the

recognition performance of the model is better.

F1 − Score =
2� Precision� Recall
Precision + Recall

� 100%
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In the above equation, TP represents True Positive, FP

represents False Positive, TN represents True Negative, and FN

represents False Negative.

Macro average is calculated by averaging the precision, recall

and F1 score for each category. Thus, macro precision, macro recall

and macro F1 score are calculated. However, when there is a serious

category imbalance in the dataset, it is not appropriate to use macro

average as an evaluation index, instead weighted average is used as

the evaluation index. Weighted average assigns different weights to

each class based on the ratio of the sample size of each class to the

total sample size. The corresponding weighted precision, weighted

recall, and weighted F1-Score are then calculated based on

the weights.

3 Results

3.1 Model performance comparison

Table 3 displayed the training results and model parameter

information based on the MFEF-DCNet, MobileNetV3_small,

EfficientNetB0, VGG16, DenseNet201, Xception, and ResNet50

models. The training of all these models was trained from the

scratch. In the table, the total parameters were the sum of trainable

and non-trainable parameters, which was a reference indicator of

the model capacity. The non-trainable parameters were usually set

when the model was built and remained constant throughout the

training process. During the training process, the trainable

parameters were adjusted according to the training data to enable

the model to fit the data better. It could be seen from the table that

MobileNetV3_small had the lowest single epoch training time

among all models. However, the final performance of

MobileNetV3_small was poor with an accuracy of 0.9013.

Therefore, MobileNetV3_small was not able to meet the practical

requirements. Although MFEF-DCNet was longer than

MobileNetV3_small in terms of training time for a single epoch,

the model achieves a test precision of 0.947 due to the well-designed

and optimized structure of MFEF-DCNet. In addition, although the

MFEF-DCNet model was the most lightweight with a minimum
TABLE 3 Number of categories before and after data balance.

Model Name.
Total

Params
Trainable
Params

Non-
trainable
params

Accuracy Precision Recall F1
Average Training

Latency (secs/epoch)

MFEF-DCNet 1,200,104 1,188,776 11328 0.9551 0.9608 0.9572 0.9581 156.88

EfficientNetB0 4,222,315 4,180,292 42,023 0.9453 0.9505 0.9452 0.9463 160.97

ResNet50 23,858,760 23,805,640 53,120 0.9307 0.9322 0.9349 0.9331 165.34

VGG16 14,789,128 14,789,128 0 0.9253 0.9261 0.9304 0.9268 162.67

Xception 21,132,528 21,078,000 54,528 0.9298 0.9416 0.9341 0.9351 172.83

MobileNetV3_small 1,526,056 1,513,944 12,112 0.9013 0.9096 0.9037 0.9054 32.16

DenseNet201 18,576,648 18,347,592 229,056 0.8738 0.9016 0.8761 0.8819 183.74
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total parameter of 1,200,104, the values of precision, recall and F1

score in MFEF-DCNet were exceed 0.95. Therefore, the

comprehensive performance of MFEF-DCNet was the best among

the all mentioned models.

The accuracy curves comparison for the training process of all

models were depicted in Figure 5. By analyzing the accuracy curve

of MobileNetV3_small, it can be found that the training accuracy

was increasing at the beginning. After 30 epochs, the training

accuracy tended to stabilize. However, the final accuracy of

MobileNetV3_small was low, which cannot satisfy the

requirements of real production environment. In addition, it can
Frontiers in Plant Science 08
be observed that MFEF-DCNet shown the fastest convergence rate

in the first 10 epochs from Figure 5. Meanwhile, the MFEF-DCNet

model also achieved excellent results in the later stages of training

with the accuracy around 0.9551. The loss value curves for different

models were shown in Figure 6. The loss values shown in the

vertical coordinates in Figure 6 indicated the difference between the

model recognized outputs and the actual labels. A smaller loss value

means a better performance of the model, while a larger loss value

means a larger difference between the model recognized results and

the real results. As can be seen from the training loss curve, MFEF-

DCNet decreased the fastest in the first 5 epochs, and the loss value
FIGURE 5

Accuracy curves of different models.
FIGURE 6

Loss value curves of different models.
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TABLE 4 Classification training results of different network models.

MFEF-DCNet EfficientB0 ResNet50 VGG16 Xception MobileNetV3Small DenseNet201

F P R F P R F P R F P R F P R F

3 0.9485 0.7667 0.9583 0.8519 0.7581 0.9792 0.8545 0.8537 0.7292 0.7865 0.8250 0.6875 0.7500 0.8571 0.8750 0.8660

7 0.9114 0.8802 0.9245 0.9018 0.9221 0.8931 0.9073 0.9706 0.8302 0.8949 0.9286 0.8994 0.9137 0.8000 0.7547 0.7767

0 0.8904 0.9483 0.8462 0.8943 0.9365 0.9077 0.9219 0.9403 0.9692 0.9545 0.8871 0.8462 0.8661 0.8000 0.9231 0.8571

6 0.9017 0.9272 0.9091 0.9180 0.9085 0.8377 0.8716 0.7023 0.9805 0.8184 0.8411 0.8247 0.8328 0.6027 0.8766 0.7143

9 0.8883 0.9150 0.8589 0.8861 0.8466 0.9141 0.8791 0.9325 0.9325 0.9325 0.8041 0.9571 0.8739 0.8790 0.8466 0.8625

0 1.0000 0.9902 0.9806 0.9854 0.8879 1.0000 0.9406 0.9808 0.9903 0.9855 0.9619 0.9806 0.9712 1.0000 0.9806 0.9902

8 0.9430 0.9281 0.8765 0.9016 0.9632 0.8086 0.8792 0.9926 0.8272 0.9024 0.9130 0.9074 0.9102 0.9474 0.7778 0.8542

6 0.9146 0.8814 0.9630 0.9204 0.9558 1.0000 0.9774 0.9901 0.9259 0.9569 0.9474 0.8333 0.8867 0.9863 0.6667 0.7956

0 0.9096 0.9023 0.9033 0.8857 0.8254

1 0.9247 0.9046 0.9146 0.9074 0.8973 0.9175 0.9040 0.9204 0.8981 0.9040 0.8885 0.8700 0.8800 0.8591 0.8376 0.8396

0 0.9215 0.9125 0.9096 0.9097 0.9070 0.9023 0.9019 0.9203 0.9033 0.9056 0.8886 0.8900 0.8900 0.8518 0.8254 0.8292
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Downey mildew 1.0000 0.9385 0.9683 0.8025 1.00
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reached its minimum in the final stage of model training. After 100

Epochs of training, MFEF-DCNet had an accuracy of 0.9551 on the

training set.

After 100 epochs of training from scratch, the best trained

weights were selected for all models and these weight coefficients

were tested on a total of 962 test images that the models had never

trained before. The test results of different models for different

soybean leaf disease categories were shown in Table 4. It was evident

from the table that the proposed MFEF-DCNet performs better

than other models in the vast majority of recognition results. And

the accuracy, macro accuracy, and weighted accuracy of the MFEF-

DCNet model all greater than 0.94. In terms of the recognition

results for the different soybean leaf disease categories, the MFEF-

DCNet model had relatively poor recognition precision for the

health category. In terms of recall, the MFEF-DCNet model had

relatively poor recognition accuracy for frogeye leaf spot, and the

model was able to correctly recognize 139 out of 154 disease images

with a recognition recall of 0.9026. While the MFEF-DCNet model

performed the best for downey mildew and potassium deficiency.

All images of the two categories for soybean leaf diseases were

correctly recognized with a recognition precision of 1.0000. In

addition, the MFEF-DCNet model showed a small difference in

recognition results between the different disease categories of

soybean leaves. This indicated that the model achieved good

performance for each category without overfitting or underfitting.

Among the 962 test images, the MFEF-DCNet model correctly

recognized a total of 911 images eight categories with an accuracy of

0.947. This result was the best among the all models used in this

study. Figure 7 showed the confusion matrix drawn by the MFEF-

DCNet model after testing on 962 images. The numbers on the
Frontiers in Plant Science 10
diagonal of the confusion matrix represented the counts that the

recognitions of the model matched the true labels. From the

confusion matrix, it was evident that the proposed MFEF-DCNet

model achieved satisfactory results in all categories of test images.
3.2 Ablation study and local data testing

The ablation experiments were conducted as shown in Table 5.

As can be seen from the table, the standard convolutional model

had 6.66 million parameters, with an accuracy rate of 91.79% and an

F1-score of 91.97%. Using the standard convolutional model as a

baseline, when the CBAM module was introduced separately, the

number of model parameters increased by 0.09M, yet the accuracy

and F1-score improved by 0.52% and 0.55%, respectively. When

replacing the standard convolution module with a separable

convolution module, the number of model parameters was

significantly reduced by 83.4%, with the parameters of 1.11

million. Meanwhile, model accuracy and F1-score improved by

2.08% and 1.92%, respectively. When the separable convolution and

CBAM modules were introduced simultaneously, the model

parameters reduced by 82.0%, while the model performance was

the best, with an accuracy and F1-score of 94.70% and 94.73%,

respectively. The accuracy and F1-score were improved by 2.91%

and 2.76%, respectively. The above results indicated that separable

convolutions had a good effect on model parameter compression,

while the CBAM module can further enhance the model’s

recognition capabilities through feature enhancement. Therefore,

the MFEF module constructed by combining separable convolution

and CBAM could significantly improve the recognition
FIGURE 7

Confusion matrix.
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performance of the model, which provided technical support for the

deployment of lightweight disease recognition models in

practical scenarios.

In order to further verify the adaptability and actual application

effect of the MFEF-DCNet model, the 164 local images of soybean

leaves, which were collected in Dayuzhuang, Lanqing Township,

Zhengyang County, Zhumadian City, Henan Province, were input

into the MFEF-DCNet model. The recognition results of the model

were shown in Table 6. As shown in the table, the average accuracy

of the MFEF-DCNet model for four categories of soybean leaves

was 0.9024, and the macro-mean and weighted mean of the model

were around 0.9. The results indicated that the MFEF-DCNet

model had a satisfactory recognition effect for the local soybean

leaves. At the same time, it was shown that MFEF-DCNet had better

application effect in practical applications. It also showed that the

MFEF-DCNet model had a favorable application effect in

practical applications.
3.3 Visualization

Feature map visualization was a technique for understanding

deep learning models, which is useful for observing the intermediate

results produced by the model while processing the input data. By
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TABLE 6 Evaluation results of MFEF-DCNet model on different
categories of local soybean images.

Disease
category

Precision Recall
F1-

score
Support

Bacterial blight 0.9167 0.9167 0.9167 48

Frogeye leaf spot 0.9600 0.9231 0.9412 52

Healthy 0.9118 0.8857 0.8986 35

Soybean rust 0.7812 0.8621 0.8197 29

Accuracy 0.9024 164

Macro average 0.8924 0.8969 0.8940 164

Weighted average 0.9054 0.9024 0.9034 164
fr
FIGURE 8

Soybean downy mildew leaves.
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visualizing the feature map, the model’s ability to interpret the input

data and extract features could be quantified and demonstrated,

which in turn contributed to optimizing the performance of the

model. Figures 8 and 9 illustrate the process of visualizing the

feature map of downy mildew using MFEF-DCNet. Figure 8

showed the image of downy mildew as input to the neural

network, and Figure 9A, Figure 9B and Figure 9C showed the

feature maps of downy mildew at different depths of the model

during the forward process [Early stage (Figure 9A), Mid stage

(Figure 9B), Last stage (Figure 9C)]. According to the feature maps

of different periods, it can be seen that the shallow information

extracted by the model is mostly edges and textures. With the depth

of the network, what MFEF-DCNet learns became more and more

abstract, and the extracted features became richer and richer.

However, the visual interpretability of these features was also

getting decreasing.

By mapping the visualized feature map to the original image,

the change of the network focus during the network training

process could be observed. Figures 10A–C were the heat maps of

different stages of the model by mapping the feature maps after

visualization to the original image [Early stage (Figure 10A), Mid

stage (Figure 10B), Last stage (Figure 10C)]. From the figures, we

can see that the attention of the network gradually approaches

towards the direction of the disease features during the learning

process of the neural network.

According to the heat maps of different periods, it can be seen

that the focus of the model was gradually approaching towards the

direction of downy mildew disease characteristics in the process of

neural network learning.
Frontiers in Plant Science 12
4 Discussion

The goal of this study was to develop an efficient, lightweight, and

highly accurate network model for soybean leaf diseases identification.

Based on the open-source dataset, operations such as rotating,

cropping, and flipping the original images of soybean diseases were

implemented by data balancing algorithms and image enhancement

technology. These operations improved the balance of sample data

while expanding the sample size. After that, the study constructed a

multiscale feature extraction module for soybean leaves using CBAM

and depthwise separable convolution, which was used to improve the

feature extraction capability of the model. Meanwhile, the fusion

among multi-scale feature layers was achieved by using dense

connections in the model backbone network to improve the

generalization ability. Existing soybean leaf pest and disease

identification methods cannot simultaneously meet requirements in

terms of identification accuracy (Kang et al., 2025) and model size

(Miao et al., 2023). In comparison, several aspects such as model

lightweighting, pest types, and accuracy were comprehensively

considered in this study. After training and optimization, the MFEF-

DCNet constructed in this study had the best results in terms of

accuracy, model convergence speed, and precision, with the highest

accuracy rate of 0.947, and is friendly for deployment on edge devices.

The results of tests on multiple data sets indicate that MFEF-DCNet

has good effectiveness and superiority in soybean leaf

disease identification.

A lot of attempts were made during the construction and testing

of the model. For example, several auxiliary classifiers were added to

the model during the training process in order for the model to
FIGURE 9

Characteristic map of soybean downy mildew in different periods: (A) Feature map (Early stage); (B) Feature map (Mid stage); (C) Feature map (Last
stage).
FIGURE 10

Heat map of soybean downy mildew in different periods: (A) Heat map (Early stage); (B) Heat map (Mid stage); (C) Heat map (Last stage).
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converge faster during the training process. However, the presence

of the auxiliary classifiers had not enhanced the accuracy of the

model from the training results obtained. Conversely, this operation

consumed more arithmetic power. Therefore, no auxiliary

classifiers were added to the final model construction. In addition,

the residual structure was not used in the module when using the

convolutional attention module. This is because the use of the

residual structure was verified to have no significant improvement

on the final model performance.

The MFEF-DCNet model proposed in this study achieved

effective identification of eight diseases of soybean and achieved

good results. However, the study in this paper still has some

shortcomings and needs to be further improved in the future.

The MFEF-DCNet model was able to classify each disease

category in soybean leaf disease identification, but it was unable

to realize the judgment of disease degree at the same time of disease

identification. The essence of neural network classification is to

assign pre-trained disease category probabilities to the image data of

each input network. The disease category with the highest

probability was ultimately selected as the disease category for the

input image. Therefore, the model was only able to identify one of

the diseases when multiple diseases are present in a leaf and is

unable to accurately identify the other disease categories at the same

time. Simultaneous identification of multiple diseases in a picture

and the degree of disease was a direction for further research.
5 Conclusions

In this study, MFEF-DCNet, a lightweight deep convolutional

neural network, was constructed for soybean leaf disease

identification based on the open-source soybean leaf disease

dataset. The training inference efficiency and identification

accuracy of the model were improved by employing the soybean

leaf multi-scale feature extraction fusion module, namely the dense

connectivity and CBAM module. In comparison with other

common identification models, MFEF-DCNet achieved a

maximum accuracy of 0.947 while being lightweight. And its

recognition accuracy for local soybean leaf diseases was 0.9024.

Meanwhile, the heat map analysis showed that the leaf disease

region features were correctly learned by MFEF-DCNet. Overall,

future research would continue to deepen the problem of soybean

disease recognition. More advanced deep learning techniques and

methods would be attempted to contribute to the development and

security of the soybean industry.
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